

Ball Screw Support Bearings

60° Angular Contact Bearings Precision Bearing Units · Precision Locknuts **TI-I-5010.2 / E**

Headquarter of the IBC Wälzlager GmbH at the industrial area of Solms-Oberbiel

Location with Tradition

The headquarters in Solms-Oberbiel is centrally located in Germany close to the North/South and East/West highways which also provides fo a central location in Europe. The international Airport Frankfurt approx. 80 km away serves as a worldwide link.

Elexible and Reliable

In the middle of 1996 we opened the central computer controlled high shelf warehouse with more than 2.000 pallet places. It is used for finsihed and semi-finished products as well as for large bearings. This is in addition to our existing two-storage computer controlled service warehouse also with more than 2.500 storage places.

Both warehouse systems provide together with our distribution centre and communication network precise logistics and a worldwide unequaled reliability.

Central Computer Controlled High Shelf Warehouse – Middle 1996

Precise Logistics provide an unequaled worldwide reliability

Precision with Future

We are future orientated. We have the creativity and vision to perform and provide. This is our exact presentation to solutions with precision.

Table of Contents

IBC INDUSTRIAL BEARINGS AND COMPONENTS

3

Overview 1.

Range of IBC Precision Products for Support of Ball Screws

Fields of application of 60° super precision angular contact ball bearings and units:

Rigid but fairly low-friction assembly of ball screws or satellite screws for conversion of rotary movement into linear movement (among others, also in worm gears for rotating tables or in tailstocks).

In particular 60° precision angular contact ball bearings are used for machine tools or machines and devices with similar high requirements regarding precision, speed but also rigidity and a lower friction behaviour and thus a less heating up of the bearings or components.

Advantages

Of course easy assembly, a long life time, the option of lifetime lubrication or circulating oil lubrication, as sometimes employed for driven ball screw nuts are other features which should be adjusted to match each other optimally. Next to the open 60° bearings, several sizes are manufactured with a non-contact rubber seal at both ends.

High axial loads

Whereas contact ball bearings with small contact angles of 15°, 25° mainly absorb radial loads and only gualified axial loads, the ratio is different in case of 60° super precision angular contact thrust ball bearings because the axial load is to be predominated here.

Different preloads

Depending on the required rotational speeds and rigidity, it is possible to choose between light, medium and heavy preload.

Rotational speeds

If required, the steel balls are replaced by ceramic balls to achieve a 35 % increase in rotational speed.

Precision bearing units

For 20 years IBC Wälzlager GmbH has been mounting open bearings into housings with labyrinth seals. Two series for driven spindles and driven nuts have turned out to be the most effective:

a) Cartridge Units with Flanged Housing

b) Pillow Block Units

The cartridge units with integrated labyrinth seal and lifetime lubrication have been revised and designed to allow for easier mounting. The seat diameter was enlarged to be able to slide a pre-assembled module (ball screw with it's nut + bearing unit, if applicable) through the attachment bore of the unit. This proved to be helpful for maintenance.

Standard models and options

The units are available as standard, duplex and quadruplex units with lifetime lubrication. The DB duplex units, which are flattened on both sides can also be provided as DT tandem unit for applications with longer spindles and a second bearing side (see page 33). The matching disc springs and spacers for preloading or a slight stretching of the spindle are part of the delivery.

Quadruplex units are mainly mounted in QBC tandem-Otandem arrangements but can also be delivered in a QBT arrangement, i.e. 3:1 stacking of the bearings (of interest for vertical axes with a preferred direction of load). If reguired by the customer, additional attachment bores, e.g. for bellows of the ball screw or additional centring locations for direct flange mounted servo motor mounts can be integrated.

Securable precision locknuts and labyrinth seals for preloading of the bearings (units) complete the product range.

2. **Designation of Bearing Size – Lifetime calculation**

Individual bearing in X or or O arrangements or

[2.3]

2.1 Load carrying capacity and lifetime

For calculation of lifetime according to DIN ISO 281, the shares of radial and axial load are summarized using the following equations for dynamic-equivalent (axial) load P_(a) and static-equivalent (axial) load P_(ao)

P_{a}	$= X \cdot Fr + Y \cdot Fa$	[2.2]

$P_{ao} = X_o \cdot Fr + Y_o \cdot Fa$	
--	--

For individual bearings and tandem
arrangement, ØØ or multiple arrange-
mente in one direction

ments in one direction.						double row bearings QØ or ØQ					
Fa Fr ≦	2,17	<mark>Fa</mark> Fr ≥	2,17			<u>Fa</u> Fr [≦]	≦2,17	Fa Fr	>2,17		
Х	Y	Х	Y	Xo	Yo	Х	Y	Х	Y	X _o	Yo
not ap	propr.	0.92	1	4	1	1.9	0.55	0.92	1	1	0.58

Table 2.1: Radial and axial load factors X, Y, X_o, Y_o

Bearing combinations

The dynamic axial load rating of several similar single-row 60° super precision angular contact thrust ball bearings with load in the same direction is calculated as follows:

C _{aSe}	$_{t} = i^{c}$	$^{0,7} \cdot C_{aSingle \ bearing}$	[2.4]		
C _{aoS}	_{et} =	$i \cdot C_{aoSingle \ bearing}$	[2.5]		
Static safety factor: $S_{ao}=C_{ao}/P_{ao}$ (chose $S_{ao} > 2,5$)					
P _a P _{(r)o} P _{ao} F _r	[N] [N] [N] [N]	Dynamic equivalent axial load (60° bearings) Static equivalent radial load Static equivalent axial load (60° bearings) Radial component of load Axial component of load			

xial component of load

X, X_o Y, Y_o Radial factor of bearings, Table 2.1

Axial factor of bearings, Table 2.1

In case of bearing sets with a bearing number i which is larger than two and a rigid preload Fv, the life time per single bearing should be calculated as follows:

Life Time Calculation

Direction	Mounti	ng	Direction	Unloading		Load distribution relative to single bearing (Fa					
of load	arranger	nent	of load	starting at	Until un	loading for	or Fae $< X \cdot Fv$		After unloading for		
				$Fae > X \cdot Fv$					Fae > X · Fv		
	A	В		Х	A		В		A	В	
Fae>	<	>		2.83	Fv + 0.67 Fae [2.	.8]	Fv – 0.33 Fae	[2.9]	Fae	0	
Fae>	< <	>		5.66	0.84 Fv + 0.47 Fae [2.1	0]	1.36 Fv – 0.24 Fae	[2.11]	0.617 Fae	0	
	< <	>	< Fae	2.83	0.84 Fv - 0.30 Fae [2.1	12]	1.36 Fv + 0.52 Fae	[2.13]	0	Fae	
Fae>	< < <	>		8.49	0.73 Fv + 0.38 Fae [2.1	4]	1.57 Fv – 0.18 Fae	[2.15]	0.463 Fae	0	
	< < <	>	< Fae	2.83	0.73 Fv - 0.26 Fae [2.1	[6]	1.57 Fv + 0.45 Fae	[2.17]	0	Fae	
Fae>	< < < <	>		11.30	0.65 Fv + 0.32 Fae [2.1	8]	1.71 Fv – 0.15 Fae	[2.19]	0.379 Fae	0	
	< < < <	>	< Fae	2.83	0.65 Fv - 0.23 Fae [2.2	20]	1.71 Fv + 0.45 Fae	[2.21]	0	Fae	
Fae>	< <	>>		5.66	0.84 Fv + 0.40 Fae [2.2	22]	0.84 Fv – 0.22 Fae	[2.23]	0.617 Fae	0	
Fae>	< < <	>>		8.49	1.12 Fv + 0.33 Fae [2.2	24]	1.49 Fv – 0.18 Fae	[2.25]	0.463 Fae	0	
	< < <	>>	< Fae	5.66	1.12 Fv - 0.20 Fae [2.2	26]	1.49 Fv + 0.35 Fae	[2.27]	0	0.617 Fae	
Fae>	<<<<	>>		11.30	1.03 Fv + 0.29 Fae [2.2	28]	1.68 Fv – 0.15 Fae	[2.29]	0.379 Fae	0	
	<<<<	>>	< Fae	5.66	1.03 Fv - 0.18 Fae [2.3	30]	1.68 Fv + 0.33 Fae	[2.31]	0	0.617 Fae	

Table 2.2: Resulting axial load F_{aE} of the single bearing for different mounting arrangements as function of the applied preload Fv and the outer load Fae

a) Radial load is distributed among all bearings in the set. (Belt forces are mostly negligible).

	iges	Numbe	Number of bearings per set				
F_{r}	i	2	3	4	5	6	
$r_{\rm E} = \frac{10,7}{10,7}$	i ^{0,7}	1.62	2.12	2.64	3.09	3.51	
ges	1/i ^{0.7}	0.617	0.463	0.379	0.324	0.285	

b) The axial load in respect of a single bearing is obtained using the equations 2.8 to 2.31 according to table 2.2. Only the number of bearings in load direction can bear a specific share – in load counter-direction a different or no-share will be borne, having overcome preload X · Fv.

The equivalent load $P_{(a)}$ is determined according to the equation [2.2] using F_{rE} and F_{aE}

Regarding the axial bearing load, the outer load F_{aE} has to be taken into account in addition to the bearing preload Fv. As forces Fv and Fae are already provided for each single bearing in Table 2.2 and according to equation [2.8 through 2.31] the nominal life time is calculated using the basic load rating of the single bearing. In case of spindles, where different work may be performed in +/– axis direction it may be necessary to verify lifetime for both directions.

For spring preloaded bearings the following applies to the bearing (set) exposed to the larger load.

$$F_{a} = F_{Spring} + F_{ae}$$
[2.32]
$$F_{a} = F_{ae} + F_{ae}$$
[2.33]

$$F_{a \text{ Single bearing}} = \frac{1}{i^{0,7}} \cdot (F_{\text{Spring}} + F_{ae})$$
 [2.33]

A load range consisting of different forces, rotational speeds and corresponding percentage of time results in a medium equivalent load P_{ma} :

$$P_{ma} = \frac{\sqrt[3]{P_1^3 \cdot t_1 \cdot n_1 + ... + P_n^3 \cdot t_n \cdot n_n}}{\sqrt{n_m \cdot 100}}$$
[2.34]

$$n_{m} = \frac{t_{1} \cdot n_{1} + \dots + t_{n} \cdot n_{n} t_{1}}{100} \text{ bis } t_{n} \text{ in [\%]}$$

$$P_{1} \dots P_{n} = equivalent load per load case$$

$$[2.35]$$

P ₁ P _n		equivalent load per load cas
t ₁ t _n	[%]	time component
n ₁ n _n	[min ⁻¹]	rotational speed

[min⁻¹] medium rotational speed

n"

Nominal life time L₁₀

For 90 % of the same type of bearings no fatique of material is appearing at that time.

L ₁₀ =	$\left(\frac{C_a}{P_{ma}}\right)^F$	$2 \cdot \frac{1,000,000}{60 \cdot n}$ [h]	[2.37]
n C _a P _{ma} p	[min ⁻¹] [N] [N]	rotational speed dynamic load rating, axial, single bearing dynamic equivalent load, axial life time exponential for ball bearings p = 3; for roller bearings $p = 10/3$	

Modified lifetime L_{na} Special safety demands, alternative materials and operating conditions are taken into account in this context.

$L_{na} = a_1 \cdot a_2 \cdot a_3 \cdot L_{10}$	[h]	[2.38]
---	-----	--------

a1 life adjustment factor for reliability

 a_2 life adjustment factor for bearing material $a_2 = a_{21} \cdot a_{2w}$ [2.39] a_3 life adjustment factor for application conditions

Reliability %	L _{na}	a ₁	Raceway material	a ₂₁	Rolling element material	a _{2w}
90	L _{10a}	1	uncoated	1	100Cr6	1
95	L _{5a}	0,62	IR & AR ATC	1,5	Si ₃ N ₄	2
96	L _{4a}	0,53			balls	
97	L _{3a}	0,44				
98	L _{2a}	0,33				
99	L _{1a}	0,21				

a₂ life adjustment factor for special bearing material When employing high-quality bearing steel such as 100Cr6 (1.3505) the a_2 life adjustment factor 1 for bearing material is commonly used. Surface coatings and using ceramic rolling elements (silicon nitride) are increasing the a_2 factor.

a₃ life adjustment factor for application conditions

Operating conditions such as adequateness of lubrication at operating speed and temperature, absolute cleanliness at the lubricating location or existing particles are influencing lifetime.

IBC INDUSTRIAL BEARINGS AND COMPONENTS

Life Time Calculation

The GH62 special grease with a basic oil viscosity of 150 mm²/s at 40 °C and 18 mm²/s at 100 °C has a good load behaviour and will always allow for an a_3 value >1 in case of clean conditions (see general catalogue). Having calculated the life of single bearings, that of sets, modules or units is calculated now.

Life time of modules:

Note:

The general reduction of the dynamic set load rating on page 22 according to [2.4] for the bearing units consisting of four bearings – two per direction – in accordance with DIN ISO 281 to the value $i^{0.7} \times C_a$, that is to $2^{0.7}$ = 1.62 C_a in this case, is linked with the following assumption: bearings with normal tolerances have slightly deviating bore and outer diameters within a set and thus varying load shares.

The bearings shown in this catalogue, however, are manufactured to the stricter tolerances of P4A or P2H and thus provide a certain guarantee for an even load behaviour. (Since the forces have been multiplied by the value $1/i^{0.7}$ in accordance with the equations [2.7] and table 2.2, the load rating C_a of the single bearing according to p. 8 has to be used. If the type is not known, the load rating of the quadruplex set can be divided by 1.62 to obtain the C_a of the single bearing).

2.2 Selection of preloads – axial stiffness and unloading factors in comparison

Operating the rolling elements with at least a minimum preload prevents an uneven wear of the balls. This wear is caused by a partial sliding instead of rolling of the balls with clearance in the no-load range between the bearing rings and the balls. In case of the O-arrangement (DB), starting at an outer axial load larger than 3 times the preload, the bearing facing away from the load becomes gradually unloaded. The balls in this bearing will start to slide with increasing load. (In case of the less frequently used X arrangement (DF), the bearing facing the load would be unloaded as load is applied to the inner ring.) Relatively to the more frequently employed types of O arrangement, the X*Fv characteristic values for unloading the bearings which are not positioned directly in the flow of force, the axial stiffness factors in both load directions and the K_{Fv} preload factor for determination of the tightening torque of the nut are given (see page 27). (K_{Fv} does not take into account possible press fittings.) Bearing arrangements with a different number of bearings per direction result in a differing axial stiffness corresponding to the number of bearings in the respective direction. Preload values Fv see page 9.

Fa	Fa'_ earing		Fa' Fa unloaded bearing			
load in main direction Side A B	axial stiffness factor K _a	unloading from X·Fv	load in reverse order Side A B	axial stiffness factor K _a	unloading from X•Fv	nuts K _{Fv}
Fa Fa'	1	2,83		1	2,83	1
	1,63	5,66		1,30	2,83	1,36
	2,22	8,49		1,54	2,83	1,57
	2,8	11,3		1,76	2,83	1,71
	2	5,66	Fa'	2	5,66	2
	2,64	8,49		2,31	5,66	2,42
	3,26	11,3		2,59	5,66	2,72

Picture 2.2: Comparison of axial stiffness of similar bearings, unloading factors and fixing factors of locknuts for different arrangements.

3. 60° Super Precision Angular Contact Thrust Ball Bearings

IBC angular contact thrust ball bearings have been developed to meet the demands of high thrust load for ball screw support application.

The large contact angle of 60° allows for high thrust load with high stiffness. The radial load should not extend 90 % of the preload.

As angular contact bearings can carry load only in one direction they therefore have to be adjusted to another bearing of the same kind.

The bearings are primarily supplied as single ones or in sets of 2 or 4 bearings to be mounted in back-to-back arrangements.

Angular contact thrust bearings are manufactured for universal matching, thus they can be rearranged and can be mounted in any arrangement.

As a standard single bearings have a medium or high preload, sets have a V-marking, single doesn't.

Precision grades: Bore and O.D. are manufactured to precision class P4A; axial run out S_d and S_{ia} are restricted to P2A (see page 10).

Preload

60°-Angular contact bearings are available with light, medium and high preload. They are apt for mounting in sets. For preloading we recommend the locknuts of series MMRB or MMRS (starting page 28). With tight fits the preload will be enhanced.

Material of rings and balls

Standard: bearing steel 100Cr6 (1.3505)

Options:

- CB: ceramic Si_3N_4 with speed increase of 35 %
- AC: rings thin dense chromium ATCoated (details to the option see page 34, glossary)

Cage: The one-piece glass fibre, reinforced polyamide cage is ball guided. As standard this is not designated. Themperature range -30 to 120 °C.

Lubrication:

The bearings are supplied with approved special greases as standard:

- a) For lower and medium speed: with the high viscose BearLub GH62
- b) For top speed range: with BearLub GN21. For this grease the speed limits are given in the data tables on page 9 and 22. For technical information on greases see page 34.

(Bearings with oil lubrication holes on request).

Sealing

Most of the bearings are supplied as open bearings and can be combined with labyrinth-seals of series S acc. to page 29.

The types on page 8 marked with + are also manufactured with non-touching seals .2RSZ.

3.1 Designation of IBC 60° Super Precision Angular Contact Ball Bearings

IBC INDUSTRIAL BEARINGS AND COMPONENTS

7

3.2 Super Precision 60° Angular Contact Thrust Ball Bearings metric, inch

BS..M...2RSZ

54-001	
--------	--

54-002

BS..M..

54-601

	Dimensio	ons				Basic bearing no	o.	Abu	itment a	and fille	t dimens	ions	Basic loa	d ratings	Weight
d	D	В	r _{1,2}	r ₃₄	а			r _{amax}	r _{bmax}	d _{amin}	D_{amax}	D _{bmax}	Ca	C _{oa}	
	mm		min	min	~					mm				N	kg
17	47	15	0.6	0.6	36.5	BS17M47		1.0	0.6	26	38	40	25000	32100	0.13
20	47	14	0.6	0.6	36	BS20M47/14*		1.0	0.6	28	38	40	25000	32100	0.14
20	47	15	0.6	0.6	36.5	BS20M47		1.0	0.6	28	38	40	25000	32100	0.14
25	52	15	1.0	0.6	39	BS25M52	+	1.0	0.6	34	44	45	26500	37000	0.22
25	62	15	1.0	0.6	46.5	BS25M62	+	1.0	0.6	34	52	54	29200	42800	0.27
25	62	17	1.0	0.6	47.5	BS25M62/17*	+	1.0	0.6	34	52	54	29200	42800	0.27
30	62	15	1.0	0.6	46		+	1.0	0.6	38	52	54	29200	42800	0.25
30	62	16	1.0	0.6	47	BS30M62/16*	+	1.0	0.6	38	52	54	29200	42800	0.25
30	72	15	1.0	0.6	56		+	1.0	0.6	39	63	64	35600	55000	0.32
30	72	19	1.0	0.6	58	BS30M72/19*	+	1.0	0.6	39	63	64	35600	55000	0.32
35	72	15	1.0	0.6	56	BS35M72	+	1.0	0.6	43	63	64	35600	55000	0.29
35	72	17	1.0	0.6	57	BS35M72/17*	+	1.0	0.6	43	63	64	35600	55000	0.34
35	100	20	1.0	0.6	75	BS35M100	+	1.0	0.6	47	86	89	70500	116000	1.05
40	72	15	1.0	0.6	56		+	1.0	0.6	48	63	64	35600	55000	0.28
40	90	20	1.0	0.6	71.5	BS40M90	+	1.0	0.6	49	80	82	59000	90000	0.64
40	90	23	1.0	0.6	73	BS40M90/23*	+	1.0	0.6	49	80	82	59000	90000	0.72
40	100	20	1.0	0.6	75	BS40M100	+	1.0	0.6	49	86	89	70500	116000	1.00
45	75	15	1.0	0.6	60	BS45M75		1.0	0.6	53	65	67	37900	61400	0.29
45	100	20	1.0	0.6	75	BS45M100	+	1.0	0.6	54	86	89	70500	116000	0.95
50	90	20	1.0	0.6	71.5	BS50M90		1.0	0.6	59	80	82	59000	90000	0.60
50	100	20	1.0	0.6	75	BS50M100	+	1.0	0.6	59	86	89	70500	116000	0.89
55	90	15	1.0	0.6	73	BS55M90	+	1.0	0.6	64	78	81	40700	74400	0.42
55	100	20	1.0	0.6	75	BS55M100		1.0	0.6	65	86	89	70500	116000	0.71
55	120	20	1.0	0.6	88	BS55M120		1.0	0.6	65	106	108	80800	137000	1.43
60	120	20	1.0	0.6	88	BS60M120		1.0	0.6	70	100	108	80800	137000	1.36
75	110	15	1.0	0.6	89	BS75M110		1.0	0.6	85	98	100	44500	93800	0.48
100	150	22.5	1.0	0.6	118	BS100M150		1.0	0.6	114	135	137	86400	192000	1.00
127	180	22.225	1.0	0.6	143	BS127M180		1.0	0.6	140	165	168	85200	239300	1.24
20	47	15.875	1.0	0.6	38	BS078 I		1.0	0.6	28	38	40	25000	32100	0.14
23.8		15.875	1.0	0.6	50	BS093 I		1.0	0.6	32	52	40 54	29200	42800	0.25
38.1		15.875	1.0	0.6	56	BS150 I		1.0	0.6	46	62	64	35600	55000	0.28
	75 76.2	15.875	1.0	0.6	60	BS175 I		1.0	0.6	52	66	68	37900	61400	0.30

* Should no more be used in new applications.

+ with seals: suffix .2RSZ

8

Super Precision 60° Angular Contact Thrust Ball Bearings metric, inch

54-001

BS..M..

54-002

BS...M...2RSZ

54-601

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Preload F	Īv	Ax	ial stiffness	S _{ax} *	Limiting	speed (gre	ase n _F **)	Drag torque Mr***		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	d	L	М	Н	L	М	Н	L	Μ	Н			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mm		Ν			N/µm			min ⁻¹			Nm	
20 875 1750 3500 460 580 740 14300 12500 6200 0.04 0.08 0.16 25 1125 2250 4500 650 830 1050 12500 10900 5400 0.05 0.07 0.18 0.225 30 1125 2250 4500 650 830 1050 10500 9100 4500 0.06 0.11 0.22 30 1125 2250 4500 650 830 1050 9100 4500 0.06 0.11 0.22 30 1125 2250 4500 650 830 1050 9100 4500 0.06 0.11 0.22 30 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 <	17	875	1750	3500	460	580	740	14300	12500	6200	0.04	0.08	0.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	875	1750	3500	460	580	740	14300	12500	6200	0.04	0.08	0.16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
30 1125 2250 4500 650 830 1050 10500 9100 4500 0.06 0.11 0.22 30 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 30 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 40 2500 5000 10000 1035 1320 1680 6900 6000 3000 <	25	1125	2250	4500	650	830	1050	10500	9100	4500	0.06	0.11	0.22
30 30 1700 1700 3400 3400 6800 6800 780 780 990 990 1260 1260 8600 8800 7500 7500 3700 3700 0.06 0.06 0.11 0.11 0.22 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 40 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 40 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 45 1700 3400 6800 1390 1760 6400 5													
30 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 40 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 40 2500 5000 10000 1390 1760 6400 5600 2800 0.13 0.26 0.51 45 1700 3400 6800 1390 1760 6400 5600 2800 0.13 0.26											1		
35 35 35 1700 3200 3400 6400 6800 12800 780 780 990 990 1260 1260 8600 6400 7500 5600 3700 2800 0.06 0.13 0.11 0.22 0.22 0.51 40 40 1700 3400 6800 780 990 1280 1680 6400 5600 2800 0.13 0.26 0.51 40 1700 3400 6800 780 990 1280 8600 7500 3700 0.06 0.11 0.22 40 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 45 1700 3400 6800 890 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 45 1700 3400 6800 890 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 50 2500 5000 10000													
35 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 35 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 40 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 40 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 40 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 45 1700 3400 6800 890 1090 1390 8000 7000 3500 0.07 0.14 0.28 45 3200 6400 12800 1090 1390 1760 6400 5600 2800	30	1700	3400	6800	780	990	1260	8600	7500	3700	0.06	0.11	0.22
35 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 40 1700 3400 6800 780 990 1260 8600 7500 3700 0.06 0.11 0.22 40 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 40 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 45 1700 3400 6800 890 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 45 1700 3400 6800 1990 1390 1760 6400 5600 2800 0.13 0.26 0.51 50 2500 5000 10000 1035 1320 1680 6900 6000 <td></td>													
40 40 40 40 40 40 40 3200 1700 5000 5000 3400 5000 6800 10000 780 1035 990 1320 1260 1680 8600 6900 7500 6000 3700 3000 0.06 0.12 0.11 0.24 0.28 0.48 40 40 3200 6400 12800 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 45 1700 3400 6800 890 1090 1390 1760 6400 5600 2800 0.17 0.14 0.28 50 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 50 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 50 3200 6400 12800 1030 1310 1660 6900 6000 3000 0.11 0.26 0.51 55 3900 7800 15600 134		1700	3400	6800	780					3700	0.06	0.11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40		3400	6800									
40 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 45 3200 6400 12800 1090 1390 1390 6400 5600 2800 0.13 0.26 0.51 50 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 50 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 50 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 55 1975 3950 7900 1030 1310 1660 6900 6000 3000 0.11 0.21 0.41 55 3200 6400 12800 1390 1760 6400 5600 2800 0.13 0.26 0.51 55 3200 7800 15600 1340	40	2500	5000	10000	1035	1320	1680	6900	6000	3000	0.12	0.24	
45 1700 3400 6800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 50 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 50 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 55 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.11 0.21 0.41 55 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.11 0.21 0.41 55 3200 6400 12800 1690 2150 5300 4600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280	40	2500		10000	1035					3000	1		
45 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 50 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 50 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 55 1975 3950 7900 1030 1310 1660 6900 6000 3000 0.11 0.21 0.41 55 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 55 3200 6400 12800 1090 1390 1760 6400 5600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000	40	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
50 2500 5000 10000 1035 1320 1680 6900 6000 3000 0.12 0.24 0.48 55 1975 3950 7900 1030 1310 1660 6900 6000 3000 0.11 0.26 0.41 55 1975 3950 7900 1030 1310 1660 6900 6000 3000 0.11 0.21 0.41 55 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.11 0.21 0.41 55 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280 1620 2060 5200 4500 2250 0.13 0.27 0.54 1.09 127 4550 9100													
50 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 55 1975 3950 7900 1030 1310 1660 6900 6000 3000 0.11 0.21 0.41 55 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.11 0.21 0.41 55 3200 6400 12800 1690 2150 5300 4600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280 1620 2060 5200 4500 0.27 0.54 1.09 100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0	45	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
55 1975 3950 7900 1030 1310 1660 6900 6000 3000 0.11 0.21 0.41 55 3200 6400 12800 1390 1390 1760 6400 5600 2800 0.11 0.21 0.41 0.51 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280 1620 2060 5200 4500 2250 0.13 0.25 0.50 100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0.54 1.09 127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 38.100 5000 <td>50</td> <td>2500</td> <td>5000</td> <td>10000</td> <td>1035</td> <td>1320</td> <td>1680</td> <td>6900</td> <td>6000</td> <td>3000</td> <td>0.12</td> <td>0.24</td> <td></td>	50	2500	5000	10000	1035	1320	1680	6900	6000	3000	0.12	0.24	
55 3200 6400 12800 1090 1390 1760 6400 5600 2800 0.13 0.26 0.51 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280 1620 2060 5200 4500 2250 0.13 0.25 0.50 100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0.54 1.09 127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 23.838 3500 4500 750 1050 3450 3000 0.23 0.23 38.100 38.100 31300 1300 2700 1350 0	50	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
55 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280 1620 2060 5200 4500 2250 0.13 0.25 0.50 100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0.54 1.09 127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 20 3500 4500 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 2102 3500 4500 750 1050 3450 3450 3000 0.23 0.23 20 38.100 7000 1300 1300 1300 2700	55	1975	3950	7900	1030	1310		6900	6000	3000	0.11	0.21	
60 3900 7800 15600 1340 1690 2150 5300 4600 2300 0.17 0.34 0.68 75 2500 5000 10000 1280 1620 2060 5200 4500 2250 0.13 0.25 0.50 100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0.54 1.09 127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 23.838 3500 4500 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 33.838 3500 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 23.838 38.100 1850 750 1050 3450 3450 3000 0.23 0.23	55	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
75 2500 5000 10000 1280 1620 2060 5200 4500 2250 0.13 0.25 0.50 100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0.54 1.09 127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 23.838 3500 4500 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 35.00 4500 750 1050 1050 3450 3000 0.27 0.54 1.08 23.838 38.100 7000 1500 1300 2700 1350 0.27 0.54 1.08	55	3900	7800	15600	1340	1690	2150	5300	4600	2300	0.17	0.34	0.68
100 5250 10500 21000 1800 2280 2900 3800 3300 1650 0.27 0.54 1.09 127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 3500 3500 4500 1050 1050 1050 3450 0.27 0.54 1.08 28.838 4500 750 1050 3450 3450 0.23 0.23 38.100 7000 1300 1300 3000 0.23 0.23	60	3900	7800	15600	1340	1690	2150	5300	4600	2300	0.17	0.34	0.68
127 4550 9100 18200 2100 2480 3160 3100 2700 1350 0.27 0.54 1.08 20 3500 3500 750 4950 0.27 0.54 0.17 23.838 4500 1050 1050 3450 0.23 0.23 38.100 7000 1300 3000 0.23 0.23	75	2500	5000	10000	1280	1620	2060	5200	4500	2250	0.13	0.25	0.50
20350075049500.1723.8384500105034500.2338.1007000130030000.23	100	5250	10500	21000	1800	2280	2900	3800	3300	1650	0.27	0.54	1.09
23.838 4500 1050 3450 0.23 38.100 7000 1300 3000 0.23	127	4550	9100	18200	2100	2480	3160	3100	2700	1350	0.27	0.54	1.08
38.100 7000 1300 3000 0.23	20			3500			750			4950			0.17
38.100 7000 1300 3000 0.23	23.838			4500			1050			3450			0.23
	44.475			7000			1380			2850			0.28

For multiple arrangement see picture 2.2: factors K_a Stated values are for Duplex sets in O-arrangement; for X-arrangement factor 0.6; for Quad sets QBT 0.75; QBC 0.7; **

max. rotational speed for L and M are valid for lubrication with GN21G

*** For multiple arrangement see picture 2.2: factor K_{Fv}

IBC INDUSTRIAL BEARINGS AND COMPONENTS

3.3 Tolerances of Super Precision 60° Angular Contact Thrust Bearings

Data ta	Data table in µm											
	Inner ring [mm]	Precision	Ø 0.6 to 10	10 18	18 30	30 50	50 80	80 120	120 150			
Δd_{mp}	Max. deviation of the mean bore diameter from the nominal	P4A	-4	-4	-4	-5	-5	-6	-7.5			
K _{ia}	Radial runout of assembled bearing inner ring	P4A	2.5	2.5	2.5	4	4	5	6			
\mathbf{S}_{d}	Side face runout referring to bore of inner ring	P2A	1.3	1.3	1.3	1.3	1.3	2.5	2.5			
S _{ia}	Side face runout with reference to the raceway of the assembled bearing inner ring	P2A	1.3	1.3	2.5	2.5	2.5	2.5	2.5			
$\Delta \bm{B_s}$	Deviation of single inner ring width	P4A, P2A	-200	-200	-200	-200	-250	-320	-370			
V _{Bs}	Ring width variation	P4A	2.5	2.5	2.5	2.5	4	4	5			

	Outer ring [mm]	Precision	Ø 18 to 30	30 50	50 80	80 120	120 150	150 180	180 250
$\Delta \mathbf{D}_{mp}$	Max. deviation of mean outside diameter to nominal	P4A, P2H	-5	-5	-5	-7.5	-9	-10	-10
K _{ea}	Radial runout of assembled bearing outer ring	P4A	4	5	5	5	7	7.5	10
S _D	Variation in inclination of outside cylindrical surface to outer ring side face	P2A	1.3	1.3	1.3	2.5	2.5	2.5	3.8
S _{ea}	Side face runout referring to raceway of assembled bearing outer ring	P2A	2.5	2.5	3.8	5	5	5	6.4

The width tolerances of the outer ring (ΔCs , Vc_s) correspond to those of inner ring (Δ_{Bs} ; V_{Bs}). The total width tolerance of a bearing set is the sum of the ones of the single bearings.

3.4 Proposed fits for Super Precision 60° Angular Contact Thrust Bearings

Nominal diameter	Precision	Ø	-	10	18	30	50	80	120
d shaft [mm]		incl.	10	18	30	50	80	120	180
Shaft tolerance Δd_1 fixed bearing	P4A	max. min.	-3 -7	3 7	3 7	-4 -8	4 9	5 10	6 12
Nominal diameter	Precision	Ø	18	30	50	80	120	150	180
D housing [mm]		incl.	30	50	80	120	150	180	250
Housing tolerance ΔD_{G} fixed bearing	P4A	max. min.	+5 0	+5 0	+5 0	+5 —1	+7 -1	+7 -2	+7 -2

Table 3.4: Summary of tolerances for adjacent parts for Super Precision 60° Angular Contact Thrust Bearings.

3.5 Tolerances of associated parts for Precision Angular Contact Thrust Bearings

Accuracy of form for shafts

Characteristic	Tolerance Symbol	Tolerance Desig- nation	Tolerance Roughnes		
			P5	P4A	P2A
Circularity	0	t	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Cylindricity	$\not >$	t1	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Angularity	2	t2	-	<u>IT3</u> 2	<u>IT2</u> 2
Runout	1	t3	IT3	IT3	IT2
Coaxiality	O	t4	IT5	IT4	IT3
Roughness R _a					
$d \leq 80 \text{ mm}$		-	N4	N4	N3
d > 80 mm		-	N5	N5	N4

Accuracy of form for housings

Ra

Å.

A

Ď

В

54-603

Ra

Ra

Characteristic	Tolerance Symbol	Tolerance Desig- nation	- U		
Circularity	0	t	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Cylindricity	$ \not\!\!\! $	t1	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Runout	1	t3	IT3	IT3	IT2
Coaxiality	O	t4	IT5	IT4	IT3
Roughness R _a					
$D \leq 80 \text{ mm}$		-	N5	N5	N4
$80 < D \leq 250$		-	N6	N6	N5
D < 250 mm		-	N7	N7	N6

∕∕∕/ t1 ○ t

Table 3.5.1: Accuracy of form for shafts

ISO Bas	ISO Basic Tolerance Grades acc. to DIN 7151								
Nominal Diamete		Tolera	ance gi	rades					
Over	incl.	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7
mm		μm							
6	10	0.6	1	1.5	2.5	4	6	9	15
10	18	0.8	1.2	2	3	5	8	11	28
18	30	1	1.5	2.5	4	6	9	13	21
30	50	1	1.5	2.5	4	7	11	16	25
50	80	1.2	2	3	5	8	13	19	30
80	120	1.5	2.5	4	6	10	15	22	35
120	180	2	3.5	5	8	12	18	25	40
180	250	3	4.5	7	10	14	20	29	46
250	315	4	6	8	12	16	23	32	52
315	400	5	7	9	13	18	25	36	57
400	500	6	8	10	15	20	27	40	63

Table 3.5.1: Basic tolerance grades acc. to DIN 7151

Table 3.5.2: Accuracy of form for housings

Roughness R_a of the axial shoulder at shaft, housing or spacers: $N6 = 0.8 \ \mu m$

Surface roughness Class	Roughness
	μm
N3	0.1
N4	0.2
N5	0.4
N6	0.8
N7	1.6

Table 3.5.4: Roughness

4. Precision Bearing Units with 60°-Angular Contact Thrust Bearings – Selection Criteria

Applications of units with labyrinth seals greased for life: Ball screws (bs), satellite roller screws, worm gear drives (e. g. for circular tables, index tables) special purposes.

Basically the units are used on ball screws in machine tool (boring-, milling-, turning-, grinding-, spark erosion machines, machining centers, endfacing machines, gear cutting and finishing machines), measuring machines, industrial robots, sheet metal cutting machines, (presses, levelling machines, bending centers, laser cutting machines, laser marking machines, forming machines), woodworking machines and special purpose machines.

The big amount of applications have created a unit assembly system with their different needs regarding

- axial stiffness and capacity
- reduced heat development by less friction (labyrinth seal)
- speed (also with ceramic balls available)
- running accuracy
- form (flange or pillow block)
- arrangement.

Great flexibility

Some precision bearing units can be supplied with the same outside dimensions but with different bore sizes. This has been very helpful in the design of machine families of different length and table stroke, where the ball screws of smaller dia. would have reached the critical speed and therefore a bigger one had to be used. (Bearings with same outside diameter and width but different bore allow a standardisation of adjacent parts at low cost).

Simply mounting

Whereas at the beginning (a) ball screw bearings had to be built in separately with other parts, now the ready-tomount units are the state of art. The mounting of complete subassemblies eases and speeds up the mounting. The avoidance of an axial reference face in the housing bore simplifies surrounding parts.

For the flange housings only a hole with a machined wall square to the housing axes is needed. The unit can then radially still be adjusted (b).

Users who machine the centering hole for the flange into their supports on CNC machines with the needed accuracy mount as shown in (c).

Figure 4.1: Development to easier to machine and to mount applications for ball screw supports.

Precision Bearing Units with 60°-Angular Contact Thrust Bearings – Selection Criteria

Easy-to-mount BSBU, BSBU-M Precision Cartridge Units

The cartridge units flattened on both sides are characterized by easy handling in the planning and mounting phase.

The fact that they are flattened on both sides results in a low height, corresponding to the cartridge diameter. It was chosen so that in case of usual grading of the shaft seat, the cartridge outside diameter of the nut is slightly smaller than the bearing unit seat diameter.

When service is necessary, in case of a machine tool crash, the mounting personnel on site will appreciate that the module is easy to change (ball screw + bearing unit).

Owing to the skilfully selected diameter ratio (see drawing 57-803 and 57-804), it is possible to pull out the entire module easily.

In the same manner, a pre-assembled module is built in again quickly, so that maintenance times and thus stand-still times are reduced.

The locknut with matching labyrinth seal, which has already been integrated into the BSBU-M series, allows for simple and secure preloading of precision cartridge units.

In case the cartridge unit has to be mounted from inside against a wall the locknut MMRS and the sealing S can be exchanged vice versa. The same applies for the pillow block series BSPB-M... as well as for the adapter of the nut bearing units BNBU and BNPB.

54-804

Precision Bearing Units with 60°-Angular Contact Thrust Bearings – Selection Criteria

Advantages of pillow block units

Whereas cartridge units had to be placed on supports in the past, the pillow block units are saving construction space and mounting time.

The tight-tolerance bases of the fixed and floating end units with the same reference dimensions of the BSPB, BSPB-M and BLPB series have proven to be beneficial (see abutment dimensions on page 24). The contact edge for the units can thus be machined with those of the guides. Pre-drilled pin-holes allow accurate fixing.

Mounting of driven nuts

IBC precision bearing units of the series BNBU and BNPB with integrated adapter are available for mounting on ball screw nuts (according to DIN 69051). These are used in particular for long ball screws. It is an advantage to drive the nut for its less accelerated mass.

A further advantage of a driven spindle clamped between two fixed end bearings is the fact that in case of an alternative nut drive, the bearings do not need to accommodate stretching loads.

The stretching of the spindle to compensate elongation when it warms up can easily be carried out there at the clamping points.

Depending on the requirements regarding stiffness, limit rotational speed or drag torque, units can be chosen with light (L), medium (M) or heavy (H) preload. The order code consists of the basic type and a suffix for the preload. For adapter units, it is possible to choose the hole pattern and the way of mounting, the cartridge form can additionally be chosen.

For bearing units with an integrated lubrication system for the ball screw nut (BNBUS) separate data sheets are available.

57-805

57-806

BSPB.M 40Q65 QBTM with arrangement Ø Ø Ø Ø

selected (see figure 4.2). The load shares of the single bearing result from the equations (page 5), stiffness, unloading values and tightening factors in figure 2.2, page 6 in connection with the specification for single bearings according to pages 8 and 9.

Figure 4.2: BSBU-M 40Q128 QBTM with arrangement Ø Ø Ø Ø

Units for predominating loads in one direction

Bearings of vertical or inclined spindles, which have to support a sometimes-considerable weight of the table, one direction may be predominant for all load cycles owing to inertia. In that case a unit with the bearing arrangement 3:1 (with the designation QBT before the preload) can be

4.1 Designation of IBC Precision Bearing Units for Ball Screws

For fixed end bearing units for higher speed, also bearings with ceramic balls (CB) can be offered. On request also with ATCoat (AC) for bearings.

Lubrication

Bearings with standard lubrication GH 62; without suffix. Bearings with grease for higher speed: suffix GN21G (for more than 60 % of mentioned max. speed). Grease details see page 34.

Bearing units with more bearings on request, as well as special housings with integrated coupling.

4.2 High Precision Flange Units for Spindle Ends of Ball Screws Support Bearings

BSBU 25 QB 88 82 80 30 BSBU 30 DB 88 30 52 50 BSBU 30 QB 88 82 80 60 60	90 1.1 1.7	
17 BSBU 17 DB 64 17 64 32 47 44 M8 6.6 36 26 64 BSBU 17 QB 64 77 74 77 74 75 74 74 74 75 74 74 75 74 74 75 74 75 74 75 74 74 75		
BSBU 17 QB 64 Constraint Topological Topological <thtopological< th=""> <thtopological< th=""></thtopological<></thtopological<>		
20 BSBU 20 DB 64 BSBU 20 QB 64 20 47 44 25 BSBU 25 DB 88 25 88 44 52 50 M12 9.2 50 40 88 BSBU 25 QB 88 25 88 44 52 50 M12 9.2 50 40 88 BSBU 30 DB 88 30 52 50 80	1.7	
BSBU 20 QB 64 Image: Constraint of the state of the stat		
25 BSBU 25 DB 88 BSBU 25 QB 88 25 88 44 52 50 M12 9.2 50 40 88 6 30 BSBU 30 DB 88 BSBU 30 QB 88 30 52 50 50 50 50 50 40 88 6 60 60 40 88 6 60 40 88 6 60 60 40 88 6 60 40 88 6 60 40 88 6 6 6 98 6 6 98 6 6 40 88 6 6 8 6 6 40 88 6 6 6 98 6 6 8 6 6 8 6 6 8 6 6 8 6 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 <td>1.1</td>	1.1	
BSBU 25 QB 88 8 82 80 30 BSBU 30 DB 88 30 52 50 BSBU 30 QB 88 82 80 60 60 BSBU 30 DB 98 98 49 52 50	1.7	
30 BSBU 30 DB 88 BSBU 30 QB 88 30 52 50 BSBU 30 QB 88 80 82 80 60 46 98 BSBU 30 DB 98 98 49 52 50 60 46 98	120 2.3	
BSBU 30 QB 88 82 80 BSBU 30 DB 98 98 49 52 50 60 46 98	3.5	
BSBU 30 DB 98 98 49 52 50 60 46 98	2.2	
	3.4	
BSBU 30 QB 98 82 80	130 3.3	
	4.7	
35 BSBU 35 DB 98 35 52 50	3.2	
BSBU 35 QB 98 82 80	4.6	
40 BSBU 40 DB 98 40 52 50 50	3.1	
BSBU 40 QB 98 82 80	4.5	
45 BSBU 45 DB 98 45 52 50 60 55	3.8	
BSBU 45 QB 98 82 80	4.6	
55 BSBU 55 DB 113 55 113 56.5 52 50 76 68 113	145 3.4	
BSBU 55 QB 113 82 80	5.1	
75 BSBU 75 DB 138 75 138 69 54 50 99 86 138	170 4.1	
BSBU 75 QB 138 84 80	6.3	
Heavy Serie		
35 BSBU 35 DB 128 35 128 64 66 64 M14 11.4 76 66 128	165 6.3	
BSBU 35 QB 128 106 104	10.1	
40 BSBU 40 DB 128 40 66 64	6.1	
BSBU 40 QB 128 106 104	9.7	
45 BSBU 45 DB 128 45 66 64	6.0	
BSBU 45 QB 128 106 104	9.5	
50 BSBU 50 DB 128 50 66 64	5.9	
BSBU 50 QB 128 106 104	9.3	
55 BSBU 55 DB 148 55 148 74 66 64 99 86 148	185 8.2	
BSBU 55 QB 148 106 104	12.9	
60 BSBU 60 DB 148 60 66 64	7.9	
BSBU 60 QB 148 106 104	12.5	
Tolerances d D E (Duplex)	E (Quad)	
	0 / - 1.52	
	0 / - 1.52	
	0 / - 1.52	
Technical data see page 22. Recommended locknuts serie MMRB star		

Technical data see page 22.

Recommended locknuts serie MMRB... starting on page 30.

... for Spindle Ends of Ball Screw Support Bearings with integrated lock nut

BSBU-M..DB..

BSBU-M..QB..

57-002 Shaft

T ₂	L ₁	L ₂	D _A	L _S	L	Integrated locknut	Unit	Shaft
		m	m			see page 28		mm
Medium Ser	-							
76	32	13	38	37	57	MMRS 17-36	BSBU-M 17 DB 64	17
				64	87		BSBU-M 17 QB 64	
				37	57	MMRS 20-36	BSBU-M 20 DB 64	20
				67	87		BSBU-M 20 QB 64	
102		15	58	40	65	MMRS 25-50	BSBU-M 25 DB 88	25
				70	95		BSBU-M 25 QB 88	
				40	65	MMRS 30-50	BSBU-M 30 DB 88	30
				70	95		BSBU-M 30 QB 88	
113			70	40	68	MMRS 30-60	BSBU-M 30 DB 98]
				70	98		BSBU-M 30 QB 98	
				40	68	MMRS 35-60	BSBU-M 35 DB 98	35
				70	98		BSBU-M 35 QB 98	
				40	68	MMRS 40-60	BSBU-M 40 DB 98	40
				70	98		BSBU-M 40 QB 98	
				40	68	MMRS 45-60	BSBU-M 45 DB 98	45
				70	98		BSBU-M 45 QB 98	
129			80	40	70	MMRS 55-76	BSBU-M 55 DB 113	55
				70	100		BSBU-M 55 QB 113	
154			105	40	70	MMRS 75-99	BSBU-M 75 DB 138	75
				70	100		BSBU-M 75 QB 138	
Heavy Serie			1		1			
146	43.5	17	80	52	82	MMRS 35-76	BSBU-M 35 DB 128	35
				92	122		BSBU-M 35 QB 128	
				52	82	MMRS 40-76	BSBU-M 40 DB 128	40
				92	122		BSBU-M 40 QB 128	
				52	82	MMRS 45-76	BSBU-M 45 DB 128	45
				92	122		BSBU-M 45 QB 128	
				52	82	MMRS 50-76	BSBU-M 50 DB 128	50
				92	122		BSBU-M 50 QB 128	00
166				52	82	MMRS 55-99	BSBU-M 55 DB 148	55
100				92	122		BSBU-M 55 QB 148	00
			105	52	82	MMRS 60-99	BSBU-M 60 DB 148	60
			103	92	122		BSBU-M 60 QB 148	00
				32	144		D0D0-W 00 QD 140	L

4.3 High Precision Pillow Block Units for Spindle Ends of Ball Screw Support Bearings

	E D D D D D D D D D D D D D D D D D D D	- cp	<u>v</u>	E		4x & ⊕ [2								
						2x (⊕⊄	Ød 5	•				57-0	003	
Shaft	Unit	d	М	С	E	d ₃	D ₁	U	U ₁	U ₂	V ₁	V ₂	V3	Weight
mm							mr	n						kg
Medium														
17	BSPB 17 D 32	17	32	47	44	36	26	94	47	17	62	32	15	1.5
	BSPB 17 Q 32			77	74									2.6
20	BSPB 20 D 32	20		47	44									1.5
05	BSPB 20 Q 32 BSPB 25 D 42	05	40	77	74 50	50	40	105	60 F		00	40	-	2.6
25	BSPB 25 Q 42	25	42	52 82	80	50	40	125	62.5	20	82	42		2.8 4.6
30	BSPB 25 Q 42 BSPB 30 D 42	30		52	50									2.7
50	BSPB 30 Q 42	50		82	80									4.5
	BSPB 30 D 50		50	52	50	60	46	136	68	20.5	95	50	-	3.9
	BSPB 30 Q 50			82	80									6.3
35	BSPB 35 D 50	35		52	50									3.8
	BSPB 35 Q 50			82	80									6.2
40	BSPB 40 D 50	40		52	50		50							3.7
	BSPB 40 Q 50			82	80									6.0
45	BSPB 45 D 50	45		52	50	60	55							3.6
	BSPB 45 Q 50			82	80									5.9
55	BSPB 55 D 65	55	65	52	50	76	68	154	77	23	118	65	30	4.5
	BSPB 55 Q 65			82	80									7.2
75	BSPB 75 D 65	75	65	54	50	99	86	174	87		129			5.0
	BSPB 75 Q 65			84	80									8.0
Heavy S		05	05	00	0.4	70	00	100	05	00	100	05	45	07
35	BSPB 35 D 65 BSPB 35 Q 65	35	65	66 106	64 104	76	66	190	95	30	130	65	15	9.7 15.9
40	BSPS 40 D 65	40		66	64									9.5
40	BSPB 40 Q 65	40		106	104									9.5
45	BSPB 45 D 65	45		66	64									9.3
	BSPB 45 Q 65			106	104									15.4
50	BSPB 50 D 65	50		66	64									9.1
	BSPB 50 Q 65			106	104									15.1
55	BSPB 55 D 85	55	85	66	64	99	86	200	100	1	155	85		9.1
	BSPB 55 Q 85			106	104									15.1
60	BSPB 60 D 85	60		66	64									9.1
	BSPB 60 Q 85			106	104									15.1
Toleran	ICES				d		М		U ₁		E (Dupl	ex)	E (C	Quad)
	17 D/Q 32 – BSPB 30	0 D/Q 42		0/-	- 0.005	0	/ - 0.013		0 / - 0.01	3	0 / - 1.			1.52
	30 D/Q 50 – BSPB 4				- 0.005		/ - 0.015		0 / - 0.01		0 / - 1.			1.52
	55 D/Q 65 – BSPB 60				- 0.005		/ - 0.018		0 / - 0.01		0 / - 1.			1.52
	I data see page 22.													n page 30.

... for Spindle Ends of Ball Screw Support Bearings with integrated lock nut

D1			DA			B- :		U1				
	BSPB-N	1D		BSPB-M			Z1					
					_	¢ Ød ₄ ∮Ø0,2	$-\Phi$					
						x Ød ₅ Ø0,2	•				57-004	
Y ₁	Y ₂	Y ₃	Z ₁	Z ₂	d ₄	d ₅	D _A	Ls	L	Integrated locknut	Unit	Shaft
				mr		<u> </u>				see page 28		mm
Medium	n Serie											
38	22.0	9	8.5	85.5	9	7.8	38	37	57	MMRS 17-36	BSPB-M 17 D 32	17
68	_							67	87		BSPB-M 17 Q 32	
38								37	57	MMRS 20-36	BSPB-M 20 D 32	20
68	05.0	10	10	445.0			50	67	87		BSPB-M 20 Q 32	
42 72	25.0	10	10	115.0	11	9.8	58	40 70	65 95	MMRS 25-50	BSPB-M 25 D 42	25
42								40	95 65	MMRS 30-50	BSPB-M 25 Q 42 BSPB-M 30 D 42	30
72	_							40 70	95	WINKS 30-50	BSPB-M 30 D 42 BSPB-M 30 Q 42	30
42				126.0	13		70	40	68	MMRS 30-60	BSPB-M 30 Q 42 BSPB-M 30 D 50	
72	-			120.0	10		10	70	98		BSPB-M 30 Q 50	
42								40	68	MMRS 35-60	BSPB-M 35 D 50	35
72	-							70	98		BSPB-M 35 Q 50	
42								40	68	MMRS 40-60	BSPB-M 40 D 50	40
72								70	98		BSPB-M 40 Q 50	
42								40	68	MMRS 45-60	BSPB-M 45 D 50	45
72								70	98		BSPB-M 45 Q 50	
40.5	26.0	11.5	11.5	142.5			80	40	70	MMRS 55-76	BSPB-M 55 D 65	55
70.5								70	100		BSPB-M 55 Q 65	
40.5				162.5			105	40	70	MMRS 75-99	BSPB-M 75 D 65	75
70.5								70	100		BSPB-M 75 Q 65	
Heavy	1	10	45	475.0	10	41.0		50				67
53	32.0	13	15	175.0	18	11.8	80	52	82	MMRS 35-76	BSPB-M 35 D 65	35
93 53								92 52	122 82	MMDS 40 76	BSPB-M 35 Q 65	40
93								52 92	122	MMRS 40-76	BSPB-M 40 D 65 BSPB-M 40 Q 65	40
53								52	82	MMRS 45-76	BSPB-M 40 Q 65	45
93								92	122		BSPB-M 45 Q 65	40
53								52	82	MMRS 50-76	BSPB-M 50 D 65	50
93	1							92	122		BSPB-M 50 Q 65	50
53	1			185.0				52	82	MMRS 55-99	BSPB-M 55 D 85	55
93	1							92	122		BSPB-M 55 Q 85	
53							105	52	82	MMRS 60-99	BSPB-M 60 D 85	60
93								92	122		BSPB-M 60 Q 85	

4.4 High Precision Flange Units for Ball Screw Nuts

KGT	Unit	d	D	М	С	Н	d ₁	d ₂	d ₃	d ₄	D ₁	D ₂	D ₃	T ₁	T ₂	L ₁	L ₂	L ₃	Hole
do x P									mm										pattern
16x 5	BNBU 28 DB 98	28	98	49	52	70	M5	9.2	60	M12	70	98	130	38	113	32	15	2	1
20x 5	BNBU 36 DB 98	36]		52	70	M6							47					
25x 5	BNBU 40 DB 113	40	113	56.5	52	70			76		80	113	145	51	129				
25x10	BNBU 40 QB 113				82	100													
32x 5	BNBU 50 DB 138	50	138	69	54	70	M8		99		105	138	170	65	154			4	
32x10	BNBU 50 QB 138				84	100													
40x 5	BNBU 63 DB 138	63]		54	70								78					2
40x10	BNBU 63 QB 138				84	100													
50x 5	BNBU 75 DB 178	75	178	89	77	101	M10	11.4	132	M14	140	178	215	93	197	50	20		
50x10	BNBU 75 QB 178				122	146													
63x 5	BNBU 90 DB 210	90	210	105	77	105			162		175	210	248	108	230				
63x10	BNBU 90 QB 210				122	150													
63x20	BNBU 95 DB 210	95			77	105	M12							115					
	BNBU 95 QB 210				122	150													
80x10	BNBU 105 DB 210	105			77	105								125					
	BNBU 105 QB 210				122	150													

Technical data see page 27

Tolerances Housing	d	D
BNBU 28 DB/QB 98 - BNBU 36 D/Q 98	+ 0.003 / - 0.010	0/-0.015
BNBU 40 DB/QB 113 - BNBU 105 D/Q 210	+ 0.003 / - 0.010	0 / - 0.018

For bearing units with integrated lubrication of ball screw nuts, please ask for separate data sheets (Serie BNBUS).

Adapter sleeves for other bs nuts on request.

Order example:

For a ballscrew Ø 63 x 10 with abutment dimension acc. to DIN 69051 a standard flange unit with hole pattern no. 2 and two bearings are needed as shown.

Medium preload is chosen: BNBU 90DB210. 2.M.M2

Mounting M1: connecting thread on right side, mounted opposite to mounting seat D.

4.5 High Precision Pillow Block Units for Ball Screw Nuts

BNPB...D..

Hole pattern No. 1 and 2 for direct mounting on

bs nuts according to DIN 69051 for ball screws

(Adapter sleeves for other bs nuts on request)

BNPB...Q..

 z_2 $\Rightarrow \emptyset 0.2$ $\Rightarrow \emptyset 0.2$ \Rightarrow

KGT	Unit			d	М	С	Н	d1*	d_3	d_4	d_5	D_1	D_4	T ₁	U	U_1	U_2	V ₁	V_2	V_3	Y ₁	Y ₂	Y ₃	Z ₁	Z ₂ E	3
do x P															mm											
																										_
16x 5	BNPB	28 D	50	28	50	52	70	M5	60	13	9.8	55	70	38	136	68	20.5	98	50	20	42	25.0	10	10	126.0 1	1
20x 5	BNPB	36 D	50	36		52	70	M6						47												
25x 5	BNPB	40 D	65	40	65	52	70		76			68	80	51	154	77	23	118	65		40.5	26.0	11.5	11.5	142.5	
25x10	BNPB	40 Q	65			82	100														70.5					
32x 5	BNPB	50 D	65	50		54	70	M8	99			89	105	65	174	87		129			40.5				162.5	
32x10	BNPB	50 Q	65			84	100														70.5					_
40x 5	BNPB	63 D	65	63		54	70							78							40.5				2	2
40x10	BNPB	63 Q	65			84	100														70.5					
50x 5	BNPB	75 D	85	75	85	77	101	M10	132	18	11.8	114	140	93	230	115	30	170	85	30	57	37.0	17	15	215.0	
50x10	BNPB	75 Q	85			122	146														100					
63x 5	BNPB	90 D	105	90	105	77	105		162	21		140	175	108	280	140	35	207	105	50	57			17	263.0	
63x10	BNPB	90 Q	105			122	150														100					
63x20	BNPB	95 D	105	95		77	105	M12						115							57					
	BNPB	95 Q	105			122	150														100					
80x10	BNPB	105 D	105	105		77	105							125							57					
	BNPB	105 Q	105			122	150														100					

* preferable to be mounted with socket head cap screws to DIN 912, tensile strength class 8.8

Tolerances Housing	d	М	U ₁
BSPB 28 D/Q 50 - BNPB 36 D/Q 50	+ 0.003 / 0.010	0/-0.015	0 / - 0.013
BSPB 40 D/Q 65 - BNPB 63 D/Q 65	+ 0.003 / 0.010	0/-0.018	0 / - 0.015
BSPB 75 D/Q 85 - BNPB 105 D/Q 105	+ 0.003 / 0.010	0/-0.018	0/-0.018

Adapter sleeves for other bs nuts on request.

Order example:

For a ballscrew Ø 80 x 10 heavy load with 4 bearings, adapter hole pattern No. 2 according to DIN 69051, light preload, mounted as shown above: **BNPB 105Q105 2.L.M2**

(Mounting M1: connecting thread on right side, mounted below outer locknut).

4.6 Technical Data Table of Flange and Pillow Block Units

BSBU..DB.. BSBU-M..DB.. BSPB..D.. BSPB-M..D..

BSBU..QB.. BSBU-M..QB.. BSPB..Q.. BSPB-M..Q..

Designation		Axial ca	pacity	F	Preload	F,	Ax.	stiffnes	s S _{ax}	Spee	d greas	e n _F	Drag	troqu	e M _r
BSBU	BSPB	Са	Coa	L	М	Н	L	М	Н	L	М	Н	L	М	Н
BSBU-M	BSPB-M	Ν			Ν			N/µm			min ⁻¹			Nm	
Duplex Serie															
BSBU 17 DB 64 BSBU 20 DB 64		25000	32000	875	1750	3500	450	570	730	14300	12500	6200	0.08	0.16	0.32
BSBU 25 DB 88 BSBU 30 DB 88		29200	43600	1125	2250	4500	640	810	1030	10500	9100	4500	0.11	0.22	0.43
BSBU 30 DB 98 BSBU 35 DB 98 BSBU 40 DB 98		35600	55000	1700	3400	6800	770	970	1240	8600	7500	3700	0.11	0.22	0.43
BSBU 45 DB 98	BSPB 45 D 50	37900	62000	1700	3400	6800	770	970	1240	8000	7000	3500	0.14	0.28	0.56
BSBU 55 DB 113	BSPB 55 D 65	40700	74000	1975	3950	7900	1020	1300	1640	6900	6000	3000	0.22	0.42	0.82
BSBU 75 DB 138	BSPB 75 D 65	44500	94000	2500	5000	10000	1320	1650	2120	5200	4500	2250	0.26	0.50	1.00
Heavy Serie															
BSBU 35 DB 128 BSBU 40 DB 128 BSBU 45 DB 128 BSBU 50 DB 128	BSPB 40 D 65 BSPB 45 D 65	70500	116000	3200	6400	12800	1050	1360	1740	6400	5600	2800	0.26	0.51	1.07
BSBU 55 DB 148 BSBU 60 DB 148		80800 1	137800	3900	7800	15600	1320	1650	2120	5300	4600	2300	0.34	0.68	1.36
Quadruplex Serie													-		
BSBU 17 QB 64 BSBU 20 QB 64		40600	64000	1750	3500	7000	900	1040	1460	10000	8700	4300	0.16	0.32	0.64
BSBU 25 QB 88 BSBU 30 QB 88	BSPB 30 Q 42		86000	2250	4500	9000	1280	1620	2060	7300	6300	3100	0.22	0.43	0.86
BSBU 30 QB 98 BSBU 35 QB 98 BSBU 40 QB 98	BSPB 35 Q 50	57800 -	110000	3400	6800	13600	1540	1940	2480	6000	5200	2600	0.22	0.43 (.86
BSBU 45 QB 98		61600 1	123000	3400	6800	13600	1540	1940	2480	5600	4900	2400	0.28	0.56	1.02
BSBU 55 QB 113		66100 1		3950	7900	15800	2040	2600	3280	4800	4200	2100	-	0.84	-
BSBU 75 QB 138	BSPB 75 Q 65	72300 1	188000	5000	10000	20000	2640	3300	4240	3500	3100	1550	0.52	1.00	2.00
Heavy Serie															
BSBU 35 QB 128 BSBU 40 QB 128 BSBU 45 QB 128 BSBU 50 QB 128	BSPB 40 Q 65 BSPB 45 Q 65	114500 2	232000	6400	12800	25600	2100	2720	3480	4450	3900	1950	0.52	1.02	2.04
BSBU 55 QB 148 BSBU 60 QB 148		131000 2	274000	7800	15600	31200	2640	3300	4220	3700	3200	1600	0.68	1.36	2.72

with adapter sleeve for ball screw nuts acc. to DIN 69051 BNBU..DB.., BNBU..QB.., BNPB..D... BNPB..Q..

KGT	Designation		Axial c	apacity	Р	reload	F _v	Ax. s	stiffnes	s S _{ax}	Spee	d grea	se n _F	Drag	troqu	Je M _r
do x P	BNBU	BNPB	Ca	Соа	L	М	Н	L	М	Н	L	М	Н	L	М	Н
	BNBU-M	BNPB-M		N		Ν			N/µm			min ⁻¹			Nm	
16x 5	BNBU 28 DB 98	BNPB 28 D 50	37900	62000	1700	3400	6800	840	1050	1330	8600	7500	3700	0.14	0.28	0.56
20x 5	BNBU 36 DB 98	BNPB 36 D 50	37900	62000	1700	3400	6800	840	1050	1330	8600	7500	3700	0.14	0.28	0.56
25x 5 25x10	BNBU 40 DB 113 BNBU 40 QB 113	BNPB 40 D 65 BNPB 40 Q 65	40700 66100	74000 148000	1975 3900	3950 7800	7900 15600	1010 2050	1260 2560	1610 3250	6900 4800	6000 4200	3000 2100	0.22 0.44	0.42 0.84	0.32 1.64
32x 5 32x10	BNBU 50 DB 138 BNBU 50 QB 138	BNPB 50 D 65 BNPB 50 Q 65	44500 72300	94000 188000	2500 5000	5000 10000	10000 20000	1230 2500	1570 3180	2010 4100	5200 3500	4500 3100	2250 1550	0.26 0.52	0.50 1.00	1.00 2.00
40x 5 40x10	BNBU 63 DB 138 BNBU 63 QB 138	BNPB 63 D 65 BNPB 63 Q 65	44500 72300	94000 188000	2500 5000	5000 10000	10000 20000	1230 2500	1570 3180	2010 4100	5200 3500	4500 3100	2250 1550	0.26 0.52	0.50 1.00	1.00 2.00
50x 5 50x10		BNPB 75 D 65 BNPB 75 Q 65	86400 140000	192000 384000	5200 10400	10400 20800	20800 41600	1800 3600	2280 4560	2900 5800	3800 2600	3300 2300	1650 1150	0.27 0.54	0.53 1.06	1.06 2.12
63x 5 63x10	BNBU 90 DB 210 BNBU 90 QB 210	BNPB 90 D 105 BNPB 90 Q 105	85200 138000	240000 480000	4550 9100	9100 18200	18200 36400	1950 3900	2500 5000	3150 6300	3100 2100	2700 1900	1350 950	0.27 0.54	0.54 1.08	1.08 2.16
63x20	BNBU 95 DB 210 BNBU 95 QB 210	BNPB 95 D 105 BNPB 95 Q 105	85200 138000	240000 480000	4550 9100	9100 18200	18200 36400	1950 3900	2500 5000	3150 6300	3100 2100	2700 1900	1350 950	0.27 0.54	0.54 1.08	1.08 2.16
80x10	BNBU 105 DB 210 BNBU 105 QB 210		85200 138000	240000 480000	4550 9100	9100 18200	18200 36400	1950 3900	2500 5000	3150 6300	3100 2100	2700 1900	1350 950	0.27 0.54	0.54 1.08	1.08 2.16
_					-				_		_					

On request a speed increase of 35 % is possible by use of ceramic balls. Then the static capacity Coa will be reduced to 70 %.

High Precision Floating End Units 4.7

d according PN DIN 620

Maximum speed see cartridge bearing unit

Shaft	Designation	d	М	С	C ₁	C ₂	D_1	D_2	U	U ₁	U_2	U ₃	V ₁	V ₂	V ₃	Y ₁	Y ₂	Z ₁	Z ₂	d ₄	d ₅	С	Co
mm												mm										Ν	1
20	BLPB 20 N 32	20	32	30	18	6	37	25	94	47	16	56	59	15	15	24.0	12	8.5	85.5	9	5.8	17300	19900
25	BLPB 25 N 42	25	42	30	18	6	42	30	125	62.5	21	70	77	22	20	24.0	12	10	115	9	5.8	19300	24200
30	BLPB 30 N 50	30	50	30	18	6	47	35	136	68	21	80	88	28	20	24.0	12	10	126	9	5.8	21100	28500
40	BLPB 40 N 65	40	65	40	23	8.5	62	48	190	95	30	100	108	38	20	30.0	15	15	175	13	7.8	36000	53000
50	BLPB 50 N 85	50	85	40	23	8.5	72	58	200	100	30	110	138	48	30	30.0	15	15	185	13	7.8	40000	64000

Cartridge Bearing Units for Supporting Floating End of Shaft BLBU..N... 2RS

Ζ

Z 2

Shaft	Designation	d	D	С	C ₁	C ₂	D ₁	D ₂	D ₃	L	Т	d ₂	n _{grease}	С	Со
mm							mm						min ⁻¹	1	1
10	BLBU 10 N 32	10	32	25	14	5.5	22	14	52	6	42	4.5	13000	6800	6900
12	BLBU 12 N 35	12	35	25	14	5.5	24	16	55	6	45	4.5	12000	7600	8300
17	BLBU 17 N 40	17	40	26	14	6	30	20	60	6	50	4.5	9000	8800	11000
20	BLBU 20 N 50	20	50	30	18	6	37	25	70	8	60	4.5	7500	17300	19900
25	BLBU 25 N 55	25	55	30	18	6	42	30	75	8	65	4.5	6500	19300	24200
30	BLBU 30 N 60	30	60	32	18	6	47	35	80	8	70	4.5	5500	21100	28500
35	BLBU 35 N 70	35	70	38	21	8.5	55	42	90	10	80	5.5	4800	26500	39500
40	BLBU 40 N 80	40	80	43	23	10	62	48	110	10	95	5.5	4200	36000	53000
45	BLBU 45 N 85	45	85	43	23	10	68	52	110	10	98	5.5	3900	38000	59000
50	BLBU 50 N 90	50	90	44	23	10.5	72	58	120	10	105	5.5	3500	40000	64000
Tolera	nces of Cartridge	Bearing	Units												
Inner I	Diameter		d		PN	DIN 620									
Cartric	lge Diameter		D	32 - 80	0 / -	-0.013									

IBC INDUST	RIAL BEA	RINGS AND	COMPONENTS

85 - 90

0/-0.015

4.8 Mounting Dimensions for Ball Screw Spindles

				Fi	xed er	nd					Centre height			Flo	ating	end		
Designation	d ₁	d ₂	d ₃ 4h/6h	D _A	L _D	L _{D1}	L _Q	L _{Q1}	L ₂	r _{1max}	М	d₅ j5	d ₆ h11	L ₃	L ₄	I ₅	r _{2max}	Designation
									mm									
Medium Serie																		
BSPB-M 17.32	17	23	M 17 x 1	38	57	36	87	65	24	0.5	32	20	19.2	18	1.2	6	0.3	BLPB-20N32
BSPB-M 20.32	20	26	M 20 x 1															
BSPB-M 25.42	-			58	65	39	95	68	29	0.8	42	25	24	18	1.2	6	0.3	BLPB-25N42
BSPB-M 30.42	30	37	M 30 x 1.5															
BSPB-M 30.50	30		M 30 x 1.5	70	68	39	98	68	32	0.8	50	30	29	18	1.5	6	0.3	BLPB-30N50
BSPB-M 35.50	35		M 35 x 1.5															
BSPB-M 40.50	40		M 40 x 1.5															
BSPB-M 45.50	45		M 45 x 1.5															
BSPB-M 55.65			M 55 x 2	80	70	39	100	68	34	0.8	65	50	48.5	23	1.5	8.5	0.6	BLPB-50N85
BSPB-M 75.65	75	84	M 75 x 2	105														
Heavy Serie																		
BSPB-M 35.65	35	43	M 35 x 1.5	80	82	51	122	90	34	0.8	65	40	38.5	23	1.5	8.5	0.6	BLPB-40N65
BSPB-M 40.65	40	48	M 40 x 1.5															
BSPB-M 45.65	45	54	M 45 x 1.5															
BSPB-M 50.65	50	59	M 50 x 1.5															
BSPB-M 55.85	55	65	M 55 x 2	105	82	51		90	34		85	50	48.5	23	1.5	8.5	0.6	BLPB-50N85
BSPB-M 60.85	60	70	M 60 x 2															

The following cartridge units have the same dimensions as pillow block units:

Medium Serie		Tolerance d ₁ [µm]
BSBU-M 17.64	BSPB-M 17.32	-3/-7
BSBU-M 20.64	BSPB-M 20.32	
BSBU-M 25.88	BSPB-M 25.42	-3/-7
BSBU-M 30.88	BSPB-M 30.42	
BSBU-M 30.98	BSPB-M 30.50	-4/-8
BSBU-M 35.98	BSPB-M 35.50	
BSBU-M 40.98	BSPB-M 40.50	
BSBU-M 45.98	BSPB-M 45.50	-4/-8
BSBU-M 55.113	BSPB-M 55.65	-4/-9
BSBU-M 75.138	BSPB-M 75.65	-4/-9
Heavy Serie		
BSBU-M 35.128	BSPB-M 35.65	-4/-8
BSBU-M 40.128	BSPB-M 55.85	
BSBU-M 45.128	BSPB-M 45.65	
BSBU-M 50.128	BSPB-M 50.65	
BSBU-M 55.148	BSPB-M 55.85	-4/-9
BSBU-M 60.148	BSPB-M 60.85	

M

U₁

Picture 4.8: Same reference dimensions (U_1, M) for fixed and floating end units simplify mounting.

57-602

4.9 Criteria for Bearing Arrangements at Ball screws

Application examples – influence of bearing arrangement on critical speed, spindle buckling resistance and stiffness.

The mounting and bearing arrangement at a spindle influences the critical speed, the buckling behaviour and the total stiffness.

4.9.1 Critical Rotational Speed nkr

The critical rotational speed (1^{st} order) where the spindle starts to bulge depends on the spindle diameter d_o, the non-support spindle length I and the bearing arrangement. The permissible speed should be obtained using factor 0.8 of the diagram value.

4.9.2 Buckling

Very long and thin spindles must be checked for buckling. An alternative bearing arrangement increases the permissible axial load.

4.9.3 Stiffness

The axial stiffness of a ball screw ${\rm Ka}_{\rm BS}$ is mainly dependant on (in precisely this order) the stiffness of the spindle as follows:

1 Ka _B	$\frac{1}{Ka_{S}} = \frac{1}{Ka_{S}}$	$+\frac{1}{Ka_N}$ +	- <u>1</u> Ka _B	[4.9.3]
Ka _{bs} Ka _s Ka _n Ka _b	[N/μm] [N/μm] [N/μm] [N/μm]			

The fundamentally different type of clamping (of the assembly) determines the stiffness of the spindle as follows:

1) Fixed clamping at one end

2) Fixed clamping at both ends

a) for driven spindle (see also page 19, 32)

b) for driven nut (see page 20), e.g. assembled with BNBU 63QB130 2.M.M2 with integrated labyrinth seals, n = 1000 min⁻¹. Spindle Ø 40 x 10 fixed at ends.

IBC INDUSTRIAL BEARINGS AND COMPONENTS

4.9 Criteria for Bearing Arrangements at Ball screws

3) Spring-preloaded Fixed End Floating End Combinations

Where a high operating speed leads to a high heat generation and expansion of the spindle, a fixed clamping at both ends is no longer useful. In this case it is better to clamp one end and to preload the other end by means of springs. The required preload can be set via the springs. By selecting an appropriate spring tension, the expansion due to heat is practically compensated without loss of preload and the stiffness of the spindle is kept on a constant level. The two mounting examples with drawings for inquiry (see p. 33) are helpful in dealing with specific customer wishes.

The first example shows the combination of cartridge units, the second the combination of pillow block units. Of course, it is also easily possible to combine cartridge and pillow block units, because the final processing for the spindles is the same for both.

Ball screw supported at both ends with BSBU-M... QB + BSBU ... DB ... DT+PLS, can be stretched and preloaded via securable locknuts.

Ball screw supported at both ends with BSPB-M ... QB + BSPB ... D ... DT+PLS,, can be stretched and preloaded via securable locknuts.

In addition to the arrangement with spring-preloaded end in DT arrangement, fixed end and if applicable, floating end QBT arrangements are possible, too (see p. 14).

4) Combinations of fixed end bearing units with floating end bearing units, series BLPB and BLBU

Whereas the stretching of the spindle and increasing the stiffness plays the most important role in case of fixed end bearing units and spring-preloaded units, preventing the

spindle end from whirling around is the main objective here (see p. 23).

For combinations with series BSPB fixed end pillow block units, the pillow block units were designed with the same centre height and the same lateral stopping dimension. This permits the units to be adjoined to the same machined reference edge. The alignment is thus facilitated (see figure 57-601, 57-602, p. 24).

5. IBC Precision Locknuts and Labyrinth Seals

Applications

IBC Precision Locknuts are used for high-precision application owing to their high degree of accuracy. The no longer necessary retaining groove in the shafts (for the formerly used lock washers) facilitates production and assembly. The material cross section is maintained and the notch effect is not increased un-necessarily. Accuracy is increased by elimination of the imprecise lock washers (axial runout is reduced).

Tolerances

A high accuracy of the axial eccentricity according to IT3, ISO basic tolerances according to DIN 7151 (see p. 11), will be achieved by precision-machining the inner thread with its securing elements and the face in one operation. The face will be additionally compressed during machining. The securing elements, which are also profiled, bear on the thread flanks. The thread is manufactured with a tolerance of 4H according to DIN 13 T21-24. From M210x4 on, the tolerance is 6H.

Design

For compact applications (lightest weight), series MMR locknuts are used. The locknut in recessed locations which cannot be reached radially (housing bores) are secured using the axially accessible socket set screws on the MMA and MBA series nuts. This option requires a larger width because of the inner construction. From Ø 20 on, the MBA model is supplied. The permissible axial load corresponds to the MMR nut.

The same cross section as MBA is used for MMRB and thus permits larger loads and tightening torques. This is of interest in particular for preloading bearings supporting a high axial load (in ball screws, for instance).

Nuts with Labyrinth Seal

The MMRBS and MBAS series additionally have a set of laminar rings made out of spring steel, which may create a compact labyrinth seal in conjunction with the housing where limited space is available. The intermediate space of the labyrinth area must be filled with grease before and after mounting.

The cross section of the series MMRS nuts with similar properties as MMRBS nuts were designed to match the series BS 60° Super Precision Angular Contact Thrust Ball Bearings and the MD Seal Nuts (see page 24, 28 and 29). These are available in the standard sizes as well as in special sizes (different cross section) or made from stainless steel or with ATCoating.

Abutment and Fillet Dimensions

The recommended tolerance of the counter thread of the shaft is "medium" 6g, 6h or "fine" 4h for higher accuracy requirements (machine tools).

Strength of the Nut Threads

Threads up to M50: 1000 N/mm² Threads up to M55 – M85: 870 N/mm² Threads from M90 on: 700 N/mm² The permissible axial loads are applicable to bolt threads with a tensile strength of at least 700 N/mm². In case of dynamic load, 75 % of Fa is permissible.

Mounting

Nut to be screwed in with all locking devices in unchanged positions. Use spanners to tighten the locknuts with approx. double of the nominal torque (to avoid setting of the clamped parts), loosen and retighten them applying the nominal torque. The necessary tightening torque depends on the required preload F_v [N] and can be determined approximately using the following equation:

$M_D = 3 \cdot d_{Thread} \cdot I$	$F_v \cdot K_{Fv} \cdot 1$	I0 ⁻⁴ [Nm]		[5.1]
$\begin{array}{ll} {K}_{Fv} \colon & \text{bearing arrange} \\ & {For} \; {Fv}_v \; \text{of the sir} \\ & <> & DB \\ & <<> & TBT \\ & <<> & QBT \\ & {K}_{Fv} = 1 \; \text{for bear} \end{array}$	ngle bearing 1 1,36 1,57	gs: for bs bearir <<>> <<<>> <<<>>	QBC PBT PBC	2 1,71 2,42

(A single tightening with M_D is sufficient for the heavily preloaded 60° super precision angular contact thrust ball bearings).

Securing against loosening

First tighten securing screw via hexagon socket set screw lightly until you notice resistance. Tighten second screw located opposite. If existing, tighten third screw (only in case of MMRB, MMRBS and MMRS) and fourth screw in model ...Q. Retighten screws. For maximum tightening torques of the socket set screws, please refer to table.

Socket set screws	Key size S [mm]	Tightening torque Max. M _A [Nm]
M4	2	2
M5	2,5	4
M6	3	7
M8	4	18
M10	5	34
M12	6	60

Table 5.1: Maximum tightening torques of securing devices

This results in high loosening torques to prevent unintended loosening even for spindles running clockwise and counter-clockwise intermittently.

Disassembly

Loosen securing elements first for disassembly. Since clamping does not deform the profiled securing elements made from hard bronze, the nut can be used repeatedly after loosening.

Designations for IBC Precision Locknuts

MMR narrow precision locknut with radial lock

- MMRB wide precision locknut with radial lock
- MMA precision locknut with axial lock via 2 cones meeting at an angle of 90°
- MBA precision locknut with axial lock via slotted segments, from Ø 20 on
- MMRBS the same as MMRB, but with laminar labyrinth seal
- MBAS the same as MBA, but with laminar labyrinth seal
- MMRS special locknut with radial lock, to match 60° Super Precision Angular Contact Thrust Ball Bearings BS and MD locknut
- Q 4 securing elements, unless standard

5.1 Labyrinth Locknuts MMRS

MMRS..-..Q2

58-001

Thread	Designation					Di	mensio	ns						Tightening torque set screws	Per- missible axial load
		Е	D _A	h	g	t	d ₁	I	m	j	k	N	S	M _S	Fa
							m	m						Nm	kN
M 17 x 1	MMRS 17-36.Q2	36	38	20	5	2	32	15.5	M 5	9	11	37.5	36	4	100
M 20 x 1	MMRS 20-36.Q2														110
M 22 x 1	MMRS 22-36.Q2														110
M 25 x 1.5	MMRS 25-50.Q2	50	58	25	6	2.5	46	19	M 6	10	13	52	55	7	150
M 27 x 1.5	MMRS 27-50.Q2														
M 30 x 1.5	MMRS 30-50.Q2														180
M 30 x 1.5	MMRS 30-60.Q2	60	70	28			56	21	M 8			63	65	18	180
M 35 x 1.5	MMRS 35-60.Q2														190
M 40 x 1.5	MMRS 40-60.Q2														210
M 45 x 1.5	MMRS 45-60.Q2														260
M 35 x 1.5	MMRS 35-76.Q2	76	80	30	7	3	72	23			15	79.5	75		290
M 40 x 1.5	MMRS 40-76.Q2														340
M 45 x 1.5	MMRS 45-76.Q2														400
M 50 x 1.5	MMRS 50-76.Q2														420
M 55 x 2	MMRS 55-76.Q2														450
M 55 x 2	MMRS 55-99.Q2	99	105		8	3.5	95					103	95		450
M 60 x 2	MMRS 60-99.Q2														480
M 65 x 2	MMRS 65-99.Q2														480
M 75 x 2	MMRS 75-99.Q2														510
M 100 x 2	MMRS 100-132.Q2	132	140	35	12	5	128	27	M 10	12	19	137.3	135	34	710
M 125 x 2	MMRS 125-162.Q2	162	175				158					165	165		800

Axial runout according to IT3, DIN 7151

The Labyrinth Locknut with the mounted laminar springsteel rings and the matching housing or a seal nut is forming a non-contact seal (see p. 29).

Whereas the Labyrinth Locknut turns with the shaft, the spring-steel rings are standing still, being preloaded radially to the outside by the housing. The free space has to be filled with the same grease as used for the bearings. The sealing area of the Labyrinth Locknut is already lubricated with BearLub GH62 grease, which has proven its quality in the lubrication of Ball Screw Support Bearings. Two additional engineer's wrenches flats located opposite each other facilitate the assembly. This locknut is used in particular with 60° Super Precision Angular Contact Thrust Ball Bearings (and in bearing units).

5.2 Labyrinth Seals S

Seal Nuts MD

	SC	2		58-00)2		M)Q 5		5	8-003		
Designation		Dimen	sions		Designation			D	imensior	าร			Per- missible axial load
	d _a	d _b	d _c	В		E	F	G	Н	J	K	N	Fa
		m	m						mm				kN
S 12-26.Q2	12	21	25.6	7	MD 40-26.Q5	26	28	M 40 x 1.5	31	4.3	9	27	45
S 15-26.Q2	15												
S 17-36.Q2	17	26	35.6		MD 50-36.Q5	36	41	M 50 x 1.5	42.5		10	37.5	65
S 20-36.Q2	20												
S 25-40.Q2	25	32	39.7		MD 55-40.Q5	40	45	M 55 x 1.5	47			42	77
S 25-50.Q2		41	49.6	10	MD 70-50.Q5	50	56	M 70 x 1.5	59.5		12	52	100
S 30-50.Q2	30												
S 30-60.Q2		46	59.6		MD 80-60.Q5	60	65	M 80 x 1.5	72			63	130
S 35-60.Q2	35												
S 35-76.Q2		66	75.6	12	MD 110-76.Q5	76	92	M 110 x 2	90	6.3	14	79.5	190
S 40-60.Q2	40	50	59.6	10	MD 80-60.Q5	60	65	M 80 x 1.5	72	4.3	12	63	130
S 40-76-10.Q2		66	75.6		MD 95-76.Q5	76	82	M 95 x 2	84.5	6.3		79.5	150
S 40-76-12.Q2				12	MD 110-76.Q5		92	M 110 x 2	90		14		190
S 45-60.Q2	45	55	59.6	10	MD 80-60.Q5	60	65	M 80 x 1.5	72	4.3	12	63	130
S 45-66.Q2			65.6		MD 85-66.Q5	66	72	M 85 x 1.5	76			69	130
S 45-76.Q2		66	75.6	12	MD 110-76.Q5	76	92	M 110 x 2	90	6.3	14	79.5	190
S 50-76-10.Q2	50	68		10	MD 95-76.Q5		82	M 95 x 2	84.5		12		150
S 50-76-12.Q2				12	MD 110-76.Q5		92	M 110 x 2	90		14		190
S 55-76.Q2	55			10	MD 95-76.Q5		82	M 95 x 2	84.5		12		150
S 55-99.Q2		86	98.6	12	MD 130-99.Q5	99	110	M 130 x 2	110		14	103	220
S 60-99.Q2	60												
S 75-99.Q2	75			10	MD 120-99.Q5		101	M 120 x 2					210
S 100-132.Q2	100	114	131.6	14	MD 160-132.Q5	132	134	M 160 x 3	148		18	137.3	340
S 110-132.Q2	110	120	131.7										
S 127-162.Q2	127	144	161.6	14.5	MD 190-162.Q5	162	167	M 190 x 3	176			166	440

The non-contact series S sealing elements consist of a ground parallel steel ring with a radial outside groove. A set of laminar spring-steel rings is assembled into the groove, surrounded by a grease pack (GH62).

These are pressed into the bore of the matching series MD seal nut or into a housing bore via a chamfer and are thus fixed.

The spacer (support ring) of the labyrinth seal located on the shaft thus turns without touching the opposite lamella. A grease pack in the groove prevents the axial contact of the lamella with the walls. The Labyrinth Seals have proven to be of advantage adjoining bearings preloaded via these seals (Angular Contact Ball Bearings and 60° Super Precision Angular Contact Ball Bearings).

The Seal Nuts MD with outside thread can also be used separately to clamp outer bearing rings or other machine parts. They need to be secured by glue. An external radial lock is also possible.

Further sizes are available on inquiry.

5.3 Precision Locknuts MMR, MMRB, MMRBS, MBA, MBAS

MMR..

58-004

MBA..

58-005

Thread	Designation						Dir	mensio	ons					tighte tore	ax. ening que crews	ax	issible dal ad MMA MBA
Tolerance 4H	Radial locking system	Axial locking system	D _A	h	g	t	d ₁	С	m _a	m _r	h ₁	h ₂	E*	M rad.	ax.	F,	a
									mm					Nr		k	N
M 6 x 0.5	MMR 6		16	8	3	2	12	4	-	M 4		-	-	2	-	16	
M 8 x 0.75	MMR 8															17	
M 10 x 0.75	MMR 10		18				14									22	
M 12 x 1	MMR 12		22				18									26	L
M 15 x 1	MMR 15		25				21		_							33	
M 17 x 1	MMR 17		28	10	4		23	5		M 5				4		49	
		MMA 17 **		16					M 4						2	70	70
M 20 x 1	MMR 20		32	10			27									55	
	MMRB 20	MBA 20		16							4.4	2.9	32			110	110
M 20 x 1.5	MMR 20 x 1.5			10												70	
	MMRB 20 x 1.5	MBA 20 x 1.5		16									32			110	110
M 25 x 1.5	MMR 25		38	12	5		33	6		M 6				7		87	
	MMRB 25	MBA 25		18									38			130	130
M 30 x 1.5	MMR 30		45	12			40				5.2	3.2				110	
	MMRB 30	MBA 30		18					M 6				45		7	150	150
M 35 x 1.5	MMR 35		52	12			47									120	
	MMRB 35	MBA 35		18									52			170	120
M 40 x 1.5	MMR 40		58	14	6	2.5	52	7	1							150	
	MMRB 40	MBA 40		20									58			210	150
M 45 x 1.5	MMR 45		65	14			59				6	3.6				170	
	MMRB 45	MBA 45		20							-		65			240	170
M 50 x 1.5	MMR 50		70	14			64									180	
	MMRB 50	MBA 50		20			0.						70			260	180
M 55 x 2	MMR 55		75	16	7	3	68	8	1	M 8				18	18	250	
III OO X L	MMRB 55	MBA 55	10	22	,		00	0	M 8				75	10	10	340	250
M 60 x 2	MMR 60	IIIDA 00	80	16			73						10			270	200
W 00 X 2	MMRB 60	MBA 60	00	22			/0						80			360	270
M 65 x 2	MMR 65	MIDA 00	85	16			78						00			290	210
W 05 X Z	MMRB 65	MBA 65	00	22			10						85			400	290
M 70 x 2	MMR 70	WDA 05	92	18	8	3.5	85	9					00			350	230
	MMR 70 MMRB 70	MBA 70	92	24	0	3.5	00	9					92			470	350
MZENO		WBA /U	00				00						92				350
M 75 x 2	MMR 75		98	18			90						00			370	070
11.00	MMRB 75	MBA 75	105	24							7.0	1.0	98			500	370
M 80 x 2	MMR 80		105	18			95				7.3	4.3	105			390	
11.05	MMRB 80	MBA 80	110	24			100			14.15			105	0.1	• • •	520	390
M 85 x 2	MMR 85		110	18			102			M 10				34	34	400	
	MMRB 85	MBA 85		24					M 10				110			540	400

E* see page 31 MMRBS ** Securing: 2 cones at 90°, different threads and pitch on request: MMR 16 x 1,5 Q; MMR 33 x 1,5 Q; MMR 42 x 1,5 Q; MMR 60 x 1,5; MMR 65 x 1,5 Q; MMR 145 x 2 Q.

Precision Locknuts MMR, MMRB, MMRBS, MBA, MBAS

MMRB...

58-006

MMRBS...

h

58-007

Index of the constraint	Thread	Designation			Dimensions					ons							ial ad MMA
4H system system isystem isys	Tolerance	Radial locking	Axial locking	D _A	h	g	t	d ₁	С	m _r	n _ĸ	h ₁	h ₂	E*	Ms		
M 90 x 2 MMR 90 MBA 90 120 20 10 4 108 9 M 10 4 7.3 4.3 34 470 M 95 x 2 MMR 95 MBA 95 125 20 113 113 120 430 490 M MMR 95 MBA 95 26 113 120 4490 490 M MMR 100 130 20 120 120 510 510 510 560 570 560 560 570 560 570 560	4H	system	system			-				m _a							
MMRB 90 MBA 90 26 113 113 120 610 470 M 95 x 2 MMR 95 MBA 95 26 113 113 490 490 M 100 x 2 MMR 100 130 20 120 120 130 510 510 M 105 x 2 MMR 105 140 22 12 5 126 500 560 M 115 x 2 MMR 110 145 22 133 145 770 600 M 115 x 2 MMR 115 150 22 137 7.5 4.4 660 600 M 120 x 2 MMR 120 155 24 138 77.0 600 920 740 M 120 x 2 MMR 125 160 24 148 160 920 740 760 760 760 760 760 930 760 930 760 930 760 930 760 930 760 930 760 930 760									m	m					Nm	k	N
M 95 x 2 MMR 95 MBA 95 20 113 113 113 125 400 400 M M00 x 2 MMR 100 MBA 100 20 120 120 510 510 M MMR 100 MBA 100 26 120 130 660 510 M MMR 105 MBA 100 28 133 140 700 580 560 M MMR 110 145 22 133 140 700 580 660 510 M MMR 110 145 22 133 145 770 600 700 560 660 700 560 660 700 560 660 600 700 560 700 560 700 560 700 560 700 560 700 560 700 560 700 70 500 700 560 700 700 560 700 700 560 700 700 560<	M 90 x 2	MMR 90		120	20	10	4	108	9	M 10	4	7.3	4.3		34	470	
MMRB 95 MBA 95 26 120 120 120 120 120 130 660 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 510 520 510 5		MMRB 90	MBA 90		26									120		610	470
M 100 x 2 MMR 100 130 20 120 120 130 510 510 M 105 x 2 MMR 105 MBA 100 22 120 130 510 660 510 M 105 x 2 MMR 105 MBA 105 28 133 140 22 12 5 120 140 700 560 M 101 x 2 MMR 110 145 22 133 140 770 600 M 115 x 2 MMR 115 150 22 133 137 145 770 600 M 115 x 2 MMR 125 MBA 125 30 138 155 890 710 M 125 x 2 MMR 125 MBA 130 30 44 149 155 890 710 M 130 x 2 MMR 140 180 26 14 6 160 10 M12 60 880 M 140 x 2 MMR 140 32 26 171 44 160 950 760	M 95 x 2	MMR 95		125				113								490	
MMRB 100 MBA 100 26 0 110 130 660 510 M 105 x 2 MMR 105 140 22 12 5 126 140 700 560 M 110 x 2 MMR 110 145 22 133 145 770 600 M 115 x 2 MMR 115 MBA 115 28 133 145 770 600 M 115 x 2 MMR 120 155 24 133 150 22 137 7.5 4.4 660 600 600 710 600 600 710 600 710			MBA 95		-									125			490
M 105 x 2 MMR 105 MBA 105 22 12 5 126 140 700 560 M 110 x 2 MMR 100 MBA 110 22 133 145 22 133 700 560 M 110 x 2 MMR 110 MBA 110 22 133 145 770 600 M 115 x 2 MMR 115 MBA 115 22 137 7.5 4.4 660 M 120 x 2 MMR 120 155 24 138 710 700 600 M 125 x 2 MMR 120 165 24 148 710 740 740 M 130 x 2 MMR 130 165 24 149 166 920 740 M 140 x 2 MMR 130 MBA 130 30 165 140 165 950 760 M 140 x 2 MMR 150 195 26 171 6 165 950 760 M 140 x 3 MMR 160 MBA 160 205 34 6	M 100 x 2			130				120									
MMRB 105 MBA 105 28 133 140 700 560 M 110 x 2 MMR 110 MBA 110 28 133 145 22 145 600			MBA 100		-									130			510
M 110 x 2 MMR 110 145 22 133 145 22 143 145 150 150 22 133 145 145 770 600 M 115 x 2 MMR 115 MBA 115 150 22 133 145 145 770 600 M 120 x 2 MMR 120 155 24 138 155 890 710 M 125 x 2 MMR 125 160 24 148 148 160 920 740 M 130 x 2 MMR 130 165 24 149 149 160 920 740 M 140 x 2 MMR 140 180 26 14 6 160 10 M 12 600 880 M 150 x 2 MMR 150 195 26 171 195 26 171 930 195 1040 930 M 150 x 3 MMR 160 MBA 150 32 171 198 195 1040 930 1040 930 <th>M 105 x 2</th> <th></th> <th></th> <th>140</th> <th></th> <th>12</th> <th>5</th> <th>126</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	M 105 x 2			140		12	5	126									
MMRB 110 MBA 110 28 150 22 137 145 770 600 M 115 x 2 MMRB 115 MBA 115 28 137 770 600 M 120 x 2 MMR 120 155 24 138 155 820 660 M 120 x 2 MMR 120 MBA 120 30 155 24 138 155 890 710 M 125 x 2 MMR 125 160 24 148 155 890 710 M 130 x 2 MMR 130 165 24 148 148 160 920 740 M 140 x 2 MMR 130 180 26 14 6 160 10 M12 60 880 M 150 x 2 MMR 140 32 195 26 171 180 180 180 930 1040 930 M 150 x 3 MMR 150 MBA 160 205 34 16 7 182 8.3 5.3 205 136			MBA 105		-									140			560
M 115 x 2 MMR 115 150 22 137 7.5 4.4 660 660 M 120 x 2 MMR 120 155 24 138 155 24 138 155 820 660 710 820 660 710	M 110 x 2			145				133							-		
MMRB 115 MBA 115 28 10 150 820 660 M 120 x 2 MMR 120 MBA 120 30 138 155 890 710 M 125 x 2 MMR 125 160 24 148 155 890 740 M 130 x 2 MMR 130 165 24 148 160 920 740 M 140 x 2 MMR 130 165 24 149 165 950 760 M 140 x 2 MMR 140 30 30 6 160 10 M12 60 880 M 150 x 2 MMR 150 MBA 120 32 180 180 180 1080 880 M 150 x 3 MMR 150 MBA 170 220 198 198 220 140 220 140 220 1600 1200 1600 1200 1600 1200 1600 1200 1400 930 1600 1200 1400 930 100 100 100		-	MBA 110											145	_	-	600
M 120 x 2 MMR 120 155 24 138 138 138 155 710 M 125 x 2 MMR 125 MBA 120 30 148 148 155 890 710 M 125 x 2 MMR 125 MBA 120 30 148 148 160 920 740 M 130 x 2 MMR 130 165 24 149 165 950 760 M 140 x 2 MMR 140 180 26 14 6 160 10 M 12 60 880 M 150 x 2 MMR 150 195 26 171 M171 930 930 M 160 x 3 MMR 150 MBA 150 32 171 930 180 930 M 160 x 3 MMR 170 MBA 170 200 171 930 180 1040 930 M 160 x 3 MMR 1810 MBA 180 230 36 18 8 203 220 1430 1040 930 M 160 x 3 MMR B 170 MBA 180 230 36 18 8 203 22	M 115 x 2			150				137				7.5	4.4		-		
MMRB 120 MBA 120 30 MBA 125 30 MBA 125 160 24 148 148 155 890 710 M 125 x 2 MMR 125 MBA 125 30 160 24 148 148 160 920 740 M 130 x 2 MMR 130 MBA 130 30 165 24 149 165 950 760 M 140 x 2 MMR 140 32 180 10 M 12 60 880 M 150 x 2 MMR 150 MBA 150 32 171 165 930 1080 930 M 160 x 3 MMR 150 32 171 180 180 1080 930 M 160 x 3 MMR 160 205 34 16 7 182 8.3 5.3 205 1360 1020 M 170 x 3 MMR 180 MBA 180 230 36 18 8 203 160 1202 1430 1075 M 170 x 3 MMRB 180<		-	MBA 115											150			660
M 125 x 2 MMR 125 MBA 125 160 24 148 148 160 160 920 740 M 130 x 2 MMR 130 MBA 125 30 165 24 149 160 160 920 740 M 130 x 2 MMR 130 MBA 130 30 149 149 165 950 760 M 140 x 2 MMR 140 180 26 14 6 160 10 M 12 60 880 M 150 x 2 MMR 150 180 26 14 6 160 10 M 12 60 880 M 150 x 3 MMR 150 195 26 171 171 195 26 171 195 20 1040 930 M 160 x 3 MMRB 160 MBA 150 32 171 182 8.3 5.3 205 1360 1020 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 226 230 1600 1220 M 190 x 3 MMRB 190 MBA 190 240	M 120 x 2			155				138									
MMRB 125 MBA 125 30 4 4 4 4 4 4 160 920 740 M 130 x 2 MMR 130 MBA 130 30 165 24 149 149 165 950 760 M 140 x 2 MMR 140 30 30 14 6 160 10 M 12 60 880 M 150 x 2 MMR 150 MBA 140 32 171 180 180 180 180 930 930 930 930 1040 930 930 1040 930 1040 930 1040 930 1040 930 1040 930 1040 930 1040 930 1040 930 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040 1020 1040		-	MBA 120											155			710
M 130 x 2 MMR 130 MBA 130 165 24 149 149 165 165 950 760 M 140 x 2 MMR 140 180 26 14 6 160 10 M 12 60 880 M 150 x 2 MMR 150 MBA 140 32 195 26 171 180 180 180 180 180 930 M 160 x 3 MMRB 150 MBA 160 205 34 16 7 182 8.3 5.3 205 1360 1020 M 170 x 3 MMRB 170 MBA 170 220 188 930 8.3 5.3 205 1360 1020 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 8.3 5.3 205 1430 1075 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 226 1430 1075 M 190 x 3 MMRB 200 MBA 190 240 214 240 214 240 1670 1250	M 125 x 2			160				148								-	
MMRB 130 MBA 130 30 a <tha< th=""> a <tha< th=""> <</tha<></tha<>		-	MBA 125											160			740
M 140 x 2 MMR 140 180 26 14 6 160 10 M 12 60 880 MMRB 140 MBA 140 32 195 26 171 6 160 100 180 180 880 M 150 x 2 MMR 150 MBA 150 32 195 26 171 6 6 880 M 160 x 3 MMRB 160 MBA 160 205 34 16 7 182 6 8.3 5.3 205 1360 1020 M 170 x 3 MMRB 170 MBA 170 220 188 203 6 8.3 5.3 205 1360 1020 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 6 8.3 5.3 205 1360 1020 M 190 x 3 MMRB 190 MBA 190 240 240 214 26 214 26 230 1600 1200 M 200 x 3 MMRB 200 MBA 200 250 38 226 214 200 250 250	M 130 x 2			165				149						105			
MMRB 140 MBA 140 32 A A A A A B			MBA 130	100				100						165			/60
M 150 x 2 MMR 150 195 26 171 0 0 0 930 MMRB 150 MBA 150 32 0 0 195 1040 930 M 160 x 3 MMRB 160 MBA 160 205 34 16 7 182 8.3 5.3 205 1360 1020 M 170 x 3 MMRB 170 MBA 170 220 0 198 0 220 1430 1075 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 220 1430 1075 M 180 x 3 MMRB 190 MBA 190 240 240 214 240 240 1600 1200 M 200 x 3 MMRB 200 MBA 200 250 38 226 260 250 1850 1390 M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 250 250 250 250 250 250 250 250 250 250	M 140 x 2		110.440	180		14	6	160	10	M 12				100	60		
MMRB 150 MBA 150 32 Image: model of the system of the		-	MBA 140	105	-			474						180			880
M 160 x 3 MMRB 160 MBA 160 205 34 16 7 182 8.3 5.3 205 1360 1020 M 170 x 3 MMRB 170 MBA 170 220 198 198 20 220 1430 1075 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 200 230 1600 1200 M 190 x 3 MMRB 190 MBA 190 240 240 214 240 240 1600 1200 M 200 x 3 MMRB 200 MBA 200 250 38 226 260 250 1850 1390 M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 250 M 220 x 4 MMRB 240 300 44 270 250 310 210 310 310 2500 300 2300 M 260 x 4 MMRB 280 330 50 24 310 310 11 6.6 330 2850	M 150 X 2			195				1/1						105			000
M 170 x 3 MMRB 170 MBA 170 220 198 220 1430 1075 M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 230 200 1600 1200 M 190 x 3 MMRB 190 MBA 190 240 214 240 240 1670 1250 M 200 x 3 MMRB 200 MBA 200 250 38 226 250 1850 1390 M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 250 1390 M 220 x 4 MMRB 240 300 44 270 250 300 2500 310 2500 310 2500 310 2500 2850 2850 2850 285	M 160 × 2			20E	-	10	7	100				0.0	5.0				
M 180 x 3 MMRB 180 MBA 180 230 36 18 8 203 4 230 1600 1200 M 190 x 3 MMRB 190 MBA 190 240 240 214 240 240 1600 1200 M 200 x 3 MMRB 200 MBA 200 250 38 226 260 250 1850 1390 M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 2000 2500 2000					34	16	1					8.3	5.3				
M 190 x 3 MMRB 190 MBA 190 240 214 214 240 1670 1250 M 200 x 3 MMRB 200 MBA 200 250 38 226 26 260 250 1850 1390 M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 250 M 220 x 4 MMRB 220 280 280 250 250 250 260 280 2250 280 200 <th></th> <th>-</th> <th>-</th> <th>-</th> <th>26</th> <th>10</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th>		-	-	-	26	10	0							-	-		
M 200 x 3 MMRB 200 MBA 200 250 38 226 26 250 1850 1390 M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 M 220 x 4 MMRB 220 280 250 250 250 260 260 260 280 2250 280 2250 280 2250 280 2250 280 2250 280 2250 280 280 2250 280 <th< th=""><th></th><th></th><th></th><th></th><th>30</th><th>10</th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>					30	10	0										
M 210 x 4 MMRB 210 270 40 20 10 238 14 M 14 10 6.4 270 85 2000 M 220 x 4 MMRB 220 280 280 250 250 250 260 300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2300 2500 2500 2500 2500 2500 2500 260 <th< th=""><th></th><th></th><th></th><th></th><th>20</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th></th<>					20									-			
M 220 x 4 MMRB 220 280 250 280 280 220 x 4 280 220 x 4 280 220 x 4 280 220 x 4 280 2			IVIDA 200			20	10	-	11	NA 14		10	6.4		95		1390
M 240 x 4 MMRB 240 300 44 270 300 300 2300 200 310 2500 310 2500 2500 2500 2500 2500 2600 260		-			40	20	10		14	11114		10	0.4	-	65		
M 260 x 4 MMRB 260 310 290 310 2500 M 280 x 4 MMRB 280 330 50 24 310 11 6.6 330 2850					11												
M 280 x 4 MMRB 280 330 50 24 310 11 6.6 330 2850					44												
					50	24						11	6.6				
	M 300 x 5	MMRB 200		360	50	24		336				11	0.0	360		3100	

Face runout T acc. to IT3, DIN 7151; *above Ø 200 : 6H

N_K: no. of socket set screws (locking system)

MBAS, MMRBS = MBA, MMRB + Laminar spring steel rings (labyrinth seal)

 E^* = Bore diameter of counterpart = $D_{AO}^{+0,1}$... and a 25° chamfer for the sealing (see also MMRS), where the feeding diameter is 4 % larger than D_a .

5.4 Pretension of spindles with Precision Locknuts

5.4.1 Application with two Fixed End Bearings and Stretched Spindle

Two locknuts with integrated labyrinth seal are used at one end. The interior nut should have a 2–5 mm larger thread diameter, e.g. MMRS 30-60.Q2 + MMRS 35-60.Q2 with a bearing support series BSPB-M 30Q50 or BSBU-M30QB98.

 $d_4 > d_3$ by one thread size (see MMRS on page 28)

(MMRS 25-36.Q2, MMRS 35-50.Q2 and other intermediate sizes are manufactured upon demand. As an alternative, the series MMRB locknuts can be used next to the labyrinth seal).

Spindle Stretching Procedure

- The right-hand unit is screwed and pinned, locknut 1 is preloaded with tightening torque M_D acc. to page 27.
- 2) Tighten the base of the left-hand unit lightly.
- 3) Tighten locknuts 2 and 3 lightly first and then tighten them against each other and tighten locknut 3 with M_D .
- 4) Tighten screws in the base of the left-hand unit fully (ream and pin pre-drilled holes and pin).
- 5) Determine zero-value position at axial spindle reference surface via dial indicator. Then loosen locknut 2 a bit and carefully tighten locknut 3 until the dial of the indicator displays the setpoint stretching value. (For locknuts up to Ø 50, the pitch is 1.5 mm for 360° which corresponds e. g. to a stretch of 4.2 µm at an angle of rotation of 1°, from threat Ø 55 x 2 on, 5.6 µm correspond to 1° angle of rotation.)
- 6) Tighten locknut 2 with tightening torque M_D against the bearing package and lock.

5.4.2 Stretching and preloading spring-preloaded spindles and bearing units

If larger expansion of the spindles due to heat is expected, the spindles and bearings are preloaded using separate MMRB locknuts. On the following page, two drawings for inquiry show the basic structure of these cartridge or pillow block units. Of course, a combination of these designs is possible.

The preload and thus the required stiffness are set via the spring path of the disc springs. When the drawing for inquiry is processed, details are discussed with the customer. For this purpose, the drawings may be copied and the required bearing units entered in accordance with the present catalogue.

At the floating end, the shaft d_1 has to be executed with a g4 or g5 seat.

6. Inquiry drawings for fixed bearings + spring preloaded construction groups

7. Alphanumerical Product Table

Designation	Product	Page
AC ACC	ATCoated bearings ATCoated bearings with ceramic balls	7, 34 7
BLBU BLPB BNBU BS BS2RSZ BSBU BSBU-M BSPB BSPB-M	Precision Cartridge Bearing Units for floating ends Precision Pillow Block Bearing Units for floating ends Precision Cartridge Bearing Units for ball screw nuts Precision Cartridge Bearing Units for ball screw nuts Precision Ball Screw Bearings Precision Ball Screw Bearings with seals Precision Cartridge Bearing Units for ball screws Precision Cartridge Bearing Units for ball screws Precision Cartridge Bearing Units with integrated locknut Precision Pillow Block Bearing Units with integrated locknut	23 23 20 21 8 7, 8 16 17 18 19
СВ	Hybrid Bearings with ceramic balls	6
MBA MBAS MD MMA MMR MMRB MMRBS MMRS	Precision Locknut axially securable Precision Locknut, axially securable, labyrinth-sealed Precision Locknut with outer thread Precision Locknut axially securable Precision Locknut, radially securable Precision Locknut, broad, radially securable Precision Locknut, broad, radially lysecurable, labyrinth-sealed Precision Labyrinth Locknut, radially securable, labyrinth-sealed	30 29 30 30 30 30 30 30
S	Precision Labyrinth Seals	29

8. Glossary

8.1 Material

Bearing Rings and Balls

Suffix	Mater	ial	Materi no.	al-	(US	A)	(JAF	PAN)	Hardness [HRC]
-	Bearir 100Cı	ng Steel ′6	1.3505	5	SAE	E 52100	SUJ	2	62±2
	Chem	ical Con	npositio	n in	perc	centage	of we	eight-%	
	С	Si	Mn	Ρ	·	S	Cr	Ni	Cu
	0.9- 1.05	0.15- 0.35	0.25- 0.45	0.	03	0.025	1.35 1.65		0.3
	Ce	ramic Ba	alls (pre	sse	ed iso	ostaticly))		Hardnes
СВ	Si ₃	N ₄							1600 [H\
	Th	in chrom	ium coa	ateo	d bea	aring pai	ts		
AC	Arı	moloy AT	Coatin	g		9	9	75[HRC]/1200 [HV

8.2 Grease

Lubricant BearLub	Temperature range	Viscosity 40 °/100 °C
GH62:	– 30 °/160 °C	150/18 mm²/s
GN21:	– 35 °/140 °C	85/12,5 mm²/s

02/05

Additional Suffixed of ATCoated Bearings

- A11 Inner and outer ring ATCoated
- A15 Inner and outer ring ATCoated Rolling elements and cage as far as possible corrosion protected
- A21, A26 Inner ring ATCoated

Function of the ATCoating

1) Reduction of friction, lower heat generation

Friction Partners	static friction coefficient (dry) [µo]	sliding friction coefficient (dry) [µ]
Stahl/Stahl	0.3	0.2
Stahl/ATC	0.17	0.16
ATC/ATC	0.14	0.12
	0.14	0.12

2) Lubricant film bonds better.

 Separation of parts of same material; avoiding of cold welding by adhesion, avoiding of fretting corrosion. Securing of sliding property of bearing ring against shaft or housing (important for floating bearings).

- 4) Outer corrosion protection, chemical resistance against aggressive materials, tribocorrosion.
- 5) Wear protection by higher hardness of the rim zone 1200HV, 0.003 (75 HRC).

More of IBC ...

Company Profile

Product Range TI-0-000 I / D (German) TI-0-000 I / E (English)

Product Range Pricelist

Angular Contact Bearings 40° TI-I-4044.0 / D (German)

Linear Bearings TI-I-7001.2 / D (German)

Telescopic Rails TI-I-7005.1 / D (German)

High Precision Bearings TI-1-5001.1 / D (German)

Super Precision Bearings Service Catalog TI-I-5003.1 / D (German) TI-I-5003.1 / E (English)

ATCoated bearings TI-1-5010.2 / D (German)

Technical data in this catalogue has been carefully compiled. Every care has been taken to ensure the accuracy of the information contained in this catalogue but no liability can be accepted for any errors or omissions also pertaining to new developments, which occurred before printing of this catalogue. Copyright 2005 IBC Wälzlager GmbH

INDUSTRIAL BEARINGS AND COMPONENTS

Post box 1825 · 35528 WETZLAR (GERMANY)

Tel: +49/64 41/95 53-02 Fax: +49/64 41/5 30 15

Corporate office Industriegebiet Oberbiel D-35606 Solms-Oberbiel

e-mail: ibc@ibc-waelzlager.com

http://www.ibc-waelzlager.com

IBC INDUSTRIAL BEARINGS AND COMPONENTS AG

Tel: +41/32/6 52 83 53 Fax: +41/32/6 52 83 58

Corporate office Kapellstrasse 26 CH-2540 Grenchen

e-mail: ibc@ibcag.ch

http://www.ibc-waelzlager.com