

2008CATALOG

MR Miniature Linear Guide Series ST Miniature Stroke Slide Series

CDC CHIEFTEK PRECISION CO., LTD.

Company Profile

Chieftek Precision Co., Ltd. or CPC in short hereinafter, consists of professional technical management team and highly skillful technicians who devote every effort to the R&D, manufacturing and a long term sustainable, perpetual operation for miniature linear motion components.

Miniaturization trend of linear motion component has started since1990, with applications in precision measurement and inspection instruments. The recent fast growth of the semiconductor, electronics and their peripheral industries all use miniature linear motion component as a mainstay in their various operations, such as compact precision machinery and robot for the fabrication of high value computer and office automation products. Linear motion guide is a critical component for the precision automation industry.

CPC's technical management team consists of domestic and international top notch professionals. **CPC** team has determined to achieve their vision to become a global leader in the precision miniature motion components.

Main products include:

- Miniature Linear Guide
- Standard Linear Guide
- Linear Motor
- Precision Miniature Ball screw
- Miniature Linear Module

MR

4. Dimensions and Specification 30

I.Products Introduction

1.1 MR Miniature Linear Guide series

steel plate reinforcement design

High load, high moment function

Precision

MR Miniature Linear Guide series have three accuracy options for design choice.

They are Precision(P) \ High(H) \ Normal(N).

Embedded inverse hook design

Lubrication storage design

Material

MR Miniature linear Guides series regardless of rail, Steel body of carriage or ball, all are made with heated treated stainless steel.

1.Products Introduction

1.2 New Design

MR

Embedded inverse hook design for reinforcement mechanical integration

This design is aimed to accommodate a higher running speed application.

When the carriage is in motion, the end cap constantly receives strike force when the steel balls change direction during re-circulation. The higher speed the higher striking force. Due to the need of higher and higher running speed in automation design, **CPC** adopted reverse hook to reinforce their MR Miniature Linear Guide 9W, 12M/W, 15M/W series.

Brand new design

Suitable for use : High speed belt driven mechanism High speed carrier design Automation linkage between stations.

Unique ball re-circulation design

The steel ball re-circulation hole and channel are fully sealed by plastic frame and end caps. The simple structure substantially reduces contact surface between steel ball and metal, thus reduces noise significantly. The lubrication oil storage embedded in the circulation channel significantly extends the re-lubricating interval.

Steel Reinforced Carriage

Two stainless steel plates fully cover the top, bottom and end caps of the carriage to enable excellent rigidity for high speed application and harsh working environment. The reinforcement plates also perform scraping function as the seal design is adopted for the gap between carriage and rail. Available for Block model code – EE

suitable for use :

High speed belt driven mechanism Cold cathode rays process FPD glass cut process High powder, dust and particle working environment

Lubrication storage design

Lubricant can be injected through the airtight injection holes on the both ends of Carriage. The re-circulating steel balls shall carry the lubricant to the rail surface and achieve effective lubrication. Optional lubricant storage unit embedded in the carriage provides self-lubricating function and substantially reduces maintenance frequency, particularly for the short stroke applications. Available for Block model code –ZZ, -EZ

1. Products Introduction

MK

High load and high moment capacity

MR Miniature Linear Guide series incorporate two rows of re-circulating ball. The Gothic arch contact design enables 45 degree contact angle to attain the effect of equal load in all directions. Under the restriction of limited space, larger steel balls are used to enhance the load and moment capacity. The Gothic arch contact design attains equal load in all directions

The Gothic arch contact design attains equal load in all directions

Dust Proof Design

CPC standard end cap design enables effective seal for dust proof, lubricant efficiency and long product life.

Optional special scraper enhances seal function, yet maintains low friction for smooth operation.

2. Technical Information

2.1 Precision

Accuracy

MR Miniature Linear Guide series have three accuracy classes P, H, N for your choice.

Speed

The maximum speed for the standard MR Miniature Linear Guide series is:

Vmax= +3 m/s

The maximum speed for the reinforcement MR..EE-V1. Miniature Linear Guide series can reach:

Vmax= 5 m/s

And the maximum acceleration: **Gmax= 250 m/s²**

Accuracy of the running parallelism

2. Technical Information

2.2 Preload

Preload Classes

The MR Miniature Linear Guide series have three classes of preload V0, Vs and V1 as described in the Table of Preload below. Preload can enhance stiffness, precision, and torque resistance, but will affect life and friction.

lable of Prel									
Preload type	Madalaada			Application					
	woder code	3	5	7	9	12	15	Application	
Clearance	V0	+3 – 0	+3 - 0	+4 - 0	+4 - 0	+5 - 0	+6 - 0	Very smooth	
Standard	Vs	+1 – 0	+1 – 0	+2 - 0	+2 - 0	+2 - 0	+3 - 0	Smooth and precision	
Light preload	V1	0 – - 0.5	0 – -1	0 – - 3	0 4	0 – - 5	0 6	High rigidity Minimize vibration High precision Load balance	

Operation Temperature

The MR Miniature Linear Guide can operate in a range of temperatures from $40^{\circ}C \sim +80^{\circ}C$. For short term operation it can reach up to $+100^{\circ}C$.

2.3 Lubrication

Function

Under good lubrication condition, the contact zones between loaded rolling elements and rail are separated by a oil film of one micrometer thickness. The effective lubrication will:

- Reduce friction
 - Prevent corrosion
- Reduce wear
- Dissipate heat and increase service life
- **Lubrication Caution**
- The MR Miniature Linear Guide must be lubricated before the first use.
- The runner Block should be moved back and forth while adding lubricant .
- Generally the lubricant can be added onto Rail raceway.
- The lubricant can be injected into the lubrication holes on either end of the runner Block.
- The re-circulating steel balls shall carry the lubricant to the rail raceway.
- A thin of lubricant should be maintained on the surface of the Rail raceway at all time.
- Re-lubricate before contamination or discoloration of the lubricant occurs.
- Notify us in advance if the application will be in a special environment (e.g., clean room, acid or alkaline)When the rail is not installed on a normal

horizontal surface, carefully note about the conditions of applying lubricant oil..)

Grease lubrication

When lubricant grease is required we recommend lithium-soap grease with a viscosity between ISO VG32-100.

Oil lubrication

We recommend the synthetic oil CLP or CGLP based on DIN 51517 or HLP based on DIN51524 and the viscosity range between ISO VG32-100.The working temperature between0°C~+70°C are recommended (We recommend ISO VG 10 for use in lower temperature environment).

2.Technical Information

2.3 Lubrication

MR

Re-lubrication

- Re-lubrication shall be applied before the lubricant is contaminated or changes the color.
- The amount of the lubricant is the 1/2 of the first lubrication. If lubricant oil is applied, add until oil over flows (see table 1).
- Re-lubrication shall be applied under operation temperature. Move block back and forth while adding lubricant to ensure even distribution.
 Water based lubricant oil should not be applied to the block or rail.
- If the stroke is smaller than one time or greater than 10 times of the block steel body length, the re-lubrication interval shall be shortened.

			Table 1
Model	First lubrication	Model	First lubrication
code	(cm3)	code	(cm3)
5 MN	0.03	5 WN	0.04
5 ML	0.04	5 WL	0.05
7 MN	0.12	7 WN	0.19
7 ML	0.16	7 WL	0.23
9 MN	0.23	9 WN	0.30
9 ML	0.30	9 WL	0.38
12 MN	0.41	12 WN	0.52
12 ML	0.51	12 WL	0.66
15 MN	0.78	15 WN	0.87
15 ML	1.05	15 WL	1.11

Re-lubrication Interval

The speed, the load, the stroke length and the operating environment affect re-lubrication interval. A safe re-lubrication interval can only be obtained by practical observation.

Re-lubrication interval shall not exceed one year.

Lubrication can be applied through the injection hole on the both ends of the block by using a special injector available from **CPC**.

<u> MR</u>

Lubrication grease

00 for general application
01 for low friction low nose application
02 for clean room application
03 for clean room and vacuum application
04 for high speed application
05 for micro vibration application

Lubrication oil

11 for general application ISO V32-68

rdering of the lu	brication injector
LUB — 01 — 180 Lubricant :	Needle model :
00	21G : 5M/5W
01	20G : 7M
02	19G : 7W
03	18G : 9M/9W
04	18G : 12M/12W
05	15G : 15M/15W
11	

2.Technical Information

2.4 Friction

Friction

MR

The MR miniature linear guide series is characterized with light starting friction and low, stable and consistent friction during operation.

Sealing Design

The MR miniature linear guide series adopts endseal on both ends of the runner block. Optional side seals build an all-around closed sealing system.

	Friction	Frict	ion with End Seal u	nder lubrication
		MR size	Friction with En (under lub M	d Seal (Nmax) rication) W
F _{rn} =μ •F	(1)	3	0.08	0.2
F	Load (N)	5	0.08	0.2
Frn	Friction (N)	7	0.1	0.4
		9	0.1	0.8
MR Miniature li	near Guide series	12	0.4	1.0
triction factor approximately	r is µ=0.002-0.003 /	15	1.0	1.0

Source of friction

- Resistance of the sealing system.
- Resistance of the collision between the balls during operation.
- Resistance from the collision between the balls and the return path.
- Rolling resistance of the balls in the Gothic arch load zone.
- Resistance from the churning of the lubricant in the runner Block.
- Resistance from the penetrated contaminant.

2.5 Load capacity and rating life

Static load rating Co

Is the static load along the acting direction; Under this loading, the maximum stress happens at the center of contact position between the rolling elements and the raceway. The value with a curvature radius ≤ 0.52 is 4200MPa and 4600MPa with a curvature radius ≥ 0.6 .

Note : at this contact point under such stress · a permanent total deformation is generated corresponding to about 0.0001times of the rolling element diameter. (The above is according to DIN636 Part 2).

Static load safty fa	ctor calculation		
$S_0 = C_0 / P_0$	(11)	Operation condition	S₀
$S_0 = W_0 / W$	(12)	Normal operation	1~2
$P_0 = F_{max}$ $M_a = M$	(13)	Load with vibration or impact	2~3
wu - wmax	(14)	High accuracy and smooth running	≧ 3

Static load Po and moment Mo

Permissible static load

The static load of the MR Miniature Linear Guide is limited as follows:

- Static load of the linear guide.
- Permissible load of fixing screws.
- The permissible load of the related parts of the whole mechanism.
- The static load safety factor required for the application.

The equivalent static load and static moment are the largest load and moment, referred to formula (13) and (14).

Static load safety factor So

Under the static load safety factor, the linear guide system demonstrates a reliable operation and running accuracy as required in application. The static load safety factor S_0 is calculated by the formula (11) and (12).

- So static load safety factor
- Co basic static load in action direction N
- Po equivalent static load in action direction N
- Mo basic static moment in action direction Nm
- M equivalent static moment in action direction Nm

2.Technical Information

Dynamic load rating C

MR

The dynamic load rating is the load with constant magnitude and direction and results in a normal life of 100 km of travel distance (the above is according to DIN636 Part 2)

Rating life	e calculation		
$C_{(50)} = 1.26 \cdot C_{(100)}$	<u>(2</u>)	L = Rating life for travel distance 100,000 meter	(m)
(00)		$L_h = Rating life in hour$	(h)
$-0.79 \cdot C$	(•)	C = Dynamic load rating	(N)
$C_{(100)} = 0.77 C_{(50)}$	(3)	P = Equivalent load	(N)
		s = Length of stroke	(m)
$(C)^{3}$ 105		n = Stroke repetition	(min ⁻¹)
$L = \left(\frac{-P}{P}\right) \cdot 10^{\circ}$	(4)	$v_m = Average speed$	(m/min)
$L_{h} = \frac{L}{2 \cdot s \cdot n \cdot 60} = \frac{L}{v_{m}} \cdot \left(\frac{C}{P}\right)^{3}$	(5)		

Rating Life L

An individual linear guide or a batch of identical linear guide under the same running conditions, using common materials with normal manufacturing quality and operating conditions can reach a 90% survival rate at the calculated life. (The above is according to DIN 636 Part 2)

When the standard of 50km travel distance is used, the dynamic load rating will exceed the value based on the standard DIN 636 by 20% or more. The relationship between two load ratings is based on formulas (2) and (3) above.

Calculation of rating life

Formulas (4) and (5) can be used when the equivalent dynamic load and the average speed are constant.

MR

Equivalent dynamic load and speed

If the load and speed are not constant, each actual load and speed must be taken into account and both will influence the life.

Equivalent dynamic load

If there is a change in load only, the equivalent dynamic load can be calculated according to formula (6).

Equivalent speed

If there is a change in speed only, the equivalent speed can be calculated using formula (7). If there are changes in both of the

load and speed, the equivalent dynamic load can be calculated using formula (8).

Equivalent load capacities and speed ca	lculation						
$P = 3 \sqrt{q_1 \cdot F_1^3 + q_2 \cdot F_2^3 + \dots + q_n \cdot F_n^3}$	(6)	F	Ρ	=	Equivalent dynamic load	(N)
√ 100		, c	q	=	Percentage of stroke	(9	%)
$ \mathbf{q}_1 \cdot \mathbf{v}_1 + \mathbf{q}_2 \cdot \mathbf{v}_2 + \cdots + \mathbf{q}_n \cdot \mathbf{v}_n$	(-)	F	F ₁	=	Discrete load steps	(N)
$v = \frac{11 + 12 + 2}{100}$	—(7)		V	=	Average speed	(m/n	nin)
		\ \	V	=	Discrete speed steps	(m/n	nin)
$P = 3 \left(\frac{q_1 \cdot v_1 \cdot F_1^3 + q_2 \cdot v_2 \cdot F_2^3 + \dots + q_n \cdot v_n \cdot F_n^3}{100} \right)$	<u>(8)</u>	F	F	=	External dynamic load		Ν
γ 100		F	Fy	=	External dynamic load, vertical		Ν
	(0)	F	F _x	=	External dynamic load, horizontal		Ν
$\mathbf{r} = [\mathbf{r}_{\mathbf{X}}] \cdot [\mathbf{r}_{\mathbf{Y}}]$		0	C ₀	=	Static load rating		Ν
	()	N	Μ	=	Static moment		Nm
$P = F + M \cdot \frac{I}{M_0}$	(10)	N	M ₀	=	Static moment in direction of acti	ion	Nm

Combined dynamic load

If the linear guide takes on load from an arbitrary angle, its equivalent dynamic load rating is calculated using formula (9).

Combined load in combination with a moment

If both load and moment act on the linear guide, the equivalent dynamic load can be calculated by the formula (10).

According to DIN 636 Part 1, the equivalent load (P) shall not exceed 1/2C.

3.Order Information

3.1 Length of Rail

MR

IVIO	idel Co	bde												
MR	U	15	М	Ν	EE	2	V1	Р	-310	-15	-15	Π	J	
													Custo	mization code
												Num	ber of e mov	FRail on the
											Start	ing ho	le pitc	
										End	hole p	itch (n	nm)	
									Ra	il lenat	h (mm))		
								Acci	iracycl			ion) 、 L	l(Lliab)	N(Normal)
								ACCI	lacyci	asses .	r (FIECI:		i(i iigi i)	
							Prelo	ad class	es : VO	: Cleara	ance Vs	: Standa	ard V	1 : Light Preload
						Bloc	k qua	ntity : (Quanti	ty of tl	ne runi	ner Blo	ck	
					Seal	\$ \$\$: 1	With End	d Seal						
					type	• EE :	With End	d Seal pl	us Reinfo	orceme	nt Plate(availab	le for siz	e12、15)
						ZZ : F7 ·	With Ena With Ena	d Seal pl d Seal pl	us Lubric us Lubric	cation St cation St	orage orage r	lus Rein	forceme	ent Plate
							(availab	le for size	e12 • 15)	oluge p		0.001	Sintificato
				Blog	ck type):	L : Loi	ng l	N : Sta	ndard				
			Rail	type :	M	: Stan	dard	VV : \	Vide					
		Rai	l dime	nsion :	The w	idth of	^r Rail e	x.:3 \	5、7、	9 \ 12	2、15			
	Spe	ecial Ra	ail U	: Upwa	ard Scr	ewing	Rail	No Ma	rk : Sta	andarc	l Rail			
Pro	duct	type N	/R : M	iniatur	elinea	ar Guid	1e							
TTC		M	RU : M	iniatur	e Upw	ard Sc	rewind	g Linea	r Guid	е				
			ST : M	iniatur	e Strok	e Slide	;							
	ST : Miniature Stroke Slide													

Standard type						
size	ЗM	5M	7M	9M	12M	15M
	30	40	40	55	70	70
	40	55	55	75	95	110
Standard	50	70	70	95	120	150
length of one		85	85	115	145	190
Rail (mm)		100	100	135	170	230
			130	155	195	270
				175	220	310
				195	245	350
				275	270	390
				375	320	430
					370	470
					470	550
					570	670
						870
Pitch(mm)	10	15	15	20	25	40
L2,L3min	3	3	3	4	4	4
L2, L3max	5	10	10	15	20	35
Lmax	300	1000	1000	1000	1000	1000

Wide type						
size	3₩	5W	7W	9W	12W	15W
	40	50	50	50	70	110
	55	70	80	80	110	150
Standard	70	90	110	110	150	190
length of one		110	140	140	190	230
Rail (mm)		130	170	170	230	270
		150	200	200	270	310
		170	260	260	310	430
			290	290	390	550
				320	470	670
					550	790
Pitch(mm)	15	20	30	30	40	40
L2,L3min	3	4	3	4	4	4
L2, L3max	10	15	25	25	35	35
Lmax	1000	1000	1000	1000	1000	1000

Customization Requirement

The meaning of suffix characters :

- J Butt-jointing track Rail
- G Customer designate lubricant
- I Inspection report
- СЗ Сар МЗ
- C4 Cap M4

R S

В

- Special process for Rail
- Special process for Block

J: Butt-jointing track Rail

When the required rail length exceed the supplied range, butt-jointing can be applied to meet the requirement. The Rail indication for Butt-jointing is marked, show as chart:

B : Special process for Block

If have any special process requirement, please contact technical department.

I: Inspection report

If require, please contact technical department.

G: Customer designate lubricant according to application environment.

GN : No lubricant

GC : low dust generation, suit for clean room use.

C3 CapM3: apply to MR9M

MR12M
MR15M
MR7W
MR9W Rail
C4 CapM4: apply to MR12W
MR15W
Rail

R: Special process for Rail If have any special process requirement, please contact technical department.

If vacuum , acid , alkaline application environment, please contact technical department.

4.Installation Illustration

MF

Height and chamfer of the reference surface

The corners between the support and reference surfaces are normally provided with a relief grooves. If otherwise, the dimensions tabulated below must be maintained.

Height and chamfer of the reference surface

Dimension	h₁	r₁max	h ₂	r₂max	E
3M	0.5	0.2	1.5	0.3	0.7
5M	1.2	0.2	1.9	0.3	1.5
7M	1.2	0.3	2.8	0.3	1.5
9M	1.5	0.3	3	0.3	2.2
12M	2.5	0.5	4	0.5	3
15M	2.5	0.5	4.5	0.5	4

Dimension	h₁	r₁max	h2	r ₂ max	E
3W	0.7	0.2	1.7	0.3	1
5W	1.2	0.2	2	0.3	1.5
7W	1.2	0.3	2.8	0.3	2
9W	1.5	0.3	3	0.3	4.2
12W	2.5	0.5	4	0.5	4
15W	2.5	0.5	4.5	0.5	4

The mounting surface

Surface roughness

The mounting surface should be ground or fine milled to reach a surface roughness Ra1.6.

Screw tightening moment (Nm)

Screw grade			Non Iron
12.9	Steel	Cast Iron	metal
M2	0.6	0.4	0.3
MЗ	1.8	1.3	1
M4	4	2.5	2

Geometric and positional accuracy of the mounting surface

The inaccuracy of the mounting surfaces will affect the running accuracy and reduce the operating linear guide life. If the tolerance of the mounting surfaces exceed the values calculated by formulas(15), (16), and (17), the lifetime will become shortened, as calculated by formulas (4) and (5).

$e1(mm) = b(mm) \cdot f1 \cdot 10^{-4}$	 (15)
$e2(mm) = d(mm) \cdot f2 \cdot 10^{-5}$	 (16)
e3(mm)= f3·10-3	 (17)

Reference surface

Rail: Both sides of the track rail can be the reference surface without any special marking. Block: There is a groove marking on one side of the steel body, which is not the reference surface.

Dimension		VO			V1	
Dimension	f1	f2	f3	f1	f2	f3
3MN	4	9	2	3	9	1
5MN	4	8	2	2	8	2
7MN	5	11	4	3	10	3
9MN	5	11	6	4	10	4
12MN	6	13	8	4	12	6
15MN	7	11	12	5	10	8
3ML	4	5	2	3	5	1
5ML	3	5	2	2	5	1
7ML	4	6	4	3	6	3
9ML	5	7	5	3	7	4
12ML	5	8	8	3	7	5
15ML	7	8	11	4	8	7

Dimension		VO			V1	
Dimension	f1	f2	f3	f1	f2	f3
3WN	2	5	2	4	3	1
5WN	2	5	2	1	3	1
7WN	2	6	4	2	4	3
9WN	2	7	6	2	5	4
12WN	3	8	8	2	5	5
15WN	2	9	11	1	6	7
3WL	2	3	1	1	2	1
5WL	2	3	2	1	2	1
7WL	2	4	4	1	3	3
9WL	2	5	5	2	3	3
12WL	2	5	7	2	3	5
15WL	2	5	10	1	4	7

5.Dimensions and Specification

5.1 Standard MR-M series

Madal Cada	Fabricate	Dimension	Rail Dimensions (mm)				Block Dimensions (mm)					
Model Code	Н	W ₂	W ₁	H1	Р	D×d×g1	W	L	L	h ₂	P1	P ₂
MR 15ML	16	8.5	15	9.5	40	6 x 3.5 x 4.5	32	60	44	12	25	25
MR 15ML EE	16	8.5	15	9.5	40	6 x 3.5 x 4.5	32	61.6	44	12.8	25	25
MR 15MN	16	8.5	15	9.5	40	6 x 3.5 x 4.5	32	43	27	12	20	25
MR 15MN EE	16	8.5	15	9.5	40	6 x 3.5 x 4.5	32	44.6	27	12.8	20	25
MR 12ML	13	7.5	12	7.5	25	6 x 3.5 x 3.5	27	47.6	34	10	20	20
MR 12ML EE	13	7.5	12	7.5	25	6 x 3.5 x 3.5	27	49	34	10.7	20	20
MR 12MN	13	7.5	12	7.5	25	6 x 3.5 x 3.5	27	35.4	22	10	15	20
MR 12MN EE	13	7.5	12	7.5	25	6 x 3.5 x 3.5	27	36.8	22	10.7	15	20
MR 9ML	10	5.5	9	5.5	20	6 x 3.5 x 3.5	20	40.9	30.8	7.8	16	15
MR 9MN	10	5.5	9	5.5	20	6 x 3.5 x 3.5	20	30.8	20.5	7.8	10	15
MR 7ML	8	5	7	4.7	15	4.2 × 2.4 × 2.3	17	31.2	21.8	6.5	13	12
MR 7MN	8	5	7	4.7	15	4.2 × 2.4 × 2.3	17	23.7	14.3	6.5	8	12
MR 5ML	6	3.5	5	3.5	15	3.5 × 2.4 × 1	12	19.6	13.5	4.5	7	-
MR 5MN	6	3.5	5	3.5	15	3.5 x 2.4 x 1	12	16.1	10	4.5	-	8
MRU 3ML	4	2.5	3	2.6	10	M1.6	8	15.7	11	3	5.5	-
MRU 3MN	4	2.5	3	2.6	10	M1.6	8	11.4	6.7	3	3.5	-

Load capacities are calculated according to DIN 636 Part 2

	Block D	imensions	(mm)	Load Capacities (N)		Static Moment(Nm)		Weight		Model Code	
M×g ₂	Ø	S	Т	C(dyn.)	C0(stat)	MrO	Mp0	My0	Block(g)	Rail (g/m)	Nodel Code
M3 x 5.5	2.5	3.3	4.3	5350	9080	70	63.3	63.3	90	930	MR 15ML
M3 x 5.5	2.5	3.3	4.3	5350	9080	70	63.3	63.3	93	930	MR 15ML EE
M3 x 5.5	2.5	3.3	4.3	3810	5590	43.6	27	27	61	930	MR 15MN
M3 x 5.5	2.5	3.3	4.3	3810	5590	43.6	27	27	64	930	MR 15MN EE
M3 x 3.5	2	2.6	4.3	3240	5630	34.9	30.2	30.2	51	602	MR 12ML
M3 x 3.5	2	3.3	4.3	3240	5630	34.9	30.2	30.2	54	602	MR 12ML EE
M3 x 3.5	2	2.6	4.3	2308	3465	21.5	12.9	12.9	34	602	MR 12MN
M3 x 3.5	2	3.3	4.3	2308	3465	21.5	12.9	12.9	37	602	MR 12MN EE
M3 x 2.8	2	2.2	3.3	2135	3880	18.2	12.4	12.4	28	301	MR 9ML
M3 x 2.8	2	2.2	3.3	1570	2495	11.7	6.4	6.4	18	301	MR 9MN
M2 x 2.5	1.2	1.6	2.8	1310	2440	9	7.7	7.7	14	215	MR 7ML
M2 x 2.5	1.2	1.6	2.8	890	1400	5.2	3.3	3.3	8	215	MR 7MN
M2.6 x 2.0	0.8	1.1	2	470	900	2.4	2.1	2.1	4	116	MR 5ML
M2 x 1.5	0.8	1.1	2	335	550	1.7	1	1	3.5	116	MR 5MN
M2 x 1.1	0.3	0.7	1.5	295	575	0.9	1.1	1.1	1.2	53	MRU 3ML
M1.6 x 1.1	0.3	0.7	1.5	190	310	0.6	0.4	0.4	0.9	53	MRU 3MN

5.Dimensions and Specification

5.2 Wide MR-W series

MR15W

	Fabricate	Dimension	1		Ra	il Dimensi	ons (mm)			Block	Dimensio	ns (mm)	
Model Code	Н	W_2	W1	H ₁	Ρ	P ₃	D×d×g ₁	W	L	L	h ₂	P ₁	P ₂
MR 15WL	16	9	42	9.5	40	23	8 x 4.5 x 4.5	60	74.4	57.6	12	35	45
MR 15WL EE	16	9	42	9.5	40	23	8 x 4.5 x 4.5	60	76	57.6	12.8	35	45
MR 15WN	16	9	42	9.5	40	23	8 x 4.5 x 4.5	60	55.3	38.5	12	20	45
MR 15WN EE	16	9	42	9.5	40	23	8 x 4.5 x 4.5	60	56.9	38.5	12.8	20	45
MR 12WL	14	8	24	8.5	40	-	8 x 4.5 x 4.5	40	59.4	46	10	28	28
MR 12WL EE	14	8	24	8.5	40	-	8 x 4.5 x 4.5	40	60.8	46	10.7	28	28
MR 12WN	14	8	24	8.5	40	-	8 x 4.5 x 4.5	40	44.5	31	10	15	28
MR 12WN EE	14	8	24	8.5	40	-	8 x 4.5 x 4.5	40	45.9	31	10.7	15	28
MR 9WL	12	6	18	7.5	30	-	6 x 3.5 x 4.5	30	50.7	39.5	8.6	24	23
MR 9WN	12	6	18	7.5	30	-	6 x 3.5 x 4.5	30	39	27.4	8.6	12	21
MR 7WL	9	5.5	14	5.2	30	-	6 x 3.5 x 3.5	25	40.6	30.1	7	19	19
MR 7WN	9	5.5	14	5.2	30	-	6 x 3.5 x 3.5	25	31.6	21.2	7	10	19
MR 5WL	6.5	3.5	10	4	20	-	5.5 x 3 x 1.6	17	27.2	21.2	5	11	13
MR 5WLC	6.5	3.5	10	4	20	-	5.5 x 3 x 1.6	17	27.2	21.2	5	11	13
MR 5WN	6.5	3.5	10	4	20	-	5.5 x 3 x 1.6	17	21.2	15.1	5	6.5	13
MR 5WNC	6.5	3.5	10	4	20	-	5.5 x 3 x 1.6	17	21.2	15.1	5	6.5	13
MR 3WL	4.5	3	6	2.6	15	-	4 x 2.4 x 1.5	12	20.1	15.1	3.5	8	-
MR 3WN	4.5	3	6	2.6	15	_	4 x 2.4 x 1.5	12	15.2	10	3.5	4.5	-

Load capacities are calculated according to DIN 636 Part 2

Block Dimensions (mm)				Load Capacities (N)		Static Moment(Nm)			Weight		Madal Cada
M×g2	Ø	S	Т	C(dyn.)	C0(stat)	MrO	Mp0	My0	Block(g)	Rail (g/m)	Model Code
M4 x 4.5	2.5	3.3	4.5	6725	12580	257.6	93.1	93.1	200	2818	MR 15WL
M4 x 4.5	2.5	3.3	4.5	6725	12580	257.6	93.1	93.1	203	2818	MR 15WL EE
M4 x 4.5	2.5	3.3	4.5	5065	8385	171.7	45.7	45.7	137	2818	MR 15WN
M4 x 4.5	2.5	3.3	4.5	5065	8385	171.7	45.7	45.7	140	2818	MR 15WN EE
M3 x 3.5	2	2.8	4.5	4070	7800	95.6	56.4	56.4	93	1472	MR 12WL
M3 x 3.5	2	3.1	4.5	4070	7800	95.6	56.4	56.4	96	1472	MR 12WL EE
M3 x 3.5	2	2.8	4.5	3065	5200	63.7	26.3	26.3	65	1472	MR 12WN
M3 x 3.5	2	3.1	4.5	3065	5200	63.7	26.3	26.3	68	1472	MR 12WN EE
M3 x 3	2	2.2	4	2550	4990	45.9	26.7	26.7	51	940	MR 9WL
M3 x 3	2	2.2	4	2030	3605	33.2	13.7	13.7	37	940	MR 9WN
M3 x 3	1.2	1.9	3.2	1570	3140	22.65	14.9	14.9	27	516	MR 7WL
M3 x 3	1.2	1.9	3.2	1180	2095	15	7.3	7.3	19	516	MR 7WN
M2.5 x 1.5	0.8	1.2	2.3	615	1315	6.8	4.1	4.1	8	280	MR 5WL
M3/M2.5 x 1.5	0.8	1.2	2.3	615	1315	6.8	4.1	4.1	8	280	MR 5WLC
M2.5 x 1.5	0.8	1.2	2.3	475	900	4.6	2.2	2.2	6	270	MR 5WN
M3/M2.5 x 1.5	0.8	1.2	2.3	475	900	4.6	2.2	2.2	6	270	MR 5WNC
M2 x 1.4	0.3	0.8	1.8	370	800	2.5	1.9	1.9	3.4	105	MR 3WL
M2 x 1.4	0.3	0.8	1.8	280	530	1.6	0.9	0.9	3.4	105	MR 3WN

MR5WNC MR5WLC

5.Dimensions and Specification

5.3 Upward Screwing Standard MRU-M series

Model Co	bde	Rail Dimensions(mm)							
		H1	W	Р	M1				
MRU 15	M	9.5	15	40	M4x0.7				
MRU 12	2M	7.5	12	25	M4x0.7				
MRU 9	M	5.5	9	20	M4x0.7				
MRU 7	'M	4.7	7	15	M3x0.5				
MRU 5	бM	3.5	5	15	M3x0.5				
MRU 3	ВM	4	3	10	M1.6 x0.35				

Dimensions and Specification

5.4 Upward Screwing Wide MRU-W series

Dimensions and Specification

Model Co	ode		Rail Dime	ension(mm)	
		H1	W1	Р	M1
MRU 15	ōW	9.5	42	40	M5x0.8
MRU 12	2W	8.5	24	40	M5x0.8
MRU 9	9W	7.5	18	30	M4x0.7
MRU 7	7W	5.2	14	30	M4x0.7
MRU 5	ōW	4	10	20	M3x0.5

I.Products Introduction

High load and high moment capacity

ST Miniature Stroke Slide series incorporates with two rows of non re-circulating balls.

The Gothic arch contact design enables 45 degree contact angle to attain the effect of equal load in all directions. Under the restriction of limited space, larger steel balls are used to enhance the load and moment capacity.

Double side pair block plate design (Dual block plate design)

ST Miniature Stroke Slide series adopts the dual block plate design on both carriage and rail to prevent from overshoot situation.

Temperature

ST Miniature Stroke Slide series can stand the temperature up to 150°C. There are two options for higher temperature application : T1 : 200°C T2 : 300°C

Operating under higher temperature will reduce the load capacity.

High running accuracy and smoothness

The steel balls of ST Miniature Stroke Slide series roll on the rail without re-circulation; It achieves excellent running performance with smoothness, low fiction, high accuracy and minimum vibration.

Easy mounting

The mounting of the ST Miniature Stroke Slideseries in all length can be fulfilled by fitting the fixing screw downward into the count bore of the rail by intersecting the bole pattern on the block and cage within a hole pitch movement of side. The one piece cage therefore does not influent the mounting of the rail. The preload is preset by ball sorting.

Anti-corrosion feature

ST Miniature Stroke Slide series adopts heat treatment hardened stainless steel for the Rail, Block and Steel Balls. The block plate and screw are also stainless steel.

2. Technical Information

Accuracy

The ST Miniature Stroke Slide series have 3 options for accuracy. These are Precision (P), High (H) and Normal (N).

Preload classes

The ST Miniature Stroke Slide series have three classes of preload V0, Vs and V1 as described in the MR Miniature Linear Guide series Table of Preload.

Lubrication

The lubrication of ST Miniature Stroke Slide series can be fulfilled by adding the lubricant onto the raceway of the rail.

Rating life L

The Rating life of ST Miniature Stroke Slide series can be calculated by the formulas (19),(20) in accordance with DIN 636 Part 3.

Geometric and positional accuracy of the mounting surface

The inaccuracy of the mounting surfaces will affect the running accuracy and reduce the operating life of the ST Miniature Stroke Slide. If the tolerance of the mounting surfaces exceed the values calculated by formulas (15), (21), and (17),

the life will be shortened, as calculated by formulas (19) and (20).

$e_1(mm) = b(mm) \cdot f_1 \cdot 10^{-4}$	(15)
$e_2(mm) = \left(\frac{d}{Lc} \frac{(mm)}{(mm)}\right) \cdot f_2 \cdot 10^{-5}$	(21)
$e_{3(mm)} = f_3 \cdot 10^{-3}$	(17)

		The and	mountir positior	ng surfac nal accu	ce geon Jracy fa	Ordering designation	
Sizo		V0		V1			Ordering Designation
5120	f۱	f2	fз	fı	f2	fз	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	5	200	4	3	130	3	N: Normal H: High Rail length
9	5	300	6	4	200	4	Size P: Precision (mm)
12	6	380	8	4	250	6	W: Wide (mm) Stroke type V0: Clearance Vs: Standard Block length
15	7	530	12	5	350	8	V1: Light preload Max temperature [®] C 10:150 11:200 12:300

Height and chamfered the reference surface (Shoulder height and chamfer of the reference surface)

The tables for the chamfered the reference surface corner and the height of reference surface shown on MR Miniature Linear Guide series are also suitable for the ST Miniature Stroke Slide series.

3.Order Information

An example of the ST Miniature Stroke Slide series parts numbering system is shown in the above ordering designation.

4.Dimensions and Specification

Madal Cada	Fabricate Dir	nensions (mm)	Rail Dimensions(mm)						
Model Code	Н	W ₂	Р	W ₁	h ₁	$D \times d \times g_1$			
ST 7 M	8	5	15	7	4.7	4. 2x2. 4x2. 3			
ST 9 M	10	5.5	20	9	5.5	6x3. 5x3. 3			

Model	Maximum Stroke		Rail			Block				Load Capacities		Static Moment		
Code	Ls	L2	Lr	Lg	Ν	L1	Lb	P_4	n	C(dyn.)	Co (stat.)	Mro	Mp0	Myo
	mm	mm	mm	mm		mm	mm	mm		Ν	Ν	Nm	Nm	Nm
	7	29	33	7	1	29	33	6.5	2	1450	2775	10.4	11	11
	19	29	33	7	1	29	33	6.5	2	1185	2080	7.8	6.4	6.4
	7	42	46	6	2	42	46	5	4	1920	4160	15.5	24.1	24.1
	20	42	46	6	2	42	46	5	4	1690	3470	13	17	17
ST7M	33	42	46	6	2	42	46	5	4	1450	2775	10.4	11	11
	14	58	62	6.5	3	58	62	5	6	2350	5550	20.7	42.2	42.2
	27	58	62	6.5	3	58	62	5	6	2140	4860	18.1	32.5	32.5
	39	58	62	6.5	3	58	62	5	6	1920	4160	15.5	24.1	24.1
	52	58	62	6.5	3	58	62	5	6	1690	3470	13	17	17

Block Dimensions(mm)											
P ₁	P ₁ W		P ₃	h2	М	g ₂	woder code				
8	17	12	16	4.7	M2×0.4	2.5	ST7M				
10	20	15	26	5.5	M3×0.5	2.8	ST9M				

Model Code	Maximum Stroke		Rai	I			Blo	ock		Load Capacities		Static Moment		
	Ls	L2	Lr	Lg	Ν	L1	Lb	P4	n	C(dyn.)	Co(stat.)	Mro	Mp0	Myo
	mm	mm	mm	mm		mm	mm	mm						
	12	34	38	7	1	34	38.6	7	2	2140	3845	18.3	14.7	14.7
	24	34	38	7	1	34	38.6	7	2	1810	3020	14.4	9.1	9.1
	36	34	38	7	1	34	38.6	7	2	1450	2200	10.5	4.8	4.8
	14	73	77	6.5	3	73	77.6	6.5	6	3900	9060	43.1	68.2	68.2
	26	73	77	6.5	3	73	77.6	6.5	6	3650	8230	39.2	58.9	58.9
	38	73	77	6.5	3	73	77.6	6.5	6	3390	7410	35.2	49.8	49.8
	50	73	77	6.5	3	73	77.6	6.5	6	3120	6590	31.3	41.1	41.1
STONA	62	73	77	6.5	3	73	77.6	6.5	6	2840	5765	27.4	32.5	32.5
214101	24	114	118	7	5	114	118.6	7	10	5285	14000	66.5	125.2	125.2
	36	114	118	7	5	114	118.6	7	10	5070	13170	62.6	115.4	115.4
	48	114	118	7	5	114	118.6	7	10	4840	12350	58.7	105.9	105.9
	60	114	118	7	5	114	118.6	7	10	4620	11530	54.8	96.4	96.4
	72	114	118	7	5	114	118.6	7	10	4380	10700	50.9	86.8	86.8
	84	114	118	7	5	114	118.6	7	10	4140	9880	47	77.4	77.4
	96	114	118	7	5	114	118.6	7	10	3900	9060	43.1	68.2	68.2
	108	114	118	7	5	114	118.6	7	10	3650	8230	39.2	58.9	58.9

Model Code	Fabricate Din	nensions (mm)		Rail Dimensions(mm)							
	Н	W 2	Р	W 1	h 1	Dxdxg1					
ST 12	13	7.5	25	12	7.5	6 x 3.5 x 4.5					

Model	Maximum Stroke		Ra	ail		Block				Load Capacities		Static Moment		
Code	Ls	L ₂	Lr	Lg	Ν	L ₁	L _b	P ₄	n	C(dyn.)	Co(stat.)	Mro	Мро	Муо
	mm	mm	mm	mm		mm	mm	mm		Ν	N	Nm	Nm	Nm
	12	46	51	10.5	1	46	51	8	2	3750	6880	43	42.7	42.7
	27	46	51	10.5	1	46	51	8	2	3245	5590	35	29	29
	42	46	51	10.5	1	46	51	8	2	2700	4300	26.9	17.7	17.7
	27	91	96	8	3	91	96	8	5	5960	13330	83.3	126.4	126.4
ST12M	42	91	96	8	3	91	96	8	5	5550	12040	75.3	108.5	108.5
	57	91	96	8	3	91	96	8	5	5130	10750	67.2	91.3	91.3
	72	91	96	8	3	91	96	8	5	4690	9460	59.2	74.3	74.3
	87	91	96	8	3	91	96	8	5	4230	8170	51.1	58	58
	102	91	96	8	3	91	96	8	5	3750	6880	43	42.7	42.7

Block Dimensions(mm)											
P ₁	P ₁ W P ₂ P ₃ h2 M g ₂										
15	27	20	30	7.5	M3x0.5	3.5	ST12M				

Model	Maximum Stroke	Rail				Block				Load Capacities		Static Moment		
	Ls	L ₂	Lr	Lg	Ν	L ₁	L _b	P_4	n	C(dyn.)	Co(stat.)	Mro	Мро	Муо
	mm	mm	mm	mm		mm	mm	mm		N	Ν	Nm	Nm	Nm
ST12M	27	166	171	8	6	166	171	8	10	9560	26230	164	314.8	314.8
	42	166	171	8	6	166	171	8	10	9240	24940	155.9	294.3	294.3
	57	166	171	8	6	166	171	8	10	8900	23650	147.8	276.3	276.3
	72	166	171	8	6	166	171	8	10	8560	22360	139.8	256	256
	87	166	171	8	6	166	171	8	10	8210	21070	131.7	237.3	237.3
	102	166	171	8	6	166	171	8	10	7855	19780	123.6	219	219
	117	166	171	8	6	166	171	8	10	7490	18490	115.6	200.9	200.9
	132	166	171	8	6	166	171	8	10	7120	17200	107.5	182.3	182.3
	147	166	171	8	6	166	171	8	10	6745	15910	99.5	163	163
	162	166	171	8	6	166	171	8	10	6355	14620	91.4	144.2	144.2

CPC CHIEFTEK PRECISION CO., LTD.

No. 3 , Dali 1st Rd., Sinshih Hsiang , Tainan Science Park, 741-45 Tainan, Taiwan, R.O.C. TEL: +886-6-5055858 FAX: +886-6-5055959 http://www.chieftek.com E-mail : service@mail.chieftek.com Printed Date: Mar.2008