



# TURNING IDEAS INTO ENGINEERED SOLUTIONS





Create space, save weight.



New REALI-SLIM MM<sup>™</sup> Metric Series Sealed Bearing Line

Additional REALI-SLIM<sup>®</sup> bearing sizes and enhanced availablity



An engineering & product selection guide for thin-section bearings www.kaydonbearings.com

# Identification of REALI-SLIM<sup>®</sup> Bearings

REALI-SLIM<sup>®</sup> bearings are marked for complete identification with an (8) or (9) digit part number.

Positions 1-8 identify materials, size, type, and precision. Position 9 (optional) identifies non-standard internal fit.

## Part Number Code Example

| Position     | 1        | 2      | 3 | 4    | 5 | 6    | 7         | 8         | 9            | 10-13           |
|--------------|----------|--------|---|------|---|------|-----------|-----------|--------------|-----------------|
| Nomenclature | Material | Series |   | Size |   | Туре | Separator | Precision | Internal Fit | DFAR Compliance |
| Example      | К        | G      | 1 | 2    | 0 | Х    | Р         | 0         | L            | -USA            |

#### **Position 1 – Material**

#### **Position 2 – Series Cross Section**

|          | Races/Balls               | Seals, Shields                  |                        | Ra          | dial Thickne    | SS | Width |
|----------|---------------------------|---------------------------------|------------------------|-------------|-----------------|----|-------|
| А        | AISI 52100 Steel          | with One seal—PTFE              | Standard               | А           | *.187           | х  | .187  |
| В        | AISI 52100 Steel          | with Two seals—PTFE             | Cross-Sections         | or          | .250            | х  | .250  |
| D        | AISI 52100 Steel          | with One shield                 |                        | В           | .312            | Х  | .312  |
| <br>E    | AISI 52100 Steel          | with Two shields                |                        | C           | .375            | Х  | .375  |
|          |                           |                                 |                        | D           | .500            | Х  | .500  |
| F        | AISI 52100 Steel          | with One seal—Nitrile rubber    |                        | E           | .625            | Х  | .625  |
|          |                           | LAMI-SEAL®                      |                        | F           | .750            | Х  | .750  |
| G        | AISI 52100 Steel          | with Two seals—Nitrile rubber   |                        | G           | 1.000           | Х  | 1.000 |
|          |                           | LAMI-SEAL®                      | Extended Width         | H           | *.187           | Х  | .250  |
| Н        | AISI 52100 Steel          | with One seal—Nitrile rubber    |                        | or          | .250            | Х  | .312  |
| 1        | AISI 52100 Steel          | with Two seals—Nitrile rubber   |                        |             | .312            | Х  | .375  |
|          | AISI 52100 Steel          | with No seals or shields        |                        | J           | .375            | Х  | .437  |
| <u> </u> |                           |                                 |                        | K           | .500            | Х  | .578  |
| L        | AISI 52100 Steel          | with Two seals and              |                        | <u> </u>    | .625            | Х  | .727  |
|          |                           | ENDURAKOTE® plating             |                        | M           | .750            | Х  | .875  |
| Μ        | M-50 Steel                | with No seals or shields        |                        | Ν           | 1.000           | Х  | 1.187 |
| N        | AISI 52100 Steel          | with No seals and               | Extra-Extended         | S           | *.187           | Х  | .312  |
|          |                           | ENDURAKOTE <sup>®</sup> plating | Width                  | or          | .250            | Х  | .375  |
| Р        | AISI 17-4PH Steel         | with Ceramic Balls              |                        | Т           | .312            | Х  | .437  |
| 1        |                           | (see Section 6)                 |                        | U           | .375            | Х  | .500  |
| _        |                           | · · ·                           |                        | V           | .500            | Х  | .656  |
| Q        | AISI 52100 Steel          | with No shields or seals        |                        | W           | .625            | Х  | .828  |
|          |                           | (see section 6)                 |                        | X           | .750            | Х  | 1.000 |
| S        | AISI 440C Stainless Steel | with No seals or shields        |                        | Y           | 1.000           | Х  | 1.375 |
| Т        | AISI 440C Stainless Steel | with One seal—PTFE              | *Smaller section appli |             |                 |    | see   |
| U        | AISI 440C Stainless Steel | with Two seals—PTFE             | following explanatio   | ns of posit | tions 3, 4, and | 5. |       |
| V        | AISI 440C Stainless Steel | with Two shields                |                        |             |                 |    |       |
| W        | AISI 440C Stainless Steel | with Two seals—Nitrile rubber   |                        |             |                 |    |       |
| Х        | AISI 52100 Steel          | with Ceramic Balls              |                        |             |                 |    |       |
| Y        | AISI 440C Stainless Steel | with Ceramic Balls              |                        |             |                 |    |       |
|          |                           | (see Section 6)                 |                        |             |                 |    |       |

Z Other

## **IDENTIFICATION OF REALI-SLIM® BEARINGS (continued)**

## Position 3, 4 and 5—Size (Bearing Bore)

#### **Numeric Characters**

Nominal bearing bore in inches multiplied by ten Alphabetic Characters

"A" In Position 3 in combination with "A" in Position 2 denotes .187 x .187 Series

"A" In Position 3 in combination with "H" in Position 2 denotes .187 x .250 Series

"A" In Position 3 in combination with "S" in Position 2 denotes .187 x .312 Series

#### Examples

040 = 4.0" Bore

120 = 12.0" Bore 400 = 40.0" Bore

"10" following "AA" in Positions 2 & 3 =

- .187 x .187 Series with 1.0" Bore
- "15" following "HA" in Positions 2 & 3 =
- .187 x .250 Series with 1.5" Bore

#### Position 6—Bearing Type (see Section 3)

- A Angular contact single bearing (not ground for universal duplexing)
- B Angular contact pair—duplexed back to back
- C Radial contact
- F Angular contact pair—duplexed face to face
- T Angular contact pair—duplexed tandem
- U Angular contact single bearing—ground for universal duplexing
- X Four-point contact
- Z Other

#### Position 7—Separator (see Section 4)

- C Non-metallic composite, segmental, "snap-over" type
- D Phenolic laminate, one-piece ring "snap-over" type
- E Brass, segmental "snap-over" type
- F Full complement bearing—no separator
- G Nylon one-piece ring, circular pocket
- H Phenolic laminate, one-piece ring with circular pockets
- J Nylon strip separator, circular pockets
- K Phenolic laminate, riveted two-piece ring
- L Nylon, one-piece ring "snap-over" type
- M Formed wire, strip or segmental, "snap-over" type, ball in every pocket
- N Nylon, "snap-over" type
- P Standard formed ring "snap-over" type (material brass or non-metallic composite)
- Q PEEK, one-piece ring, circular pocket
- R Standard formed ring, circular pocket (material—brass or non-metallic composite)
- S Helical coil springs
- T Stainless steel, formed ring "snap-over" type
- U Stainless steel, formed ring circular pockets

- V Brass, formed ring, "snap-over" type
- W Formed wire, strip or segmental, "snap-over" type
- X PEEK, one-piece, "snap-over" pocket
- Y Brass, formed ring, circular pockets
- Z Other (toroids, slugs, spacer balls or others available)

#### Position 8—Precision (see Section 3)

(ABEC Specifications are per ABMA Standard 26.2)

- 0 KAYDON Precision Class 1 per ABEC 1F
- 1 KAYDON Precision Class 1 with Class 4 Runouts
- 2 KAYDON Precision Class 1 with Class 6 Runouts
- 3 KAYDON Precision Class 3 per ABEC 3F
- 4 KAYDON Precision Class 4 per ABEC 5F
- 6 KAYDON Precision Class 6 per ABEC 7F
- 8 Other

## **Position 9—Bearing Internal Fit**

- A .0000 to .0005 Clearance
- B .0000 to .0010 Clearance
- C .0005 to .0010 Clearance
- D .0005 to .0015 Clearance
- E .0010 to .0020 Clearance
- F .0015 to .0025 Clearance
- G .0020 to .0030 Clearance
- H .0030 to .0040 Clearance
- I .0040 to .0050 Clearance
- J .0050 to .0060 Clearance
- K .0000 to .0005 Preload
- L .0000 to .0010 Preload
- M .0005 to .0010 Preload
- N .0005 to .0015 Preload
- P .0010 to .0020 Preload
- Q .0010 to .0015 Preload
- R .0015 to .0025 Preload
- S .0020 to .0030 Preload
- Z Other clearance or preload not specified above
- Type X or C = Diametral Preload or Clearance
- Duplexed Type A = Axial Preload or Clearance

**Note:** Above internal bearing fits apply to unmounted bearings only. Mounting fits can greatly affect final internal bearing fit.

#### Position 10-13—DFAR Compliance

All REALI-SLIM<sup>®</sup> bearings requiring compliance with Defense Federal Acquisition Regulations (DFAR) "Specialty Metals" and "the Restrictions on Acquisition of Ball and Roller Bearings" clauses will contain '-USA' in positions 10-13. If internal fit is not called out in position 9, it will also contain a dash.

Example #1: KG120XP0L-USA Example #2: KG120XP0--USA

# REALI-SLIM<sup>®</sup> — The Industry Leader in Thin-Section Bearings

REALI-SLIM<sup>®</sup> thin-section bearings are known around the world for creating design space and saving weight. Design engineers across a wide spectrum of industries have trusted KAYDON since 1941 for precision and reliability in the most demanding applications. Catalog 300 has been relied upon for nearly as long, providing users with the specifications, capacities and sizing charts to choose the right bearing for their needs. Every edition offers more choices than ever, and this update is no exception.

# What's New

# New Line of Sealed REALI-SLIM MM<sup>™</sup> Metric Series Bearings

■ We are pleased to introduce a new 8mm series of sealed metric REALI-SLIM® bearings in both Type C (Radial Contact) and Type X (Four-Point Contact). Choose from 28 new part numbers, in bore sizes from 25mm up to 170mm. This new series gives you more versatility when your design calls for a sealed bearing.

# **Expanded Range of JG Series** Sealed REALI-SLIM<sup>®</sup> Bearings

The JG series of sealed REALI-SLIM<sup>®</sup> bearings has added 12 new part numbers to its line-up, with new bore sizes from 7.0 inches to 11.0 inches. The JU and JG series now span a range from 7.0 inches to 40.0 inches.

# Handy Conversion Table on Inside Back Cover

To save you a step and make the catalog even more useful, we've added a table of English-Metric equivalents commonly used by design engineers.

# More REALI-SLIM<sup>®</sup> Part Numbers Available From Stock

Availability from stock has been enhanced for more than a dozen part numbers since the last catalog revision in 2007.

# Easier REALI-SLIM<sup>®</sup> Part Number Identification

REALI-SLIM<sup>®</sup> part number tables have been relocated to the inside front cover, so you can find them immediately.

For latest releases — catalog, software, or CAD drawing downloads — visit our website www.kaydonbearings.com.

# **Table of Contents**

## Page Number

| Section 1— | An Introduction to REALI-SLIM® Thin-Section Bearings                                    |     |
|------------|-----------------------------------------------------------------------------------------|-----|
|            | Product Line Overview                                                                   |     |
|            | Examples of Design Efficiency                                                           |     |
|            | Bearing Load Scenarios                                                                  |     |
|            | General Information and Availability Chart                                              |     |
|            | General Specifications for Standard Bearings                                            | 13  |
| Section 2— | Selection Tables for Standard REALI-SLIM® Bearings                                      |     |
|            | • Standard Open REALI-SLIM <sup>®</sup> Inch Series Bearings, AISI 52100: Types A, C, X |     |
|            | Sealed REALI-SLIM <sup>®</sup> Bearings, AISI 52100: Types C, X                         |     |
|            | ENDURAKOTE <sup>®</sup> -plated ENDURA-SLIM <sup>®</sup> Bearings                       |     |
|            | • Stainless Steel Open REALI-SLIM® Bearings, AISI 440C: Types A, C, X                   |     |
|            | REALI-SLIM MM <sup>™</sup> Metric Series Bearings                                       |     |
|            | ULTRA-SLIM <sup>®</sup> Series Bearings                                                 |     |
|            | REALI-SLIM TT <sup>®</sup> Turntable Series Bearings                                    | 62  |
| Section 3— | Applications Engineering                                                                |     |
|            | Selection Recommendations                                                               | 66  |
|            | Capacity, Life, and Load Analysis                                                       | 71  |
|            | Mounting Recommendations                                                                |     |
|            | Precision Classes and Tolerances                                                        |     |
| Section 4— | Separator Types, Ball Count, and Performance                                            | 92  |
|            | Separator Types                                                                         | 93  |
|            | Number of Balls in Standard Bearings                                                    | 97  |
|            | Limiting Speeds                                                                         | 98  |
|            | Torque                                                                                  | 100 |
|            | Axis Deviations                                                                         | 102 |
|            | Deflection Curves                                                                       | 104 |
| Section 5— | Installation and Maintenance of REALI-SLIM® Thin-Section Bearings                       | 110 |
|            | Inspection and Installation Procedures                                                  |     |
|            | Lubrication and Maintenance                                                             | 113 |
| Section 6— | Other Products                                                                          | 115 |
|            | Metric BB Series Bearings                                                               | 116 |
|            | Bearings for Demanding Applications                                                     | 119 |
|            | KT Series Tapered Roller Bearings                                                       | 121 |
| Section 7— | Appendix and Sales Information                                                          | 122 |
|            | • Terms and Definitions                                                                 |     |
|            | Warranty Information and Legal Notices                                                  | 124 |
|            | Design Aids and Technical Literature                                                    |     |
|            | Request for Bearing Proposal Data Form                                                  | 129 |
|            | Conversion Factors                                                                      | 131 |

The design and application information contained in this catalog is for illustration only. Responsibility for the application of the products contained in this catalog rests solely with the equipment designer or user. In spite of our best efforts, the material contained in this catalog may contain inaccuracies and typographical errors.

# **REALI-SLIM<sup>®</sup>... For Compact, Lightweight Designs of the Future.**



Semiconductor Fabrication Equipment



**Machine Tools** 



**Rotary Table** 

- Aerospace and astronomy instrumentation
- Fixturing and workholding equipment
- Food processing equipment
  - Glassworking equipment
  - Index and rotary tables
  - Packaging equipment
    - Machine tools
    - Medical devices
- Optical scanning equipment
  - Tire making equipment
- Radar, satellite and communications equipment
  - Robotics
  - Textile machinery
- Tube and pipe cutting machines
- Semiconductor manufacturing equipment
  - Sorting equipment



**Textile Printer** 



Radar



**Robotic Silicon Wafer Processing** 



**Armored Vehicle Sights & FLIRs** 

KAYDON REALI-SLIM<sup>®</sup> bearings were designed to fill the need for a fully hardened, thin-section, antifriction bearing—a need resulting from the modern design concepts of simplicity, miniaturization, weight reduction, and compactness being applied to a wide variety of rotating devices.

Before the introduction of REALI-SLIM® bearings,

6 www.kaydonbearings.com 1-800-514-3066

designers were forced to use bushings or select bearings from the lightest bearings then commercially available, the standard "Light", "Extra-Light", and "Extremely Light" series—many of which often had undesirable cross sections, and excess weight.

REALI-SLIM<sup>®</sup> bearings overcome the problems of excess weight and size in bearings, shafts, and housings.

# Section 1 — An Introduction to REALI-SLIM® Thin-Section Bearings

|                                        | Page<br>Number |
|----------------------------------------|----------------|
| Product Line Overview                  |                |
| • Examples of Design Efficiency        | 9              |
| • Bearing Load Scenarios               | 10             |
| Product Availability Chart             | 12             |
| • Specifications for Standard Bearings |                |

# **Product Line Overview**

The REALI-SLIM<sup>®</sup> product line consists of a family of seven open (Figure 1-1) and five sealed (Figure 1-2) series of thin-section bearings ranging in bore diameters from 1.000 inch to 40.000 inches. Series range from .187 x .187 inch to 1.000 x 1.000 inch in cross section. Open bearings are available from stock in three configurations (Types A, C & X). Stock sealed bearings are available in Types C & X only.

We can provide internal fit up, lubricants, separators and other features to meet the most demanding specifications. To obtain corrosion resistance consider using KAYDON stainless steel REALI-SLIM<sup>®</sup> or ENDURA-SLIM<sup>®</sup> series of bearings. ENDURAKOTE<sup>®</sup> plating provides corrosion protection equal to or better than a full AISI 440C stainless steel bearing and can be supplied with very quick delivery.

Additional product line variants include: REALI-SLIM MM<sup>™</sup> metric series bearings, ULTRA-SLIM<sup>®</sup> bearings, and REALI-SLIM TT<sup>®</sup> series turntable bearings (Section 2); and BB metric ball bearings, Bearings for Demanding Applications, and KT thin-section taper bearings (Section 6).

Within these families, you can generally choose between open bearings for applications where bearings will not be exposed to damaging particulates and sealed bearings for applications where bearings need to be kept clean and well-lubricated. To support various load scenarios, REALI-SLIM<sup>®</sup> bearings are available in three basic types: radial contact (Type C), angular contact (Type A), and fourpoint contact (Type X)—see pages 10 and 11 for explanations on each type—and in a variety of sizes, or series (e.g., KA, KB, KC, etc.).

REALI-SLIM<sup>®</sup> bearings are available with various separator options to space the rolling elements uniformly and prevent contact between them. Separator types available include: continuous ring "snap-over pocket", continuous ring circular pocket, formed wire, toroid, PTFE spacers, and spacer ball separators. See Section 4 for complete details.

## **SPECIFICATION CONTROL**

In today's world, product traceability is extremely important. To satisfy these requirements, requesting a "specification control drawing" for a REALI-SLIM<sup>®</sup> bearing is a valuable option to consider.

A specification control drawing provides the user a concise description of the important bearing features and parameters for a specific bearing. A specification control drawing request will generate a unique part number for the standard REALI-SLIM<sup>®</sup> bearing, including the commercially available options you have selected. This provides the customer quick and easy identification of product in the field as well as a concise receiving and inspection document for the factory.



# **Design Efficiency**

## REALI-SLIM<sup>®</sup> Bearings Improve Design Efficiency

In REALI-SLIM<sup>®</sup> bearings, each series is based on a single cross section which remains constant as the bore diameter is increased. This is in sharp contrast to standard bearings in which the cross section increases as the bore diameter increases. The constant cross section of a REALI-SLIM<sup>®</sup> bearing is of particular value when designing a product which will be manufactured in various sizes based on shaft diameter and power requirements (Figure 1-3). By using the same series of REALI-SLIM® bearings throughout a product line, the designer can standardize on common components. For all diameters of this rotary table your bearing envelope stays the same.



## **REALI-SLIM®** Bearings Make a More Compact Design

Additional advantages in application design made possible by REALI-SLIM<sup>®</sup> bearings can be seen by referring to Figures 1-4, 1-5, and 1-6. A large bore, small cross-section REALI-SLIM<sup>®</sup> bearing permits the use of a large diameter hollow shaft (Figure 1-5) in place of a smaller diameter solid shaft (Figure 1-4), king-post design. Components such as air and hydraulic lines or electrical wiring and slip rings can then be accommodated within the hollow shaft, resulting in a neater, more efficient design. In many applications, a single four-point contact REALI-SLIM<sup>®</sup> bearing (Figure 1-6) can replace two bearings (Figures 1-4 and 1-5) compacting the design and simplifying the bearing mounting. Besides the obvious cost savings of eliminating one bearing, this arrangement also creates space and saves weight. The use of REALI-SLIM<sup>®</sup> bearings also provides a stiffer structure by using large diameter hollow tubes to replace solid shafts and by supporting the rotating structure (table) at the periphery.



# REALI-SLIM<sup>®</sup> Bearing Types Support All Load Scenarios

# **Radial and Axial (Thrust) Loads**

Bearings support a shaft or housing to permit their free motion about an axis of rotation. Load can be applied to bearings in either of two basic directions (Figure 1-7). Radial loads act at right angles to the shaft (bearing's axis of rotation). Axial (thrust) acts parallel to the axis of rotation. When these loads are offset from either the bearing axis (distance St) or radial plane (distance Sr), a resulting moment load (M) will be created. KAYDON REALI-SLIM<sup>®</sup> bearings are available in a variety of types to handle radial loads, axial loads and moment loads.

#### Figure 1-7



The resultant moment load (M) equation:  $M = (\pm T) (S_t) + (\pm R) (S_r)$ 

## **Types of REALI-SLIM® Bearings**

REALI-SLIM<sup>®</sup> bearings are available in three basic configurations: radial (Type C), angular contact (Type A), and four-point contact (Type X).

| REALI-SLIM <sup>®</sup> Bearing Types |
|---------------------------------------|
| A = angular                           |
| C = radial                            |
| X = four-point                        |

By using these three types, the customer has a wider choice of mounting arrangements to meet load, stiffness and accuracy requirements in the most efficient manner.

# Radial Contact Bearing (Type C)

The Type C Radial Contact Bearing (Figure 1-8) is a single row radial ball bearing of conventional design. It is a Conrad-type assembly, which means that it is assembled by eccentric displacement of the inner race within the outer race which permits insertion of about half of a full complement of balls.

## **REALI-SLIM® TYPE C**

Figure 1-8



Although the Type C bearing is designed primarily for radial load application, it can be configured to accept some axial (thrust) load in either direction. But, if thrust is a concern, a set of angular contact bearings should be considered for the specific application.

## **REALI-SLIM® BEARING TYPES SUPPORT ALL LOAD SCENARIOS (continued)**

# Angular Contact Bearing (Type A)

The Type A Bearing is also a conventional design. It features a circular pocket separator and a 30° contact angle (see Figure 1-9) along with approximately 67% of a full complement of balls.

The chief benefit of the Type A bearing is that it provides greater thrust capacity than a Type C or Type X bearing. Because of its counterbored outer race, Type A bearings have unidirectional thrust capacity. Thus, this bearing should be mounted opposed to another bearing to establish and maintain the contact angle, and to support reversing thrust loads.

# **REALI-SLIM® TYPE A**

## Figure 1-9



# Four-Point Contact Bearing (Type X)

Standard bearing lines are most often designed to handle either radial or axial load conditions. The unique feature about the KAYDON REALI-SLIM® Type X four-point contact bearing line (see Figure 1-10) is that the gothic arch geometry of the inner and outer races enables a single bearing to carry three types of loading (radial, axial and moment) simultaneously. This makes it the bearing of choice for many applications since a single four-point contact bearing can often replace two bearings, providing a simplified design.

Type X bearings may also be furnished with an internal diametral preload for those applications requiring greater stiffness or zero free play. This is accomplished by using balls that are larger than the space provided between the raceways. The balls and raceways, therefore, have some elastic deformation in the absence of an external load.

## **REALI-SLIM® TYPE X**

#### Figure 1-10



**NOTE:** KAYDON does not recommend the use of two Type X bearings on a common shaft, as it could result in objectionable friction torque.

# General Information and Availability Chart

**Standard REALI-SLIM® Bearings**—are those listed in the Series Data Tables. They are manufactured to KAYDON Precision Class 1 and the specifications on page 13. New sizes are added to stock periodically and updated on our website. Be sure to visit www.kaydonbearings.com for latest information.

## Options

**REALI-SLIM® Bearings**—can be optimized for your special requirements. Standard commercial options include: changes in diametral clearance, preloading, lubricants, packaging, etching of high points, tagging bearings with actual dimensions as requested, separators, duplexing,

data sheets, acceptance testing, etc.

**REALI-SLIM® Bearings**—with non-standard materials, sizes, tolerances, specifications, and features are available. We will be pleased to quote on your requirements.

Order REALI-SLIM<sup>®</sup> Bearings—by bearing numbers shown in Series Data Tables.

**Assistance**—in bearing selection will be furnished by our regional sales managers or the KAYDON Engineering Department upon request.

**Changes**—KAYDON reserves the right to change specifications and other information included in this catalog without notice.

#### Figure 1-11

This table applies to AISI 52100 standard bearings. For stainless steel, please see Section 2.

| Bore Diameter In Inches |      |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-------------------------|------|---|----|------------|---|------------|---|----|---|--------------|------------|------------|---|----|---|----|---|----|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Series                  | Туре | 1 | 1½ | <b>1</b> ¾ | 2 | <b>2</b> ½ | 3 | 3½ | 4 | <b>4</b> 1⁄4 | <b>4</b> ½ | <b>4</b> ¾ | 5 | 5½ | 6 | 6½ | 7 | 7½ | 8 | 9 | 10 | 11 | 12 | 14 | 16 | 18 | 20 | 21 | 22 | 25 | 30 | 35 | 40 |
| JHA Series              | A    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| ¾6" Radial              | C    | ٠ | •  | •          |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Section                 | X    | ٠ | •  | •          |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| KAA Series              | Α    | ٠ | ٠  | •          |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| ¾ "Radial               | C    | ٠ | •  | •          |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Section                 | X    | ٠ | •  | •          |   |            |   | ļ  |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| JA Series               | Α    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1/4" Radial             | C    |   |    |            | • | •          | ٠ | •  | • | •            | •          | *          | • | *  | * | *  |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Section                 | X    |   |    |            | • | •          | ٠ | •  | • | •            | •          | *          | • | *  | • | •  |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| KA Series               | Α    |   |    |            | ٠ | •          | ٠ | •  | ٠ | ٠            | •          | ٠          | ٠ | ٠  | ٠ | ٠  | ٠ | •  | ٠ | * | ٠  | *  | *  |    |    |    |    |    |    |    |    |    |    |
| ¼" Radial               | C    |   |    |            | ٠ | •          | ٠ | •  | ٠ | ٠            | •          | ٠          | ٠ | ٠  | ٠ | ٠  | ٠ | •  | ٠ | ٠ | ٠  | *  | •  |    |    |    |    |    |    |    |    |    |    |
| Section                 | X    |   |    |            | ٠ | •          | ٠ | •  | ٠ | •            | •          | ٠          | ٠ | ٠  | ٠ | ٠  | ٠ | •  | ٠ | ٠ | ٠  | *  | •  |    |    |    |    |    |    |    |    |    |    |
| JB Series               | Α    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| ⁵⁄₁₀" Radial            | C    |   |    |            | • | •          | • | •  | • | •            | •          | *          | * | *  | * | *  |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Section                 | X    |   |    |            | • | •          | • | •  | • | •            | •          | *          | * | *  | * | *  |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| KB Series               | Α    |   |    |            | • | •          | ٠ | •  | • | •            | •          | *          | * | •  | ٠ | *  | * | *  | * | ٠ | *  | *  | *  | *  | *  | *  | *  |    |    |    |    |    |    |
| ⁵⁄₁₀" Radial            | C    |   |    |            | ٠ | •          | ٠ | •  | ٠ | •            | •          | *          | • | *  | ٠ | •  | * | *  | ٠ | * | *  | *  | *  | *  | *  | *  | *  |    |    |    |    |    |    |
| Section                 | X    |   |    |            | ٠ | •          | • | •  | ٠ | •            | •          | *          | • | •  | ٠ | •  | * | *  | ٠ | ٠ | *  | *  | *  | *  | ٠  | *  | *  |    |    |    |    |    |    |
| KC Series               | A    |   |    |            |   |            |   |    | • | *            | •          | •          | • | •  | • | *  | ٠ | *  | ٠ | * | *  | *  | *  | *  | *  | *  | *  |    |    | *  | *  |    |    |
| ¾" Radial               | C    |   |    |            |   |            |   |    | ٠ | •            | •          | •          | • | •  | • | •  | ٠ | •  | ٠ | • | •  | *  | •  | •  | ٠  | *  | *  |    |    | *  | *  |    |    |
| Section                 | X    |   |    |            |   |            |   |    | • | *            | •          | •          | • | •  | • | •  | ٠ | *  | ٠ | • | •  | •  | •  | •  | ٠  | *  | *  |    |    | *  | *  |    |    |
| JU Series               | Α    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| ¾" Radial               | C    |   |    |            |   |            |   |    | • | *            | •          | •          | • | •  | • | •  | ٠ | •  | ٠ | • | •  | •  | *  |    |    |    |    |    |    |    |    |    | l  |
| Section                 | X    |   |    |            |   |            |   |    | • | •            | •          | •          | • | •  | • | •  | ٠ | •  | ٠ | • | •  | ٠  | *  |    |    |    |    |    |    |    |    |    |    |
| KD Series               | Α    |   |    |            |   |            |   |    | • | •            | •          | •          | • | •  | • | •  | ٠ | •  | ٠ | • | *  | *  | •  | *  | *  | *  | *  | *  |    | *  | *  |    |    |
| 1/2" Radial             | C    |   |    |            |   |            |   |    | • | •            | •          | •          | • | •  | • | •  | ٠ | •  | ٠ | • | •  | •  | •  | •  | ٠  | *  | *  | *  |    | *  | *  |    |    |
| Section                 | X    |   |    |            |   |            |   |    | ٠ | •            | •          | ٠          | • | •  | ٠ | •  | ٠ | •  | ٠ | ٠ | •  | •  | •  | •  | *  | ٠  | •  | *  |    | •  | *  |    |    |
| KF Series               | Α    |   |    |            |   |            |   |    | * | *            | *          | •          | * | •  | • | •  | * | •  | ٠ | • | •  | *  | •  | *  | *  | *  | *  |    |    | *  | *  | *  | *  |
| ¾" Radial               | С    |   |    |            |   |            |   |    | ٠ | •            | •          | •          | ٠ | ٠  | • | •  | ٠ | •  | ٠ | • | ٠  | ٠  | •  | *  | *  | *  | *  |    |    | *  | *  | *  | *  |
| Section                 | X    |   |    |            |   |            |   |    | ٠ | •            | •          | •          | • | ٠  | • | ٠  | ٠ | •  | ٠ | • | •  | ٠  | •  | •  | ٠  | *  | *  |    |    | *  | *  | *  | *  |
| JG Series               | Α    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    |   |    |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 1" Radial               | С    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    | * | *  | * | * | *  | *  | *  | *  | *  | *  | *  |    | *  | *  | *  | *  | *  |
| Section                 | X    |   |    |            |   |            |   |    |   |              |            |            |   |    |   |    | * | *  | * | * | *  | *  | *  | *  | *  | *  | *  |    | *  | *  | *  | *  | *  |
| KG Series               | Α    |   |    |            |   |            |   |    | * | *            | *          | *          | * | *  | • | *  | * | ٠  | ٠ | • | ٠  | *  | •  | •  | ٠  | ٠  | ٠  |    | *  | *  | *  | •  | *  |
| 1" Radial               | С    |   |    |            |   |            |   |    | * | *            | *          | *          | ٠ | *  | • | •  | ٠ | •  | ٠ | ٠ | ٠  | •  | ٠  | •  | ٠  | ٠  | •  |    | *  | ٠  | *  | *  | *  |
| Section                 | X    |   |    |            |   |            |   |    | * | *            | *          | *          | ٠ | *  | • | *  | ٠ | •  | ٠ | • | ٠  | ٠  | •  | ٠  | ٠  | ٠  | •  |    | ٠  | ٠  | •  | •  | ٠  |

• Available from stock. \* Limited Availability - contact KAYDON for lead time and minimum purchase requirement.

# Specifications for Standard REALI-SLIM<sup>®</sup> Bearings

| ITEM                                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REFERENCE SPECIFICATION              |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                           | MATERIAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| RACES & BALLS                                             | AISI 52100 Type Steel Vacuum Degassed<br>AISI 440C Stainless Steel                                                                                                                                                                                                                                                                                                                                                                                                                  | ASTM A-295, AMS-STD-66<br>ASTM A-756 |
| SEPARATORS<br>C, X BEARINGS                               | P Type—Brass or Non-metallic composite<br>L Type—Nylon, Fiberglass Reinforced                                                                                                                                                                                                                                                                                                                                                                                                       | ASTM B-36 or B-134                   |
| A BEARINGS                                                | R Type—Brass or Non-metallic composite<br>G Type—Nylon, Fiberglass Reinforced                                                                                                                                                                                                                                                                                                                                                                                                       | ASTM B-36 or B-134                   |
| SEALS                                                     | Nitrile Rubber, 70 Durometer, Steel Reinforced                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIL-R 6855                           |
|                                                           | HEAT TREATMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |
| RACES                                                     | Through hardened and dimensionally stabilized for use from -65°F to +250°F (-54°C to +121°C)                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| BALLS                                                     | AISI 52100—Hardened to Rc 62-66, AISI 440C—to Rc 58-65                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
|                                                           | PRECISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| RACE DIMENSIONS                                           | KAYDON Precision Class 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABMA ABEC-1F or better               |
| RACE RUNOUTS                                              | KAYDON Precision Class 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ABMA ABEC-1F or better               |
| BALLS                                                     | ABMA Grade 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANSI/ABMA/ISO 3290                   |
|                                                           | DIAMETRAL CLEARANCE<br>AND CONTACT ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| TYPE C BEARING<br>TYPE X BEARING<br>TYPE A BEARING        | Sufficient diametral clearance to provide small amount of<br>running clearance after installation with recommended fits<br>Gothic Arch Form for two 30° contact angles under light<br>radial gaging load. Sufficient diametral clearance to<br>provide clearance after installation with recommended fits<br>Diametral clearance for 30° contact angle in single<br>unmounted bearing under light axial gaging load. Wide<br>range of preload or running clearance for matched sets | ABMA Standard 26.2                   |
|                                                           | SEPARATOR DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| P & L TYPES<br>C, X BEARINGS<br>R & G TYPES<br>A BEARINGS | Circular Ring, Snapped Over Balls for Retention<br>Circular Ring, Circular Pockets, Self Retained                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
|                                                           | OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| QUALITY CONTROL                                           | KAYDON Quality Control procedures have been approved<br>by major aerospace industries and agencies of the U.S.<br>Government                                                                                                                                                                                                                                                                                                                                                        | ISO 9001                             |
| IDENTIFICATION                                            | Marked on Bearing O.D.: CAGE Code, "KAYDON" <sup>®</sup> ,<br>Part Number and Date Code                                                                                                                                                                                                                                                                                                                                                                                             | MIL-STD-130                          |
| CLEANING                                                  | Multiple cycle immersion and agitation in solvents and/or aqueous cleaners                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| PRESERVATIVE                                              | Preservative Oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
| PACKAGING                                                 | Heat Sealed in Plastic Bag & Boxed                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |

NOTE—Also available: Quality Control per MIL-Q-9858, Packaging and Lubrication options, and "Clean Room" Facilities.

# Section 2 — Selection Tables for Standard REALI-SLIM<sup>®</sup> Bearings

|                                               | Page<br>Number |
|-----------------------------------------------|----------------|
| • Open Bearings Inch Series – AISI 52100,     |                |
| Selection Tables - Types A, C, X              | 15             |
| • Sealed Bearings – AISI 52100,               |                |
| Selection Tables - Types C, X                 | 27             |
| • ENDURAKOTE <sup>®</sup> - Plated Bearings   |                |
| Overview & Selection Tables                   | 35             |
| • Open Bearings - AISI 440C, Overview &       |                |
| Selection Tables - Types A, C, X              |                |
| • Open Bearings Metric Series - AISI 52100,   |                |
| Selection Tables - Types A, C, X              | 53             |
| • ULTRA-SLIM <sup>®</sup> Bearings Overview & |                |
| Selection Tables - Types A, C, X              | 60             |
| • REALI-SLIM TT <sup>®</sup> Turntable Series |                |
| Overview & Selection Tables                   | 62             |

# **Open REALI-SLIM® Bearing Selections Type A** Angular Contact

A deep groove bearing with reduced shoulder on one side of inner or outer race ball path. Snapover assembly permits use of a one-piece circular pocket ring separator and greater ball complement. These bearings will accept radial load and single direction thrust load and are normally used in conjunction with another bearing of similar construction. Type A bearings require the application of thrust to establish contact angle. Stock bearings are individual units and when purchased as such must be adjusted at installation to desired running clearance or preload. If preferred, matched sets are available. KAYDON also offers matched spacers for applications requiring extra precision. KAYDON<sup>®</sup> can provide this service direct from the factory.

|          | KAA SERIES                                                     |         |                     |                     |                     |                     |      |                     |                          |        |               |  |  |  |  |
|----------|----------------------------------------------------------------|---------|---------------------|---------------------|---------------------|---------------------|------|---------------------|--------------------------|--------|---------------|--|--|--|--|
| KAYDON   | Dimensions in Inches Capacities in Pounds <sup>®</sup> Approx. |         |                     |                     |                     |                     |      |                     |                          |        |               |  |  |  |  |
| Bearing  | Dama                                                           | Outside | Land                | Land                | C'Bore              | Rac                 | lial | Thr                 | ust                      | Weight | .1875 -       |  |  |  |  |
| Number   | Bore                                                           | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>®</sup> | Dyn. | Static <sup>®</sup> | Static <sup>®</sup> Dyn. |        | F - 1875      |  |  |  |  |
| KAA10AG0 | 1.000                                                          | 1.375   | 1.140               | 1.235               | 1.274               | 340                 | 194  | 970                 | 450                      | .025   |               |  |  |  |  |
| KAA15AG0 | 1.500                                                          | 1.875   | 1.640               | 1.735               | 1.774               | 480                 | 238  | 1,380               | 560                      | .038   | L2 L3  <br>L1 |  |  |  |  |
| KAA17AG0 | 1.750                                                          | 2.125   | 1.890               | 1.985               | 2.024               | 530                 | 251  | 1,520               | 600                      | .045   | ③ F = .015    |  |  |  |  |

|           | KA SERIES |         |                     |                     |                     |                     |                     |                     |            |         |                     |  |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------|---------|---------------------|--|--|--|--|
| KAYDON    |           | Dimer   | sions in l          | Inches              |                     | C                   | apacities           | in Pound            | <b>5</b> 0 | Approx. | 1/8" balls          |  |  |  |  |
| Bearing   | -         | Outside | Land                | Land                | Land C'Bore         |                     | Radial Thrust Weigh |                     | Thrust     |         |                     |  |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>®</sup> | Dyn.                | Static <sup>®</sup> | Dyn.       | Pounds  |                     |  |  |  |  |
| KA020AR0  | 2.000     | 2.500   | 2.186               | 2.314               | 2.369               | 790                 | 405                 | 2,280               | 960        | .10     |                     |  |  |  |  |
| KA025AR0  | 2.500     | 3.000   | 2.686               | 2.814               | 2.869               | 960                 | 459                 | 2,780               | 1,100      | .12     |                     |  |  |  |  |
| KA030AR0  | 3.000     | 3.500   | 3.186               | 3.314               | 3.367               | 1,140               | 507                 | 3,290               | 1,230      | .14     |                     |  |  |  |  |
| KA035AR0  | 3.500     | 4.000   | 3.686               | 3.814               | 3.867               | 1,310               | 552                 | 3,790               | 1,350      | .17     | .250 —              |  |  |  |  |
| KA040AR0  | 4.000     | 4.500   | 4.186               | 4.314               | 4.367               | 1,490               | 595                 | 4,300               | 1,470      | .19     | F                   |  |  |  |  |
| KA042AR0  | 4.250     | 4.750   | 4.436               | 4.564               | 4.615               | 1,580               | 616                 | 4,550               | 1,530      | .20     | T_250               |  |  |  |  |
| KA045AR0  | 4.500     | 5.000   | 4.686               | 4.814               | 4.865               | 1,660               | 637                 | 4,810               | 1,580      | .21     |                     |  |  |  |  |
| KA047AR0  | 4.750     | 5.250   | 4.936               | 5.064               | 5.115               | 1,750               | 657                 | 5,060               | 1,640      | .22     |                     |  |  |  |  |
| KA050AR0  | 5.000     | 5.500   | 5.186               | 5.314               | 5.365               | 1,840               | 676                 | 5,310               | 1,690      | .23     |                     |  |  |  |  |
| KA055AR0  | 5.500     | 6.000   | 5.686               | 5.814               | 5.863               | 2,020               | 715                 | 5,820               | 1,800      | .25     | I                   |  |  |  |  |
| KA060AR0  | 6.000     | 6.500   | 6.186               | 6.314               | 6.363               | 2,190               | 752                 | 6,320               | 1,900      | .28     |                     |  |  |  |  |
| KA065AR0  | 6.500     | 7.000   | 6.686               | 6.814               | 6.861               | 2,370               | 788                 | 6,830               | 2,000      | .30     |                     |  |  |  |  |
| KA070AR0  | 7.000     | 7.500   | 7.186               | 7.314               | 7.361               | 2,540               | 823                 | 7,340               | 2,100      | .32     |                     |  |  |  |  |
| KA075AR0  | 7.500     | 8.000   | 7.686               | 7.814               | 7.861               | 2,720               | 857                 | 7,840               | 2,190      | .34     |                     |  |  |  |  |
| KA080AR0  | 8.000     | 8.500   | 8.186               | 8.314               | 8.359               | 2,890               | 890                 | 8,350               | 2,280      | .36     |                     |  |  |  |  |
| *KA090AR0 | 9.000     | 9.500   | 9.186               | 9.314               | 9.357               | 3,240               | 954                 | 9,360               | 2,470      | .41     |                     |  |  |  |  |
| KA100AR0  | 10.000    | 10.500  | 10.186              | 10.314              | 10.355              | 3,590               | 1,014               | 10,370              | 2,640      | .45     | ③ F = .025          |  |  |  |  |
| *KA110AR0 | 11.000    | 11.500  | 11.186              | 11.314              | 11.353              | 3,940               | 1,072               | 11,380              | 2,810      | .50     | Bearing corners are |  |  |  |  |
| *KA120AR0 | 12.000    | 12.500  | 12.186              | 12.314              | 12.349              | 4,290               | 1,128               | 12,390              | 2,970      | .54     | normally chamfered  |  |  |  |  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

Static capacities are non-brinell limits based on rigid support from the shaft and housing.
"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

# TYPE A - OPEN REALI-SLIM® BEARINGS, ANGULAR CONTACT

|           | KB SERIES |         |                     |                     |                     |                     |           |                     |            |         |                          |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------------------|---------------------|-----------|---------------------|------------|---------|--------------------------|--|--|--|
| KAYDON    |           | Dimer   | nsions in I         | Inches              |                     | C                   | apacities | in Pounds           | <b>5</b> 0 | Approx. | separator<br>5/32" balls |  |  |  |
| Bearing   |           | Outside | Land                | Land                | C'Bore              | Rad                 | dial      | Thr                 | ust        | Weight  |                          |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>®</sup> | Dyn.      | Static <sup>®</sup> | Dyn.       | Pounds  |                          |  |  |  |
| KB020AR0  | 2.000     | 2.625   | 2.231               | 2.393               | 2.464               | 1,090               | 601       | 3,150               | 1,380      | .15     |                          |  |  |  |
| KB025AR0  | 2.500     | 3.125   | 2.731               | 2.893               | 2.964               | 1,340               | 675       | 3,860               | 1,590      | .19     |                          |  |  |  |
| KB030AR0  | 3.000     | 3.625   | 3.231               | 3.393               | 3.462               | 1,550               | 734       | 4,470               | 1,750      | .22     |                          |  |  |  |
| KB035AR0  | 3.500     | 4.125   | 3.731               | 3.893               | 3.962               | 1,790               | 801       | 5,180               | 1,930      | .27     |                          |  |  |  |
| KB040AR0  | 4.000     | 4.625   | 4.231               | 4.393               | 4.460               | 2,040               | 865       | 5,890               | 2,100      | .30     | .3125-                   |  |  |  |
| KB042AR0  | 4.250     | 4.875   | 4.481               | 4.643               | 4.710               | 2,150               | 891       | 6,200               | 2,170      | .31     | F -                      |  |  |  |
| KB045AR0  | 4.500     | 5.125   | 4.731               | 4.893               | 4.960               | 2,250               | 917       | 6,500               | 2,240      | .34     | <b>1</b> .3125           |  |  |  |
| *KB047AR0 | 4.750     | 5.375   | 4.981               | 5.143               | 5 .210              | 2,390               | 951       | 6,910               | 2,340      | .35     |                          |  |  |  |
| *KB050AR0 | 5.000     | 5.625   | 5.231               | 5.393               | 5.460               | 2,500               | 976       | 7,210               | 2,410      | .37     | L2                       |  |  |  |
| KB055AR0  | 5.500     | 6.125   | 5.731               | 5.893               | 5.958               | 2,740               | 1,033     | 7,920               | 2,560      | .40     |                          |  |  |  |
| KB060AR0  | 6.000     | 6.625   | 6.231               | 6.393               | 6.458               | 2,990               | 1,088     | 8,630               | 2,710      | .44     | - 1                      |  |  |  |
| *KB065AR0 | 6.500     | 7.125   | 6.731               | 6.893               | 6.958               | 3,200               | 1,132     | 9,240               | 2,840      | .47     |                          |  |  |  |
| *KB070AR0 | 7.000     | 7.625   | 7.231               | 7.393               | 7.456               | 3,450               | 1,184     | 9,960               | 2,980      | .50     |                          |  |  |  |
| *KB075AR0 | 7.500     | 8.125   | 7.731               | 7.893               | 7.955               | 3,700               | 1,235     | 10,670              | 3,120      | .54     |                          |  |  |  |
| *KB080AR0 | 8.000     | 8.625   | 8.231               | 8.393               | 8.453               | 3,940               | 1,284     | 11,380              | 3,260      | .57     |                          |  |  |  |
| KB090AR0  | 9.000     | 9.625   | 9.231               | 9.393               | 9.451               | 4,400               | 1,370     | 12,700              | 3,510      | .64     |                          |  |  |  |
| *KB100AR0 | 10.000    | 10.625  | 10.231              | 10.393              | 10.449              | 4,890               | 1,461     | 14,120              | 3,760      | .71     |                          |  |  |  |
| *KB110AR0 | 11.000    | 11.625  | 11.231              | 11.393              | 11.447              | 5,350               | 1,540     | 15,440              | 4,000      | .78     |                          |  |  |  |
| *KB120AR0 | 12.000    | 12.625  | 12.231              | 12.393              | 12.445              | 5,840               | 1,623     | 16,860              | 4,240      | .85     |                          |  |  |  |
| *KB140AR0 | 14.000    | 14.625  | 14.231              | 14.393              | 14.439              | 6,760               | 1,767     | 19,500              | 4,670      | .98     |                          |  |  |  |
| *KB160AR0 | 16.000    | 16.625  | 16.231              | 16.393              | 16.433              | 7,710               | 1,907     | 22,250              | 5,100      | 1.12    | ③ F = .040               |  |  |  |
| *KB180AR0 | 18.000    | 18.625  | 18.231              | 18.393              | 18.425              | 8,660               | 2,038     | 24,990              | 5,510      | 1.26    | Bearing corners are      |  |  |  |
| *KB200AR0 | 20.000    | 20.625  | 20.231              | 20.393              | 20.416              | 9,610               | 2,162     | 27,730              | 5,900      | 1.40    | normally chamfered       |  |  |  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

## CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

## **NEED SERVICE FAST?**

# 1-800-514-3066

Website: www.kaydonbearings.com

## **TYPE A - OPEN REALI-SLIM® BEARINGS, ANGULAR CONTACT**

|           | KC SERIES |         |                     |                     |         |                     |           |                     |        |                   |                          |  |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|--------|-------------------|--------------------------|--|--|--|--|
| KAYDON    |           | Dimer   | sions in            | Inches              |         | Ca                  | apacities | in Pound            | 0      | Approx.<br>Weight | separator<br>3/16" balls |  |  |  |  |
| Bearing   | Dava      | Outside | Land                | Land                | C'Bore  | Rac                 | lial      | Thr                 | Thrust |                   |                          |  |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>®</sup> | Dyn.      | Static <sup>®</sup> | Dyn.   | in<br>Pounds      |                          |  |  |  |  |
| KC040AR0  | 4.000     | 4.750   | 4.277               | 4.473               | 4.554   | 2,550               | 1,153     | 7,360               | 2,770  | .44               |                          |  |  |  |  |
| *KC042AR0 | 4.250     | 5.000   | 4.527               | 4.723               | 4.804   | 2,710               | 1,194     | 7,820               | 2,880  | .46               |                          |  |  |  |  |
| KC045AR0  | 4.500     | 5.250   | 4.777               | 4.973               | 5.052   | 2,860               | 1,234     | 8,270               | 2,990  | .49               |                          |  |  |  |  |
| KC047AR0  | 4.750     | 5.500   | 5.027               | 5.223               | 5.302   | 3,020               | 1,274     | 8,720               | 3,100  | .51               |                          |  |  |  |  |
| KC050AR0  | 5.000     | 5.750   | 5.277               | 5.473               | 5.552   | 3,180               | 1,313     | 9,170               | 3,200  | .54               | .375 —                   |  |  |  |  |
| KC055AR0  | 5.500     | 6.250   | 5.777               | 5.973               | 6.052   | 3,440               | 1,374     | 9,920               | 3,370  | .58               | F-                       |  |  |  |  |
| KC060AR0  | 6.000     | 6.750   | 6.277               | 6.473               | 6.550   | 3,750               | 1,448     | 10,820              | 3,580  | .64               | <b>—</b>                 |  |  |  |  |
| *KC065AR0 | 6.500     | 7.250   | 6.777               | 6.973               | 7.050   | 4,060               | 1,519     | 11,720              | 3,770  | .68               |                          |  |  |  |  |
| KC070AR0  | 7.000     | 7.750   | 7.277               | 7.473               | 7.550   | 4,320               | 1,575     | 12,470              | 3,930  | .74               |                          |  |  |  |  |
| *KC075AR0 | 7.500     | 8.250   | 7.777               | 7.973               | 8.048   | 4,630               | 1,642     | 13,380              | 4,120  | .78               |                          |  |  |  |  |
| KC080AR0  | 8.000     | 8.750   | 8.277               | 8.473               | 8.548   | 4,950               | 1,708     | 14,280              | 4,300  | .84               | L <sub>1</sub>           |  |  |  |  |
| *KC090AR0 | 9.000     | 9.750   | 9.277               | 9.473               | 9.546   | 5,520               | 1,822     | 15,930              | 4,630  | .98               |                          |  |  |  |  |
| *KC100AR0 | 10.000    | 10.750  | 10.277              | 10.473              | 10.544  | 6,140               | 1,942     | 17,730              | 4,970  | 1.04              |                          |  |  |  |  |
| *KC110AR0 | 11.000    | 11.750  | 11.277              | 11.473              | 11.542  | 6,720               | 2,047     | 19,390              | 5,280  | 1.14              |                          |  |  |  |  |
| *KC120AR0 | 12.000    | 12.750  | 12.277              | 12.473              | 12.540  | 7,290               | 2,147     | 21,040              | 5,570  | 1.23              |                          |  |  |  |  |
| *KC140AR0 | 14.000    | 14.750  | 14.277              | 14.473              | 14.535  | 8,490               | 2,347     | 24,500              | 6,170  | 1.43              |                          |  |  |  |  |
| *KC160AR0 | 16.000    | 16.750  | 16.277              | 16.473              | 16.529  | 9,680               | 2,533     | 27,950              | 6,730  | 1.63              |                          |  |  |  |  |
| *KC180AR0 | 18.000    | 18.750  | 18.277              | 18.473              | 18.523  | 10,880              | 2,707     | 31,410              | 7,280  | 1.83              |                          |  |  |  |  |
| *KC200AR0 | 20.000    | 20.750  | 20.277              | 20.473              | 20.517  | 12,030              | 2,863     | 34,720              | 7,780  | 2.03              | ③ F = .040               |  |  |  |  |
| *KC250AR0 | 25.000    | 25.750  | 25.277              | 25.473              | 25.500  | 14,900              | 3,233     | 43,280              | 9,010  | 2.52              | Bearing corners are      |  |  |  |  |
| *KC300AR0 | 30.000    | 30.750  | 30.277              | 30.473              | 30.484  | 17,960              | 3,561     | 51,850              | 10,160 | 3.02              | normally chamfered       |  |  |  |  |

|           |        |         |                     | KD S                | SERIE   | S                   |           |                     |            |         | Circular pocket<br>separator |
|-----------|--------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|------------|---------|------------------------------|
| KAYDON    |        | Dimer   | nsions in           | Inches              |         | C                   | apacities | in Pound            | <b>5</b> 0 | Approx. | 1/4" balls                   |
| Bearing   | Dava   | Outside | Land                | Land                | C'Bore  | Rad                 | dial      | Thr                 | ust        | Weight  |                              |
| Number    | Bore   | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>®</sup> | Dyn.      | Static <sup>2</sup> | Dyn.       | Pounds  |                              |
| KD040AR0  | 4.000  | 5.000   | 4.370               | 4.630               | 4.741   | 3,550               | 1,819     | 10,260              | 4,260      | .80     |                              |
| KD042AR0  | 4.250  | 5.250   | 4.620               | 4.880               | 4.991   | 3,750               | 1,876     | 10,830              | 4,420      | .84     |                              |
| KD045AR0  | 4.500  | 5.500   | 4.870               | 5.130               | 5.241   | 3,950               | 1,931     | 11,400              | 4,570      | .88     |                              |
| KD047AR0  | 4.750  | 5.750   | 5.120               | 5.380               | 5.490   | 4,150               | 1,986     | 11,970              | 4,720      | .93     |                              |
| KD050AR0  | 5.000  | 6.000   | 5.370               | 5.630               | 5.740   | 4,340               | 2,040     | 12,540              | 4,870      | .98     | .500 🖛                       |
| KD055AR0  | 5.500  | 6.500   | 5.870               | 6.130               | 6.238   | 4,740               | 2,145     | 13,680              | 5,160      | 1.06    | F                            |
| KD060AR0  | 6.000  | 7.000   | 6.370               | 6.630               | 6.738   | 5,130               | 2,247     | 14,820              | 5,440      | 1.15    |                              |
| KD065AR0  | 6.500  | 7.500   | 6.870               | 7.130               | 7.236   | 5,530               | 2,346     | 15,960              | 5,720      | 1.24    |                              |
| KD070AR0  | 7.000  | 8.000   | 7.370               | 7.630               | 7.736   | 5,920               | 2,442     | 17,100              | 5,990      | 1.33    |                              |
| KD075AR0  | 7.500  | 8.500   | 7.870               | 8.130               | 8.236   | 6,320               | 2,536     | 18,240              | 6,250      | 1.42    |                              |
| KD080AR0  | 8.000  | 9.000   | 8.370               | 8.630               | 8.734   | 6,710               | 2,627     | 19,380              | 6,510      | 1.52    |                              |
| KD090AR0  | 9.000  | 10.000  | 9.370               | 9.630               | 9.732   | 7,500               | 2,803     | 21,660              | 7,010      | 1.69    |                              |
| *KD100AR0 | 10.000 | 11.000  | 10.370              | 10.630              | 10.732  | 8,290               | 2,972     | 23,940              | 7,500      | 1.87    |                              |
| *KD110AR0 | 11.000 | 12.000  | 11.370              | 11.630              | 11.730  | 9,080               | 3,133     | 26,220              | 7,960      | 2.05    |                              |
| KD120AR0  | 12.000 | 13.000  | 12.370              | 12.630              | 12.728  | 9,870               | 3,288     | 28,500              | 8,420      | 2.23    |                              |
| *KD140AR0 | 14.000 | 15.000  | 14.370              | 14.630              | 14.724  | 11,450              | 3,582     | 33,060              | 9,290      | 2.57    |                              |
| *KD160AR0 | 16.000 | 17.000  | 16.370              | 16.630              | 16.718  | 13,030              | 3,856     | 37,620              | 10,130     | 2.93    |                              |
| *KD180AR0 | 18.000 | 19.000  | 18.370              | 18.630              | 18.712  | 14,610              | 4,113     | 42,180              | 10,930     | 3.29    |                              |
| *KD200AR0 | 20.000 | 21.000  | 20.370              | 20.630              | 20.705  | 16,190              | 4,356     | 46,740              | 11,710     | 3.65    |                              |
| *KD210AR0 | 21.000 | 22.000  | 21.370              | 21.630              | 21.700  | 16,981              | 4,472     | 49,020              | 12,086     | 3.83    | 3 F = .060                   |
| *KD250AR0 | 25.000 | 26.000  | 25.370              | 25.630              | 25.688  | 20,140              | 4,908     | 58,140              | 13,540     | 4.54    | Bearing corners are          |
| *KD300AR0 | 30.000 | 31.000  | 30.370              | 30.630              | 30.672  | 24,090              | 5,397     | 69,540              | 15,260     | 5.44    | normally chamfered           |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

0 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear. \* Contact KAYDON for lead time and minimum purchase requirement.

Section 2–Selection Tables

# TYPE A - OPEN REALI-SLIM® BEARINGS, ANGULAR CONTACT

|           |        |         |                     | KF S                | SERIE   | 5                   |           |                     |            |              | Circular pocket<br>separator    |
|-----------|--------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|------------|--------------|---------------------------------|
| KAYDON    |        | Dimer   | sions in            | Inches              |         | C                   | apacities | in Pound            | <b>5</b> 0 | Approx.      | 3/8" balls                      |
| Bearing   | Davis  | Outside | Land                | Land                | C'Bore  | Rad                 | dial      | Thr                 | ust        | Weight<br>in |                                 |
| Number    | Bore   | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>2</sup> | Dyn.      | Static <sup>2</sup> | Dyn.       | Pounds       |                                 |
| *KF040AR0 | 4.000  | 5.500   | 4.555               | 4.945               | 5.115   | 6,350               | 3,736     | 18,340              | 8,420      | 1.92         |                                 |
| *KF042AR0 | 4.250  | 5.750   | 4.805               | 5.195               | 5.365   | 6,600               | 3,805     | 19,050              | 8,630      | 2.04         |                                 |
| *KF045AR0 | 4.500  | 6.000   | 5.055               | 5.445               | 5.615   | 7,090               | 3,966     | 20,460              | 9,050      | 2.14         |                                 |
| KF047AR0  | 4.750  | 6.250   | 5.305               | 5.695               | 5.865   | 7,330               | 4,034     | 21,160              | 9,260      | 2.26         | 750 <b></b>                     |
| *KF050AR0 | 5.000  | 6.500   | 5.555               | 5.945               | 6.115   | 7,570               | 4,101     | 21,870              | 9,460      | 2.37         |                                 |
| KF055AR0  | 5.500  | 7.000   | 6.055               | 6.445               | 6.613   | 8,310               | 4,319     | 23,980              | 10,060     | 2.59         |                                 |
| KF060AR0  | 6.000  | 7.500   | 6.555               | 6.945               | 7.113   | 9,040               | 4,530     | 26,100              | 10,650     | 2.72         | .750                            |
| KF065AR0  | 6.500  | 8.000   | 7.055               | 7.445               | 7.613   | 9,770               | 4,734     | 28,220              | 11,220     | 2.94         |                                 |
| *KF070AR0 | 7.000  | 8.500   | 7.555               | 7.945               | 8.113   | 10,510              | 4,932     | 30,330              | 11,770     | 3.16         |                                 |
| KF075AR0  | 7.500  | 9.000   | 8.055               | 8.445               | 8.610   | 11,000              | 5,052     | 31,740              | 12,130     | 3.39         | L <sub>2</sub>   L <sub>3</sub> |
| KF080AR0  | 8.000  | 9.500   | 8.555               | 8.945               | 9.110   | 11,730              | 5,242     | 33,860              | 12,670     | 3.61         | -1                              |
| KF090AR0  | 9.000  | 10.500  | 9.555               | 9.945               | 10.108  | 13,190              | 5,608     | 38,090              | 13,700     | 3.95         |                                 |
| KF100AR0  | 10.000 | 11.500  | 10.555              | 10.945              | 11.106  | 14,420              | 5,890     | 41,620              | 14,530     | 4.40         | v                               |
| *KF110AR0 | 11.000 | 12.500  | 11.555              | 11.945              | 12.106  | 15,880              | 6,227     | 45,850              | 15,500     | 4.75         |                                 |
| KF120AR0  | 12.000 | 13.500  | 12.555              | 12.945              | 13.104  | 17,100              | 6,487     | 49,380              | 16,290     | 5.20         |                                 |
| *KF140AR0 | 14.000 | 15.500  | 14.555              | 14.945              | 15.102  | 19,790              | 7,043     | 57,140              | 17,950     | 5.76         |                                 |
| *KF160AR0 | 16.000 | 17.500  | 16.555              | 16.945              | 17.098  | 22,480              | 7,563     | 64,890              | 19,540     | 6.78         |                                 |
| *KF180AR0 | 18.000 | 19.500  | 18.555              | 18.945              | 19.096  | 25,410              | 8,103     | 73,360              | 21,210     | 7.67         |                                 |
| *KF200AR0 | 20.000 | 21.500  | 20.555              | 20.945              | 21.092  | 28,100              | 8,562     | 81,120              | 22,680     | 8.47         |                                 |
| *KF250AR0 | 25.000 | 26.500  | 25.555              | 25.945              | 26.085  | 34,700              | 9,585     | 100,200             | 26,100     | 10.50        |                                 |
| *KF300AR0 | 30.000 | 31.500  | 30.555              | 30.945              | 31.075  | 41,540              | 10,533    | 119,900             | 29,430     | 12.50        | 3 F = .080                      |
| *KF350AR0 | 35.000 | 36.500  | 35.555              | 35.945              | 36.064  | 48,380              | 11,382    | 139,700             | 32,580     | 14.60        | Bearing corners are             |
| *KF400AR0 | 40.000 | 41.500  | 40.555              | 40.945              | 41.054  | 55,220              | 12,147    | 159,400             | 35,580     | 16.60        | normally chamfered              |

|           |        |         |                     | KG S                | SERIE   | S                   |           |                     |        |              | Circular pocket<br>separator              |
|-----------|--------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|--------|--------------|-------------------------------------------|
| KAYDON    |        | Dimer   | nsions in I         | Inches              |         | C                   | apacities | in Pounds           | 0      | Approx.      | 1/2" balls                                |
| Bearing   | Deve   | Outside | Land                | Land                | C'Bore  | Rad                 | dial      | Thr                 | ust    | Weight<br>in |                                           |
| Number    | Bore   | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>®</sup> | Dyn.      | Static <sup>2</sup> | Dyn.   | Pounds       |                                           |
| *KG040AR0 | 4.000  | 6.000   | 4.742               | 5.258               | 5.491   | 9,480               | 6,281     | 27,360              | 13,630 | 3.61         |                                           |
| *KG042AR0 | 4.250  | 6.250   | 4.992               | 5.508               | 5.741   | 9,950               | 6,438     | 28,730              | 14,090 | 3.83         |                                           |
| *KG045AR0 | 4.500  | 6.500   | 5.242               | 5.758               | 5.989   | 10,430              | 6,562     | 30,100              | 14,530 | 3.95         |                                           |
| *KG047AR0 | 4.750  | 6.750   | 5.492               | 6.008               | 6.239   | 10,900              | 6,745     | 31,460              | 14,970 | 4.17         | ➡ 1.000 →                                 |
| *KG050AR0 | 5.000  | 7.000   | 5.742               | 6.258               | 6.489   | 11,370              | 6,897     | 32,830              | 15,400 | 4.42         | F                                         |
| *KG055AR0 | 5.500  | 7.500   | 6.242               | 6.758               | 6.989   | 12,320              | 7,192     | 35,570              | 16,240 | 4.73         |                                           |
| KG060AR0  | 6.000  | 8.000   | 6.742               | 7.258               | 7.489   | 13,270              | 7,480     | 38,300              | 17,060 | 5.07         |                                           |
| *KG065AR0 | 6.500  | 8.500   | 7.242               | 7.758               | 7.987   | 14,220              | 7,761     | 41,040              | 17,870 | 5.41         |                                           |
| *KG070AR0 | 7.000  | 9.000   | 7.742               | 8.258               | 8.487   | 15,160              | 8,035     | 43,780              | 18,650 | 5.87         |                                           |
| *KG075AR0 | 7.500  | 9.500   | 8.242               | 8.758               | 8.987   | 16,110              | 8,303     | 46,510              | 19,420 | 6.20         |                                           |
| KG080AR0  | 8.000  | 10.000  | 8.742               | 9.258               | 9.485   | 17,060              | 8,566     | 49,250              | 20,180 | 6.54         |                                           |
| KG090AR0  | 9.000  | 11.000  | 9.742               | 10.258              | 10.485  | 18,960              | 9,073     | 54,720              | 21,640 | 7.22         |                                           |
| KG100AR0  | 10.000 | 12.000  | 10.742              | 11.258              | 11.483  | 20,850              | 9,561     | 60,190              | 23,060 | 8.00         |                                           |
| *KG110AR0 | 11.000 | 13.000  | 11.742              | 12.258              | 12.481  | 22,750              | 10,027    | 65,660              | 24,440 | 8.68         |                                           |
| KG120AR0  | 12.000 | 14.000  | 12.742              | 13.258              | 13.481  | 24,640              | 10,481    | 71,140              | 25,780 | 9.47         |                                           |
| KG140AR0  | 14.000 | 16.000  | 14.742              | 15.258              | 15.478  | 28,430              | 11,338    | 82,080              | 28,360 | 10.90        |                                           |
| KG160AR0  | 16.000 | 18.000  | 16.742              | 17.258              | 17.474  | 32,220              | 12,142    | 93,020              | 30,830 | 12.40        |                                           |
| KG180AR0  | 18.000 | 20.000  | 18.742              | 19.258              | 19.472  | 36,020              | 12,898    | 104,000             | 33,200 | 13.80        |                                           |
| KG200AR0  | 20.000 | 22.000  | 20.742              | 21.258              | 21.468  | 39,810              | 13,612    | 114,900             | 35,490 | 15.20        |                                           |
| *KG220AR0 | 22.000 | 24.000  | 22.742              | 23.258              | 23.468  | 43,598              | 14,290    | 125,856             | 37,712 | 16.63        |                                           |
| *KG250AR0 | 25.000 | 27.000  | 25.742              | 26.258              | 26.461  | 49,280              | 15,239    | 142,300             | 40,920 | 18.80        |                                           |
| *KG300AR0 | 30.000 | 32.000  | 30.742              | 31.258              | 31.451  | 58,760              | 16,687    | 169,600             | 46,020 | 22.50        | ③ F = .080                                |
| KG350AR0  | 35.000 | 37.000  | 35.742              | 36.258              | 36.440  | 68,240              | 17,982    | 197,000             | 50,840 | 26.20        | Bearing corners are<br>normally chamfered |
| *KG400AR0 | 40.000 | 42.000  | 40.742              | 41.258              | 41.430  | 77,720              | 19,153    | 224,400             | 55,440 | 29.80        |                                           |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

# **Open REALI-SLIM® Bearing Selections Type C** Radial Contact

A Conrad assembled bearing designed primarily for application of radial load—deep ball grooves also permit application of thrust load in either direction – often used in conjunction with another bearing.

|                   |       |                 | KAA S                       | ERIES                       |         |                                 |                   |   |
|-------------------|-------|-----------------|-----------------------------|-----------------------------|---------|---------------------------------|-------------------|---|
| KAYDON            |       | Dimension       | is in Inches                |                             |         | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight |   |
| Bearing<br>Number | Bore  | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static® | Dyn.                            | in<br>Pounds      |   |
| KAA10CL0          | 1.000 | 1.375           | 1.140                       | 1.235                       | 290     | 188                             | .026              | 1 |
| KAA15CL0          | 1.500 | 1.875           | 1.640                       | 1.735                       | 400     | 225                             | .039              |   |
| KAA17CL0          | 1.750 | 2.125           | 1.890                       | 1.985                       | 460     | 242                             | .045              |   |



|                   |        |                 | KA SE                       | RIES            |                     |                                 |                   | Snapover separator                                                   |
|-------------------|--------|-----------------|-----------------------------|-----------------|---------------------|---------------------------------|-------------------|----------------------------------------------------------------------|
| KAYDON            |        | Dimension       | s in Inches                 |                 | Radial Ca<br>Pou    | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight | 1/8" balls                                                           |
| Bearing<br>Number | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |                                                                      |
| KA020CP0          | 2.000  | 2.500           | 2.186                       | 2.314           | 680                 | 393                             | .10               |                                                                      |
| KA025CP0          | 2.500  | 3.000           | 2.686                       | 2.814           | 830                 | 442                             | .13               |                                                                      |
| KA030CP0          | 3.000  | 3.500           | 3.186                       | 3.314           | 990                 | 487                             | .15               |                                                                      |
| KA035CP0          | 3.500  | 4.000           | 3.686                       | 3.814           | 1,140               | 530                             | .18               | .250 —                                                               |
| KA040CP0          | 4.000  | 4.500           | 4.186                       | 4.314           | 1,290               | 571                             | .19               | E                                                                    |
| KA042CP0          | 4.250  | 4.750           | 4.436                       | 4.564           | 1,370               | 591                             | .20               |                                                                      |
| KA045CP0          | 4.500  | 5.000           | 4.686                       | 4.814           | 1,440               | 610                             | .22               | .250                                                                 |
| KA047CP0          | 4.750  | 5.250           | 4.936                       | 5.064           | 1,520               | 629                             | .23               |                                                                      |
| KA050CP0          | 5.000  | 5.500           | 5.186                       | 5.314           | 1,590               | 648                             | .24               |                                                                      |
| KA055CP0          | 5.500  | 6.000           | 5.686                       | 5.814           | 1,750               | 685                             | .25               | <sup>-</sup> <sup>2</sup> L <sub>1</sub> <sup>u</sup> ~ <sup>1</sup> |
| KA060CP0          | 6.000  | 6.500           | 6.186                       | 6.314           | 1,900               | 720                             | .28               |                                                                      |
| KA065CP0          | 6.500  | 7.000           | 6.686                       | 6.814           | 2,050               | 754                             | .30               |                                                                      |
| KA070CP0          | 7.000  | 7.500           | 7.186                       | 7.314           | 2,200               | 787                             | .31               |                                                                      |
| KA075CP0          | 7.500  | 8.000           | 7.686                       | 7.814           | 2,350               | 820                             | .34               |                                                                      |
| KA080CP0          | 8.000  | 8.500           | 8.186                       | 8.314           | 2,500               | 851                             | .38               |                                                                      |
| KA090CP0          | 9.000  | 9.500           | 9.186                       | 9.314           | 2,810               | 912                             | .44               |                                                                      |
| KA100CP0          | 10.000 | 10.500          | 10.186                      | 10.314          | 3,110               | 969                             | .50               | ③ F = .025                                                           |
| *KA110CP0         | 11.000 | 11.500          | 11.186                      | 11.314          | 3,410               | 1,025                           | .52               | Bearing corners are                                                  |
| KA120CP0          | 12.000 | 12.500          | 12.186                      | 12.314          | 3,720               | 1,078                           | .56               | normally chamfered                                                   |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

2 Static capacities are non-brinell limits based on rigid support from the shaft and housing.
3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

# TYPE C - OPEN REALI-SLIM<sup>®</sup> BEARINGS, RADIAL CONTACT

|                   |        |                 | KB SE                       | RIES            |                     |                                 |                   | Snapover separator  |
|-------------------|--------|-----------------|-----------------------------|-----------------|---------------------|---------------------------------|-------------------|---------------------|
| KAYDON            |        | Dimension       | s in Inches                 |                 |                     | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight | 5/32" balls         |
| Bearing<br>Number | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |                     |
| KB020CP0          | 2.000  | 2.625           | 2.231                       | 2.393           | 930                 | 577                             | .16               |                     |
| KB025CP0          | 2.500  | 3.125           | 2.731                       | 2.893           | 1,140               | 644                             | .20               |                     |
| KB030CP0          | 3.000  | 3.625           | 3.231                       | 3.393           | 1,340               | 707                             | .24               |                     |
| KB035CP0          | 3.500  | 4.125           | 3.731                       | 3.893           | 1,540               | 767                             | .27               |                     |
| KB040CP0          | 4.000  | 4.625           | 4.231                       | 4.393           | 1,750               | 825                             | .30               |                     |
| KB042CP0          | 4.250  | 4.875           | 4.481                       | 4.643           | 1,830               | 846                             | .31               | .3125 -             |
| KB045CP0          | 4.500  | 5.125           | 4.731                       | 4.893           | 1,950               | 880                             | .33               | F —,                |
| *KB047CP0         | 4.750  | 5.375           | 4.981                       | 5.143           | 2,030               | 901                             | .34               |                     |
| KB050CP0          | 5.000  | 5.625           | 5.231                       | 5.393           | 2,150               | 933                             | .38               | .3125               |
| *KB055CP0         | 5.500  | 6.125           | 5.731                       | 5.893           | 2,360               | 984                             | .41               |                     |
| KB060CP0          | 6.000  | 6.625           | 6.231                       | 6.393           | 2,560               | 1,034                           | .44               | L <sub>2</sub>      |
| KB065CP0          | 6.500  | 7.125           | 6.731                       | 6.893           | 2,760               | 1,082                           | .47               | L1 L                |
| *KB070CP0         | 7.000  | 7.625           | 7.231                       | 7.393           | 2,970               | 1,129                           | .50               |                     |
| *KB075CP0         | 7.500  | 8.125           | 7.731                       | 7.893           | 3,170               | 1,175                           | .53               |                     |
| KB080CP0          | 8.000  | 8.625           | 8.231                       | 8.393           | 3,370               | 1,219                           | .57               |                     |
| *KB090CP0         | 9.000  | 9.625           | 9.231                       | 9.393           | 3,780               | 1,304                           | .66               |                     |
| *KB100CP0         | 10.000 | 10.625          | 10.231                      | 10.393          | 4,190               | 1,386                           | .73               |                     |
| *KB110CP0         | 11.000 | 11.625          | 11.231                      | 11.393          | 4,590               | 1,464                           | .75               |                     |
| *KB120CP0         | 12.000 | 12.625          | 12.231                      | 12.393          | 5,000               | 1,539                           | .83               |                     |
| *KB140CP0         | 14.000 | 14.625          | 14.231                      | 14.393          | 5,810               | 1,680                           | 1.05              |                     |
| *KB160CP0         | 16.000 | 16.625          | 16.231                      | 16.393          | 6,620               | 1,812                           | 1.20              | ③ F = .040          |
| *KB180CP0         | 18.000 | 18.625          | 18.231                      | 18.393          | 7,440               | 1,936                           | 1.35              | Bearing corners are |
| *KB200CP0         | 20.000 | 20.625          | 20.231                      | 20.393          | 8,250               | 2,053                           | 1.50              | normally chamfered  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

<sup>(2)</sup> Static capacities are non-brinell limits based on rigid support from the shaft and housing.

3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

## CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

## **NEED SERVICE FAST?**

# 1-800-514-3066

Website: www.kaydonbearings.com

## **TYPE C – OPEN REALI-SLIM® BEARINGS, RADIAL CONTACT**

| KC SERIES         |        |                 |                             |                 |                                                         |       |              |  |  |  |  |
|-------------------|--------|-----------------|-----------------------------|-----------------|---------------------------------------------------------|-------|--------------|--|--|--|--|
| KAYDON            |        | Dimension       | s in Inches                 |                 | Radial Capacities in Appro<br>Pounds <sup>®</sup> Weigh |       |              |  |  |  |  |
| Bearing<br>Number | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>®</sup>                                     | Dyn.  | in<br>Pounds |  |  |  |  |
| КС040СР0          | 4.000  | 4.750           | 4.277                       | 4.473           | 2,100                                                   | 1,073 | .45          |  |  |  |  |
| KC042CP0          | 4.250  | 5.000           | 4.527                       | 4.723           | 2,220                                                   | 1,108 | .47          |  |  |  |  |
| KC045CP0          | 4.500  | 5.250           | 4.777                       | 4.973           | 2,340                                                   | 1,143 | .48          |  |  |  |  |
| KC047CP0          | 4.750  | 5.500           | 5.027                       | 5.223           | 2,460                                                   | 1,176 | .50          |  |  |  |  |
| KC050CP0          | 5.000  | 5.750           | 5.277                       | 5.473           | 2,590                                                   | 1,209 | .58          |  |  |  |  |
| KC055CP0          | 5.500  | 6.250           | 5.777                       | 5.973           | 2,830                                                   | 1,274 | .59          |  |  |  |  |
| KC060CP0          | 6.000  | 6.750           | 6.277                       | 6.473           | 3,070                                                   | 1,337 | .63          |  |  |  |  |
| KC065CP0          | 6.500  | 7.250           | 6.777                       | 6.973           | 3,310                                                   | 1,397 | .68          |  |  |  |  |
| KC070CP0          | 7.000  | 7.750           | 7.277                       | 7.473           | 3,550                                                   | 1,457 | .73          |  |  |  |  |
| KC075CP0          | 7.500  | 8.250           | 7.777                       | 7.973           | 3,790                                                   | 1,514 | .78          |  |  |  |  |
| KC080CP0          | 8.000  | 8.750           | 8.277                       | 8.473           | 4,030                                                   | 1,570 | .84          |  |  |  |  |
| KC090CP0          | 9.000  | 9.750           | 9.277                       | 9.473           | 4,510                                                   | 1,678 | .94          |  |  |  |  |
| KC100CP0          | 10.000 | 10.750          | 10.277                      | 10.473          | 4,990                                                   | 1,781 | 1.06         |  |  |  |  |
| *KC110CP0         | 11.000 | 11.750          | 11.277                      | 11.473          | 5,470                                                   | 1,879 | 1.16         |  |  |  |  |
| KC120CP0          | 12.000 | 12.750          | 12.277                      | 12.473          | 5,950                                                   | 1,974 | 1.25         |  |  |  |  |
| KC140CP0          | 14.000 | 14.750          | 14.277                      | 14.473          | 6,910                                                   | 2,154 | 1.52         |  |  |  |  |
| KC160CP0          | 16.000 | 16.750          | 16.277                      | 16.473          | 7,880                                                   | 2,321 | 1.73         |  |  |  |  |
| *KC180CP0         | 18.000 | 18.750          | 18.277                      | 18.473          | 8,840                                                   | 2,478 | 1.94         |  |  |  |  |
| *KC200CP0         | 20.000 | 20.750          | 20.277                      | 20.473          | 9,800                                                   | 2,626 | 2.16         |  |  |  |  |
| *KC250CP0         | 25.000 | 25.750          | 25.277                      | 25.473          | 12,200                                                  | 2,962 | 2.69         |  |  |  |  |
| *KC300CP0         | 30.000 | 30.750          | 30.277                      | 30.473          | 14,610                                                  | 3,260 | 3.21         |  |  |  |  |



③ F = .040 Bearing corners are normally chamfered

|                   |        |                 | KD SE                       | RIES                        |                     |                                 |                   | Snapover separator<br>1/4" balls          |
|-------------------|--------|-----------------|-----------------------------|-----------------------------|---------------------|---------------------------------|-------------------|-------------------------------------------|
| KAYDON            |        | Dimension       | s in Inches                 |                             | Radial Ca<br>Pou    | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight |                                           |
| Bearing<br>Number | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |                                           |
| KD040CP0          | 4.000  | 5.000           | 4.370                       | 4.630                       | 3,080               | 1,755                           | .78               |                                           |
| KD042CP0          | 4.250  | 5.250           | 4.620                       | 4.880                       | 3,190               | 1,787                           | .83               |                                           |
| KD045CP0          | 4.500  | 5.500           | 4.870                       | 5.130                       | 3,420               | 1,861                           | .88               |                                           |
| KD047CP0          | 4.750  | 5.750           | 5.120                       | 5.380                       | 3,530               | 1,892                           | .94               | .500                                      |
| KD050CP0          | 5.000  | 6.000           | 5.370                       | 5.630                       | 3,760               | 1,964                           | 1.00              | F ->                                      |
| KD055CP0          | 5.500  | 6.500           | 5.870                       | 6.130                       | 4,100               | 2,063                           | 1.06              |                                           |
| KD060CP0          | 6.000  | 7.000           | 6.370                       | 6.630                       | 4,450               | 2,160                           | 1.16              |                                           |
| KD065CP0          | 6.500  | 7.500           | 6.870                       | 7.130                       | 4,790               | 2,254                           | 1.22              | .500                                      |
| KD070CP0          | 7.000  | 8.000           | 7.370                       | 7.630                       | 5,130               | 2,345                           | 1.31              |                                           |
| KD075CP0          | 7.500  | 8.500           | 7.870                       | 8.130                       | 5,470               | 2,434                           | 1.41              | L2                                        |
| KD080CP0          | 8.000  | 9.000           | 8.370                       | 8.630                       | 5,810               | 2,520                           | 1.53              |                                           |
| KD090CP0          | 9.000  | 10.000          | 9.370                       | 9.630                       | 6,500               | 2,688                           | 1.72              |                                           |
| KD100CP0          | 10.000 | 11.000          | 10.370                      | 10.630                      | 7,180               | 2,847                           | 1.88              |                                           |
| KD110CP0          | 11.000 | 12.000          | 11.370                      | 11.630                      | 7,870               | 3,000                           | 2.06              |                                           |
| KD120CP0          | 12.000 | 13.000          | 12.370                      | 12.630                      | 8,550               | 3,148                           | 2.25              |                                           |
| KD140CP0          | 14.000 | 15.000          | 14.370                      | 14.630                      | 9,920               | 3,427                           | 2.73              |                                           |
| *KD160CP0         | 16.000 | 17.000          | 16.370                      | 16.630                      | 11,290              | 3,688                           | 3.10              |                                           |
| *KD180CP0         | 18.000 | 19.000          | 18.370                      | 18.630                      | 12,650              | 3,933                           | 3.48              |                                           |
| *KD200CP0         | 20.000 | 21.000          | 20.370                      | 20.630                      | 14,020              | 4,164                           | 3.85              |                                           |
| *KD210CP0         | 21.000 | 22.000          | 21.370                      | 21.630                      | 14,706              | 4,274                           | 4.04              | ③ F = .060                                |
| *KD250CP0         | 25.000 | 26.000          | 25.370                      | 25.630                      | 17,440              | 4,689                           | 4.79              | Bearing corners are<br>normally chamfered |
| *KD300CP0         | 30.000 | 31.000          | 30.370                      | 30.360                      | 20,860              | 5,153                           | 5.73              |                                           |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.
③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

# **TYPE C – OPEN REALI-SLIM® BEARINGS, RADIAL CONTACT**

| KF SERIES         |        |                        |              |                 |         |                                 |                   |  |  |  |  |
|-------------------|--------|------------------------|--------------|-----------------|---------|---------------------------------|-------------------|--|--|--|--|
| KAYDON            |        | Dimension              | is in Inches |                 |         | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight |  |  |  |  |
| Bearing<br>Number | Bore   | OutsideLandDia.Dia. L1 |              | Land<br>Dia. L₂ | Static® | Dyn.                            | in<br>Pounds      |  |  |  |  |
| KF040CP0          | 4.000  | 5.500                  | 4.555        | 4.945           | 5,360   | 3,559                           | 1.9               |  |  |  |  |
| KF042CP0          | 4.250  | 5.750                  | 4.805        | 5.195           | 5,640   | 3,655                           | 2.0               |  |  |  |  |
| KF045CP0          | 4.500  | 6.000                  | 5.055        | 5.445           | 5,930   | 3,750                           | 2.1               |  |  |  |  |
| KF047CP0          | 4.750  | 6.250                  | 5.305        | 5.695           | 6,210   | 3,843                           | 2.2               |  |  |  |  |
| KF050CP0          | 5.000  | 6.500                  | 5.555        | 5.945           | 6,490   | 3,936                           | 2.3               |  |  |  |  |
| KF055CP0          | 5.500  | 7.000                  | 6.055        | 6.445           | 7,050   | 4,116                           | 2.5               |  |  |  |  |
| KF060CP0          | 6.000  | 7.500                  | 6.555        | 6.945           | 7,620   | 4,291                           | 2.7               |  |  |  |  |
| KF065CP0          | 6.500  | 8.000                  | 7.055        | 7.445           | 8,180   | 4,461                           | 2.9               |  |  |  |  |
| KF070CP0          | 7.000  | 8.500                  | 7.555        | 7.945           | 8,750   | 4,628                           | 3.2               |  |  |  |  |
| KF075CP0          | 7.500  | 9.000                  | 8.055        | 8.445           | 9,310   | 4,791                           | 3.4               |  |  |  |  |
| KF080CP0          | 8.000  | 9.500                  | 8.555        | 8.945           | 9,880   | 4,949                           | 3.5               |  |  |  |  |
| KF090CP0          | 9.000  | 10.500                 | 9.555        | 9.945           | 11,000  | 5,256                           | 3.9               |  |  |  |  |
| KF100CP0          | 10.000 | 11.500                 | 10.555       | 10.945          | 12,130  | 5,550                           | 4.3               |  |  |  |  |
| KF110CP0          | 11.000 | 12.500                 | 11.555       | 11.945          | 13,260  | 5,833                           | 4.8               |  |  |  |  |
| KF120CP0          | 12.000 | 13.500                 | 12.555       | 12.945          | 14,390  | 6,105                           | 5.2               |  |  |  |  |
| *KF140CP0         | 14.000 | 15.500                 | 14.555       | 14.945          | 16,650  | 6,620                           | 6.0               |  |  |  |  |
| *KF160CP0         | 16.000 | 17.500                 | 16.555       | 16.945          | 18,900  | 7,104                           | 7.1               |  |  |  |  |
| *KF180CP0         | 18.000 | 19.500                 | 18.555       | 18.945          | 21,160  | 7,557                           | 7.9               |  |  |  |  |
| *KF200CP0         | 20.000 | 21.500                 | 20.555       | 20.945          | 23,420  | 7,986                           | 8.9               |  |  |  |  |
| *KF250CP0         | 25.000 | 26.500                 | 25.555       | 25.945          | 29,060  | 8,963                           | 10.9              |  |  |  |  |
| *KF300CP0         | 30.000 | 31.500                 | 30.555       | 30.945          | 34,700  | 9,828                           | 13.0              |  |  |  |  |
| *KF350CP0         | 35.000 | 36.500                 | 35.555       | 35.945          | 40,350  | 10,603                          | 15.1              |  |  |  |  |
| *KF400CP0         | 40.000 | 41.500                 | 40.555       | 40.945          | 45,990  | 11,302                          | 17.2              |  |  |  |  |



**Snapover separator** 

3/8" balls

| ③ F = .080          |
|---------------------|
| Bearing corners are |
| normally chamfered  |

|                   |        |                 | KG SE                       | RIES            |                     |                                 |                   | Snapover separator<br>1/2" balls |
|-------------------|--------|-----------------|-----------------------------|-----------------|---------------------|---------------------------------|-------------------|----------------------------------|
| KAYDON            |        | Dimension       | s in Inches                 |                 |                     | pacities in<br>nds <sup>©</sup> | Approx.<br>Weight |                                  |
| Bearing<br>Number | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |                                  |
| *KG040CP0         | 4.000  | 6.000           | 4.742                       | 5.258           | 8,210               | 6,115                           | 3.6               |                                  |
| *KG042CP0         | 4.250  | 6.250           | 4.992                       | 5.508           | 8,210               | 6,061                           | 3.8               |                                  |
| *KG045CP0         | 4.500  | 6.500           | 5.242                       | 5.758           | 8,760               | 6,277                           | 4.0               | <b>-</b> 1.000 <b>-</b>          |
| *KG047CP0         | 4.750  | 6.750           | 5.492                       | 6.008           | 9,300               | 6,487                           | 4.1               | F                                |
| KG050CP0          | 5.000  | 7.000           | 5.742                       | 6.258           | 9,850               | 6,691                           | 4.3               |                                  |
| *KG055CP0         | 5.500  | 7.500           | 6.242                       | 6.758           | 10,400              | 6,850                           | 4.7               |                                  |
| KG060CP0          | 6.000  | 8.000           | 6.742                       | 7.258           | 11,490              | 7,241                           | 5.1               |                                  |
| KG065CP0          | 6.500  | 8.500           | 7.242                       | 7.758           | 12,040              | 7,393                           | 5.4               |                                  |
| KG070CP0          | 7.000  | 9.000           | 7.742                       | 8.258           | 13,130              | 7,764                           | 5.8               |                                  |
| KG075CP0          | 7.500  | 9.500           | 8.242                       | 8.758           | 13,680              | 7,911                           | 6.1               |                                  |
| KG080CP0          | 8.000  | 10.000          | 8.742                       | 9.258           | 14,770              | 8,265                           | 6.5               |                                  |
| KG090CP0          | 9.000  | 11.000          | 9.742                       | 10.258          | 16,420              | 8,743                           | 7.2               |                                  |
| KG100CP0          | 10.000 | 12.000          | 10.742                      | 11.258          | 18,060              | 9,204                           | 7.9               | L1                               |
| KG110CP0          | 11.000 | 13.000          | 11.742                      | 12.258          | 19,700              | 9,648                           | 8.6               |                                  |
| KG120CP0          | 12.000 | 14.000          | 12.742                      | 13.258          | 21,340              | 10,074                          | 9.3               |                                  |
| KG140CP0          | 14.000 | 16.000          | 14.742                      | 15.258          | 24,620              | 10,886                          | 10.8              |                                  |
| KG160CP0          | 16.000 | 18.000          | 16.742                      | 17.258          | 27,910              | 11,648                          | 12.3              |                                  |
| KG180CP0          | 18.000 | 20.000          | 18.742                      | 19.258          | 31,190              | 12,367                          | 13.7              |                                  |
| KG200CP0          | 20.000 | 22.000          | 20.742                      | 21.258          | 34,470              | 13,044                          | 15.8              |                                  |
| *KG220CP0         | 22.000 | 24.000          | 22.742                      | 23.258          | 37,757              | 13,685                          | 16.8              |                                  |
| KG250CP0          | 25.000 | 27.000          | 25.742                      | 26.258          | 42,680              | 14,591                          | 19.5              |                                  |
| *KG300CP0         | 30.000 | 32.000          | 30.742                      | 31.258          | 50,890              | 15,963                          | 23.3              | 3 F = .080                       |
| *KG350CP0         | 35.000 | 37.000          | 35.742                      | 36.258          | 59,100              | 17,195                          | 27.1              | Bearing corners are              |
| *KG400CP0         | 40.000 | 42.000          | 40.742                      | 41.258          | 67,310              | 18,307                          | 30.8              | normally chamfered               |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

# **Open REALI-SLIM® Bearing Selections Type X** Four-Point Contact

A Conrad assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications.

|          | KAA SERIES |                                                             |                     |                     |                            |      |                     |        |                     |      |        |  |  |
|----------|------------|-------------------------------------------------------------|---------------------|---------------------|----------------------------|------|---------------------|--------|---------------------|------|--------|--|--|
| KAYDON   | D          | imensior                                                    | ns in Incl          | nes                 |                            |      | Approx.             |        |                     |      |        |  |  |
| Bearing  | Dava       | Outside Land Land Radial (lbs) Thrust (lbs) Moment (in-lbs) |                     |                     |                            |      |                     | Weight |                     |      |        |  |  |
| Number   | Bore       | Dia.                                                        | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | <b>Static</b> <sup>®</sup> | Dyn. | Static <sup>®</sup> | Dyn.   | Static <sup>®</sup> | Dyn. | Pounds |  |  |
| KAA10XL0 | 1.000      | 1.375                                                       | 1.140               | 1.235               | 290                        | 247  | 730                 | 370    | 170                 | 110  | .026   |  |  |
| KAA15XL0 | 1.500      | 1.875                                                       | 1.640               | 1.735               | 400                        | 296  | 1,000               | 460    | 340                 | 187  | .039   |  |  |
| KAA17XL0 | 1.750      | 2.125                                                       | 1.890               | 1.985               | 460                        | 319  | 1,140               | 500    | 440                 | 232  | .045   |  |  |



|          | KA SERIES |         |                     |                     |                     |       |                     |         |                     |            |              |                                           |  |  |
|----------|-----------|---------|---------------------|---------------------|---------------------|-------|---------------------|---------|---------------------|------------|--------------|-------------------------------------------|--|--|
| KAYDON   | Di        | mensior | ns in Incl          | nes                 |                     |       | Сара                | cities® |                     |            | Approx.      | 1/8" balls                                |  |  |
| Bearing  | Dama      | Outside | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)   | Momen               | t (in-lbs) | Weight<br>in |                                           |  |  |
| Number   | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.  | Static <sup>®</sup> | Dyn.    | Static <sup>®</sup> | Dyn.       | Pounds       |                                           |  |  |
| KA020XP0 | 2.000     | 2.500   | 2.186               | 2.314               | 680                 | 514   | 1,710               | 790     | 770                 | 434        | .10          |                                           |  |  |
| KA025XP0 | 2.500     | 3.000   | 2.686               | 2.814               | 830                 | 583   | 2,090               | 910     | 1,150               | 601        | .13          |                                           |  |  |
| KA030XP0 | 3.000     | 3.500   | 3.186               | 3.314               | 990                 | 643   | 2,470               | 1,010   | 1,600               | 785        | .15          |                                           |  |  |
| KA035XP0 | 3.500     | 4.000   | 3.686               | 3.814               | 1,140               | 701   | 2,850               | 1,110   | 2,130               | 986        | .18          | .250                                      |  |  |
| KA040XP0 | 4.000     | 4.500   | 4.186               | 4.314               | 1,290               | 756   | 3,220               | 1,210   | 2,740               | 1,205      | .19          | F                                         |  |  |
| KA042XP0 | 4.250     | 4.750   | 4.436               | 4.564               | 1,370               | 783   | 3,410               | 1,260   | 3,070               | 1,321      | .20          |                                           |  |  |
| KA045XP0 | 4.500     | 5.000   | 4.686               | 4.814               | 1,440               | 809   | 3,600               | 1,310   |                     | 1,441      | .22          | .25                                       |  |  |
| KA047XP0 | 4.750     | 5.250   | 4.936               | 5.064               | 1,520               | 834   | 3,790               | 1,350   | 3,790               | 1,565      | .23          |                                           |  |  |
| KA050XP0 | 5.000     | 5.500   | 5.186               | 5.314               | 1,590               | 859   | 3,980               | 1,400   | 4,180               | 1,693      | .24          |                                           |  |  |
| KA055XP0 | 5.500     | 6.000   | 5.686               | 5.814               | 1,750               | 908   | 4,360               | 1,480   |                     | 1,959      | .25          | -1                                        |  |  |
| KA060XP0 | 6.000     | 6.500   | 6.186               | 6.314               | 1,900               | 955   | 4,740               | 1,570   | 5,930               | 2,240      | .28          |                                           |  |  |
| KA065XP0 | 6.500     | 7.000   | 6.686               | 6.814               | 2,050               | 1,001 | 5,120               | 1,650   | 6,910               | 2,535      | .30          |                                           |  |  |
| KA070XP0 | 7.000     | 7.500   | 7.186               | 7.314               | 2,200               | 1,046 |                     | 1,730   | 7,980               | 2,844      | .31          |                                           |  |  |
| KA075XP0 | 7.500     | 8.000   | 7.686               | 7.814               | 2,350               | 1,089 |                     | 1,810   | 9,120               | 3,165      | .34          |                                           |  |  |
| KA080XP0 | 8.000     | 8.500   | 8.186               | 8.314               | 2,500               | 1,131 | 6,260               | 1,890   |                     | 3,499      | .38          |                                           |  |  |
| KA090XP0 | 9.000     | 9.500   | 9.186               | 9.314               | 2,810               | 1,212 | 7,020               | 2,040   | 12,990              | 4,204      | .44          |                                           |  |  |
| KA100XP0 | 10.000    | 10.500  | 10.186              | 10.314              | 3,110               | 1,289 | 7,780               | 2,180   | 15,940              | 4,956      | .50          | ③ F = .025                                |  |  |
| KA110XP0 | 11.000    | 11.500  | 11.186              | 11.314              | 3,410               | 1,362 | 8,540               | 2,320   | 19,210              | 5,750      | .52          | Bearing corners are<br>normally chamfered |  |  |
| KA120XP0 | 12.000    | 12.500  | 12.186              | 12.314              | 3,720               | 1,433 | 9,300               | 2,450   | 22,770              | 6,587      | .56          |                                           |  |  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
Static capacities are non-bined limits based on rigid support from the shoft and baseling.

2 Static capacities are non-brinell limits based on rigid support from the shaft and housing.
3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

# TYPE X - OPEN REALI-SLIM<sup>®</sup> BEARINGS, FOUR-POINT CONTACT

|           |        |          |                     | KE                  | <b>SER</b>          | IES   |                     |        |                     |            |              | Snapover separator<br>5/32" balls |
|-----------|--------|----------|---------------------|---------------------|---------------------|-------|---------------------|--------|---------------------|------------|--------------|-----------------------------------|
| KAYDON    | Di     | imension | ns in Incl          | nes                 |                     |       | Сара                | cities |                     |            | Approx.      | J/JZ Dalls                        |
| Bearing   | _      | Outside  | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)  | Momen               | t (in-lbs) | Weight<br>in |                                   |
| Number    | Bore   | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.   | Static <sup>2</sup> | Dyn.       | Pounds       |                                   |
| KB020XP0  | 2.000  | 2.625    | 2.231               | 2.393               | 930                 | 758   | 2,340               | 1,130  | 1,080               | 658        | .16          |                                   |
| KB025XP0  | 2.500  | 3.125    | 2.731               | 2.893               | 1,140               | 848   | 2,840               | 1,290  | 1,600               | 895        | .19          |                                   |
| KB030XP0  | 3.000  | 3.625    | 3.231               | 3.393               | 1,340               | 933   | 3,350               | 1,440  | 2,220               | 1,159      | .24          |                                   |
| KB035XP0  | 3.500  | 4.125    | 3.731               | 3.893               | 1,540               | 1,014 | 3,860               | 1,590  | 2,940               | 1,450      | .27          |                                   |
| KB040XP0  | 4.000  | 4.625    | 4.231               | 4.393               | 1,750               | 1,091 | 4,370               | 1,720  | 3,770               | 1,764      | .30          |                                   |
| KB042XP0  | 4.250  | 4.875    | 4.481               | 4.643               | 1,830               | 1,120 | 4,570               | 1,780  | 4,170               | 1,917      | .31          | .3125 🗕                           |
| KB045XP0  | 4.500  | 5.125    | 4.731               | 4.893               | 1,950               | 1,165 | 4,880               | 1,850  | 4,690               | 2,103      | .33          | F                                 |
| *KB047XP0 | 4.750  | 5.375    | 4.981               | 5.143               | 2,030               | 1,193 | 5,080               | 1,900  | 5,140               | 2,265      | .34          |                                   |
| KB050XP0  | 5.000  | 5.625    | 5.231               | 5.393               | 2,150               | 1,236 | 5,380               | 1,980  | 5,720               | 2,463      | .38          | .3125                             |
| KB055XP0  | 5.500  | 6.125    | 5.731               | 5.893               | 2,360               | 1,304 | 5,890               | 2,100  | 6,850               | 2,844      | .41          |                                   |
| KB060XP0  | 6.000  | 6.625    | 6.231               | 6.393               | 2,560               | 1,371 | 6,400               | 2,220  | 8,080               | 3,247      | .44          | L <sub>2</sub>                    |
| KB065XP0  | 6.500  | 7.125    | 6.731               | 6.893               | 2,760               | 1,435 | 6,910               | 2,340  | 9,410               | 3,668      | .47          |                                   |
| *KB070XP0 | 7.000  | 7.625    | 7.231               | 7.393               | 2,970               | 1,498 | 7,420               | 2,450  | 10,850              | 4,109      | .50          |                                   |
| *KB075XP0 | 7.500  | 8.125    | 7.731               | 7.893               | 3,170               | 1,559 | 7,920               | 2,560  | 12,380              | 4,568      | .53          |                                   |
| KB080XP0  | 8.000  | 8.625    | 8.231               | 8.393               | 3,370               | 1,618 | 8,430               | 2,670  | 14,020              | 5,045      | .57          |                                   |
| KB090XP0  | 9.000  | 9.625    | 9.231               | 9.393               | 3,780               | 1,732 | 9,450               | 2,880  | 17,600              | 6,050      | .66          |                                   |
| *KB100XP0 | 10.000 | 10.625   | 10.231              | 10.393              | 4,190               | 1,841 | 10,460              | 3,080  | 21,580              | 7,121      | .73          |                                   |
| *KB110XP0 | 11.000 | 11.625   | 11.231              | 11.393              | 4,590               | 1,945 | 11,480              | 3,280  | 25,970              | 8,254      | .75          |                                   |
| *KB120XP0 | 12.000 | 12.625   | 12.231              | 12.393              | 5,000               | 2,045 | 12,500              | 3,470  | 30,770              | 9,446      | .83          |                                   |
| *KB140XP0 | 14.000 | 14.625   | 14.231              | 14.393              | 5,810               | 2,234 | 14,530              | 3,840  | 41,580              | 11,994     | 1.05         |                                   |
| KB160XP0  | 16.000 | 16.625   | 16.231              | 16.393              | 6,620               | 2,410 | 16,560              | 4,190  | 54,020              | 14,750     | 1.20         | ③ F = .040                        |
| *KB180XP0 | 18.000 | 18.625   | 18.231              | 18.393              | 7,440               | 2,576 | 18,590              | 4,520  | 68,090              | 17,694     | 1.35         | Bearing corners are               |
| *KB200XP0 | 20.000 | 20.625   | 20.231              | 20.393              | 8,250               | 2,731 | 20,620              | 4,850  | 83,780              | 20,813     | 1.50         | normally chamfered                |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

<sup>(2)</sup> Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

## CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

## **NEED SERVICE FAST?**

# 1-800-514-3066

Website: www.kaydonbearings.com

# **TYPE X - OPEN REALI-SLIM® BEARINGS, FOUR-POINT CONTACT**

|           | KC SERIES |         |                     |                     |                     |       |                     |       |                     |            |        |  |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------------------|-------|---------------------|-------|---------------------|------------|--------|--|--|--|--|
| KAYDON    | Woight    |         |                     |                     |                     |       |                     |       |                     |            |        |  |  |  |  |
| Bearing   | Bara      | Outside | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs) | Momen               | t (in-lbs) | Weight |  |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.       | Pounds |  |  |  |  |
| KC040XP0  | 4.000     | 4.750   | 4.277               | 4.473               | 2,100               | 1,417 | 5,260               | 2,210 | 4,600               | 2,326      | .45    |  |  |  |  |
| *KC042XP0 | 4.250     | 5.000   | 4.527               | 4.723               | 2,220               | 1,464 | 5,560               | 2,290 | 5,140               | 2,541      | .47    |  |  |  |  |
| KC045XP0  | 4.500     | 5.250   | 4.777               | 4.973               | 2,340               | 1,510 | 5,860               | 2,380 | 5,710               | 2,762      | .48    |  |  |  |  |
| KC047XP0  |           |         |                     |                     |                     |       |                     |       |                     |            |        |  |  |  |  |
| KC050XP0  |           |         |                     |                     |                     |       |                     |       |                     |            |        |  |  |  |  |
| KC055XP0  | 5.500     | 6.250   | 5.777               | 5.973               | 2,830               | 1,687 | 7,060               | 2,690 | 8,300               | 3,717      | .59    |  |  |  |  |
| KC060XP0  | 6.000     | 6.750   | 6.277               | 6.473               | 3,070               | 1,770 | 7,660               | 2,840 | 9,770               | 4,234      | .63    |  |  |  |  |
| KC065XP0  | 6.500     | 7.250   | 6.777               | 6.973               | 3,310               | 1,851 | 8,270               | 2,990 | 11,370              | 4,775      | .68    |  |  |  |  |
| KC070XP0  | 7.000     | 7.750   | 7.277               | 7.473               | 3,550               | 1,931 | 8,870               | 3,130 | 13,080              | 5,341      | .73    |  |  |  |  |
| *KC075XP0 | 7.500     | 8.250   | 7.777               | 7.973               | 3,790               | 2,007 | 9,470               | 3,270 | 14,910              | 5,930      | .78    |  |  |  |  |
| KC080XP0  | 8.000     | 8.750   | 8.277               | 8.473               | 4,030               | 2,082 | 10,070              | 3,410 | 16,870              | 6,542      | .84    |  |  |  |  |
| KC090XP0  | 9.000     | 9.750   | 9.277               | 9.473               | 4,510               | 2,226 | 11,270              | 3,670 | 21,130              | 7,830      | .94    |  |  |  |  |
| KC100XP0  | 10.000    | 10.750  | 10.277              | 10.473              | 4,990               | 2,364 | 12,470              | 3,930 | 25,880              | 9,201      | 1.06   |  |  |  |  |
| KC110XP0  | 11.000    | 11.750  | 11.277              | 11.473              | 5,470               | 2,496 | 13,680              | 4,180 | 31,110              | 10,651     | 1.16   |  |  |  |  |
| KC120XP0  | 12.000    | 12.750  | 12.277              | 12.473              | 5,950               | 2,622 | 14,880              | 4,420 | 36,830              | 12,174     | 1.25   |  |  |  |  |
| KC140XP0  | 14.000    | 14.750  | 14.277              | 14.473              | 6,910               | 2,862 | 17,280              | 4,890 | 49,690              | 15,434     | 1.52   |  |  |  |  |
| KC160XP0  | 16.000    | 16.750  | 16.277              | 16.473              | 7,880               | 3,086 | 19,690              | 5,330 | 64,480              | 18,955     | 1.73   |  |  |  |  |
| *KC180XP0 | 18.000    | 18.750  | 18.277              | 18.473              | 8,840               | 3,295 | 22,090              | 5,760 | 81,190              | 22,712     | 1.94   |  |  |  |  |
| *KC200XP0 | 20.000    | 20.750  | 20.277              | 20.473              | 9,800               | 3,492 | 24,500              | 6,170 | 99,830              | 26,695     | 2.16   |  |  |  |  |
| *KC250XP0 | 25.000    | 25.750  | 25.277              | 25.473              | 12,200              | 3,941 | 30,510              | 7,140 | 154,800             | 37,518     | 2.69   |  |  |  |  |
| *KC300XP0 | 30.000    | 30.750  | 30.277              | 30.473              | 14,610              | 4,338 | 36,520              | 8,050 | 221,900             | 49,436     | 3.21   |  |  |  |  |



③ F = .040 Bearing corners are normally chamfered

|           |        |          |                     | KC                  | SER                 | IES   |                     |         |                     |            |              | Snapover separator<br>1/4" balls |
|-----------|--------|----------|---------------------|---------------------|---------------------|-------|---------------------|---------|---------------------|------------|--------------|----------------------------------|
| KAYDON    | Di     | imensior | ns in Inch          | nes                 |                     |       | Сара                | cities® |                     |            | Approx.      |                                  |
| Bearing   | Dava   | Outside  | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)   | Moment              | t (in-lbs) | Weight<br>in |                                  |
| Number    | Bore   | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.    | Static <sup>2</sup> | Dyn.       | Pounds       |                                  |
| KD040XP0  | 4.000  | 5.000    | 4.370               | 4.630               | 3,080               | 2,311 | 7,700               | 3,520   | 6,930               | 3,901      | .78          |                                  |
| KD042XP0  | 4.250  | 5.250    | 4.620               | 4.880               | 3,190               | 2,355 | 7,980               | 3,600   | 7,580               | 4,196      | .83          |                                  |
| KD045XP0  | 4.500  | 5.500    | 4.870               | 5.130               | 3,420               | 2,454 | 8,550               | 3,770   | 8,550               | 4,602      | .88          |                                  |
| KD047XP0  | 4.750  | 5.750    | 5.120               | 5.380               | 3,530               | 2,496 | 8,840               | 3,860   | 9,280               | 4,916      | .94          | 500                              |
| KD050XP0  | 5.000  | 6.000    | 5.370               | 5.630               | 3,760               | 2,592 | 9,410               | 4,020   | 10,350              | 5,348      | 1.00         | .500 🖛                           |
| KD055XP0  | 5.500  | 6.500    | 5.870               | 6.130               | 4,100               | 2,725 | 10,260              | 4,260   | 12,310              | 6,134      | 1.06         |                                  |
| KD060XP0  | 6.000  | 7.000    | 6.370               | 6.630               | 4,450               | 2,855 | 11,120              | 4,490   | 14,450              | 6,961      | 1.16         |                                  |
| KD065XP0  | 6.500  | 7.500    | 6.870               | 7.130               | 4,790               | 2,980 | 11,970              | 4,720   | 16,760              | 7,826      | 1.22         | .500                             |
| KD070XP0  | 7.000  | 8.000    | 7.370               | 7.630               | 5,130               | 3,103 | 12,830              | 4,940   | 19,240              | 8,730      | 1.31         |                                  |
| KD075XP0  | 7.500  | 8.500    | 7.870               | 8.130               | 5,470               | 3,222 | 13,680              | 5,160   | 21,890              | 9,669      | 1.41         | L <sub>2</sub>                   |
| KD080XP0  | 8.000  | 9.000    | 8.370               | 8.630               | 5,810               | 3,338 | 14,540              | 5,370   | 24,710              | 10,643     | 1.53         |                                  |
| KD090XP0  | 9.000  | 10.000   | 9.370               | 9.630               | 6,500               | 3,561 | 16,250              | 5,790   | 30,870              | 12,693     | 1.72         |                                  |
| KD100XP0  | 10.000 | 11.000   | 10.370              | 10.630              | 7,180               | 3,776 | 17,960              | 6,190   | 37,710              | 14,872     | 1.88         | Ý                                |
| KD110XP0  | 11.000 | 12.000   | 11.370              | 11.630              | 7,870               | 3,981 | 19,670              | 6,570   | 45,230              | 17,173     | 2.06         |                                  |
| KD120XP0  | 12.000 | 13.000   | 12.370              | 12.630              | 8,550               | 4,178 | 21,380              | 6,950   | 53,440              | 19,590     | 2.25         |                                  |
| KD140XP0  | 14.000 | 15.000   | 14.370              | 14.630              | 9,920               | 4,551 | 24,800              | 7,670   | 71,910              | 24,755     | 2.73         |                                  |
| *KD160XP0 | 16.000 | 17.000   | 16.370              | 16.630              | 11,290              | 4,899 | 28,220              | 8,360   | 93,110              | 30,325     | 3.10         |                                  |
| KD180XP0  | 18.000 | 19.000   | 18.370              | 18.630              | 12,650              | 5,226 | 31,640              | 9,030   | 117,000             | 36,268     | 3.48         |                                  |
| KD200XP0  | 20.000 | 21.000   | 20.370              | 20.630              | 14,020              | 5,534 | 35,060              | 9,670   | 143,700             | 42,561     | 3.85         |                                  |
| *KD210XP0 | 21.000 | 22.000   | 21.370              | 21.630              | 14,710              | 5,682 |                     | 9,980   | 158,100             | 45,826     | 4.04         | ③ F = .060                       |
| KD250XP0  | 25.000 | 26.000   | 25.370              | 25.630              | 17,440              | 6,235 | 43,610              | 11,180  |                     | 59,649     | 4.79         | Bearing corners are              |
| *KD300XP0 | 30.000 | 31.000   | 30.370              | 30.630              | 20,860              | 6,856 | 52,160              | 12,600  | 318,100             | 78,447     | 5.73         | normally chamfered               |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

<sup>(2)</sup> Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.
Contact KAYDON for lead time and minimum purchase requirement.

1-800-514-3066 www.kaydonbearings.com |25

## **TYPE X - OPEN REALI-SLIM® BEARINGS, FOUR-POINT CONTACT**

| KF SERIES       KANDON     Dimensions in Inches     Capacities①     Approx. |        |          |                     |                     |         |        |                     |                 |         |            |              |    |  |
|-----------------------------------------------------------------------------|--------|----------|---------------------|---------------------|---------|--------|---------------------|-----------------|---------|------------|--------------|----|--|
| KAYDON                                                                      | D      | imensior | ns in Incl          | nes                 |         |        | Сара                | <b>cities</b> ① | )       |            | Approx.      |    |  |
| Bearing                                                                     | Bore   | Outside  | Land                | Land                | Radial  |        | Thrust              | (lbs)           | Momen   | t (in-lbs) | Weight<br>in |    |  |
| Number                                                                      | DOIE   | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static2 | Dyn.   | Static <sub>2</sub> | Dyn.            | Static2 | Dyn.       | Pounds       |    |  |
| KF040XP0                                                                    | 4.000  | 5.500    | 4.555               | 4.945               | 5,360   | 4,665  | 13,400              | 6,830           | 12,730  | 8,312      | 1.9          |    |  |
| KF042XP0                                                                    | 4.250  | 5.750    | 4.805               | 5.195               | 5,640   | 4,795  | 14,110              | 7,070           | 14,110  | 8,993      | 2.0          |    |  |
| KF045XP0                                                                    | 4.500  | 6.000    | 5.055               | 5.445               | 5,930   | 4,923  | 14,810              | 7,300           | 15,550  | 9,695      | 2.1          |    |  |
| KF047XP0                                                                    | 4.750  | 6.250    | 5.305               | 5.695               | 6,210   | 5,048  | 15,520              | 7,530           | 17,070  | 10,416     | 2.2          | F  |  |
| KF050XP0                                                                    | 5.000  | 6.500    | 5.555               | 5.945               | 6,490   | 5,172  | 16,220              | 7,760           | 18,660  | 11,157     | 2.3          | Г  |  |
| KF055XP0                                                                    | 5.500  | 7.000    | 6.055               | 6.445               | 7,050   | 5,415  | 17,630              | 8,200           | 22,040  | 12,696     | 2.5          |    |  |
| KF060XP0                                                                    | 6.000  | 7.500    | 6.555               | 6.945               | 7,620   | 5,651  | 19,050              | 8,630           | 25,710  | 14,311     | 2.7          |    |  |
| KF065XP0                                                                    | 6.500  | 8.000    | 7.055               | 7.445               | 8,180   | 5,880  | 20,460              | 9,050           | 29,660  | 15,993     | 2.9          |    |  |
| KF070XP0                                                                    | 7.000  | 8.500    | 7.555               | 7.945               | 8,750   | 6,103  | 21,870              | 9,460           | 33,890  | 17,744     | 3.2          |    |  |
| KF075XP0                                                                    | 7.500  | 9.000    | 8.055               | 8.445               | 9,310   | 6,323  | 23,280              | 9,870           | 38,410  | 19,568     | 3.4          |    |  |
| KF080XP0                                                                    | 8.000  | 9.500    | 8.555               | 8.945               | 9,880   | 6,535  | 24,690              | 10,260          | 43,200  | 21,453     | 3.5          | L2 |  |
| KF090XP0                                                                    | 9.000  | 10.500   | 9.555               | 9.945               | 11,000  | 6,947  | 27,510              | 11,030          | 53,640  | 25,410     | 3.9          |    |  |
| KF100XP0                                                                    | 10.000 | 11.500   | 10.555              | 10.945              | 12,130  | 7,342  | 30,330              | 11,770          | 65,210  | 29,608     | 4.3          |    |  |
| KF110XP0                                                                    | 11.000 | 12.500   | 11.555              | 11.945              | 13,260  | 7,721  | 33,150              | 12,490          | 77,910  | 34,032     | 4.8          |    |  |
| KF120XP0                                                                    | 12.000 | 13.500   | 12.555              | 12.945              | 14,390  | 8,084  | 35,970              | 13,190          | 91,730  | 38,666     | 5.2          |    |  |
| KF140XP0                                                                    | 14.000 | 15.500   | 14.555              | 14.945              | 16,650  | 8,775  | 41,620              | 14,530          | 122,800 | 48,556     | 6.0          |    |  |
| KF160XP0                                                                    | 16.000 | 17.500   | 16.555              | 16.945              | 18,900  | 9,421  | 47,260              | 15,820          | 158,300 | 59,200     | 7.1          |    |  |
| *KF180XP0                                                                   | 18.000 | 19.500   | 18.555              | 18.945              | 21,160  | 10,028 | 52,900              | 17,060          | 198,400 | 70,537     | 7.9          |    |  |
| *KF200XP0                                                                   | 20.000 | 21.500   | 20.555              | 20.945              | 23,420  | 10,602 | 58,550              | 18,250          | 243,000 | 82,528     | 8.9          |    |  |
| *KF250XP0                                                                   | 25.000 | 26.500   | 25.555              | 25.945              | 29,060  | 11,909 | 72,650              | 21,070          | 374,200 | 115,037    | 10.9         |    |  |
| *KF300XP0                                                                   | 30.000 | 31.500   | 30.555              | 30.945              | 34,700  | 13,065 | 86,760              | 23,720          | 533,600 | 150,708    | 13.0         |    |  |
| *KF350XP0                                                                   | 35.000 | 36.500   | 35.555              | 35.945              | 40,350  | 14,100 | 100,900             |                 | 721,200 | 189,106    | 15.1         | r  |  |
| *KF400XP0                                                                   | 40.000 | 41.500   | 40.555              | 40.945              | 45,990  | 15,034 | 115,000             | 28,620          | 937,100 | 229,832    | 17.2         | 1  |  |



|           |        |          |                     | КС                  | G SER               | IES    |                     |            |                     |            |              | Snapover separator<br>1/2" balls  |
|-----------|--------|----------|---------------------|---------------------|---------------------|--------|---------------------|------------|---------------------|------------|--------------|-----------------------------------|
| KAYDON    | Di     | imensior | ns in Incl          | nes                 |                     |        | Capa                | cities (1) | 1                   |            | Approx.      | I/2" Dalis                        |
| Bearing   |        | Outside  | Land                | Land                | Radial              | (lbs)  | Thrust              | (lbs)      | Momen               | t (in-lbs) | Weight<br>in |                                   |
| Number    | Bore   | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sub>2</sub> | Dyn.   | Static <sub>2</sub> | Dyn.       | Static <sub>2</sub> | Dyn.       | Pounds       |                                   |
| *KG040XP0 | 4.000  | 6.000    | 4.742               | 5.258               | 8,210               | 7,979  | 20,520              | 11,260     | 20,520              | 14,966     | 3.6          |                                   |
| *KG042XP0 | 4.250  | 6.250    | 4.992               | 5.508               | 8,210               | 7,917  | 20,520              | 11,260     | 21,550              | 15,592     | 3.8          |                                   |
| *KG045XP0 | 4.500  | 6.500    | 5.242               | 5.758               | 8,760               | 8,205  | 21,890              | 11,750     | 24,080              | 16,930     | 4.0          | ◀—1.000 —►                        |
| *KG047XP0 | 4.750  | 6.750    | 5.492               | 6.008               | 9,300               | 8,487  | 23,260              | 12,230     | 26,740              | 18,306     | 4.1          |                                   |
| KG050XP0  | 5.000  | 7.000    | 5.742               | 6.258               | 9,850               | 8,762  | 24,620              | 12,710     | 29,550              | 19,721     | 4.3          |                                   |
| *KG055XP0 | 5.500  | 7.500    | 6.242               | 6.758               | 10,400              | 8,979  | 25,990              | 13,180     | 33,790              | 21,896     | 4.7          |                                   |
| KG060XP0  | 6.000  | 8.000    | 6.742               | 7.258               | 11,490              | 9,503  | 28,730              | 14,090     | 40,220              | 24,956     | 5.1          |                                   |
| *KG065XP0 | 6.500  | 8.500    | 7.242               | 7.758               | 12,040              | 9,713  | 30,100              | 14,530     | 45,140              | 27,327     | 5.4          |                                   |
| KG070XP0  | 7.000  | 9.000    | 7.742               | 8.258               | 13,130              | 10,208 | 32,830              | 15,400     | 52,530              | 30,636     | 5.8          |                                   |
| KG075XP0  | 7.500  | 9.500    | 8.242               | 8.758               | 13,680              | 10,410 | 34,200              | 15,820     | 58,140              | 33,196     | 6.1          |                                   |
| KG080XP0  | 8.000  | 10.000   | 8.742               | 9.258               | 14,770              | 10,882 | 36,940              | 16,650     |                     | 36,743     | 6.5          |                                   |
| KG090XP0  | 9.000  | 11.000   | 9.742               | 10.258              | 16,420              | 11,526 | 41,040              | 17,870     | 82,080              | 43,240     | 7.2          |                                   |
| KG100XP0  | 10.000 | 12.000   | 10.742              | 11.258              | 18,060              | 12,147 | 45,140              | 19,040     | 99,320              | 50,124     | 7.9          | L1                                |
| KG110XP0  | 11.000 | 13.000   | 11.742              | 12.258              | 19,700              | 12,739 | 49,250              | 20,180     | 118,200             | 57,347     | 8.6          |                                   |
| KG120XP0  | 12.000 | 14.000   | 12.742              | 13.258              | 21,340              | 13,315 | 53,350              | 21,280     |                     | 64,935     | 9.3          |                                   |
| KG140XP0  | 14.000 | 16.000   | 14.742              | 15.258              | 24,620              | 14,404 | 61,560              | 23,410     | -                   | 81,056     | 10.8         |                                   |
| KG160XP0  | 16.000 | 18.000   | 16.742              | 17.258              | 27,910              | 15,425 | 69,770              | 25,450     |                     | 98,373     | 12.3         |                                   |
| KG180XP0  | 18.000 | 20.000   | 18.742              | 19.258              | 31,190              | 16,386 | 77,980              | 27,410     |                     | 116,793    | 13.7         |                                   |
| KG200XP0  | 20.000 | 22.000   | 20.742              | 21.258              | 34,470              | 17,293 | 86,180              | 29,300     | 362,000             | 136,238    | 15.8         |                                   |
| KG220XP0  | 22.000 | 24.000   | 22.742              | 23.258              | 37,760              | 18,152 | 94,390              | 31,130     |                     | 156,625    | 17.3         |                                   |
| KG250XP0  | 25.000 | 27.000   | 25.742              | 26.258              | 42,680              | 19,360 | 106,700             | 33,780     | 554,900             | 188,838    | 19.5         | ○ F 000                           |
| *KG300XP0 | 30.000 | 32.000   | 30.742              | 31.258              | 50,890              | 21,200 | 127,200             | 37,980     |                     | 246,541    | 23.3         | ③ F = .080<br>Bearing corners are |
| KG350XP0  | 35.000 | 37.000   | 35.742              | 36.258              | 59,100              | 22,845 | 147,700             | 41,970     |                     | 308,527    | 27.1         | normally chamfered                |
| KG400XP0  | 40.000 | 42.000   | 40.742              | 41.258              | 67,310              | 24,332 | 168,300             | 45,770     | 1,380,000           | 374,256    | 30.8         | normany chamered                  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

 $\ast$  Contact KAYDON for lead time and minimum purchase requirement.

26 www.kaydonbearings.com 1-800-514-3066

# Sealed REALI-SLIM<sup>®</sup> Bearing Selections Seals and Shields Available

To realize the full benefits from anti-friction bearings, it is important to keep them clean and well lubricated. Seals and shields properly designed and mounted help to accomplish this. In this catalog these terms have the following definitions:

Seal—a contacting closure between the stationary and rotating members, for retaining lubricant within and excluding foreign material from the bearing. Seals are retained in the outer race and make positive contact with the inner race.

Shield—a closure for the same purpose as a seal but without positive contact.

A seal is more effective, but requires more turning effort (torque), generates more heat, and as a result, has a lower speed limit than an open or shielded bearing.

The accompanying illustrations are examples by which REALI-SLIM<sup>®</sup> bearings may be sealed or shielded, either integrally or externally. The lubricant and lubrication systems, torque requirements, speed, and operating environment will influence the choice.

Integral seals and shields offer a very compact overall design with the additional advantage of protecting the bearing before, during and after installation.

Figure 2-1 shows a double-sealed REALI-SLIM® bearing, available from stock in the JU series. In this case, adding shields and seals requires an increase in the width of the bearing (see page 12, Position 2). In the case of JA, JB, and JG double-sealed REALI-SLIM® bearings, the bearing width is the same as that of the open bearing.

Illustrated in Figure 2-2 is a double LAMI-SEAL® bearing. Shown in Figure 2-3 is a double LAMI-SHIELD® bearing for use where a shield will suffice or is required due to torque limitations or speed.

Where weight and space are at a premium, and a seal or shield is required on one side only, single-sealed or single-shielded bearings as shown in Figures 2-4, 2-5 and 2-6 may be supplied.

Note: Sealed REALI-SLIM<sup>®</sup> bearings are pre-lubricated with a general purpose grease. Operating conditions (i.e. time, temperature, speed, environment) may result in premature lubrication degradation. A variety of lubricants are available as options to meet your specifications.



Figure 2-1 Double-Sealed REALI-SLIM<sup>®</sup> Single-Sealed REALI-SLIM<sup>®</sup> bearing



Figure 2-2 **Double LAMI-SEAL®** bearing





Figure 2-4 bearing



Figure 2-5 Single LAMI-SEAL® bearing



Figure 2-3 Double LAMI-SHIELD® bearing

Figure 2-6 Single LAMI-SHIELD® bearing

Note: Pictures are for illustration only and are not intended for design specification.

# SEALED REALI-SLIM® BEARINGS, SEALS AND SHIELDS (continued)

Figure 2-7 shows a nitrile lip-type seal ring available in a variety of cross-sections compatible with the REALI-SLIM<sup>®</sup> bearing series. While this is a very effective seal, torque is substantial and speeds must not exceed 1000 feet per minute if continuous.

If grease lubrication is used and torque is not critical, a very effective shield is that shown in Figure 2-8 where annular grooves are cut in the housing shoulder and clamp plate and filled with grease. When a separate shield is required, washers made from precision flat stock are ideal, as shown in Figure 2-9. They serve well where weight limitations are strict.

Whether or not integral seals or shields are specified, bearings must be isolated from hostile environments and debris.



Figure 2-7 Nitrile Lip-Type Seal



Figure 2-8 Annular Grooves



Figure 2-9 Washer Shield From Precision Flat Stock

# Sealed REALI-SLIM<sup>®</sup> Bearing Selections Type C Radial Contact

|                   | JHA SERIES (DOUBLE SEALED) |                 |                             |                 |                     |                  |                   |                   |                   |  |  |  |  |  |
|-------------------|----------------------------|-----------------|-----------------------------|-----------------|---------------------|------------------|-------------------|-------------------|-------------------|--|--|--|--|--|
| KAYDON            | [                          | Dimension       | s in Inche                  | S               |                     | Capacity<br>5.)① | Limiting          | Torque<br>Max. No | Approx.<br>Weight |  |  |  |  |  |
| Bearing<br>Number | Bore                       | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>2</sup> | Dyn.             | Speeds<br>(RPM**) | Load<br>(in-oz)④  | in<br>Pounds      |  |  |  |  |  |
| JHA10CL0          | 1.000                      | 1.375           | 1.108                       | 1.274           | 290                 | 188              | 6110              | 5                 | .035              |  |  |  |  |  |
| JHA15CL0          | 1.500                      | 1.875           | 1.608                       | 1.774           | 400                 | 225              | 4300              | 5                 | .052              |  |  |  |  |  |
| JHA17CL0          | 1.750                      | 2.125           | 1.858                       | 2.024           | 460                 | 242              | 3750              | 6                 | .060              |  |  |  |  |  |



|                   |       | JA              | SERI                        | ES (DO                      | OUBLE S             | EALED)           |                   |                   |                   | Snapover separator<br>1/8" balls |
|-------------------|-------|-----------------|-----------------------------|-----------------------------|---------------------|------------------|-------------------|-------------------|-------------------|----------------------------------|
| KAYDON            | [     | Dimension       | is in Inche                 | s                           |                     | Capacity<br>5.)① | Limiting          | Torque<br>Max. No | Approx.<br>Weight |                                  |
| Bearing<br>Number | Bore  | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.             | Speeds<br>(RPM**) | Load<br>(in-oz)④  | in<br>Pounds      | .250 —                           |
| JA020CP0          | 2.000 | 2.500           | 2.148                       | 2.356                       | 680                 | 393              | 3,220             | 6                 | .10               | E_                               |
| JA025CP0          | 2.500 | 3.000           | 2.648                       | 2.856                       | 830                 | 442              | 2,630             | 8                 | .12               |                                  |
| JA030CP0          | 3.000 | 3.500           | 3.148                       | 3.356                       | 990                 | 487              | 2,230             | 12                | .14               | .250                             |
| JA035CP0          | 3.500 | 4.000           | 3.648                       | 3.856                       | 1,140               | 530              | 1,930             | 16                | .17               |                                  |
| JA040CP0          | 4.000 | 4.500           | 4.148                       | 4.356                       | 1,290               | 571              | 1,700             | 20                | .19               |                                  |
| JA042CP0          | 4.250 | 4.750           | 4.398                       | 4.606                       | 1,370               | 591              | 1,610             | 24                | .20               |                                  |
| JA045CP0          | 4.500 | 5.000           | 4.648                       | 4.856                       | 1,440               | 610              | 1,520             | 28                | .21               |                                  |
| *JA047CP0         | 4.750 | 5.250           | 4.898                       | 5.106                       | 1,520               | 629              | 1,450             | 32                | .22               |                                  |
| JA050CP0          | 5.000 | 5.500           | 5.148                       | 5.356                       | 1,590               | 648              | 1,380             | 36                | .23               | ③ F = .025                       |
| *JA055CP0         | 5.500 | 6.000           | 5.648                       | 5.856                       | 1,750               | 685              | 1,260             | 44                | .25               | Bearing corners are              |
| *JA060CP0         | 6.000 | 6.500           | 6.148                       | 6.356                       | 1,900               | 720              | 1,160             | 52                | .28               | normally chamfered               |
| *JA065CP0         | 6.500 | 7.000           | 6.648                       | 6.856                       | 2,050               | 754              | 1,070             | 61                | .30               | -                                |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

# TYPE C - SEALED REALI-SLIM® BEARINGS, RADIAL CONTACT

|                   | JB SERIES (DOUBLE SEALED) |                 |                             |                             |                     |                  |                    |                   |                   |  |  |  |  |  |
|-------------------|---------------------------|-----------------|-----------------------------|-----------------------------|---------------------|------------------|--------------------|-------------------|-------------------|--|--|--|--|--|
| KAYDON            | C                         | Dimension       | s in Inche                  | s                           |                     | Capacity<br>5.)① | Limiting<br>Speeds | Torque<br>Max. No | Approx.<br>Weight |  |  |  |  |  |
| Bearing<br>Number | Bore                      | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sub>2</sub> | Dyn.             | (RPM**)            | Load<br>(in-oz)④  | in<br>Pounds      |  |  |  |  |  |
| JB020CP0          | 2.000                     | 2.625           | 2.199                       | 2.425                       | 930                 | 577              | 3,130              | 6                 | .15               |  |  |  |  |  |
| JB025CP0          | 2.500                     | 3.125           | 2.699                       | 2.925                       | 1,140               | 644              | 2,580              | 8                 | .19               |  |  |  |  |  |
| JB030CP0          | 3.000                     | 3.625           | 3.199                       | 3.425                       | 1,340               | 707              | 2,190              | 12                | .22               |  |  |  |  |  |
| JB035CP0          | 3.500                     | 4.125           | 3.699                       | 3.925                       | 1,540               | 767              | 1,900              | 16                | .27               |  |  |  |  |  |
| JB040CP0          | 4.000                     | 4.625           | 4.199                       | 4.425                       | 1,750               | 825              | 1,630              | 20                | .30               |  |  |  |  |  |
| JB042CP0          | 4.250                     | 4.875           | 4.449                       | 4.675                       | 1,830               | 846              | 1,600              | 24                | .31               |  |  |  |  |  |
| JB045CP0          | 4.500                     | 5.125           | 4.699                       | 4.925                       | 1,950               | 880              | 1,500              | 28                | .34               |  |  |  |  |  |
| *JB047CP0         | 4.750                     | 5.375           | 4.949                       | 5.175                       | 2,030               | 901              | 1,430              | 32                | .35               |  |  |  |  |  |
| *JB050CP0         | 5.000                     | 5.625           | 5.199                       | 5.425                       | 2,150               | 933              | 1,360              | 36                | .37               |  |  |  |  |  |
| *JB055CP0         | 5.500                     | 6.125           | 5.699                       | 5.925                       | 2,360               | 984              | 1,240              | 44                | .40               |  |  |  |  |  |
| *JB060CP0         | 6.000                     | 6.625           | 6.199                       | 6.425                       | 2,560               | 1,034            | 1,150              | 52                | .44               |  |  |  |  |  |
| *JB065CP0         | 6.500                     | 7.125           | 6.699                       | 6.925                       | 2,760               | 1,082            | 1,060              | 61                | .47               |  |  |  |  |  |



**Snapover separator** 

|                   |        | JU              | SERI                        | ES (DC                      | UBLE S              | EALED)           | )                  |                   |                   | Snapover separator<br>3/16" balls |
|-------------------|--------|-----------------|-----------------------------|-----------------------------|---------------------|------------------|--------------------|-------------------|-------------------|-----------------------------------|
| KAYDON<br>Bearing | 0      | Dimension       | s in Inche                  | s                           | Radial C<br>(lbs    | Capacity<br>S.)① | Limiting<br>Speeds | Torque<br>Max. No | Approx.<br>Weight |                                   |
| Number            | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.             | (RPM**)            | Load<br>(in-lb)④  | in<br>Pounds      |                                   |
| JU040CP0          | 4.000  | 4.750           | 4.150                       | 4.547                       | 2,100               | 1,073            | 1,640              | 2.9               | .55               | .500                              |
| *JU042CP0         | 4.250  | 5.000           | 4.400                       | 4.797                       | 2,220               | 1,108            | 1,520              | 3.2               | .58               | E_                                |
| JU045CP0          | 4.500  | 5.250           | 4.650                       | 5.047                       | 2,340               | 1,143            | 1,440              | 3.5               | .61               |                                   |
| JU047CP0          | 4.750  | 5.500           | 4.900                       | 5.295                       | 2,460               | 1,176            | 1,360              | 3.9               | .65               |                                   |
| JU050CP0          | 5.000  | 5.750           | 5.150                       | 5.545                       | 2,590               | 1,209            | 1,300              | 4.3               | .68               | .375                              |
| JU055CP0          | 5.500  | 6.250           | 5.650                       | 6.042                       | 2,830               | 1,274            | 1,180              | 5.1               | .74               |                                   |
| JU060CP0          | 6.000  | 6.750           | 6.150                       | 6.542                       | 3,070               | 1,337            | 1,080              | 6.1               | .81               | L <sub>2</sub>                    |
| JU065CP0          | 6.500  | 7.250           | 6.650                       | 7.037                       | 3,315               | 1,397            | 1,000              | 7.0               | .87               |                                   |
| JU070CP0          | 7.000  | 7.750           | 7.150                       | 7.537                       | 3,550               | 1,457            | 920                | 8.1               | .93               |                                   |
| JU075CP0          | 7.500  | 8.250           | 7.650                       | 8.037                       | 3,790               | 1,514            | 860                | 9.2               | .99               |                                   |
| JU080CP0          | 8.000  | 8.750           | 8.150                       | 8.537                       | 4,030               | 1,570            | 810                | 10.4              | 1.06              |                                   |
| JU090CP0          | 9.000  | 9.750           | 9.150                       | 9.535                       | 4,510               | 1,678            | 720                | 13.0              | 1.18              |                                   |
| JU100CP0          | 10.000 | 10.750          | 10.150                      | 10.535                      | 4,990               | 1,781            | 650                | 16.0              | 1.31              | ③ F = .015                        |
| JU110CP0          | 11.000 | 11.750          | 11.150                      | 11.535                      | 5,470               | 1,879            | 590                | 19.2              | 1.43              | Bearing corners are               |
| *JU120CP0         | 12.000 | 12.750          | 12.150                      | 12.535                      | 5,950               | 1,974            | 540                | 22.8              | 1.56              | normally chamfered                |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

(a) Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

## **TYPE C – SEALED REALI-SLIM® BEARINGS, RADIAL CONTACT**

| S          |
|------------|
| D          |
| ġ.         |
| tio        |
| 0          |
| 3          |
| Ν          |
|            |
| S          |
| 0          |
| Ð          |
| election   |
|            |
| 2          |
|            |
| Та         |
|            |
| Р          |
| les        |
| <b>v</b> 1 |

|                   |        | JG              | SERI                        | ES (DC                      | OUBLE S             | EALED)           | )                  |                   |                   | Snapover separator<br>1/2" balls |
|-------------------|--------|-----------------|-----------------------------|-----------------------------|---------------------|------------------|--------------------|-------------------|-------------------|----------------------------------|
| KAYDON<br>Bearing | 0      | Dimension       | is in Inche                 | s                           |                     | Capacity<br>5.)① | Limiting<br>Speeds | Torque<br>Max. No | Approx.<br>Weight |                                  |
| Number            | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sub>2</sub> | Dyn.             | (RPM**)            | Load<br>(in-lb)④  | in<br>Pounds      |                                  |
| *JG070CP0         | 7.000  | 9.000           | 7.554                       | 8.602                       | 13,130              | 7,764            | 240                | 17                | 5.8               | ◀- 1.000 -►                      |
| *JG075CP0         | 7.500  | 9.500           | 8.054                       | 9.102                       | 13,680              | 7,911            | 225                | 19                | 6.1               | E_                               |
| *JG080CP0         | 8.000  | 10.000          | 8.554                       | 9.602                       | 14,770              | 8,265            | 210                | 21                | 6.5               |                                  |
| *JG090CP0         | 9.000  | 11.000          | 9.554                       | 10.602                      | 16,420              | 8,743            | 190                | 26                | 7.2               |                                  |
| *JG100CP0         | 10.000 | 12.000          | 10.554                      | 11.602                      | 18,060              | 9,204            | 175                | 32                | 7.9               | 1.000                            |
| *JG110CP0         | 11.000 | 13.000          | 11.554                      | 12.602                      | 19,700              | 9,648            | 160                | 38                | 8.6               |                                  |
| *JG120CP0         | 12.000 | 14.000          | 12.554                      | 13.602                      | 21,340              | 10,074           | 140                | 44                | 9.3               |                                  |
| *JG140CP0         | 14.000 | 16.000          | 14.554                      | 15.602                      | 24,620              | 10,886           | 125                | 59                | 10.8              |                                  |
| *JG160CP0         | 16.000 | 18.000          | 16.554                      | 17.602                      | 27,910              | 11,648           | 110                | 76                | 12.3              |                                  |
| *JG180CP0         | 18.000 | 20.000          | 18.554                      | 19.602                      | 31,190              | 12,367           | 100                | 95                | 13.7              |                                  |
| *JG200CP0         | 20.000 | 22.000          | 20.554                      | 21.602                      | 34,470              | 13,044           | 90                 | 115               | 15.8              |                                  |
| *JG220CP0         | 22.000 | 24.000          | 22.554                      | 23.602                      | 37,760              | 13,685           | 80                 | 139               | 16.8              |                                  |
| *JG250CP0         | 25.000 | 27.000          | 25.554                      | 26.602                      | 42,680              | 14,591           | 75                 | 177               | 19.5              | ③ F = .080                       |
| *JG300CP0         | 30.000 | 32.000          | 30.554                      | 31.602                      | 50,890              | 15,963           | 60                 | 252               | 23.3              | Bearing corners are              |
| *JG350CP0         | 35.000 | 37.000          | 35.554                      | 36.602                      | 59,100              | 17,195           | 55                 | 339               | 27.1              | normally chamfered               |
| *JG400CP0         | 40.000 | 42.000          | 40.554                      | 41.602                      | 67,310              | 18,307           | 50                 | 440               | 30.8              | -                                |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

\* Contact KAYDON for lead time and minimum purchase requirement.

#### CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

#### **NEED SERVICE FAST?**

## 1-800-514-3066

Website: www.kaydonbearings.com

# Sealed REALI-SLIM<sup>®</sup> Bearing Selections Type X Four-Point Contact

|          | JHA SERIES (DOUBLE SEALED) |         |                     |                     |                     |      |                     |         |                     |      |          | Snapover separator<br>3/32" balls |              |                                           |
|----------|----------------------------|---------|---------------------|---------------------|---------------------|------|---------------------|---------|---------------------|------|----------|-----------------------------------|--------------|-------------------------------------------|
| KAYDON   | DON Dimensions in Inches   |         |                     |                     |                     |      | Сарас               | ities   |                     |      | Limitina |                                   | Approx.      |                                           |
| Bearing  | Bore                       | Outside |                     | Land                | Radial              | · ·  | Thrust              | : (lbs) | Momen               |      | Speeds   |                                   | Weight<br>in | F I                                       |
| Number   | воте                       | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn. | Static <sup>2</sup> | Dyn.    | Static <sup>2</sup> | Dyn. | (RPM**)  |                                   | Pounds       | .1875                                     |
| JHA10XL0 | 1.000                      | 1.375   | 1.108               | 1.274               | 290                 | 247  | 730                 | 370     | 170                 | 110  | 3,000    | 5                                 | .035         |                                           |
| JHA15XL0 | 1.500                      | 1.875   | 1.608               | 1.774               | 400                 | 296  | 1,000               | 460     | 340                 | 187  | 2,000    | 5                                 | .052         | ③ F = .015                                |
| JHA17XL0 | 1.750                      | 2.125   | 1.858               | 2.024               | 460                 | 319  | 1,140               | 500     | 440                 | 232  | 1,710    | 6                                 | .060         | Bearing corners are<br>normally chamfered |

|           | JA SERIES (DOUBLE SEALED) |          |                     |                     |                     |                         |                     |              |                     |                 |         | Snapover separator<br>1/8" balls |              |                     |
|-----------|---------------------------|----------|---------------------|---------------------|---------------------|-------------------------|---------------------|--------------|---------------------|-----------------|---------|----------------------------------|--------------|---------------------|
| KAYDON    | Di                        | mensions | s in Inch           | nes                 |                     | Capacities <sup>®</sup> |                     |              |                     |                 |         |                                  | Approx.      |                     |
| Bearing   |                           | Outside  | Land                | Land                | Radia               | Radial (lbs)            |                     | Thrust (lbs) |                     | Moment (in-lbs) |         | Iviax.                           | Weight<br>in |                     |
| Number    | Bore                      | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.                    | Static <sup>2</sup> | Dyn.         | Static <sup>2</sup> | Dyn.            | (RPM**) | (in-oz) <sup>@</sup>             | Pounds       |                     |
| JA020XP0  | 2.000                     | 2.500    | 2.148               | 2.356               | 680                 | 514                     | 1,710               | 790          | 770                 | 434             | 1,500   | 6                                | .10          | .250 —              |
| JA025XP0  | 2.500                     | 3.000    | 2.648               | 2.856               | 830                 | 583                     | 2,090               | 910          | 1,150               | 601             | 1,200   | 8                                | .12          | F                   |
| JA030XP0  | 3.000                     | 3.500    | 3.148               | 3.356               | 990                 | 643                     | 2,470               | 1,010        | 1,600               | 785             | 830     | 12                               | .14          | .250                |
| JA035XP0  | 3.500                     | 4.000    | 3.648               | 3.856               | 1,140               | 701                     | 2,850               | 1,110        | 2,130               | 986             | 710     | 16                               | .17          |                     |
| JA040XP0  | 4.000                     | 4.500    | 4.148               | 4.356               | 1,290               | 756                     | 3,220               | 1,210        | 2,740               | 1,205           | 620     | 20                               | .19          | L2                  |
| JA042XP0  | 4.250                     | 4.750    | 4.398               | 4.606               | 1,370               | 783                     | 3,410               | 1,260        | 3,070               | 1,321           | 580     | 24                               | .20          |                     |
| JA045XP0  | 4.500                     | 5.000    | 4.648               | 4.856               | 1,440               | 809                     | 3,600               | 1,310        | 3,420               | 1,441           | 550     | 28                               | .21          |                     |
| *JA047XP0 | 4.750                     | 5.250    | 4.898               | 5.106               | 1,520               | 834                     | 3,790               | 1,350        | 3,790               | 1,565           | 520     | 32                               | .22          |                     |
| JA050XP0  | 5.000                     | 5.500    | 5.148               | 5.356               | 1,590               | 859                     | 3,980               | 1,400        | 4,180               | 1,693           | 500     | 36                               | .23          |                     |
| *JA055XP0 | 5.500                     | 6.000    | 5.648               | 5.856               | 1,750               | 908                     | 4,360               | 1,480        | 5,020               | 1,959           | 450     | 44                               | .25          | ③ F = .025          |
| JA060XP0  | 6.000                     | 6.500    | 6.148               | 6.356               | 1,900               | 955                     | 4,740               | 1,570        | 5,930               | 2,240           | 330     | 52                               | .28          | Bearing corners are |
| JA065XP0  | 6.500                     | 7.000    | 6.648               | 6.856               | 2,050               | 1,001                   | 5,120               | 1,650        | 6,910               | 2,535           | 300     | 61                               | .30          | normally chamfered  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

## TYPE X – SEALED REALI-SLIM® BEARINGS, FOUR-POINT CONTACT

|           | JB SERIES (DOUBLE SEALED) |         |                     |                     |                     |       |                     |                       |                     |       |          | Snapover separator<br>5/32" balls |              |                                           |
|-----------|---------------------------|---------|---------------------|---------------------|---------------------|-------|---------------------|-----------------------|---------------------|-------|----------|-----------------------------------|--------------|-------------------------------------------|
| KAYDON    | Dimensions in Inches      |         |                     | nes                 |                     |       | Сара                | cities <sup>(1)</sup> |                     |       | Limitina |                                   | Approx.      | 5/52 balls                                |
| Bearing   | Dava                      | Outside | Land                | Land                | Radial              | (lbs) | Thrust              | Thrust (lbs)          |                     |       | Speeds   | Max.<br>No Load                   | Weight<br>in |                                           |
| Number    | Bore                      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.                  | Static <sup>2</sup> | Dyn.  | (RPM**)  | (in-oz) <sup>@</sup>              | Pounds       |                                           |
| JB020XP0  | 2.000                     | 2.625   | 2.199               | 2.425               | 930                 | 758   | 2,340               | 1,130                 | 1,080               | 658   | 1,500    | 6                                 | .15          | .3125-                                    |
| JB025XP0  | 2.500                     | 3.125   | 2.699               | 2.925               | 1,140               | 848   | 2,840               | 1,290                 | 1,600               | 895   | 1,200    | 8                                 | .19          |                                           |
| JB030XP0  | 3.000                     | 3.625   | 3.199               | 3.425               | 1,340               | 933   | 3,350               | 1,440                 | 2,220               | 1,159 | 1,000    | 12                                | .22          | .3125                                     |
| JB035XP0  | 3.500                     | 4.125   | 3.699               | 3.925               | 1,540               | 1,014 | 3,860               | 1,590                 | 2,940               | 1,450 | 710      | 16                                | .27          |                                           |
| JB040XP0  | 4.000                     | 4.625   | 4.199               | 4.425               | 1,750               | 1,091 | 4,370               | 1,720                 | 3,770               | 1,764 | 620      | 20                                | .30          | L <sub>2</sub>                            |
| JB042XP0  | 4.250                     | 4.875   | 4.449               | 4.675               | 1,830               | 1,120 | 4,570               | 1,780                 | 4,170               | 1,917 | 590      | 24                                | .31          | L1 LV ,                                   |
| JB045XP0  | 4.500                     | 5.125   | 4.699               | 4.925               | 1,950               | 1,165 | 4,880               | 1,850                 | 4,690               | 2,103 | 550      | 28                                | .34          |                                           |
| *JB047XP0 | 4.750                     | 5.375   | 4.949               | 5.175               | 2,030               | 1,193 | 5,080               | 1,900                 | 5,140               | 2,265 | 520      | 32                                | .35          |                                           |
| *JB050XP0 | 5.000                     | 5.625   | 5.199               | 5.425               | 2,150               | 1,236 | 5,380               | 1,980                 | 5,720               | 2,463 | 500      | 36                                | .37          | o F 040                                   |
| *JB055XP0 | 5.500                     | 6.125   | 5.699               | 5.925               | 2,360               | 1,304 | 5,890               | 2,100                 | 6,850               | 2,844 | 450      | 44                                | .40          | ③ F = .040                                |
| *JB060XP0 | 6.000                     | 6.625   | 6.199               | 6.425               | 2,560               | 1,371 | 6,400               | 2,220                 | 8,080               | 3,247 | 410      | 52                                | .44          | Bearing corners are<br>normally chamfered |
| *JB065XP0 | 6.500                     | 7.125   | 6.699               | 6.925               | 2,760               | 1,435 | 6,910               | 2,340                 | 9,410               | 3,668 | 380      | 61                                | .47          |                                           |

|           | JU SERIES (DOUBLE SEALED) |         |                     |                     |                     |       |                            |                       |                          |        |          | Snapover<br>separator |         |                       |
|-----------|---------------------------|---------|---------------------|---------------------|---------------------|-------|----------------------------|-----------------------|--------------------------|--------|----------|-----------------------|---------|-----------------------|
| KAYDON    | Dimensions in Inches      |         |                     |                     |                     |       | Сара                       | cities <sup>(1)</sup> |                          |        | Limiting |                       | Approx. | 3/16" balls           |
| Bearing   |                           | Outside | Land                | Land                | Radia               | (lbs) | Thrust                     | t (lbs)               | Momen                    |        | Speeds   | Max.<br>No Load       | Weight  |                       |
| Number    | Bore                      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | . Static <sup>2</sup> Dyn. |                       | Static <sup>®</sup> Dyn. |        | (RPM**)  |                       | Pounds  |                       |
| JU040XP0  | 4.000                     | 4.750   | 4.150               | 4.547               | 2,100               | 1,417 | 5,260                      | 2,210                 | 4,600                    | 2,326  | 620      | 2.9                   | .55     |                       |
| JU042XP0  | 4.250                     | 5.000   | 4.400               | 4.797               | 2,220               | 1,464 | 5,560                      | 2,290                 | 5,140                    | 2,541  | 590      | 3.2                   | .58     | .500                  |
| JU045XP0  | 4.500                     | 5.250   | 4.650               | 5.047               | 2,340               | 1,510 | 5,860                      | 2,380                 | 5,710                    | 2,762  | 550      | 3.5                   | .61     | F                     |
| JU047XP0  | 4.750                     | 5.500   | 4.900               | 5.295               | 2,460               | 1,556 | 6,160                      | 2,460                 | 6,320                    | 2,991  | 520      | 3.9                   | .65     | .375                  |
| JU050XP0  | 5.000                     | 5.750   | 5.150               | 5.545               | 2,590               | 1,600 | 6,460                      | 2,540                 | 6,950                    | 3,226  | 500      | 4.3                   | .68     |                       |
| JU055XP0  | 5.500                     | 6.250   | 5.650               | 6.042               | 2,830               | 1,687 | 7,060                      | 2,690                 | 8,300                    | 3,717  | 450      | 5.1                   | .74     | L <sub>2</sub>        |
| JU060XP0  | 6.000                     | 6.750   | 6.150               | 6.542               | 3,070               | 1,770 | 7,660                      | 2,840                 | 9,770                    | 4,234  | 410      | 6.1                   | .81     |                       |
| JU065XP0  | 6.500                     | 7.250   | 6.650               | 7.037               | 3,310               | 1,851 | 8,270                      | 2,990                 | 11,370                   | 4,775  | 380      | 7.0                   | .87     | v                     |
| JU070XP0  | 7.000                     | 7.750   | 7.150               | 7.537               | 3,550               | 1,931 | 8,870                      | 3,130                 | 13,080                   | 5,341  | 350      | 8.1                   | .93     |                       |
| JU075XP0  | 7.500                     | 8.250   | 7.650               | 8.037               | 3,790               | 2,007 | 9,470                      | 3,270                 | 14,910                   | 5,930  | 330      | 9.2                   | .99     |                       |
| JU080XP0  | 8.000                     | 8.750   | 8.150               | 8.537               | 4,030               | 2,082 | 10,070                     | 3,410                 | 16,870                   | 6,542  | 310      | 10.4                  | 1.06    | 3 F = .015            |
| JU090XP0  | 9.000                     | 9.750   | 9.150               | 9.535               | 4,510               | 2,226 | 11,270                     | 3,670                 | 21,130                   | 7,830  | 220      | 13.0                  | 1.18    | Bearing               |
| JU100XP0  | 10.000                    | 10.750  | 10.150              | 10.535              | 4,990               | 2,364 | 12,470                     | 3,930                 | 25,880                   | 9,201  | 200      | 16.0                  | 1.31    | corners are           |
| JU110XP0  | 11.000                    | 11.750  | 11.150              | 11.535              | 5,470               | 2,496 | 13,680                     | 4,180                 | 31,110                   | 10,651 | 180      | 19.2                  | 1.43    | normally<br>chamfered |
| *JU120XP0 | 12.000                    | 12.750  | 12.150              | 12.535              | 5,950               | 2,622 | 14,880                     | 4,420                 | 36,830                   | 12,174 | 160      | 22.8                  | 1.56    | chaintered            |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are single bearings with standard lubricant at room temperature and under 5 pound thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

# TYPE X - SEALED REALI-SLIM<sup>®</sup> BEARINGS, FOUR-POINT CONTACT

|           | JG SERIES |          |                     |                     |                     |        |                     |                     |                     |         |          | Snapover separator<br>1/2" balls |              |                     |
|-----------|-----------|----------|---------------------|---------------------|---------------------|--------|---------------------|---------------------|---------------------|---------|----------|----------------------------------|--------------|---------------------|
| KAYDON    | Di        | mensions | s in Inch           | nes                 |                     |        | Capa                | cities <sup>①</sup> |                     |         | Limiting |                                  | Approx.      |                     |
| Bearing   | Davia     | Outside  | Land                | Land                | Radia               | (lbs)  | Thrust              | t (lbs)             | Momen               |         | Speeds   | Max.<br>No Load                  | Weight<br>in |                     |
| Number    | Bore      | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.   | Static <sup>2</sup> | Dyn.                | Static <sup>2</sup> | Dyn.    | (RPM**)  | (in-lb) <sup>@</sup>             | Pounds       |                     |
| *JG070XP0 | 7.000     | 9.000    | 7.554               | 8.602               | 13,130              | 10,208 | 32,830              | 15,400              | 52,530              | 30,636  | 240      | 17                               | 5.8          |                     |
| *JG075XP0 | 7.500     | 9.500    | 8.054               | 9.102               | 13,680              | 10,410 | 34,200              | 15,820              | 58,140              | 33,196  | 225      | 19                               | 6.1          | ◀ 1.000 -►          |
| *JG080XP0 | 8.000     | 10.000   | 8.554               | 9.602               | 14,770              | 10,882 | 36,940              | 16,650              | 66,480              | 36,743  | 210      | 21                               | 6.5          | F 🔨                 |
| *JG090XP0 | 9.000     | 11.000   | 9.554               | 10.602              | 16,420              | 11,526 | 41,040              | 17,870              | 82,080              | 43,240  | 190      | 26                               | 7.2          |                     |
| *JG100XP0 | 10.000    | 12.000   | 10.554              | 11.602              | 18,060              | 12,147 | 45,140              | 19,040              | 99,320              | 50,124  | 175      | 32                               | 7.9          | 1.000               |
| *JG110XP0 | 11.000    | 13.000   | 11.554              | 12.602              | 19,700              | 12,739 | 49,250              | 20,180              | 118,200             | 57,347  | 160      | 38                               | 8.6          |                     |
| *JG120XP0 | 12.000    | 14.000   | 12.554              | 13.602              | 21,340              | 13,315 | 53,350              | 21,280              | 138,700             | 64,935  | 140      | 44                               | 9.3          |                     |
| *JG140XP0 | 14.000    | 16.000   | 14.554              | 15.602              | 24,620              | 14,404 | 61,560              | 34,410              | 184,700             | 81,056  | 125      | 59                               | 10.8         |                     |
| *JG160XP0 | 16.000    | 18.000   | 16.554              | 17.602              | 27,910              | 15,425 | 69,770              | 25,450              | 237,200             | 98,373  | 110      | 76                               | 12.3         | -1                  |
| *JG180XP0 | 18.000    | 20.000   | 18.554              | 19.602              | 31,190              | 16,386 | 77,980              | 27,410              | 296,300             | 116,793 | 100      | 95                               | 13.7         |                     |
| *JG200XP0 | 20.000    | 22.000   | 20.554              | 21.602              | 34,470              | 17,293 | 86,180              | 29,300              | 362,000             | 136,238 | 90       | 115                              | 15.8         |                     |
| *JG220XP0 | 22.000    | 24.000   | 22.554              | 23.602              | 37,750              | 18,152 | 94,390              | 31,130              | 434,200             | 156,625 | 80       | 138                              | 16.8         |                     |
| *JG250XP0 | 25.000    | 27.000   | 25.554              | 26.602              | 42,680              | 19,360 | 106,700             | 33,780              | 554,900             | 188,838 | 75       | 177                              | 19.5         |                     |
| *JG300XP0 | 30.000    | 32.000   | 30.554              | 31.602              | 50,890              | 21,200 | 127,200             | 37,980              | 788,800             | 246,541 | 60       | 252                              | 23.3         | ③ F = .080          |
| *JG350XP0 | 35.000    | 37.000   | 35.554              | 36.602              | 59,100              | 22,845 | 147,700             | 41,970              | 1,064,000           | 308,527 | 55       | 339                              | 27.1         | Bearing corners are |
| *JG400XP0 | 40.000    | 42.000   | 40.554              | 41.602              | 63,310              | 24,332 | 168,300             | 45,770              | 1,380,000           | 374,256 | 50       | 440                              | 30.8         | normally chamfered  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

\* Contact KAYDON for lead time and minimum purchase requirement.

## CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

## **NEED SERVICE FAST?**

## 1-800-514-3066

Website: www.kaydonbearings.com

# Section 2-Selection Tables

# ENDURAKOTE® Plating for Corrosion-Resistant Bearings (Series L, N)

# Introduction

ENDURAKOTE® plating protects bearings from corrosion and provides substantial life improvements in hostile environments. ENDURAKOTE® plating is applied over conventional bearing materials such as AISI 52100 steel, and offers the benefit of corrosion resistance normally found only in stainless steel bearings. The coating is applied to each entire bearing race ring, including the paths, thus leaving no area exposed. Other commercial chrome or cadmium coatings normally accepted and used cannot be applied to the path due to the rolling contact stresses. ENDURAKOTE® plating is hard chromium, electrodeposited by a proprietary process which achieves a true molecular bond, and will not flake or peel even under the high contact stresses experienced in the bearing paths.

Laboratory and field testing results have proven the benefits of this process. Severe salt spray testing has shown that bearings with ENDURAKOTE® plating withstand corrosion as well as or better than AISI 440C stainless steel. The hard, dense exterior surface formed by the coating is extremely wear resistant and is excellent in the retention of the lubricant film. Conventional life testing of AISI 52100 steel bearings with ENDURAKOTE® plating has shown that no life de-rating is necessary. In fact, the extremely hard surface of ENDURAKOTE® plating protects the bearing from surface generated damage which can promote premature failure. Since the coating is capable of withstanding extremely high temperatures, the bearings are limited by the bearing materials or lubricant used.

The coating used for ENDURAKOTE® plating can be applied to any type of bearing and to most bearing materials. Its primary advantage is to utilize stock materials such as AISI 52100, etc. with their economies, and convert them to wear and corrosion resistant bearings. This is particularly beneficial for larger diameter bearings or where quick delivery is critical. Thus, cost savings can be achieved over more exotic or specialized materials. Also, stock bearings can have ENDURAKOTE® plating applied for quick delivery.

The net result is that we can offer bearings with the capacity of conventional bearing steels and the corrosion resistance of AISI 440C stainless steel from standard AISI 52100 stock components.

# Application

ENDURAKOTE® plating provides corrosion resistance and is effective in increasing wear resistance in sliding surface contacts such as the lands where the cage pilots. The micro-surface composition of ENDURAKOTE® plating aids in lubricant dispersion, enhancing base metals to the degree of reducing or eliminating galling, seizing, and high friction, over a wide range of installations and environments.

# Advantages

ENDURAKOTE<sup>®</sup> plating effects a buildup of less than .0002 under normal circumstances. Thus, it can often be applied to stock bearing components which have been specially selected. ENDURAKOTE<sup>®</sup> plating is compatible with most ferrous and nonferrous metal, allowing maximum flexibility in selection of base material. ENDURAKOTE<sup>®</sup> plating is normally a final process, and its quality is constant with any given base metal, insuring design reproducibility.

# **Properties and Characteristics**

# A. Hardness

ENDURAKOTE® plating, as deposited, has an equivalent hardness in excess of 70 Rockwell "C." When measured by conventional micro-hardness methods, the host material will modify this measurement to some degree.

# **B.** Coefficient of Friction

(Note: Measurements made at 72°F, using other materials for comparison.)

| Material                           | Against Material                   | Static — Sliding |
|------------------------------------|------------------------------------|------------------|
| Steel                              | Steel                              | 0.30 — 0.20      |
| Steel                              | Brass, Bronze                      | 0.25 — 0.20      |
| Steel                              | ENDURAKOTE <sup>®</sup><br>plating | 0.17 — 0.16      |
| Brass, Bronze                      | ENDURAKOTE <sup>®</sup><br>plating | 0.15 — 0.13      |
| ENDURAKOTE <sup>®</sup><br>plating | ENDURAKOTE <sup>®</sup><br>plating | 0.14 — 0.12      |

## **ENDURAKOTE®** Plating (continued)

## C. Adhesion

ENDURAKOTE<sup>®</sup> plating will not flake, crack, chip, peel or otherwise separate from the base material under standard bend tests or under conditions where severe heat is induced. The adherence is adequate to withstand the extremely high compressive stresses in the contact areas of ball and roller bearings.

## D. Effect On Base

The purity of the chromium surface will not be less than 99% as deposited. A comprehensive testing program at KAYDON established that bearings with ENDURAKOTE<sup>®</sup> plating exhibited load carrying capacities and life expectancy equal to or better than uncoated AISI 52100 steel bearings.

## **E.** Corrosion Resistance

ENDURAKOTE® plating resists attack by most organic and inorganic compounds with a pH within the range of 4 and 11, except sulfuric and hydrochloric acids. Porosity of the base metal, compound concentration and exposure time to the compound become corrosion factors, but ENDURAKOTE® plating greatly enhances the base material. In severe salt spray tests as well as tap water immersion tests, AISI 52100 steel with ENDURAKOTE<sup>®</sup> plating proved equal to fully hardened AISI 440C stainless steel in resistance to rusting. In many instances, ENDURAKOTE® plating is better for corrosion protection than cadmium plate, zinc plate, phosphates, chromates, black oxide or normal chrome plate. We invite inquiries about and will be pleased to arrange tests to qualify ENDURAKOTE® plating for specific environments.

#### F. Heat Resistance

REALI-SLIM<sup>®</sup> bearings with ENDURAKOTE<sup>®</sup> plating are designed to maintain their operating characteristics over a temperature range from -65°F to 250°F.

## G. Surface Quality

ENDURAKOTE<sup>®</sup> plating conforms to the texture of the existing surface. Ra finish will be improved slightly down to about 8 Ra; below 4 Ra there is little change. ENDURAKOTE<sup>®</sup> plating has a matte or micro-orange peel surface with very good lubricant retention qualities.

#### **H. Food Industries**

ENDURAKOTE<sup>®</sup> plating is used on food processing equipment.

## I. Load Capacity

ENDURAKOTE<sup>®</sup> plating does not affect the static or dynamic load capacity of the bearing. These values can be found by looking up the corresponding part number starting with "K" in the standard REALI-SLIM<sup>®</sup> bearing tables.

## **Bearing Size Capabilities**

ENDURAKOTE<sup>®</sup> plating can be applied to any REALI-SLIM<sup>®</sup> bearing.

## Restrictions

KAYDON does not recommend the use of ENDURAKOTE<sup>®</sup> plating in any low torque or torquesensitive applications.
### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearing Selections**

### **Type A** Angular Contact

A deep groove bearing with reduced shoulder on one side of inner or outer race ball path. Snapover assembly permits use of a one-piece circular pocket ring separator and greater ball complement. These bearings will accept radial load and single direction thrust load and are normally used in conjunction with another bearing of similar construction. Type A bearings require the application of thrust to establish contact angle. Stock bearings are individual units and when purchased as such must be adjusted at installation to desired running clearance or preload. Matched sets are available. KAYDON also offers matched spacers for applications requiring extra precision.

|           | NAA SERIES                                                                            |         |                     |                     |                     |                     |      |                     |      |              |            |  |  |
|-----------|---------------------------------------------------------------------------------------|---------|---------------------|---------------------|---------------------|---------------------|------|---------------------|------|--------------|------------|--|--|
| KAYDON    | KANDON         Dimensions in Inches         Capacities in Pounds <sup>®</sup> Approx. |         |                     |                     |                     |                     |      |                     |      |              |            |  |  |
| Bearing   |                                                                                       | Outside | Land                | Land                | C'Bore              | Rad                 | dial | Thrust              |      | Weight       | .1875 -    |  |  |
| Number    | Bore                                                                                  | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>®</sup> | Dyn. | Static <sup>2</sup> | Dyn. | IN<br>Pounds | F - 1875   |  |  |
| *NAA10AG0 | 1.0000                                                                                | 1.3752  | 1.140               | 1.235               | 1.274               | 340                 | 194  | 970                 | 450  | .025         |            |  |  |
| *NAA15AG0 | 1.5000                                                                                | 1.8752  | 1.640               | 1.735               | 1.774               | 480                 | 238  | 1,380               | 560  | .038         |            |  |  |
| *NAA17AG0 | <b>17AG0 1.7500</b> 2.1252 1.890 1.985 2.024 530 251 1,520 600 .045                   |         |                     |                     |                     |                     |      |                     |      |              | ③ F = .015 |  |  |

|           | NA SERIES |         |                     |                     |                     |                     |           |                     |       |              |                     |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------------------|---------------------|-----------|---------------------|-------|--------------|---------------------|--|--|--|
| KAYDON    |           | Dimer   | nsions in           | Inches              |                     | C                   | apacities | in Pounds           | 0     | Approx.      | 1/8" balls          |  |  |  |
| Bearing   | Dam       | Outside | Land                | Land                | C'Bore              | Rad                 | lial      | Thr                 | ust   | Weight<br>in |                     |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>®</sup> | Dyn.      | Static <sup>2</sup> | Dyn.  | Pounds       |                     |  |  |  |
| *NA020AR0 | 2.0000    | 2.5002  | 2.186               | 2.314               | 2.369               | 790                 | 405       | 2,280               | 960   | .10          |                     |  |  |  |
| *NA025AR0 | 2.5000    | 3.0002  | 2.686               | 2.814               | 2.869               | 960                 | 459       | 2,780               | 1,100 | .12          |                     |  |  |  |
| *NA030AR0 | 3.0000    | 3.5002  | 3.186               | 3.314               | 3.367               | 1,140               | 507       | 3,290               | 1,230 | .14          |                     |  |  |  |
| *NA035AR0 | 3.5000    | 4.0002  | 3.686               | 3.814               | 3.867               | 1,310               | 552       | 3,790               | 1,350 | .17          | .250 🗕              |  |  |  |
| *NA040AR0 | 3.9998    | 4.5003  | 4.186               | 4.314               | 4.367               | 1,490               | 595       | 4,300               | 1,470 | .19          | F                   |  |  |  |
| *NA042AR0 | 4.2498    | 4.7503  | 4.436               | 4.564               | 4.615               | 1,580               | 616       | 4,550               | 1,530 | .20          |                     |  |  |  |
| *NA045AR0 | 4.4998    | 5.0003  | 4.686               | 4.814               | 4.865               | 1,660               | 637       | 4,810               | 1,580 | .21          |                     |  |  |  |
| *NA047AR0 | 4.7498    | 5.2503  | 4.936               | 5.064               | 5.115               | 1,750               | 657       | 5,060               | 1,640 | .22          |                     |  |  |  |
| *NA050AR0 | 4.9998    | 5.5003  | 5.186               | 5.314               | 5.365               | 1,840               | 676       | 5,310               | 1,690 | .23          |                     |  |  |  |
| *NA055AR0 | 5.4998    | 6.0003  | 5.686               | 5.814               | 5.863               | 2,020               | 715       | 5,820               | 1,800 | .25          |                     |  |  |  |
| *NA060AR0 | 5.9998    | 6.5003  | 6.186               | 6.314               | 6.363               | 2,190               | 752       | 6,320               | 1,900 | .28          |                     |  |  |  |
| *NA065AR0 | 6.4998    | 7.0003  | 6.686               | 6.814               | 6.861               | 2,370               | 788       | 6,830               | 2,000 | .30          |                     |  |  |  |
| *NA070AR0 | 6.9998    | 7.5003  | 7.186               | 7.314               | 7.361               | 2,540               | 823       | 7,340               | 2,100 | .32          |                     |  |  |  |
| *NA075AR0 | 7.4998    | 8.0003  | 7.686               | 7.814               | 7.861               | 2,720               | 857       | 7,840               | 2,190 | .34          |                     |  |  |  |
| *NA080AR0 | 7.9998    | 8.5003  | 8.186               | 8.314               | 8.359               | 2,890               | 890       | 8,350               | 2,280 | .36          |                     |  |  |  |
| *NA090AR0 | 8.9998    | 9.5003  | 9.186               | 9.314               | 9.357               | 3,240               | 954       | 9,360               | 2,470 | .41          |                     |  |  |  |
| *NA100AR0 | 9.9998    | 10.5003 | 10.186              | 10.314              | 10.355              | 3,590               | 1,014     | 10,370              | 2,640 | .45          | ③ F = .025          |  |  |  |
| *NA110AR0 | 10.9998   | 11.5003 | 11.186              | 11.314              | 11.353              | 3,940               | 1,072     | 11,380              | 2,810 | .50          | Bearing corners are |  |  |  |
| *NA120AR0 | 11.9998   | 12.5003 | 12.186              | 12.314              | 12.349              | 4,290               | 1,128     | 12,390              | 2,970 | .54          | normally chamfered  |  |  |  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.
 ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

#### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings Type A Angular Contact**

|           | NB SERIES |         |                     |                     |         |                     |           |                     |       |         |                          |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|-------|---------|--------------------------|--|--|--|
| KAYDON    |           | Dimer   | nsions in l         | nches               |         | Ca                  | apacities | in Pounds           | 0     | Approx. | separator<br>5/32" balls |  |  |  |
| Bearing   | _         | Outside | Land                | Land                | C'Bore  | Rac                 | dial      | Thr                 | ust   | Weight  |                          |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>2</sup> | Dyn.      | Static <sup>2</sup> | Dyn.  | Pounds  |                          |  |  |  |
| *NB020AR0 | 2.0000    | 2.6252  | 2.231               | 2.393               | 2.464   | 1,090               | 601       | 3,150               | 1,380 | .15     |                          |  |  |  |
| *NB025AR0 | 2.5000    | 3.1252  | 2.731               | 2.893               | 2.964   | 1,340               | 675       | 3,860               | 1,590 | .19     |                          |  |  |  |
| *NB030AR0 | 3.0000    | 3.6252  | 3.231               | 3.393               | 3.462   | 1,550               | 734       | 4,470               | 1,750 | .22     |                          |  |  |  |
| *NB035AR0 | 3.5000    | 4.1252  | 3.731               | 3.893               | 3.962   | 1,790               | 801       | 5,180               | 1,930 | .27     |                          |  |  |  |
| *NB040AR0 | 3.9998    | 4.6253  | 4.231               | 4.393               | 4.460   | 2,040               | 865       | 5,890               | 2,100 | .30     | .3125-                   |  |  |  |
| *NB042AR0 | 4.2498    | 4.8753  | 4.481               | 4.643               | 4.710   | 2,150               | 891       | 6,200               | 2,170 | .31     | F – I – V                |  |  |  |
| *NB045AR0 | 4.4998    | 5.1253  | 4.731               | 4.893               | 4.960   | 2,250               | 917       | 6,500               | 2,240 | .34     | ▲ (A) <u>↓</u> .3125     |  |  |  |
| *NB047AR0 | 4.7498    | 5.3753  | 4.981               | 5.143               | 5.210   | 2,390               | 951       | 6,910               | 2,340 | .35     |                          |  |  |  |
| *NB050AR0 | 4.9998    | 5.6253  | 5.231               | 5.393               | 5.460   | 2,500               | 976       | 7,210               | 2,410 | .37     | L <sub>2</sub>           |  |  |  |
| *NB055AR0 | 5.4998    | 6.1253  | 5.731               | 5.893               | 5.958   | 2,740               | 1,033     | 7,920               | 2,560 | .40     |                          |  |  |  |
| *NB060AR0 | 5.9998    | 6.6253  | 6.231               | 6.393               | 6.458   | 2,990               | 1,088     | 8,630               | 2,710 | .44     | -1                       |  |  |  |
| *NB065AR0 | 6.4998    | 7.1253  | 6.731               | 6.893               | 6.958   | 3,200               | 1,132     | 9,240               | 2,840 | .47     |                          |  |  |  |
| *NB070AR0 | 6.9998    | 7.6253  | 7.231               | 7.393               | 7.456   | 3,450               | 1,184     | 9,960               | 2,980 | .50     |                          |  |  |  |
| *NB075AR0 | 7.4998    | 8.1253  | 7.731               | 7.893               | 7.955   | 3,700               | 1,235     | 10,670              | 3,120 | .54     |                          |  |  |  |
| *NB080AR0 | 7.9998    | 8.6253  | 8.231               | 8.393               | 8.453   | 3,940               | 1,284     | 11,380              | 3,260 | .57     |                          |  |  |  |
| *NB090AR0 | 8.9998    | 9.6253  | 9.231               | 9.393               | 9.451   | 4,400               | 1,370     | 12,700              | 3,510 | .64     |                          |  |  |  |
| *NB100AR0 | 9.9998    | 10.6253 | 10.231              | 10.393              | 10.449  | 4,890               | 1,461     | 14,120              | 3,760 | .71     |                          |  |  |  |
| *NB110AR0 | 10.9998   | 11.6253 | 11.231              | 11.393              | 11.447  | 5,350               | 1,540     | 15,440              | 4,000 | .78     |                          |  |  |  |
| *NB120AR0 | 11.9998   | 12.6253 | 12.231              | 12.393              | 12.445  | 5,840               | 1,623     | 16,860              | 4,240 | .85     |                          |  |  |  |
| *NB140AR0 | 13.9998   | 14.6253 | 14.231              | 14.393              | 14.439  | 6,760               | 1,767     | 19,500              | 4,670 | .98     |                          |  |  |  |
| *NB160AR0 | 15.9998   | 16.6253 | 16.231              | 16.393              | 16.433  | 7,710               | 1,907     | 22,250              | 5,100 | 1.12    | ③ F = .040               |  |  |  |
| *NB180AR0 | 17.9998   | 18.6253 | 18.231              | 18.393              | 18.425  | 8,660               | 2,038     | 24,990              | 5,510 | 1.26    | Bearing corners are      |  |  |  |
| *NB200AR0 | 19.9998   | 20.6253 | 20.231              | 20.393              | 20.416  | 9,610               | 2,162     | 27,730              | 5,900 | 1.40    | normally chamfered       |  |  |  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

#### CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

#### **NEED SERVICE FAST?**

#### 1-800-514-3066

Website: www.kaydonbearings.com

#### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings Type A Angular Contact**

|           | NC SERIES |         |                     |                     |         |                     |           |                     |        |         |                               |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|--------|---------|-------------------------------|--|--|--|
| KAYDON    |           | Dimer   | nsions in           | nches               |         | Ca                  | apacities | in Pound            | 50     | Approx. | 3/16" balls                   |  |  |  |
| Bearing   | Dava      | Outside | Land                | Land                | C'Bore  | Rac                 | lial      | Thr                 | ust    | Weight  |                               |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>®</sup> | Dyn.      | Static <sup>2</sup> | Dyn.   | Pounds  |                               |  |  |  |
| *NC040AR0 | 3.9998    | 4.7503  | 4.277               | 4.473               | 4.554   | 2,550               | 1,153     | 7,360               | 2,770  | .44     |                               |  |  |  |
| *NC042AR0 | 4.2498    | 5.0003  | 4.527               | 4.723               | 4.804   | 2,710               | 1,194     | 7,820               | 2,880  | .46     |                               |  |  |  |
| *NC045AR0 | 4.4998    | 5.2503  | 4.777               | 4.973               | 5.052   | 2,860               | 1,234     | 8,270               | 2,990  | .49     |                               |  |  |  |
| *NC047AR0 | 4.7498    | 5.5003  | 5.027               | 5.223               | 5.302   | 3,020               | 1,274     | 8,720               | 3,100  | .51     |                               |  |  |  |
| *NC050AR0 | 4.9998    | 5.7503  | 5.277               | 5.473               | 5.552   | 3,180               | 1,313     | 9,170               | 3,200  | .54     | .375                          |  |  |  |
| *NC055AR0 | 5.4998    | 6.2503  | 5.777               | 5.973               | 6.052   | 3,440               | 1,374     | 9,920               | 3,370  | .58     | F                             |  |  |  |
| *NC060AR0 | 5.9998    | 6.7503  | 6.277               | 6.473               | 6.550   | 3,750               | 1,448     | 10,820              | 3,580  | .64     | <b>T</b> .375                 |  |  |  |
| *NC065AR0 | 6.4998    | 7.2503  | 6.777               | 6.973               | 7.050   | 4,060               | 1,519     | 11,720              | 3,770  | .68     |                               |  |  |  |
| *NC070AR0 | 6.9998    | 7.7503  | 7.277               | 7.473               | 7.550   | 4,320               | 1,575     | 12,470              | 3,930  | .74     |                               |  |  |  |
| *NC075AR0 | 7.4998    | 8.2503  | 7.777               | 7.973               | 8.048   | 4,630               | 1,642     | 13,380              | 4,120  | .78     | L <sub>2</sub> L <sub>3</sub> |  |  |  |
| *NC080AR0 | 7.9998    | 8.7503  | 8.277               | 8.473               | 8.548   | 4,950               | 1,708     | 14,280              | 4,300  | .84     | L <sub>1</sub>                |  |  |  |
| *NC090AR0 | 8.9998    | 9.7503  | 9.277               | 9.473               | 9.546   | 5,520               | 1,822     | 15,930              | 4,630  | .98     |                               |  |  |  |
| *NC100AR0 | 9.9998    | 10.7503 | 10.277              | 10.473              | 10.544  | 6,140               | 1,942     | 17,730              | 4,970  | 1.04    |                               |  |  |  |
| *NC110AR0 | 10.9998   | 11.7503 | 11.277              | 11.473              | 11.542  | 6,720               | 2,047     | 19,390              | 5,280  | 1.14    |                               |  |  |  |
| *NC120AR0 | 11.9998   | 12.7503 | 12.277              | 12.473              | 12.540  | 7,290               | 2,147     | 21,040              | 5,570  | 1.23    |                               |  |  |  |
| *NC140AR0 | 13.9998   | 14.7503 | 14.277              | 14.473              | 14.535  | 8,490               | 2,347     | 24,500              | 6,170  | 1.43    |                               |  |  |  |
| *NC160AR0 | 15.9998   | 16.7503 | 16.277              | 16.473              | 16.529  | 9,680               | 2,533     | 27,950              | 6,730  | 1.63    |                               |  |  |  |
| *NC180AR0 | 17.9998   | 18.7503 | 18.277              | 18.473              | 18.523  | 10,880              | 2,707     | 31,410              | 7,280  | 1.83    |                               |  |  |  |
| *NC200AR0 | 19.9998   | 20.7503 | 20.277              | 20.473              | 20.517  | 12,030              | 2,863     | 34,720              | 7,780  | 2.03    | ③ F = .040                    |  |  |  |
| *NC250AR0 | 24.9998   | 25.7503 | 25.277              | 25.473              | 25.500  | 14,900              | 3,233     | 43,280              | 9,010  | 2.52    | Bearing corners are           |  |  |  |
| *NC300AR0 | 29.9998   | 30.7503 | 30.277              | 30.473              | 30.484  | 17,960              | 3,561     | 51,850              | 10,160 | 3.02    | normally chamfered            |  |  |  |

|           | ND SERIES |         |                     |                     |         |                     |           |                     |                       |         |                     |  |  |  |
|-----------|-----------|---------|---------------------|---------------------|---------|---------------------|-----------|---------------------|-----------------------|---------|---------------------|--|--|--|
| KAYDON    |           | Dimer   | nsions in I         | Inches              |         | Ca                  | apacities | in Pounds           | <b>5</b> <sup>①</sup> | Approx. | 1/4" balls          |  |  |  |
| Bearing   | Dama      | Outside | Land                | Land                | C'Bore  | Rac                 | lial      | Thr                 | ust                   | Weight  |                     |  |  |  |
| Number    | Bore      | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃ | Static <sup>®</sup> | Dyn.      | Static <sup>®</sup> | Dyn.                  | Pounds  |                     |  |  |  |
| *ND040AR0 | 3.9998    | 5.0003  | 4.370               | 4.630               | 4.741   | 3,550               | 1,819     | 10,260              | 4,260                 | .80     |                     |  |  |  |
| *ND042AR0 | 4.2498    | 5.2503  | 4.620               | 4.880               | 4.991   | 3,750               | 1,876     | 10,830              | 4,420                 | .84     |                     |  |  |  |
| *ND045AR0 | 4.4998    | 5.5003  | 4.870               | 5.130               | 5.241   | 3,950               | 1,931     | 11,400              | 4,570                 | .88     |                     |  |  |  |
| *ND047AR0 | 4.7498    | 5.7503  | 5.120               | 5.380               | 5.490   | 4,150               | 1,986     | 11,970              | 4,720                 | .93     |                     |  |  |  |
| *ND050AR0 | 4.9998    | 6.0003  | 5.370               | 5.630               | 5.740   | 4,340               | 2,040     | 12,540              | 4,870                 | .98     | .500 🖛              |  |  |  |
| *ND055AR0 | 5.4998    | 6.5003  | 5.870               | 6.130               | 6.238   | 4,740               | 2,145     | 13,680              | 5,160                 | 1.06    | F-                  |  |  |  |
| *ND060AR0 | 5.9998    | 7.0003  | 6.370               | 6.630               | 6.738   | 5,130               | 2,247     | 14,820              | 5,440                 | 1.15    |                     |  |  |  |
| *ND065AR0 | 6.4998    | 7.5003  | 6.870               | 7.130               | 7.236   | 5,530               | 2,346     | 15,960              | 5,720                 | 1.24    | ▲ .500              |  |  |  |
| *ND070AR0 | 6.9998    | 8.0003  | 7.370               | 7.630               | 7.736   | 5,920               | 2,442     | 17,100              | 5,990                 | 1.33    |                     |  |  |  |
| *ND075AR0 | 7.4998    | 8.5003  | 7.870               | 8.130               | 8.236   | 6,320               | 2,536     | 18,240              | 6,250                 | 1.42    |                     |  |  |  |
| *ND080AR0 | 7.9998    | 9.0003  | 8.370               | 8.630               | 8.734   | 6,710               | 2,627     | 19,380              | 6,510                 | 1.52    |                     |  |  |  |
| *ND090AR0 | 8.9998    | 10.0003 | 9.370               | 9.630               | 9.732   | 7,500               | 2,803     | 21,660              | 7,010                 | 1.69    |                     |  |  |  |
| *ND100AR0 | 9.9998    | 11.0003 | 10.370              | 10.630              | 10.732  | 8,290               | 2,972     | 23,940              | 7,500                 | 1.87    |                     |  |  |  |
| *ND110AR0 | 10.9998   | 12.0003 | 11.370              | 11.630              | 11.730  | 9,080               | 3,133     | 26,220              | 7,960                 | 2.05    |                     |  |  |  |
| *ND120AR0 | 11.9998   | 13.0003 | 12.370              | 12.630              | 12.728  | 9,870               | 3,288     | 28,500              | 8,420                 | 2.23    |                     |  |  |  |
| *ND140AR0 | 13.9998   | 15.0003 | 14.370              | 14.630              | 14.724  | 11,450              | 3,582     | 33,060              | 9,290                 | 2.57    |                     |  |  |  |
| *ND160AR0 | 15.9998   | 17.0003 | 16.370              | 16.630              | 16.718  | 13,030              | 3,856     | 37,620              | 10,130                | 2.93    |                     |  |  |  |
| *ND180AR0 | 17.9998   | 19.0003 | 18.370              | 18.630              | 18.712  | 14,610              | 4,113     | 42,180              | 10,930                | 3.29    |                     |  |  |  |
| *ND200AR0 | 19.9998   | 21.0003 | 20.370              | 20.630              | 20.705  | 16,190              | 4,356     | 46,740              | 11,710                | 3.65    |                     |  |  |  |
| *ND210AR0 | 20.9998   | 22.0003 | 21.370              | 21.630              | 21.700  | 16,981              | 4,472     | 49,020              | 12,086                | 3.83    | ③ F = .060          |  |  |  |
| *ND250AR0 | 24.9998   | 26.0003 | 25.370              | 25.630              | 25.688  | 20,140              | 4,908     | 58,140              | 13,540                | 4.54    | Bearing corners are |  |  |  |
| *ND300AR0 | 29.9998   | 31.0003 | 30.370              | 30.630              | 30.672  | 24,090              | 5,397     | 69,540              | 15,260                | 5.44    | normally chamfered  |  |  |  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

2 Static capacities are non-brinell limits based on rigid support from the shaft and housing.
 3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings** Type A Angular Contact

| <b>J</b> 1= - |         |         |                     |                     |             |                     |           |                     |        |              |                                        |  |
|---------------|---------|---------|---------------------|---------------------|-------------|---------------------|-----------|---------------------|--------|--------------|----------------------------------------|--|
|               |         |         |                     | NF S                | SERIE       | S                   |           |                     |        |              | Circular pocket<br>separator           |  |
| KAYDON        |         | Dimer   | sions in l          | nches               |             | C                   | apacities | in Pounds           | 50     | Approx.      | 3/8" balls                             |  |
| Bearing       | Dere    | Outside | Land                | Land                | Land C'Bore |                     | dial      | Thr                 | ust    | Weight<br>in |                                        |  |
| Number        | Bore    | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L₃     | Static <sup>®</sup> | Dyn.      | Static <sup>®</sup> | Dyn.   | Pounds       |                                        |  |
| *NF040AR0     | 3.9998  | 5.5003  | 4.555               | 4.945               | 5.115       | 6,350               | 3,736     | 18,340              | 8,420  | 1.92         |                                        |  |
| *NF042AR0     | 4.2498  | 5.7503  | 4.805               | 5.195               | 5.365       | 6,600               | 3,805     | 19,050              | 8,630  | 2.04         |                                        |  |
| *NF045AR0     | 4.4998  | 6.0003  | 5.060               | 5.445               | 5.615       | 7,090               | 3,966     | 20,460              | 9,050  | 2.14         | 750                                    |  |
| *NF047AR0     | 4.7498  | 6.2503  | 5.305               | 5.695               | 5.865       | 7,330               | 4,034     | 21,160              | 9,260  | 2.26         | —————————————————————————————————————— |  |
| *NF050AR0     |         |         |                     |                     |             |                     |           |                     |        |              |                                        |  |
| *NF055AR0     | 5.4998  | 7.0003  | 6.055               | 6.445               | 6.613       | 8,310               | 4,319     | 23,980              | 10,060 | 2.59         |                                        |  |
| *NF060AR0     | 5.9998  | 7.5003  | 6.555               | 6.945               | 7.113       | 9,040               | 4,530     | 26,100              | 10,650 | 2.72         | .750                                   |  |
| *NF065AR0     | 6.4998  | 8.0003  | 7.055               | 7.445               | 7.613       | 9,770               | 4,734     | 28,220              | 11,220 | 2.94         |                                        |  |
| *NF070AR0     | 6.9998  | 8.5003  | 7.555               | 7.945               | 8.113       | 10,510              | 4,932     | 30,330              | 11,770 | 3.16         |                                        |  |
| *NF075AR0     | 7.4998  | 9.0003  | 8.055               | 8.445               | 8.610       | 11,000              | 5,052     | 31,740              | 12,130 | 3.39         | L2     L3                              |  |
| *NF080AR0     | 7.9998  | 9.5003  | 8.555               | 8.945               | 9.110       | 11,730              | 5,242     | 33,860              | 12,670 | 3.61         | - 1                                    |  |
| *NF090AR0     | 8.9998  | 10.5003 | 9.555               | 9.945               | 10.108      | 13,190              | 5,608     | 38,090              | 13,700 | 3.95         |                                        |  |
| *NF100AR0     | 9.9998  | 11.5003 | 10.555              | 10.945              | 11.106      | 14,420              | 5,890     | 41,620              | 14,530 | 4.40         | •                                      |  |
| *NF110AR0     | 10.9998 | 12.5003 | 11.555              | 11.945              | 12.106      | 15,880              | 6,227     | 45,850              | 15,500 | 4.75         |                                        |  |
| *NF120AR0     | 11.9998 | 13.5003 | 12.555              | 12.945              | 13.104      | 17,100              | 6,487     | 49,380              | 16,290 | 5.20         |                                        |  |
| *NF140AR0     | 13.9998 | 15.5003 | 14.555              | 14.945              | 15.102      | 19,790              | 7,043     | 57,140              | 17,950 | 5.76         |                                        |  |
| *NF160AR0     | 15.9998 | 17.5003 | 16.555              | 16.945              | 17.098      | 22,480              | 7,563     | 64,890              | 19,540 | 6.78         |                                        |  |
| *NF180AR0     | 17.9998 | 19.5003 | 18.555              | 18.945              | 19.096      | 25,410              | 8,103     | 73,360              | 21,210 | 7.67         |                                        |  |
| *NF200AR0     | 19.9998 | 21.5003 | 20.555              | 20.945              | 21.092      | 28,100              | 8,562     | 81,120              | 22,680 | 8.47         |                                        |  |
| *NF250AR0     | 24.9998 | 26.5003 | 25.555              | 25.945              | 26.085      | 34,700              | 9,585     | 100,200             | 26,100 | 10.50        |                                        |  |
| *NF300AR0     | 29.9998 | 31.5003 | 30.555              | 30.945              | 31.075      | 41,540              | 10,533    | 119,900             | 29,430 | 12.50        | ③ F = .080                             |  |
| *NF350AR0     | 34.9998 |         | 35.555              | 35.945              | 36.064      | 48,380              | 11,382    | 139,700             | 32,580 | 14.60        | Bearing corners are                    |  |
| *NF400AR0     | 39.9998 | 41.5003 | 40.555              | 40.945              | 41.054      | 55,220              | 12,147    | 159,400             | 35,580 | 16.60        | normally chamfered                     |  |
|               |         |         |                     | NG                  | SERIE       | S                   |           |                     |        |              | Circular pocket                        |  |

|           |         | Circular pocket<br>separator |                     |                     |                     |                     |           |                     |              |         |                     |
|-----------|---------|------------------------------|---------------------|---------------------|---------------------|---------------------|-----------|---------------------|--------------|---------|---------------------|
| KAYDON    |         | Dimer                        | nsions in l         | Inches              |                     | Ci                  | apacities | in Pounds           | <sup>0</sup> | Approx. | 1/2" balls          |
| Bearing   | Bore    | Outside                      | Land                | Land                | C'Bore              | Rac                 | lial      | Thr                 | ust          | Weight  |                     |
| Number    | DOIE    | Dia.                         | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>2</sup> | Dyn.      | Static <sup>2</sup> | Dyn.         | Pounds  |                     |
| *NG040AR0 | 3.9998  | 6.0003                       | 4.742               | 5.258               | 5.491               | 9,480               | 6,281     | 27,360              | 13,630       | 3.61    |                     |
| *NG042AR0 | 4.2498  | 6.2503                       | 4.992               | 5.508               | 5.741               | 9,950               | 6,438     | 28,730              | 14,090       | 3.83    |                     |
| *NG045AR0 | 4.4998  | 6.5003                       | 5.242               | 5.758               | 5.989               | 10,430              | 6,562     | 30,100              | 14,530       | 3.95    |                     |
| *NG047AR0 | 4.7498  | 6.7503                       | 5.492               | 6.008               | 6.239               | 10,900              | 6,745     | 31,460              | 14,970       | 4.17    | ◀ 1.000 →           |
| *NG050AR0 | 4.9998  | 7.0003                       | 5.742               | 6.258               | 6.489               | 11,370              | 6,897     | 32,830              | 15,400       | 4.42    | F                   |
| *NG055AR0 | 5.4998  | 7.5003                       | 6.242               | 6.758               | 6.989               | 12,320              | 7,192     | 35,570              | 16,240       | 4.73    |                     |
| *NG060AR0 | 5.9998  | 8.0003                       | 6.742               | 7.258               | 7.489               | 13,270              | 7,480     | 38,300              | 17,060       | 5.07    |                     |
| *NG065AR0 | 6.4998  | 8.5003                       | 7.242               | 7.758               | 7.987               | 14,220              | 7,761     | 41,040              | 17,870       | 5.41    |                     |
| *NG070AR0 | 6.9998  | 9.0003                       | 7.742               | 8.258               | 8.487               | 15,160              | 8,035     | 43,780              | 18,650       | 5.87    |                     |
| *NG075AR0 | 7.4998  | 9.5003                       | 8.242               | 8.758               | 8.987               | 16,110              | 8,303     | 46,510              | 19,420       | 6.20    |                     |
| *NG080AR0 | 7.9998  | 10.0003                      | 8.742               | 9.258               | 9.485               | 17,060              | 8,566     | 49,250              | 20,180       | 6.54    |                     |
| *NG090AR0 | 8.9998  | 11.0003                      | 9.742               | 10.258              | 10.485              | 18,960              | 9,073     | 54,720              | 21,640       | 7.22    |                     |
| *NG100AR0 | 9.9998  | 12.0003                      | 10.742              | 11.258              | 11.483              | 20,850              | 9,561     | 60,190              | 23,060       | 8.00    |                     |
| *NG110AR0 | 10.9998 | 13.0003                      | 11.742              | 12.258              | 12.481              | 22,750              | 10,027    | 65,660              | 24,440       | 8.68    |                     |
| *NG120AR0 | 11.9998 | 14.0003                      | 12.742              | 13.258              | 13.481              | 24,640              | 10,481    | 71,140              | 25,780       | 9.47    |                     |
| *NG140AR0 | 13.9998 | 16.0003                      | 14.742              | 15.258              | 15.478              | 28,430              | 11,338    | 82,080              | 28,360       | 10.90   |                     |
| *NG160AR0 | 15.9998 | 18.0003                      | 16.742              | 17.258              | 17.474              | 32,220              | 12,142    | 93,020              | 30,830       | 12.40   |                     |
| *NG180AR0 | 17.9998 | 20.0003                      | 18.742              | 19.258              | 19.472              | 36,020              | 12,898    | 104,000             | 33,200       | 13.80   |                     |
| *NG200AR0 | 19.9998 | 22.0003                      | 20.742              | 21.258              | 21.468              | 39,810              | 13,612    | 114,900             | 35,490       | 15.20   |                     |
| *NG220AR0 | 21.9998 | 24.0003                      | 22.742              | 23.258              | 23.468              | 43,598              | 14,290    | 125,856             | 37,712       | 16.63   |                     |
| *NG250AR0 | 24.9998 | 27.0003                      | 25.742              | 26.258              | 26.461              | 49,280              | 15,239    | 142,300             | 40,920       | 18.80   |                     |
| *NG300AR0 | 29.9998 | 32.0003                      | 30.742              | 31.258              | 31.451              | 58,760              | 16,687    | 169,600             | 46,020       | 22.50   | ③ F = .080          |
| *NG350AR0 | 34.9998 | 37.0003                      | 35.742              | 36.258              | 36.440              | 68,240              | 17,982    | 197,000             | 50,840       | 26.20   | Bearing corners are |
| *NG400AR0 | 39.9998 | 42.0003                      | 40.472              | 41.258              | 41.430              | 77,720              | 19,153    | 224,400             | 55,440       | 29.80   | normally chamfered  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.
 \* Contact KAYDON for lead time and minimum purchase requirement.

### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearing Selections Type C** Radial Contact

A Conrad assembled bearing designed primarily for application of radial load—deep ball grooves also permit application of thrust load in either direction – often used in conjunction with another bearing.

| NAA SERIES        |        |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |
|-------------------|--------|-----------------|-----------------------------|-----------------------------|---------------------|---------------------------------|-------------------|--|--|--|--|--|
| KAYDON            |        | Dimension       | s in Inches                 |                             |                     | pacities in<br>nds <sup>©</sup> | Approx.<br>Weight |  |  |  |  |  |
| Bearing<br>Number | Bore   | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |  |  |  |  |  |
| *NAA10CL0         | 1.0000 | 1.3752          | 1.140                       | 1.235                       | 290                 | 188                             | .026              |  |  |  |  |  |
| *NAA15CL0         | 1.5000 | 1.8752          | 1.640                       | 1.735                       | 400                 | 225                             | .039              |  |  |  |  |  |
| *NAA17CL0         | 1.7500 | 2.1252          | 1.890                       | 1.985                       | 460                 | 242                             | .045              |  |  |  |  |  |



|                   |         |                 | Snapover separator          |                             |                     |                                 |                   |                                                          |
|-------------------|---------|-----------------|-----------------------------|-----------------------------|---------------------|---------------------------------|-------------------|----------------------------------------------------------|
| KAYDON            |         | Dimension       | s in Inches                 |                             |                     | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight | 1/8" balls                                               |
| Bearing<br>Number | Bore    | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |                                                          |
| *NA020CP0         | 2.0000  | 2.5002          | 2.186                       | 2.314                       | 680                 | 393                             | .10               |                                                          |
| *NA025CP0         | 2.5000  | 3.0002          | 2.686                       | 2.814                       | 830                 | 442                             | .13               |                                                          |
| *NA030CP0         | 3.0000  | 3.5002          | 3.186                       | 3.314                       | 990                 | 487                             | .15               |                                                          |
| *NA035CP0         | 3.5000  | 4.0002          | 3.686                       | 3.814                       | 1,140               | 530                             | .18               | .250 —                                                   |
| *NA040CP0         | 3.9998  | 4.5003          | 4.186                       | 4.314                       | 1,290               | 571                             | .19               | F_                                                       |
| *NA042CP0         | 4.2498  | 4.7503          | 4.436                       | 4.564                       | 1,370               | 591                             | .20               |                                                          |
| *NA045CP0         | 4.4998  | 5.0003          | 4.686                       | 4.814                       | 1,440               | 610                             | .22               | .250                                                     |
| *NA047CP0         | 4.7498  | 5.2503          | 4.936                       | 5.064                       | 1,520               | 629                             | .23               |                                                          |
| *NA050CP0         | 4.9998  | 5.5003          | 5.186                       | 5.314                       | 1,590               | 648                             | .24               |                                                          |
| *NA055CP0         | 5.4998  | 6.0003          | 5.686                       | 5.814                       | 1,750               | 685                             | .25               | <sup>-2</sup> L <sub>1</sub> <sup>u</sup> ~ <sup>u</sup> |
| *NA060CP0         | 5.9998  | 6.5003          | 6.186                       | 6.314                       | 1,900               | 720                             | .28               |                                                          |
| *NA065CP0         | 6.4998  | 7.0003          | 6.686                       | 6.814                       | 2,050               | 754                             | .30               |                                                          |
| *NA070CP0         | 6.9998  | 7.5003          | 7.186                       | 7.314                       | 2,200               | 787                             | .31               |                                                          |
| *NA075CP0         | 7.4998  | 8.0003          | 7.686                       | 7.814                       | 2,350               | 820                             | .34               |                                                          |
| *NA080CP0         | 7.9998  | 8.5003          | 8.186                       | 8.314                       | 2,500               | 851                             | .38               |                                                          |
| *NA090CP0         | 8.9998  | 9.5003          | 9.186                       | 9.314                       | 2,810               | 912                             | .44               |                                                          |
| *NA100CP0         | 9.9998  | 10.5003         | 10.186                      | 10.314                      | 3,110               | 969                             | .50               | 3 F = .025                                               |
| *NA110CP0         | 10.9998 | 11.5003         | 11.186                      | 11.314                      | 3,410               | 1,025                           | .52               | Bearing corners are                                      |
| *NA120CP0         | 11.9998 | 12.5003         | 12.186                      | 12.314                      | 3,720               | 1,078                           | .56               | normally chamfered                                       |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-bried limits based on visit support from the chaft and having.

2 Static capacities are non-brinell limits based on rigid support from the shaft and housing.
 3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

#### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings Type C Radial Contact**

|                   | NB SERIES |                 |                             |                 |                     |       |                   |                     |  |  |  |  |  |  |
|-------------------|-----------|-----------------|-----------------------------|-----------------|---------------------|-------|-------------------|---------------------|--|--|--|--|--|--|
| KAYDON            |           | Dimension       | s in Inches                 |                 | Radial Ca<br>Pou    |       | Approx.<br>Weight | 5/32" balls         |  |  |  |  |  |  |
| Bearing<br>Number | Bore      | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>®</sup> | Dyn.  | in<br>Pounds      |                     |  |  |  |  |  |  |
| *NB020CP0         | 2.0000    | 2.6252          | 2.231                       | 2.393           | 930                 | 577   | .16               |                     |  |  |  |  |  |  |
| *NB025CP0         | 2.5000    | 3.1252          | 2.731                       | 2.893           | 1,140               | 644   | .20               |                     |  |  |  |  |  |  |
| *NB030CP0         | 3.0000    | 3.6252          | 3.231                       | 3.393           | 1,340               | 707   | .24               |                     |  |  |  |  |  |  |
| *NB035CP0         | 3.5000    | 4.1252          | 3.731                       | 3.893           | 1,540               | 767   | .27               |                     |  |  |  |  |  |  |
| *NB040CP0         | 3.9998    | 4.6253          | 4.231                       | 4.393           | 1,750               | 825   | .30               |                     |  |  |  |  |  |  |
| *NB042CP0         | 4.2498    | 4.8753          | 4.481                       | 4.643           | 1,830               | 846   | .31               | .3125 -             |  |  |  |  |  |  |
| *NB045CP0         | 4.4998    | 5.1253          | 4.731                       | 4.893           | 1,950               | 880   | .33               | F     🚽             |  |  |  |  |  |  |
| *NB047CP0         | 4.7498    | 5.3753          | 4.981                       | 5.143           | 2,030               | 901   | .34               |                     |  |  |  |  |  |  |
| *NB050CP0         | 4.9998    | 5.6253          | 5.231                       | 5.393           | 2,150               | 933   | .38               | .3125               |  |  |  |  |  |  |
| *NB055CP0         | 5.4998    | 6.1253          | 5.731                       | 5.893           | 2,360               | 984   | .41               |                     |  |  |  |  |  |  |
| *NB060CP0         | 5.9998    | 6.6253          | 6.231                       | 6.393           | 2,560               | 1,034 | .44               | L <sub>2</sub>      |  |  |  |  |  |  |
| *NB065CP0         | 6.4998    | 7.1253          | 6.731                       | 6.893           | 2,760               | 1,082 | .47               | L1 LA               |  |  |  |  |  |  |
| *NB070CP0         | 6.9998    | 7.6253          | 7.231                       | 7.393           | 2,970               | 1,129 | .50               | -                   |  |  |  |  |  |  |
| *NB075CP0         | 7.4998    | 8.1253          | 7.731                       | 7.893           | 3,170               | 1,175 | .53               |                     |  |  |  |  |  |  |
| *NB080CP0         | 7.9998    | 8.6253          | 8.231                       | 8.393           | 3,370               | 1,219 | .57               |                     |  |  |  |  |  |  |
| *NB090CP0         | 8.9998    | 9.6253          | 9.231                       | 9.393           | 3,780               | 1,304 | .66               |                     |  |  |  |  |  |  |
| *NB100CP0         | 9.9998    | 10.6253         | 10.231                      | 10.393          | 4,190               | 1,386 | .73               |                     |  |  |  |  |  |  |
| *NB110CP0         | 10.9998   | 11.6253         | 11.231                      | 11.393          | 4,590               | 1,464 | .75               |                     |  |  |  |  |  |  |
| *NB120CP0         | 11.9998   | 12.6253         | 12.231                      | 12.393          | 5,000               | 1,539 | .83               |                     |  |  |  |  |  |  |
| *NB140CP0         | 13.9998   | 14.6253         | 14.231                      | 14.393          | 5,810               | 1,680 | 1.05              |                     |  |  |  |  |  |  |
| *NB160CP0         | 15.9998   | 16.6253         | 16.231                      | 16.393          | 6,620               | 1,812 | 1.20              | ③ F = .040          |  |  |  |  |  |  |
| *NB180CP0         | 17.9998   | 18.6253         | 18.231                      | 18.393          | 7,440               | 1,936 | 1.35              | Bearing corners are |  |  |  |  |  |  |
| *NB200CP0         | 19.9998   | 20.6253         | 20.231                      | 20.393          | 8,250               | 2,053 | 1.50              | normally chamfered  |  |  |  |  |  |  |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 ② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

#### CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

#### **NEED SERVICE FAST?**

#### 1-800-514-3066

Website: www.kaydonbearings.com

#### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings** Type C Radial Contact

|                   |         |                 | NC SE                       | RIES            |         |                                 |                   | Snapover separator<br>3/16" balls |
|-------------------|---------|-----------------|-----------------------------|-----------------|---------|---------------------------------|-------------------|-----------------------------------|
| KAYDON            |         | Dimension       | s in Inches                 |                 |         | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight |                                   |
| Bearing<br>Number | Bore    | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static® | Dyn.                            | in<br>Pounds      |                                   |
| *NC040CP0         | 3.9998  | 4.7503          | 4.277                       | 4.473           | 2,100   | 1,073                           | .45               |                                   |
| *NC042CP0         | 4.2498  | 5.0003          | 4.527                       | 4.723           | 2,220   | 1,108                           | .47               |                                   |
| *NC045CP0         | 4.4998  | 5.2503          | 4.777                       | 4.973           | 2,340   | 1,143                           | .48               |                                   |
| *NC047CP0         | 4.7498  | 5.5003          | 5.027                       | 5.223           | 2,460   | 1,176                           | .50               | .375 —                            |
| *NC050CP0         | 4.9998  | 5.7503          | 5.277                       | 5.473           | 2,590   | 1,209                           | .58               | F-,                               |
| *NC055CP0         | 5.4998  | 6.2503          | 5.777                       | 5.973           | 2,830   | 1,274                           | .59               |                                   |
| *NC060CP0         | 5.9998  | 6.7503          | 6.277                       | 6.473           | 3,070   | 1,337                           | .63               | .375                              |
| *NC065CP0         | 6.4998  | 7.2503          | 6.777                       | 6.973           | 3,310   | 1,397                           | .68               |                                   |
| *NC070CP0         | 6.9998  | 7.7503          | 7.277                       | 7.473           | 3,550   | 1,457                           | .73               |                                   |
| *NC075CP0         | 7.4998  | 8.2503          | 7.777                       | 7.973           | 3,790   | 1,514                           | .78               | L2                                |
| *NC080CP0         | 7.9998  | 8.7503          | 8.277                       | 8.473           | 4,030   | 1,570                           | .84               |                                   |
| *NC090CP0         | 8.9998  | 9.7503          | 9.277                       | 9.473           | 4,510   | 1,678                           | .94               | -1                                |
| *NC100CP0         | 9.9998  | 10.7503         | 10.277                      | 10.473          | 4,990   | 1,781                           | 1.06              |                                   |
| *NC110CP0         | 10.9998 | 11.7503         | 11.277                      | 11.473          | 5,470   | 1,879                           | 1.16              |                                   |
| *NC120CP0         | 11.9998 | 12.7503         | 12.277                      | 12.473          | 5,950   | 1,974                           | 1.25              |                                   |
| *NC140CP0         | 13.9998 | 14.7503         | 14.277                      | 14.473          | 6,910   | 2,154                           | 1.52              |                                   |
| *NC160CP0         | 15.9998 | 16.7503         | 16.277                      | 16.473          | 7,880   | 2,321                           | 1.73              |                                   |
| *NC180CP0         | 17.9998 | 18.7503         | 18.277                      | 18.473          | 8,840   | 2,478                           | 1.94              |                                   |
| *NC200CP0         | 19.9998 | 20.7503         | 20.277                      | 20.473          | 9,800   | 2,626                           | 2.16              | ③ F = .040                        |
| *NC250CP0         | 24.9998 | 25.7503         | 25.277                      | 25.473          | 12,200  | 2,962                           | 2.69              | Bearing corners are               |
| *NC300CP0         | 29.9998 | 30.7503         | 30.277                      | 30.473          | 14,610  | 3,260                           | 3.21              | normally chamfered                |



|                   | Snapover separator<br>1/4" balls |                 |                             |                 |                     |                                 |                   |                                           |
|-------------------|----------------------------------|-----------------|-----------------------------|-----------------|---------------------|---------------------------------|-------------------|-------------------------------------------|
| KAYDON            |                                  | Dimension       | is in Inches                |                 |                     | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight |                                           |
| Bearing<br>Number | Bore                             | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>2</sup> | Dyn.                            | in<br>Pounds      |                                           |
| *ND040CP0         | 3.9998                           | 5.0003          | 4.370                       | 4.630           | 3,080               | 1,755                           | .78               |                                           |
| *ND042CP0         | 4.2498                           | 5.2503          | 4.620                       | 4.880           | 3,190               | 1,787                           | .83               |                                           |
| *ND045CP0         | 4.4998                           | 5.5003          | 4.870                       | 5.130           | 3,420               | 1,861                           | .88               |                                           |
| *ND047CP0         | 4.7498                           | 5.7503          | 5.120                       | 5.380           | 3,530               | 1,892                           | .94               | .500                                      |
| *ND050CP0         | 4.9998                           | 6.0003          | 5.370                       | 5.630           | 3,760               | 1,964                           | 1.00              | F                                         |
| *ND055CP0         | 5.4998                           | 6.5003          | 5.870                       | 6.130           | 4,100               | 2,063                           | 1.06              |                                           |
| *ND060CP0         | 5.9998                           | 7.0003          | 6.370                       | 6.630           | 4,450               | 2,160                           | 1.16              |                                           |
| *ND065CP0         | 6.4998                           | 7.5003          | 6.870                       | 7.130           | 4,790               | 2,254                           | 1.22              | .500                                      |
| *ND070CP0         | 6.9998                           | 8.0003          | 7.370                       | 7.630           | 5,130               | 2,345                           | 1.31              |                                           |
| *ND075CP0         | 7.4998                           | 8.5003          | 7.870                       | 8.130           | 5,470               | 2,434                           | 1.41              | L <sub>2</sub>                            |
| *ND080CP0         | 7.9998                           | 9.0003          | 8.370                       | 8.630           | 5,810               | 2,520                           | 1.53              |                                           |
| *ND090CP0         | 8.9998                           | 10.0003         | 9.370                       | 9.630           | 6,500               | 2,688                           | 1.72              |                                           |
| *ND100CP0         | 9.9998                           | 11.0003         | 10.370                      | 10.630          | 7,180               | 2,847                           | 1.88              |                                           |
| *ND110CP0         | 10.9998                          | 12.0003         | 11.370                      | 11.630          | 7,870               | 3,000                           | 2.06              |                                           |
| *ND120CP0         | 11.9998                          | 13.0003         | 12.370                      | 12.630          | 8,550               | 3,148                           | 2.25              |                                           |
| *ND140CP0         | 13.9998                          | 15.0003         | 14.370                      | 14.630          | 9,920               | 3,427                           | 2.73              |                                           |
| *ND160CP0         | 15.9998                          | 17.0003         | 16.370                      | 16.630          | 11,290              | 3,688                           | 3.10              |                                           |
| *ND180CP0         | 17.9998                          | 19.0003         | 18.370                      | 18.630          | 12,650              | 3,933                           | 3.48              |                                           |
| *ND200CP0         | 19.9998                          | 21.0003         | 20.370                      | 20.630          | 14,020              | 4,164                           | 3.85              |                                           |
| *ND210CP0         | 20.9998                          | 22.0003         | 21.370                      | 21.630          | 14,706              | 4,274                           | 4.04              | 3 F = .060                                |
| *ND250CP0         | 24.9998                          | 26.0003         | 25.370                      | 25.630          | 17,440              | 4,689                           | 4.79              | Bearing corners are<br>normally chamfered |
| *ND300CP0         | 29.9998                          | 31.0003         | 30.370                      | 30.360          | 20,860              | 5,153                           | 5.73              |                                           |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

0 Static capacities are non-brinell limits based on rigid support from the shaft and housing. ③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.



.500 V

#### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings** Type C Radial Contact

| NF SERIES                                                                                                                                                                                                 |         |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------------------|-----------------------------|---------------------|---------------------------------|-------------------|--|--|--|--|--|--|
| KAYDON                                                                                                                                                                                                    |         | Dimension       | s in Inches                 |                             |                     | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight |  |  |  |  |  |  |
| Bearing<br>Number                                                                                                                                                                                         | Bore    | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.                            | in<br>Pounds      |  |  |  |  |  |  |
| *NF040CP0                                                                                                                                                                                                 | 3.9998  | 5.5003          | 4.555                       | 4.945                       | 5,360               | 3,559                           | 1.9               |  |  |  |  |  |  |
| *NF042CP0                                                                                                                                                                                                 | 4.2498  | 5.7503          | 4.805                       | 5.195                       | 5,640               | 3,655                           | 2.0               |  |  |  |  |  |  |
| *NF045CP0                                                                                                                                                                                                 | 4.4998  | 6.0003          | 6.0003 5.055 5.445 5,930    |                             |                     |                                 | 2.1               |  |  |  |  |  |  |
| *NF045CP0         4.4998         6.0003         5.055         5.445         5,930         3,750           *NF047CP0         4.7498         6.2503         5.305         5.695         6,210         3,843 |         |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |  |
| *NF050CP0 4.9998 6.5003 5.555 5.945 6,490 3,936 2.3                                                                                                                                                       |         |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |  |
| *NF055CP0 5.4998 7.0003 6.055 6.445 7,050 4,116 2.5                                                                                                                                                       |         |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |  |
| *NF060CP0 5.9998 7.5003 6.555 6.945 7,630 4,116 2.5                                                                                                                                                       |         |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |  |
| *NF065CP0                                                                                                                                                                                                 | 6.4998  | 8.0003          | 7.055                       | 7.445                       | 8,180               | 4,461                           | 2.9               |  |  |  |  |  |  |
| *NF070CP0                                                                                                                                                                                                 | 6.9998  | 8.5003          | 7.555                       | 7.945                       | 8,750               | 4,628                           | 3.2               |  |  |  |  |  |  |
| *NF075CP0                                                                                                                                                                                                 | 7.4998  | 9.0003          | 8.055                       | 8.445                       | 9,310               | 4,791                           | 3.4               |  |  |  |  |  |  |
| *NF080CP0                                                                                                                                                                                                 | 7.9998  | 9.5003          | 8.555                       | 8.945                       | 9,880               | 4,949                           | 3.5               |  |  |  |  |  |  |
| *NF090CP0                                                                                                                                                                                                 | 8.9998  | 10.5003         | 9.555                       | 9.945                       | 11,000              | 5,256                           | 3.9               |  |  |  |  |  |  |
| *NF100CP0                                                                                                                                                                                                 | 9.9998  | 11.5003         | 10.555                      | 10.945                      | 12,130              | 5,550                           | 4.3               |  |  |  |  |  |  |
| *NF110CP0                                                                                                                                                                                                 | 10.9998 | 12.5003         | 11.555                      | 11.945                      | 13,260              | 5,833                           | 4.8               |  |  |  |  |  |  |
| *NF120CP0                                                                                                                                                                                                 | 11.9998 | 13.5003         | 12.555                      | 12.945                      | 14,390              | 6,105                           | 5.2               |  |  |  |  |  |  |
| *NF140CP0                                                                                                                                                                                                 | 13.9998 | 15.5003         | 14.555                      | 14.945                      | 16,650              | 6,620                           | 6.0               |  |  |  |  |  |  |
| *NF160CP0                                                                                                                                                                                                 | 15.9998 | 17.5003         | 16.555                      | 16.945                      | 18,900              | 7,104                           | 7.1               |  |  |  |  |  |  |
| *NF180CP0                                                                                                                                                                                                 | 17.9998 | 19.5003         | 18.555                      | 18.945                      | 21,160              | 7,557                           | 7.9               |  |  |  |  |  |  |
| *NF200CP0                                                                                                                                                                                                 | 19.9998 | 21.5003         | 20.555                      | 20.945                      | 23,420              | 7,986                           | 8.9               |  |  |  |  |  |  |
| *NF250CP0                                                                                                                                                                                                 | 24.9998 | 26.5003         | 25.555                      | 25.945                      | 29,060              | 8,963                           | 10.9              |  |  |  |  |  |  |
| *NF300CP0                                                                                                                                                                                                 | 29.9998 | 31.5003         | 30.555                      | 30.945                      | 34,700              | 9,828                           | 13.0              |  |  |  |  |  |  |
| *NF350CP0                                                                                                                                                                                                 | 34.9998 | 36.5003         | 35.555                      | 35.945                      | 40,350              | 10,603                          | 15.1              |  |  |  |  |  |  |
| *NF400CP0                                                                                                                                                                                                 | 39.9998 | 41.5003         | 40.555                      | 40.945                      | 45,990              | 11,302                          | 17.2              |  |  |  |  |  |  |
|                                                                                                                                                                                                           |         |                 |                             |                             |                     |                                 |                   |  |  |  |  |  |  |



**Snapover separator** 3/8" balls

3 F = .080 Bearing corners are normally chamfered

1.000

|                   |         |                 | NG SE                       | RIES                        |         |                                 |                   | Snapover separator<br>1/2" balls |
|-------------------|---------|-----------------|-----------------------------|-----------------------------|---------|---------------------------------|-------------------|----------------------------------|
| KAYDON            |         | Dimension       | s in Inches                 |                             |         | pacities in<br>nds <sup>0</sup> | Approx.<br>Weight |                                  |
| Bearing<br>Number | Bore    | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static® | Dyn.                            | in<br>Pounds      |                                  |
| *NG040CP0         | 3.9998  | 6.0003          | 4.742                       | 5.258                       | 8,210   | 6,115                           | 3.6               |                                  |
| *NG042CP0         | 4.2498  | 6.2503          | 4.992                       | 5.508                       | 8,210   | 6,061                           | 3.8               |                                  |
| *NG045CP0         | 4.4998  | 6.5003          | 5.242                       | 5.758                       | 8,760   | 6,277                           | 4.0               | <b>—</b> 1.000 <b>—</b>          |
| *NG047CP0         | 4.7498  | 6.7503          | 5.492                       | 6.008                       | 9,300   | 6,487                           | 4.1               | F – _                            |
| *NG050CP0         | 4.9998  | 7.0003          | 5.742                       | 6.258                       | 9,850   | 6,691                           | 4.3               |                                  |
| *NG055CP0         | 5.4998  | 7.5003          | 6.242                       | 6.758                       | 10,400  | 6,850                           | 4.7               |                                  |
| *NG060CP0         | 5.9998  | 8.0003          | 6.742                       | 7.258                       | 11,490  | 7,241                           | 5.1               |                                  |
| *NG065CP0         | 6.4998  | 8.5003          | 7.242                       | 7.758                       | 12,040  | 7,393                           | 5.4               | 1.0                              |
| *NG070CP0         | 6.9998  | 9.0003          | 7.742                       | 8.258                       | 13,130  | 7,764                           | 5.8               |                                  |
| *NG075CP0         | 7.4998  | 9.5003          | 8.242                       | 8.758                       | 13,680  | 7,911                           | 6.1               | ▏▕▎▕▎▐▎▌▖▏▓                      |
| *NG080CP0         | 7.9998  | 10.0003         | 8.742                       | 9.258                       | 14,770  | 8,265                           | 6.5               | L <sub>2</sub>                   |
| *NG090CP0         | 8.9998  | 11.0003         | 9.742                       | 10.258                      | 16,420  | 8,743                           | 7.2               |                                  |
| *NG100CP0         | 9.9998  | 12.0003         | 10.742                      | 11.258                      | 18,060  | 9,204                           | 7.9               | L1                               |
| *NG110CP0         | 10.9998 | 13.0003         | 11.742                      | 12.258                      | 19,700  | 9,648                           | 8.6               |                                  |
| *NG120CP0         | 11.9998 | 14.0003         | 12.742                      | 13.258                      | 21,340  | 10,074                          | 9.3               |                                  |
| *NG140CP0         | 13.9998 | 16.0003         | 14.742                      | 15.258                      | 24,620  | 10,886                          | 10.8              |                                  |
| *NG160CP0         | 15.9998 | 18.0003         | 16.742                      | 17.258                      | 27,910  | 11,648                          | 12.3              |                                  |
| *NG180CP0         | 17.9998 | 20.0003         | 18.742                      | 19.258                      | 31,190  | 12,367                          | 13.7              |                                  |
| *NG200CP0         | 19.9998 | 22.0003         | 20.742                      | 21.258                      | 34,470  | 13,044                          | 15.8              |                                  |
| *NG220CP0         | 21.9998 | 24.0003         | 22.742                      | 23.258                      | 37,757  | 13,685                          | 16.8              |                                  |
| *NG250CP0         | 24.9998 | 27.0003         | 25.742                      | 26.258                      | 42,680  | 14,591                          | 19.5              |                                  |
| *NG300CP0         | 29.9998 | 32.0003         | 30.742                      | 31.258                      | 50,890  | 15,963                          | 23.3              | ③ F = .080                       |
| *NG350CP0         | 34.9998 | 37.0003         | 35.742                      | 36.258                      | 59,100  | 17,195                          | 27.1              | Bearing corners are              |
| *NG400CP0         | 39.9998 | 42.0003         | 40.742                      | 41.258                      | 67,310  | 18,307                          | 30.8              | normally chamfered               |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearing Selections**

### **Type X** Four-Point Contact

A Conrad-assembled bearing designed for applications involving multiple loads. Unique internal geometry permits application of radial load, thrust load in either direction, and moment load, individually or in any combination. A single four-point contact bearing may replace two bearings in many applications.

| NAA SERIES |        |         |                     |                     |                                           |      |                     |         |                     |      |              |    |
|------------|--------|---------|---------------------|---------------------|-------------------------------------------|------|---------------------|---------|---------------------|------|--------------|----|
| KAYDON     | D      | mensior | ns in Incl          |                     |                                           |      |                     | cities® |                     |      | Approx.      | .1 |
| Bearing    | Bore   | Outside |                     | Land                | Radial (lbs) Thrust (lbs) Moment (in-lbs) |      |                     |         |                     |      | Weight<br>in |    |
| Number     | Dore   | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup>                       | Dyn. | Static <sup>2</sup> | Dyn.    | Static <sup>2</sup> | Dyn. | Pounds       |    |
| *NAA10XL0  | 1.0000 | 1.3752  | 1.140               | 1.235               | 290                                       | 247  | 730                 | 370     | 170                 | 110  | .026         |    |
| *NAA15XL0  | 1.5000 | 1.8752  | 1.640               | 1.735               | 5 400 296 1,000 460 340 187               |      |                     |         |                     |      | .039         | L  |
| *NAA17XL0  | 1.7500 | 2.1252  | 1.890               | 1.985               | 460                                       | 319  | 1,140               | 500     | 440                 | 232  | .045         |    |



|           |         |          |                     | NA                  | SER                 | IES   |                     |        |                     |            |              | Snapover separator<br>1/8" balls |
|-----------|---------|----------|---------------------|---------------------|---------------------|-------|---------------------|--------|---------------------|------------|--------------|----------------------------------|
| KAYDON    | Dir     | mensions | s in Inch           | es                  |                     |       | Сара                | cities |                     |            | Approx.      | i, o bails                       |
| Bearing   | Dama    | Outside  | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)  | Moment              | t (in-lbs) | Weight<br>in |                                  |
| Number    | Bore    | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>®</sup> | Dyn.   | Static <sup>®</sup> | Dyn.       | Pounds       |                                  |
| *NA020XP0 | 2.0000  | 2.5002   | 2.186               | 2.314               | 680                 | 514   | 1,710               | 790    | 770                 | 434        | .10          |                                  |
| *NA025XP0 | 2.5000  | 3.0002   | 2.686               | 2.814               | 830                 | 583   | 2,090               | 910    | 1,150               | 601        | .13          |                                  |
| *NA030XP0 | 3.0000  | 3.5002   | 3.186               | 3.314               | 990                 | 643   | 2,470               | 1,010  | 1,600               | 785        | .15          |                                  |
| *NA035XP0 | 3.5000  | 4.0002   | 3.686               | 3.814               | 1,140               | 701   | 2,850               | 1,110  | 2,130               | 986        | .18          | .250 🗕                           |
| *NA040XP0 | 3.9998  | 4.5003   | 4.186               | 4.314               | 1,290               | 756   | 3,220               | 1,210  | 2,740               | 1,205      | .19          | F —                              |
| *NA042XP0 | 4.2498  | 4.7503   | 4.436               | 4.564               | 1,370               | 783   | 3,410               | 1,260  | 3,070               | 1,321      | .20          |                                  |
| *NA045XP0 | 4.4998  | 5.0003   | 4.686               | 4.814               | 1,440               | 809   | 3,600               | 1,310  | 3,420               | 1,441      | .22          |                                  |
| *NA047XP0 | 4.7498  | 5.2503   | 4.936               | 5.064               | 1,520               | 834   | 3,790               | 1,350  | 3,790               | 1,565      | .23          |                                  |
| *NA050XP0 | 4.9998  | 5.5003   | 5.186               | 5.314               | 1,590               | 859   | 3,980               | 1,400  | 4,180               | 1,693      | .24          |                                  |
| *NA055XP0 | 5.4998  | 6.0003   | 5.686               | 5.814               | 1,750               | 908   | 4,360               | 1,480  | 5,020               | 1,959      | .25          | <b>-</b> 1                       |
| *NA060XP0 | 5.9998  | 6.5003   | 6.186               | 6.314               | 1,900               | 955   | 4,740               | 1,570  | 5,930               | 2,240      | .28          |                                  |
| *NA065XP0 | 6.4998  | 7.0003   | 6.686               | 6.814               | 2,050               | 1,001 | 5,120               | 1,650  | 6,910               | 2,535      | .30          |                                  |
| *NA070XP0 | 6.9998  | 7.5003   | 7.186               | 7.314               | 2,200               | 1,046 |                     | 1,730  | 7,980               | 2,844      | .31          |                                  |
| *NA075XP0 | 7.4998  | 8.0003   | 7.686               | 7.814               | 2,350               | 1,089 | 5,880               | 1,810  | 9,120               | 3,165      | .34          |                                  |
| *NA080XP0 | 7.9998  | 8.5003   | 8.186               | 8.314               | 2,500               | 1,131 | 6,260               | 1,890  | 10,330              | 3,499      | .38          |                                  |
| *NA090XP0 | 8.9998  | 9.5003   | 9.186               | 9.314               | 2,810               | 1,212 | 7,020               | 2,040  | 12,990              | 4,204      | .44          |                                  |
| *NA100XP0 | 9.9998  | 10.5003  | 10.186              | 10.314              | 3,110               | 1,289 | 7,780               | 2,180  | 15,940              | 4,956      | .50          | 3 F = .025                       |
| *NA110XP0 | 10.9998 | 11.5003  | 11.186              | 11.314              | 3,410               | 1,362 | 8,540               | 2,320  | 19,210              | 5,750      | .52          | Bearing corners are              |
| *NA120XP0 | 11.9998 | 12.5003  | 12.186              | 12.314              | 3,720               | 1,433 | 9,300               | 2,450  | 22,770              | 6,587      | .56          | normally chamfered               |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ Static capacities are non-brinell limits based on rigid support from the shaft and housir
③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

#### **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings Type X Four-Point Contact**

|           |         |          | Snapover separator<br>5/32" balls |                     |                     |          |                     |         |                     |            |              |                     |
|-----------|---------|----------|-----------------------------------|---------------------|---------------------|----------|---------------------|---------|---------------------|------------|--------------|---------------------|
| KAYDON    | Diı     | mensions | s in Inch                         | es                  |                     |          | Сара                | acities | D                   |            | Approx.      | 5/52 Dalls          |
| Bearing   | Bore    | Outside  | Land                              | Land                | Radia               | <u> </u> | Thrust              | (lbs)   | Momen               | t (in-lbs) | Weight<br>in |                     |
| Number    | DOIE    | Dia.     | Dia. L <sub>1</sub>               | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.     | Static <sup>2</sup> | Dyn.    | Static <sup>®</sup> | Dyn.       | Pounds       |                     |
| *NB020XP0 | 2.0000  | 2.6252   | 2.231                             | 2.393               | 930                 | 758      | 2,340               | 1,130   | 1,080               | 658        | .16          |                     |
| *NB025XP0 | 2.5000  | 3.1252   | 2.731                             | 2.893               | 1,140               | 848      | 2,840               | 1,290   | 1,600               | 895        | .19          |                     |
| *NB030XP0 | 3.0000  | 3.6252   | 3.231                             | 3.393               | 1,340               | 933      | 3,350               | 1,440   | 2,220               | 1,159      | .24          |                     |
| *NB035XP0 | 3.5000  | 4.1252   | 3.731                             | 3.893               | 1,540               | 1,014    | 3,860               | 1,590   | 2,940               | 1,450      | .27          |                     |
| *NB040XP0 | 3.9998  | 4.6253   | 4.231                             | 4.393               | 1,750               | 1,091    | 4,370               | 1,720   | 3,770               | 1,764      | .30          | 1 1                 |
| *NB042XP0 | 4.2498  | 4.8753   | 4.481                             | 4.643               | 1,830               | 1,120    | 4,570               | 1,780   | 4,170               | 1,917      | .31          | .3125 -             |
| *NB045XP0 | 4.4998  | 5.1253   | 4.731                             | 4.893               | 1,950               | 1,165    | 4,880               | 1,850   | 4,690               | 2,103      | .33          | F                   |
| *NB047XP0 | 4.7498  | 5.3753   | 4.981                             | 5.143               | 2,030               | 1,193    | 5,080               | 1,900   | 5,140               | 2,265      | .34          |                     |
| *NB050XP0 | 4.9998  | 5.6253   | 5.231                             | 5.393               | 2,150               | 1,236    | 5,380               | 1,980   | 5,720               | 2,463      | .38          | .3125               |
| *NB055XP0 | 5.4998  | 6.1253   | 5.731                             | 5.893               | 2,360               | 1,304    | 5,890               | 2,100   | 6,850               | 2,844      | .41          |                     |
| *NB060XP0 | 5.9998  | 6.6253   | 6.231                             | 6.393               | 2,560               | 1,371    | 6,400               | 2,220   | 8,080               | 3,247      | .44          | L2                  |
| *NB065XP0 | 6.4998  | 7.1253   | 6.731                             | 6.893               | 2,760               | 1,435    | 6,910               | 2,340   | 9,410               | 3,668      | .47          |                     |
| *NB070XP0 | 6.9998  | 7.6253   | 7.231                             | 7.393               | 2,970               | 1,498    | 7,420               | 2,450   | 10,850              | 4,109      | .50          | •                   |
| *NB075XP0 | 7.4998  | 8.1253   | 7.731                             | 7.893               | 3,170               | 1,559    | 7,920               | 2,560   | 12,380              | 4,568      | .53          |                     |
| *NB080XP0 | 7.9998  | 8.6253   | 8.231                             | 8.393               | 3,370               | 1,618    | 8,430               | 2,670   | 14,020              | 5,045      | .57          |                     |
| *NB090XP0 | 8.9998  | 9.6253   | 9.231                             | 9.393               | 3,780               | 1,732    | 9,450               | 2,880   | 17,600              | 6,050      | .66          |                     |
| *NB100XP0 | 9.9998  | 10.6253  | 10.231                            | 10.393              | 4,190               | 1,841    | 10,460              | 3,080   | 21,580              | 7,121      | .73          |                     |
| *NB110XP0 |         | 11.6253  | 11.231                            | 11.393              | 4,590               | 1,945    | 11,480              | 3,280   | 25,970              | 8,254      | .75          |                     |
| *NB120XP0 | 11.9998 | 12.6253  | 12.231                            | 12.393              | 5,000               | 2,045    | 12,500              | 3,470   | 30,770              | 9,446      | .83          |                     |
| *NB140XP0 | 13.9998 | 14.6253  | 14.231                            | 14.393              | 5,810               | 2,234    | 14,530              | 3,840   | 41,580              | 11,994     | 1.05         |                     |
| *NB160XP0 | 15.9998 | 16.6253  | 16.231                            | 16.393              | 6,620               | 2,410    | 16,560              | 4,190   | 54,020              | 14,750     | 1.20         | ③ F = .040          |
| *NB180XP0 | 17.9998 | 18.6253  | 18.231                            | 18.393              | 7,440               | 2,576    | 18,590              | 4,520   | 68,090              | 17,694     | 1.35         | Bearing corners are |
| *NB200XP0 | 19.9998 | 20.6253  | 20.231                            | 20.393              | 8,250               | 2,731    | 20,620              | 4,850   | 83,780              | 20,813     | 1.50         | normally chamfered  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

#### CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

#### **NEED SERVICE FAST?**

#### 1-800-514-3066

Website: www.kaydonbearings.com

# **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings Type X Four-Point Contact**

|           |         |          |                     | NC                  | SER                 | IES   |                     |        |                     |            |              | Snapover separator<br>3/16" balls |
|-----------|---------|----------|---------------------|---------------------|---------------------|-------|---------------------|--------|---------------------|------------|--------------|-----------------------------------|
| KAYDON    | Dir     | nensions | in Inch             | es                  |                     |       | Сара                | cities | )                   |            | Approx.      |                                   |
| Bearing   | Bore    | Outside  | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)  | Momen               | t (in-lbs) | Weight<br>in |                                   |
| Number    | Боге    | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.   | Static <sup>2</sup> | Dyn.       | Pounds       |                                   |
| *NC040XP0 | 3.9998  | 4.7503   | 4.277               | 4.473               | 2,100               | 1,417 | 5,260               | 2,210  | 4,600               | 2,326      | .45          |                                   |
| *NC042XP0 | 4.2498  | 5.0003   | 4.527               | 4.723               | 2,220               | 1,464 | 5,560               | 2,290  | 5,140               | 2,541      | .47          |                                   |
| *NC045XP0 | 4.4998  | 5.2503   | 4.777               | 4.973               | 2,340               | 1,510 | 5,860               | 2,380  | 5,710               | 2,762      | .48          |                                   |
| *NC047XP0 | 4.7498  | 5.5003   | 5.027               | 5.223               | 2,460               | 1,556 | 6,160               | 2,460  | 6,320               | 2,991      | .50          | .375 —                            |
| *NC050XP0 | 4.9998  | 5.7503   | 5.277               | 5.473               | 2,590               | 1,600 | 6,460               | 2,540  | 6,950               | 3,226      | .58          | F-                                |
| *NC055XP0 | 5.4998  | 6.2503   | 5.777               | 5.973               | 2,830               | 1,687 | 7,060               | 2,690  | 8,300               | 3,717      | .59          |                                   |
| *NC060XP0 | 5.9998  | 6.7503   | 6.277               | 6.473               | 3,070               | 1,770 | 7,660               | 2,840  | 9,770               | 4,234      | .63          | .375                              |
| *NC065XP0 | 6.4998  | 7.2503   | 6.777               | 6.973               | 3,310               | 1,851 | 8,270               | 2,990  | 11,370              | 4,775      | .68          |                                   |
| *NC070XP0 | 6.9998  | 7.7503   | 7.277               | 7.473               | 3,550               | 1,931 | 8,870               | 3,130  | 13,080              | 5,341      | .73          |                                   |
| *NC075XP0 | 7.4998  | 8.2503   | 7.777               | 7.973               | 3,790               | 2,007 | 9,470               | 3,270  | 14,910              | 5,930      | .78          | L <sub>2</sub>                    |
| *NC080XP0 | 7.9998  | 8.7503   | 8.277               | 8.473               | 4,030               | 2,082 | 10,070              | 3,410  | 16,870              | 6,542      | .84          |                                   |
| *NC090XP0 | 8.9998  | 9.7503   | 9.277               | 9.473               | 4,510               | 2,226 | 11,270              | 3,670  | 21,130              | 7,830      | .94          | -1                                |
| *NC100XP0 | 9.9998  | 10.7503  | 10.277              | 10.473              | 4,990               | 2,364 | 12,470              | 3,930  | 25,880              | 9,201      | 1.06         |                                   |
| *NC110XP0 | 10.9998 | 11.7503  | 11.277              | 11.473              | 5,470               | 2,496 | 13,680              | 4,180  | 31,110              | 10,651     | 1.16         |                                   |
| *NC120XP0 | 11.9998 | 12.7503  | 12.277              | 12.473              | 5,950               | 2,622 | 14,880              | 4,420  | 36,830              | 12,174     | 1.25         |                                   |
| *NC140XP0 | 13.9998 | 14.7503  | 14.277              | 14.473              | 6,910               | 2,862 | 17,280              | 4,890  | 49,690              | 15,434     | 1.52         |                                   |
| *NC160XP0 | 15.9998 | 16.7503  | 16.277              | 16.473              | 7,880               | 3,086 | 19,690              | 5,330  | 64,480              | 18,955     | 1.73         |                                   |
| *NC180XP0 | 17.9998 | 18.7503  | 18.277              | 18.473              | 8,840               | 3,295 | 22,090              | 5,760  | 81,190              | 22,712     | 1.94         |                                   |
| *NC200XP0 | 19.9998 | 20.7503  | 20.277              | 20.473              | 9,800               | 3,492 | 24,500              | 6,170  | 99,830              | 26,695     | 2.16         | ③ F = .040                        |
| *NC250XP0 | 24.9998 | 25.7503  | 25.277              | 25.473              | 12,200              | 3,941 | 30,510              | 7,140  | 154,800             | 37,518     | 2.69         | Bearing corners are               |
| *NC300XP0 | 29.9998 | 30.7503  | 30.277              | 30.473              | 14,610              | 4,338 | 36,520              | 8,050  | 221,900             | 49,436     | 3.21         | normally chamfered                |

|           |         |          |                     | ND                  | SER                 | IES   |                     |        |                     |            |              | Snapover separator<br>1/4" balls |
|-----------|---------|----------|---------------------|---------------------|---------------------|-------|---------------------|--------|---------------------|------------|--------------|----------------------------------|
| KAYDON    | Dir     | nensions | in Inch             | es                  |                     |       | Сара                | cities | )                   |            | Approx.      |                                  |
| Bearing   | Dama    | Outside  | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)  | Moment              | t (in-lbs) | Weight<br>in |                                  |
| Number    | Bore    | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn.   | Static <sup>2</sup> | Dyn.       | Pounds       |                                  |
| *ND040XP0 | 3.9998  | 5.0003   | 4.370               | 4.630               | 3,080               | 2,311 | 7,700               | 3,520  | 6,930               | 3,901      | .78          |                                  |
| *ND042XP0 | 4.2498  | 5.2503   | 4.620               | 4.880               | 3,190               | 2,355 | 7,980               | 3,600  | 7,580               | 4,196      | .83          |                                  |
| *ND045XP0 | 4.4998  | 5.5003   | 4.870               | 5.130               | 3,420               | 2,454 | 8,550               | 3,770  | 8,550               | 4,602      | .88          |                                  |
| *ND047XP0 | 4.7498  | 5.7503   | 5.120               | 5.380               | 3,530               | 2,496 | 8,840               | 3,860  | 9,280               | 4,916      | .94          |                                  |
| *ND050XP0 | 4.9998  | 6.0003   | 5.370               | 5.630               | 3,760               | 2,592 | 9,410               | 4,020  | 10,350              | 5,348      | 1.00         | .500                             |
| *ND055XP0 | 5.4998  | 6.5003   | 5.870               | 6.130               | 4,100               | 2,725 | 10,260              | 4,260  | 12,310              | 6,134      | 1.06         |                                  |
| *ND060XP0 | 5.9998  | 7.0003   | 6.370               | 6.630               | 4,450               | 2,855 | 11,120              | 4,490  | 14,450              | 6,961      | 1.16         |                                  |
| *ND065XP0 | 6.4998  | 7.5003   | 6.870               | 7.130               | 4,790               | 2,980 | 11,970              | 4,720  | 16,760              | 7,826      | 1.22         |                                  |
| *ND070XP0 | 6.9998  | 8.0003   | 7.370               | 7.630               | 5,130               | 3,103 | 12,830              | 4,940  | 19,240              | 8,730      | 1.31         |                                  |
| *ND075XP0 | 7.4998  | 8.5003   | 7.870               | 8.130               | 5,470               | 3,222 | 13,680              | 5,160  | 21,890              | 9,669      | 1.41         | L <sub>2</sub>                   |
| *ND080XP0 | 7.9998  | 9.0003   | 8.370               | 8.630               | 5,810               | 3,338 | 14,540              | 5,370  | 24,710              | 10,643     | 1.53         |                                  |
| *ND090XP0 | 8.9998  | 10.0003  | 9.370               | 9.630               | 6,500               | 3,561 | 16,250              | 5,790  | 30,870              | 12,693     | 1.72         |                                  |
| *ND100XP0 | 9.9998  | 11.0003  | 10.370              | 10.630              | 7,180               | 3,776 | 17,960              | 6,190  |                     | 14,872     | 1.88         | Ť                                |
| *ND110XP0 | 10.9998 | 12.0003  | 11.370              | 11.630              | 7,870               | 3,981 | 19,670              | 6,570  |                     | 17,173     | 2.06         |                                  |
| *ND120XP0 | 11.9998 |          | 12.370              | 12.630              | 8,550               | 4,178 | 21,380              | 6,950  | 1                   | 19,590     | 2.25         |                                  |
| *ND140XP0 | 13.9998 | 15.0003  | 14.370              | 14.630              | 9,920               | 4,551 | 24,800              | 7,670  |                     | 24,755     | 2.73         |                                  |
| *ND160XP0 | 15.9998 |          | 16.370              | 16.630              | 11,290              |       | 28,220              | 8,360  |                     | 30,325     | 3.10         |                                  |
| *ND180XP0 | 17.9998 | 19.0003  | 18.370              | 18.630              | 12,650              |       | 31,640              | 9,030  | 117,000             | 36,268     | 3.48         |                                  |
| *ND200XP0 |         | 21.0003  | 20.370              | 20.630              | 14,020              |       | 35,060              | 9,670  |                     | 42,561     | 3.85         |                                  |
| *ND210XP0 |         | 22.0003  |                     | 21.630              | 14,710              |       | 36,770              | 9,980  |                     | 45,826     | 4.04         | ③ F = .060                       |
| *ND250XP0 |         | 26.0003  | 25.370              | 25.630              | 17,440              |       | 43,610              |        | 222,400             | 59,649     | 4.79         | Bearing corners are              |
| *ND300XP0 | 29.9998 | 31.0003  | 30.370              | 30.630              | 20,860              | 6,856 | 52,160              | 12,600 | 318,100             | 78,447     | 5.73         | normally chamfered               |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values. 0 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement.

## **Open ENDURAKOTE®-PLATED ENDURA-SLIM® Bearings Type X Four-Point Contact**

|                   |         |          |                | N              | F SEF               | RIES   |                     |         |              |         |
|-------------------|---------|----------|----------------|----------------|---------------------|--------|---------------------|---------|--------------|---------|
| KAYDON            | Din     | nensions | in Inch        | es             |                     | -      | Сарас               | ities 1 |              |         |
| Bearing<br>Number | Bore    | Outside  | Land<br>Dia.   | Land<br>Dia.   | Radia               | (lbs)  | Thrust              | (lbs)   | Mon<br>(in-l |         |
| Number            |         | Dia.     | L <sub>1</sub> | L <sub>2</sub> | Static <sup>2</sup> | Dyn.   | Static <sub>2</sub> | Dyn.    | Static2      | Dyn.    |
| *NF040XP0         | 3.9998  | 5.5003   | 4.555          | 4.945          | 5,360               | 4,665  | 13,400              | 6,830   | 12,730       | 8,312   |
| *NF042XP0         | 4.2498  | 5.7503   | 4.805          | 5.195          | 5,640               | 4,795  | 14,110              | 7,070   | 14,110       | 8,993   |
| *NF045XP0         | 4.4998  | 6.0003   | 5.055          | 5.445          | 5,930               | 4,923  | 14,810              | 7,300   | 15,550       | 9,695   |
| *NF047XP0         | 4.7498  | 6.2503   | 5.305          | 5.695          | 6,210               | 5,048  | 15,520              | 7,530   | 17,070       | 10,416  |
| *NF050XP0         | 4.9998  | 6.5003   | 5.555          | 5.945          | 6,490               | 5,172  | 16,220              | 7,760   | 18,660       | 11,157  |
| *NF055XP0         | 5.4998  | 7.0003   | 6.055          | 6.445          | 7,050               | 5,415  | 17,630              | 8,200   | 22,040       | 12,696  |
| *NF060XP0         | 5.9998  | 7.5003   | 6.555          | 6.945          | 7,620               | 5,651  | 19,050              | 8,630   | 25,710       | 14,311  |
| *NF065XP0         | 6.4998  | 8.0003   | 7.055          | 7.445          | 8,180               | 5,880  | 20,460              | 9,050   | 29,660       | 15,993  |
| *NF070XP0         | 6.9998  | 8.5003   | 7.555          | 7.945          | 8,750               | 6,103  | 21,870              | 9,460   | 33,890       | 17,744  |
| *NF075XP0         | 7.4998  | 9.0003   | 8.055          | 8.445          | 9,310               | 6,323  | 23,280              | 9,870   | 38,410       | 19,568  |
| *NF080XP0         | 7.9998  | 9.5003   | 8.555          | 8.945          | 9,880               | 6,535  | 24,690              | 10,260  | 43,200       | 21,453  |
| *NF090XP0         | 8.9998  | 10.5003  | 9.555          | 9.945          | 11,000              | 6,947  | 27,510              | 11,030  | 53,640       | 25,410  |
| *NF100XP0         | 9.9998  | 11.5003  | 10.555         | 10.945         | 12,130              | 7,342  | 30,330              | 11,770  | 65,210       | 29,608  |
| *NF110XP0         | 10.9998 | 12.5003  | 11.555         | 11.945         | 13,260              | 7,721  | 33,150              | 12,490  | 77,910       | 34,032  |
| *NF120XP0         | 11.9998 | 13.5003  | 12.555         | 12.945         | 14,390              | 8,084  | 35,970              | 13,190  | 91,730       | 38,666  |
| *NF140XP0         | 13.9998 | 15.5003  | 14.555         | 14.945         | 16,650              | 8,775  | 41,620              | 14,530  | 122,800      | 48,556  |
| *NF160XP0         | 15.9998 | 17.5003  | 16.555         | 16.945         | 18,900              | 9,421  | 47,260              | 15,820  | 158,300      | 59,200  |
| *NF180XP0         | 17.9998 | 19.5003  | 18.555         | 18.945         | 21,160              | 10,028 | 52,900              | 17,060  | 198,400      | 70,537  |
| *NF200XP0         | 19.9998 | 21.5003  | 20.555         | 20.945         | 23,420              | 10,602 | 58,550              | 18,250  | 243,000      | 82,528  |
| *NF250XP0         | 24.9998 | 26.5003  | 25.555         | 25.945         | 29,060              | 11,909 | 72,650              | 21,070  | 374,200      | 115,037 |
| *NF300XP0         | 29.9998 | 31.5003  | 30.555         | 30.945         | 34,700              | 13,065 | 86,760              | 23,720  | 533,600      | 150,708 |
| *NF350XP0         | 34.9998 | 36.5003  | 35.555         | 35.945         | 40,350              | 14,100 | 100,900             | 26,220  | 721,200      | 189,106 |
| *NF400XP0         | 39.9998 | 41.5003  | 40.555         | 40.945         | 45,990              | 15,034 | 115,000             | 28,620  | 937,100      | 229,832 |

NC CEDIEC



**Snapover separator** 

in

1.9 2.0 2.1

2.2

2.3

2.5

2.7

2.9

3.2

3.4

3.5

3.9

4.3

4.8

5.2

6.0

7.1

7.9

8.9

10.9

13.0

15.1

17.2



1.000

|                  |             |             | Snapover separator  |                     |            |          |            |           |                     |            |              |                                 |
|------------------|-------------|-------------|---------------------|---------------------|------------|----------|------------|-----------|---------------------|------------|--------------|---------------------------------|
| KAYDON           | Dir         | nensions    | s in Inch           | es                  |            |          | Сара       | cities () | )                   |            | Approx.      | 1/2" balls                      |
| Bearing          | Bere        | Outside     | Land                | Land                | Radial     | (lbs)    | Thrust     | (lbs)     | Momen               | t (in-lbs) | Weight       |                                 |
| Number           | Bore        | Dia.        | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static2    | Dyn.     | Static2    | Dyn.      | Static <sup>2</sup> | Dyn.       | Pounds       |                                 |
| *NG040XP0        | 3.9998      | 6.0003      | 4.742               | 5.258               | 8,210      | 7,979    | 20,520     | 11,260    | 20,520              | 14,966     | 3.6          |                                 |
| *NG042XP0        | 4.2498      | 6.2503      | 4.992               | 5.508               | 8,210      | 7,917    | 20,520     | 11,260    | 21,550              | 15,592     | 3.8          |                                 |
| *NG045XP0        | 4.4998      | 6.5003      | 5.242               | 5.758               | 8,760      | 8,205    | 21,890     | 11,750    | 24,080              | 16,930     | 4.0          | ◄─1.000 ─►                      |
| *NG047XP0        | 4.7498      | 6.7503      | 5.492               | 6.008               | 9,300      | 8,487    | 23,260     | 12,230    | 26,740              | 18,306     | 4.1          | F                               |
| *NG050XP0        | 4.9998      | 7.0003      | 5.742               | 6.258               | 9,850      | 8,762    | 24,620     | 12,710    | 29,550              | 19,721     | 4.3          |                                 |
| *NG055XP0        | 5.4998      | 7.5003      | 6.242               | 6.758               | 10,400     | 8,979    | 25,990     | 13,180    | 33,790              | 21,896     | 4.7          |                                 |
| *NG060XP0        | 5.9998      | 8.0003      | 6.742               | 7.258               | 11,490     | 9,503    | 28,730     | 14,090    | 40,220              | 24,956     | 5.1          |                                 |
| *NG065XP0        | 6.4998      | 8.5003      | 7.242               | 7.758               | 12,040     | 9,713    | 30,100     | 14,530    | 45,140              | 27,327     | 5.4          | 1.0                             |
| *NG070XP0        | 6.9998      | 9.0003      | 7.742               | 8.258               | 13,130     | 10,208   | 32,830     | 15,400    | 52,530              | 30,636     | 5.8          |                                 |
| *NG075XP0        | 7.4998      | 9.5003      | 8.242               | 8.758               | 13,680     | 10,410   | 34,200     | 15,820    | 58,140              | 33,196     | 6.1          |                                 |
| *NG080XP0        | 7.9998      | 10.0003     | 8.742               | 9.258               | 14,770     | 10,882   | 36,940     | 16,650    | 66,480              | 36,743     | 6.5          |                                 |
| *NG090XP0        | 8.9998      | 11.0003     | 9.742               | 10.258              | 16,420     | 11,526   | 41,040     | 17,870    | 82,080              | 43,240     | 7.2          |                                 |
| *NG100XP0        | 9.9998      | 12.0003     | 10.742              | 11.258              | 18,060     | 12,147   | 45,140     | 19,040    | 99,320              | 50,124     | 7.9          | L1                              |
| *NG110XP0        | 10.9998     | 13.0003     | 11.742              | 12.258              | 19,700     | 12,739   | 49,250     | 20,180    | 118,200             | 57,347     | 8.6          |                                 |
| *NG120XP0        |             |             |                     | 13.258              | 21,340     | 13,315   | 53,350     | 21,280    | 138,700             | 64,935     | 9.3          |                                 |
| *NG140XP0        | 13.9998     | 16.0003     | 14.742              | 15.258              | 24,620     | 14,404   | 61,560     | 23,410    | 184,700             | 81,056     | 10.8         |                                 |
| *NG160XP0        |             |             | -                   | 17.258              | 27,910     | 15,425   | 69,770     | 25,450    | 237,200             | 98,373     | 12.3         |                                 |
| *NG180XP0        |             |             | -                   | 19.258              | 31,190     | 16,386   |            | 27,410    |                     | 116,793    | 13.7         |                                 |
| *NG200XP0        |             |             |                     | 21.258              | 34,470     | 17,293   | 86,180     | 29,300    | 362,000             | 136,238    | 15.8         |                                 |
| *NG220XP0        |             |             |                     | 23.258              | 37,760     | 18,152   |            | 31,130    |                     | 156,625    | 17.3         |                                 |
| *NG250XP0        |             |             |                     | 26.258              |            | 19,360   |            |           |                     | 188,838    | 19.5         |                                 |
| *NG300XP0        |             |             |                     | 31.258              | 50,890     | 21,200   | 127,200    | 37,980    | 788,800             | 246,541    | 23.3         | ③ F = .080                      |
| *NG350XP0        | 34.9998     | 37.0003     | 35.742              | 36.258              |            | · ·      |            | · ·       | 1,064,000           | 308,527    | 27.1         | Bearing corners are             |
| *NG400XP0        | 39.9998     | 42.0003     | 40.742              | 41.258              | 67,310     | 24,332   | 168,300    | 45,770    | 1,380,000           | 374,256    | 30.8         | normally chamfered              |
| ① Capacities lis | ted are not | t simultane | ous. For o          | ombined             | loading se | e discus | sion of Be | aring Se  | lection and         | Load Ana   | lysis. Dynai | mic capacities are based upon 1 |

d upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values. ② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear. 3

Contact KAYDON for lead time and minimum purchase requirement.

48 www.kaydonbearings.com 1-800-514-3066

### Stainless Steel Bearings (Material Code S)

#### KAYDON stainless steel bearings are used where high precision and corrosion resistance are required.

In today's manufacturing environment, bearings are often required:

- to operate in close proximity to corrosive chemicals
- to operate with lubricants which do not protect against corrosion
- to be ready-to-use, ultra-clean bearings with no preservative on them

Because any of these requirements would disqualify the use of standard 52100 steel material, KAYDON addressed these issues by offering REALI-SLIM<sup>®</sup> thin-section bearings in AISI 440C stainless steel. This steel meets the minimum 58 HRc hardness level and can support the same loading as does 52100 chrome steel.

All bearings made of this material also utilize balls made of AISI 440C stainless steel.

Stainless Steel REALI-SLIM<sup>®</sup> thin-section bearings minimize the surface degradation and particulate formation so common in harsh environment applications.

#### They are available:

- in AISI 440C stainless steel races
- with brass or non-metallic separators
- with either stainless steel or ceramic balls
- in popular sizes
- in either radial contact "C," angular contact "A," or four-point contact "X" configurations



### Stainless Steel REALI-SLIM® Bearings Type A Angular Contact

|           | S                                                  | AA S    | ERIE                | <mark>5 (3/</mark> 1 | 6″ с                | ross-               | secti    | on)                 |                 |                   |
|-----------|----------------------------------------------------|---------|---------------------|----------------------|---------------------|---------------------|----------|---------------------|-----------------|-------------------|
| KAYDON    |                                                    | Dimen   | sions in            | Inches               |                     | Ca                  | pacities | in Pound            | ls <sup>①</sup> | Approx.<br>Weight |
| Bearing   | Bore                                               | Outside | Land                | dial                 | l Thrust            |                     |          |                     |                 |                   |
| Number    | Dore                                               | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub>  | Dia. L <sub>3</sub> | Static <sup>2</sup> | Dyn.     | Static <sup>2</sup> | Dyn.            | Pounds            |
| *SAA10AG0 | 1.000                                              | 1.375   | 1.140               | 1.235                | 1.274               | 340                 | 194      | 970                 | 450             | .025              |
| *SAA15AG0 | 1.500                                              | 1.875   | 1.640               | 1.735                | 1.774               | 480                 | 238      | 1,380               | 560             | .038              |
| *SAA17AG0 | <b>1.750</b> 2.125 1.890 1.985 2.024 530 251 1,520 |         |                     |                      |                     |                     |          |                     | 600             | .045              |



|                                     |                                                                           | SA S  | ERIES    | 5 (1/4 | " cro | oss-se | ectio    | n)                  |                 |         |
|-------------------------------------|---------------------------------------------------------------------------|-------|----------|--------|-------|--------|----------|---------------------|-----------------|---------|
| KAYDON                              |                                                                           | Dimen | sions in | Inches |       | Ca     | pacities | in Pounc            | ls <sup>⊕</sup> | Approx. |
| Bearing Bore Outside Land Land C'Bo |                                                                           |       |          |        |       | Rad    | dial     | Thr                 | ust             | Weight  |
| Number                              | ber Bore Dia. Dia. L <sub>1</sub> Dia. L <sub>2</sub> Dia. L <sub>3</sub> |       |          |        |       |        | Dyn.     | Static <sup>2</sup> | Dyn.            | Pounds  |
| *SA020AR0                           | 2.000                                                                     | 2.500 | 2.186    | 2.314  | 2.369 | 790    | 405      | 2,280               | 960             | .10     |
| *SA025AR0                           | 2.500                                                                     | 3.000 | 2.686    | 2.814  | 2.869 | 960    | 459      | 2,780               | 1,100           | .12     |
| *SA030AR0                           | 3.000                                                                     | 3.500 | 3.186    | 3.314  | 3.367 | 1,140  | 507      | 3,290               | 1,230           | .14     |
| *SA035AR0                           | 3.500                                                                     | 4.000 | 3.686    | 3.814  | 3.867 | 1,310  | 552      | 3,790               | 1,350           | .17     |
| *SA040AR0                           | 4.000                                                                     | 4.500 | 4.186    | 4.314  | 4.367 | 1,490  | 595      | 4,300               | 1,470           | .19     |



|           |       | SB SE   | RIES                | (5/1                | 6″ cr               | oss-s               | ectio    | on)                 |       |              | Circular pocket separator<br>5/32" balls |
|-----------|-------|---------|---------------------|---------------------|---------------------|---------------------|----------|---------------------|-------|--------------|------------------------------------------|
| KAYDON    |       | Dimen   | sions in            | Inches              |                     | Ca                  | pacities | in Pound            | S     | Approx.      | .3125-                                   |
| Bearing   | Bere  | Outside | Land                | Land                | C'Bore              | Radiai Inrust       |          |                     |       | Weight<br>in | F-                                       |
| Number    | Bore  | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Dia. L <sub>3</sub> | Static <sup>®</sup> | Dyn.     | Static <sup>2</sup> | Dyn.  | Pounds       |                                          |
| *SB020AR0 | 2.000 | 2.625   | 2.231               | 2.393               | 2.464               | 1,090               | 601      | 3,150               | 1,380 | .15          |                                          |
| *SB025AR0 | 2.500 | 3.125   | 2.731               | 2.893               | 2.964               | 1,340               | 675      | 3,860               | 1,590 | .19          | L <sub>2</sub>                           |
| *SB030AR0 | 3.000 | 3.625   | 3.231               | 3.393               | 3.462               | 1,550               | 734      | 4,470               | 1,750 | .22          |                                          |
| *SB035AR0 | 3.500 | 4.125   | 3.731               | 3.893               | 3.962               | 1,790               | 801      | 5,180               | 1,930 | .27          | ③ F = .040<br>Bearing corners are        |
| *SB040AR0 | 4.000 | 4.625   | 4.231               | 4.393               | 4.460               | 2,040               | 865      | 5,890               | 2,100 | .30          | normally chamfered                       |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

### Stainless Steel REALI-SLIM<sup>®</sup> Bearings Type C Radial Contact

|                   | SAA SERIES (3/16" cross section) |                 |                             |                             |                     |                     |                   |  |  |  |  |  |  |  |
|-------------------|----------------------------------|-----------------|-----------------------------|-----------------------------|---------------------|---------------------|-------------------|--|--|--|--|--|--|--|
| KAYDON            |                                  | Dimension       | s in Inches                 |                             |                     | pacities in<br>nds® | Approx.<br>Weight |  |  |  |  |  |  |  |
| Bearing<br>Number | Bore                             | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.                | in<br>Pounds      |  |  |  |  |  |  |  |
| *SAA10CL0         | 1.000                            | 1.375           | 1.140                       | 1.235                       | 290                 | 188                 | .026              |  |  |  |  |  |  |  |
| *SAA15CL0         | 1.500                            | 1.875           | 1.640                       | 1.735                       | 400                 | 225                 | .039              |  |  |  |  |  |  |  |
| *SAA17CL0         | 1.750                            | 2.125           | 1.890                       | 1.985                       | 460                 | 242                 | .045              |  |  |  |  |  |  |  |



|                   | SA SERIES (1/4" cross section) |                 |                             |                             |         |                                 |                   |                    |  |  |  |  |  |  |  |
|-------------------|--------------------------------|-----------------|-----------------------------|-----------------------------|---------|---------------------------------|-------------------|--------------------|--|--|--|--|--|--|--|
| KAYDON            |                                | Dimension       | s in Inches                 |                             |         | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight | .250 —             |  |  |  |  |  |  |  |
| Bearing<br>Number | Bore                           | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static® | Dyn.                            | in<br>Pounds      | F -                |  |  |  |  |  |  |  |
| *SA020CP0         | 2.000                          | 2.500           | 2.186                       | 2.314                       | 680     | 393                             | .10               |                    |  |  |  |  |  |  |  |
| *SA025CP0         | 2.500                          | 3.000           | 2.686                       | 2.814                       | 830     | 442                             | .13               | L <sub>2</sub>     |  |  |  |  |  |  |  |
| *SA030CP0         | 3.000                          | 3.500           | 3.186                       | 3.314                       | 990     | 487                             | .15               | L                  |  |  |  |  |  |  |  |
| *SA035CP0         | 3.500                          | 4.000           | 3.686                       | 3.814                       | 1,140   | 530                             | .18               | ③ F =<br>Bearing c |  |  |  |  |  |  |  |
| *SA040CP0         | 4.000                          | 4.500           | 4.186                       | 4.314                       | 1,290   | 571                             | .19               | normally           |  |  |  |  |  |  |  |



|                   | SB    | SERIE           | 5 (5/16'                    | " cross                     | sectio  | -                               |                   | Snapover separator<br>5/32" balls |
|-------------------|-------|-----------------|-----------------------------|-----------------------------|---------|---------------------------------|-------------------|-----------------------------------|
| KAYDON            |       | Dimension       | s in Inches                 |                             |         | pacities in<br>nds <sup>®</sup> | Approx.<br>Weight | .3125 -                           |
| Bearing<br>Number | Bore  | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static® | Dyn.                            | in<br>Pounds      | F                                 |
| *SB020CP0         | 2.000 | 2.625           | 2.231                       | 2.393                       | 930     | 577                             | .16               |                                   |
| *SB025CP0         | 2.500 | 3.125           | 2.731                       | 2.893                       | 1,140   | 644                             | .20               |                                   |
| *SB030CP0         | 3.000 | 3.625           | 3.231                       | 3.393                       | 1,340   | 707                             | .24               |                                   |
| *SB035CP0         | 3.500 | 4.125           | 3.731                       | 3.893                       | 1,540   | 767                             | .27               | ③ F = .040<br>Bearing corners are |
| *SB040CP0         | 4.000 | 4.625           | 4.231                       | 4.393                       | 1,750   | 825                             | .30               | normally chamfered                |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

### Stainless Steel REALI-SLIM® Bearings Type X Four-Point Contact

| SAA SERIES (3/16" cross section) |                                                                     |         |                     |                     |                     |       |                     |      |                     |            |              |  |  |  |
|----------------------------------|---------------------------------------------------------------------|---------|---------------------|---------------------|---------------------|-------|---------------------|------|---------------------|------------|--------------|--|--|--|
| KAYDON                           | KAYDON         Dimensions in Inches         Capacities <sup>®</sup> |         |                     |                     |                     |       |                     |      |                     |            |              |  |  |  |
| Bearing                          | Bore                                                                | Outside | Land                | Land                | Radial              | (lbs) | Thrust (lbs)        |      | Momen               | t (in-lbs) | Weight<br>in |  |  |  |
| Number                           | Dore                                                                | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>2</sup> | Dyn. | Static <sup>2</sup> | Dyn.       | Pounds       |  |  |  |
| *SAA10XL0                        | 1.000                                                               | 1.375   | 1.140               | 1.235               | 290                 | 247   | 730                 | 370  | 170                 | 110        | .026         |  |  |  |
| *SAA15XL0                        | 1.500                                                               | 1.875   | 1.640               | 1.735               | 400                 | 296   | 1,000               | 460  | 340                 | 187        | .039         |  |  |  |
| *SAA17XL0                        | 1.750                                                               | 2.125   | 1.890               | 1.985               | 460                 | 319   | 1,140               | 500  | 440                 | 232        | .045         |  |  |  |



|           | SA SERIES (1/4" cross section) |          |                     |                     |                     |       |                     |         |                     |        |         |  |  |  |  |
|-----------|--------------------------------|----------|---------------------|---------------------|---------------------|-------|---------------------|---------|---------------------|--------|---------|--|--|--|--|
| KAYDON    | D                              | imensior | ns in Incl          | nes                 |                     |       | Сара                | cities® |                     |        | Approx. |  |  |  |  |
| Bearing   | Bore                           | Outside  | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs)   | Momen               | Weight |         |  |  |  |  |
| Number    | Dore                           | Dia.     | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.  | Static <sup>®</sup> | Dyn.    | Static <sup>2</sup> | Dyn.   | Pounds  |  |  |  |  |
| *SA020XP0 | 2.000                          | 2.500    | 2.186               | 2.314               | 680                 | 514   | 1,710               | 790     | 770                 | 434    | .10     |  |  |  |  |
| *SA025XP0 | 2.500                          | 3.000    | 2.686               | 2.814               | 830                 | 583   | 2,090               | 910     | 1,150               | 601    | .13     |  |  |  |  |
| *SA030XP0 | 3.000                          | 3.500    | 3.186               | 3.314               | 990                 | 643   | 2,470               | 1,010   | 1,600               | 785    | .15     |  |  |  |  |
| *SA035XP0 | 3.500                          | 4.000    | 3.686               | 3.814               | 1,140               | 701   | 2,850               | 1,110   | 2,130               | 986    | .18     |  |  |  |  |
| *SA040XP0 | 4.000                          | 4.500    | 4.186               | 4.314               | 1,290               | 756   | 3,220               | 1,210   | 2,740               | 1,205  | .19     |  |  |  |  |



|           | SB SERIES (5/16" cross section)                             |         |                     |                     |                     |       |                     |       |                     |            |              |                                           |  |  |  |
|-----------|-------------------------------------------------------------|---------|---------------------|---------------------|---------------------|-------|---------------------|-------|---------------------|------------|--------------|-------------------------------------------|--|--|--|
| KAYDON    | KAYDON Dimensions in Inches Capacities <sup>®</sup> Approx. |         |                     |                     |                     |       |                     |       |                     |            |              |                                           |  |  |  |
| Bearing   | Bore                                                        | Outside | Land                | Land                | Radial              | (lbs) | Thrust              | (lbs) | Momen               | t (in-lbs) | Weight<br>in | .3125 -                                   |  |  |  |
| Number    | Боге                                                        | Dia.    | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>2</sup> | Dyn.  | Static <sup>®</sup> | Dyn.  | Static <sup>2</sup> | Dyn.       | Pounds       |                                           |  |  |  |
| *SB020XP0 | 2.000                                                       | 2.625   | 2.231               | 2.393               | 930                 | 758   | 2,340               | 1,130 | 1,080               | 658        | .16          | .3125                                     |  |  |  |
| *SB025XP0 | 2.500                                                       | 3.125   | 2.731               | 2.893               | 1,140               | 848   | 2,840               | 1,290 | 1,600               | 895        | .19          | L <sub>2</sub>                            |  |  |  |
| *SB030XP0 | 3.000                                                       | 3.625   | 3.231               | 3.393               | 1,340               | 933   | 3,350               | 1,440 | 2,220               | 1,159      | .24          |                                           |  |  |  |
| *SB035XP0 | 3.500                                                       | 4.125   | 3.731               | 3.893               | 1,540               | 1,014 | 3,860               | 1,590 | 2,940               | 1,450      | .27          | ③ F = .040                                |  |  |  |
| *SB040XP0 | 4.000                                                       | 4.625   | 4.231               | 4.393               | 1,750               | 1,091 | 4,370               | 1,720 | 3,770               | 1,764      | .30          | Bearing corners are<br>normally chamfered |  |  |  |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

### **REALI-SLIM MM<sup>™</sup> Metric Series Bearings**

KAYDON created the thin-section bearing standard of the industry in 1954 based on inch sizes. The REALI-SLIM<sup>®</sup> inch-standard bearing is still the most widely used thin-section bearing in the world.

However, for those applications that require metric envelope dimensions or for dimensional interchangeability with other products, KAYDON offers the REALI-SLIM MM<sup>™</sup> series of bearings.

#### These bearings are offered:

- in cross sections of 8, 13, and 20mm
- with bore diameters ranging from 20mm to 360mm
- with many of the same options found on standard REALI-SLIM<sup>®</sup> bearings

### The REALI-SLIM MM<sup>™</sup> series may also be customized for special applications with options such as:

- ceramic balls
- special lubes
- integral seals

Consult KAYDON engineering or your KAYDON representative for details on customization.



Download REALI-DESIGN MM<sup>®</sup> software from our website www.kaydonbearings.com to obtain specific load/life and other performance data not shown here.

#### CONTACT KAYDON AT-

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

> NEED SERVICE FAST? 1-800-514-3066

Website: www.kaydonbearings.com

### REALI-SLIM MM<sup>™</sup> Metric Series Bearing Selections Type A Angular Contact

#### How to identify REALI-SLIM MM<sup>™</sup> Bearings using our part number code:

Standard and optional metric REALI-SLIM<sup>®</sup> bearings are marked for complete identification with a 9- or 10-digit part number. Positions 1–9 identify materials, size, type, separator type, and precision. Position 10 (optional) identifies non-standard internal fit, either preload or clearance. Custom and proprietary bearings cannot be identified by code, and are marked only with a 9-digit number.

#### Figure 2-10

| Position     | 1        | 2 | 3       | 4  | 5     | 6    | 7    | 8         | 9         | 10           |
|--------------|----------|---|---------|----|-------|------|------|-----------|-----------|--------------|
| Nomenclature | Material | В | ore (mm | ı) | Width | (mm) | Туре | Separator | Precision | Internal Fit |
| Example      | к        | 0 | 8       | 0  | 0     | 8    | Х    | Р         | 0         | К            |

#### **Explanation of position numbers:**

- 1) J = AISI 52100 steel with
  - Two seals Nitrile rubber K = AISI 52100 steel
  - L = AISI 52100 steel and
  - ENDURAKOTE plating
  - N = ENDURAKOTE<sup>®</sup> plating
  - S = AISI 440C stainless
  - W = AISI 440C Stainless Steel with Two seals – Nitrile rubber
- 7) = A: Angular contact C: Radial contact X: Four-point contact
- 8) P = Standard formed ring snap-over type
  - R = Standard formed ring circular pocket type
- 9) 0 = Precision Class 1 (ABEC 1F) standard

- **10)** empty = Standard (See page 90)
  - A = .0000 to .0127 mm clearance
  - K = .0000 to .0127 mm preload
  - L = .0000 to .0254 mm preload
  - Z = other clearance or preload not specified above

|                   |      |                 |                             | 8mm                         | SERI            | ES                  |      |                     |      |                | Circular pocket                           |
|-------------------|------|-----------------|-----------------------------|-----------------------------|-----------------|---------------------|------|---------------------|------|----------------|-------------------------------------------|
|                   |      | D               | imensior                    | าร                          |                 |                     | Сара | city <sup>①</sup>   |      |                | separator                                 |
| KAYDON            | Size | (mm)            | Land [                      | Diameter                    | s (mm)          | Radia               |      | Axia                | (kg) | Approx.        | 5/32" (inch) balls                        |
| Bearing<br>Number | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Land<br>Dia. L₃ | Static <sup>®</sup> | Dyn. | Static <sub>2</sub> | Dyn. | Weight<br>(kg) | Angular                                   |
| K02508AR0         | 25   | 41              | 30.9                        | 35.1                        | 37.2            | 372                 | 272  | 1073                | 561  | 0.06           | Contact                                   |
| K05008AR0         | 50   | 66              | 55.9                        | 60.1                        | 62.2            | 656                 | 367  | 1894                | 819  | 0.08           | Type A                                    |
| K06008AR0         | 60   | 76              | 65.9                        | 70.1                        | 72.2            | 787                 | 408  | 2273                | 925  | 0.09           |                                           |
| K07008AR0         | 70   | 86              | 75.9                        | 80.1                        | 82.2            | 896                 | 440  | 2588                | 1009 | 0.10           |                                           |
| K08008AR0         | 80   | 96              | 85.9                        | 90.1                        | 92.2            | 1006                | 470  | 2903                | 1090 | 0.12           | E - A                                     |
| K09008AR0         | 90   | 106             | 95.9                        | 100.1                       | 102.2           | 1137                | 505  | 3282                | 1182 | 0.13           |                                           |
| K10008AR0         | 100  | 116             | 105.9                       | 110.1                       | 112.2           | 1246                | 533  | 3598                | 1257 | 0.14           | TT 8mm                                    |
| K11008AR0         | 110  | 126             | 115.9                       | 120.1                       | 122.2           | 1356                | 561  | 3914                | 1329 | 0.15           |                                           |
| K12008AR0         | 120  | 136             | 125.9                       | 130.1                       | 132.2           | 1465                | 587  | 4229                | 1400 | 0.16           |                                           |
| K13008AR0         | 130  | 146             | 135.9                       | 140.1                       | 142.2           | 1596                | 618  | 4608                | 1482 | 0.17           |                                           |
| K14008AR0         | 140  | 156             | 145.9                       | 150.1                       | 152.2           | 1706                | 643  | 4923                | 1549 | 0.18           |                                           |
| K15008AR0         | 150  | 166             | 155.9                       | 160.1                       | 162.2           | 1815                | 667  | 5239                | 1615 | 0.20           |                                           |
| K16008AR0         | 160  | 176             | 165.9                       | 170.1                       | 172.2           | 1946                | 696  | 5618                | 1691 | 0.20           |                                           |
| K17008AR0         | 170  | 186             | 175.9                       | 180.1                       | 182.1           | 2055                | 720  | 5933                | 1754 | 0.21           |                                           |
| K18008AR0         | 180  | 196             | 185.9                       | 190.1                       | 192.1           | 2165                | 742  | 6249                | 1816 | 0.22           |                                           |
| *K19008AR0        | 190  | 206             | 195.9                       | 200.1                       | 202.1           | 2296                | 769  | 6628                | 1889 | 0.23           | ③ F = 0.8                                 |
| K20008AR0         | 200  | 216             | 205.9                       | 210.1                       | 212.1           | 2405                | 791  | 6944                | 1948 | 0.23           | Bearing corners are<br>normally chamfered |
| K25008AR0         | 250  | 266             | 255.9                       | 260.1                       | 262.1           | 2974                | 897  | 8585                | 2244 | 0.28           | normally charmered                        |
| K30008AR0         | 300  | 316             | 305.9                       | 310.1                       | 312.1           | 3564                | 999  | 10289               | 2532 | 0.33           |                                           |
| K32008AR0         | 320  | 336             | 325.9                       | 330.1                       | 332.1           | 3805                | 1039 | 10983               | 2645 | 0.36           |                                           |
| K34008AR0         | 340  | 356             | 345.9                       | 350.1                       | 352.1           | 4023                | 1073 | 11614               | 2745 | 0.38           |                                           |
| K36008AR0         | 360  | 376             | 365.9                       | 370.1                       | 372.1           | 4264                | 1110 | 12309               | 2854 | 0.40           |                                           |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement. All dimensions in millimeters.

### **REALI-SLIM MM<sup>™</sup> Metric Series Bearing Selections** Type A Angular Contact

| Dimensions         Capacity         Approx.           KAYDON<br>Bearing<br>Number         Size (mm)         Land Diameters (mm)         Radial (kg)         Axial (kg)         Approx.         Weight<br>(kg)           *K02513AR0         25         51         34.7         41.3         44.7         616         554         1778         1075         0.13           *K05013AR0         50         76         59.7         66.3         69.6         1064         725         3070         1547         0.20           *K06013AR0         60         86         69.7         76.3         79.6         1232         782         3555         1706         0.22           *K08013AR0         80         106         89.7         96.3         99.6         1623         913         4686         2050         0.28           *K08013AR0         90         116         99.7         106.3         109.6         1791         964         5171         2190         0.31           *K10013AR0         100         126         109.7         136.3         139.6         2295         1108         6625         2583         0.39           *K12013AR0         120         146         129.7                                           | cket     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| KAYDON<br>Bearing<br>Number         Size (mm)         Land Diameters (mm)         Radial (kg)         Axial (kg)         Approx.<br>Weight<br>(kg)           *K02513AR0         25         51         34.7         41.3         44.7         616         554         1778         1075         0.13           *K02513AR0         50         76         59.7         66.3         69.6         1064         725         3070         1547         0.20           *K06013AR0         60         86         69.7         76.3         79.6         1232         782         3555         1706         0.22           K07013AR0         70         96         79.7         86.3         89.6         1456         860         4201         1906         0.25           *K08013AR0         80         106         89.7         96.3         99.6         1623         913         4686         2050         0.28           *K08013AR0         90         116         99.7         106.3         109.6         1791         964         5171         2190         0.31           *K12013AR0         120         146         129.7         136.3         139.6         2295         1108         6625         2583         0.39 </th <th></th> |          |
| Number         Bore         Outside<br>Dia.         Land<br>Dia.         Land<br>Dia.         Land<br>Dia.         Land<br>Dia.         Static®         Dyn.         Static®         Dyn.         (kg)           *K02513AR0         25         51         34.7         41.3         44.7         616         554         1778         1075         0.13           *K05013AR0         50         76         59.7         66.3         69.6         1064         725         3070         1547         0.20           *K06013AR0         60         86         69.7         76.3         79.6         1232         782         3555         1706         0.22           K07013AR0         70         96         79.7         86.3         89.6         1456         860         4201         1906         0.25           *K08013AR0         80         106         89.7         16.3         109.6         1791         964         5171         2190         0.31           *K10013AR0         100         126         109.7         116.3         119.6         1959         1013         5656         2324         0.34           *K12013AR0         120         146         129.7         136.3         139.6                         |          |
| *K05013AR0       50       76       59.7       66.3       69.6       1064       725       3070       1547       0.20         *K06013AR0       60       86       69.7       76.3       79.6       1232       782       3555       1706       0.22         K07013AR0       70       96       79.7       86.3       89.6       1456       860       4201       1906       0.25         *K08013AR0       80       106       89.7       96.3       99.6       1623       913       4686       2050       0.28         *K09013AR0       90       116       99.7       106.3       109.6       1791       964       5171       2190       0.31         *K10013AR0       100       126       109.7       116.3       119.6       1959       1013       5656       2324       0.34         *K11013AR0       110       136       119.7       126.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       140       166       149.7                                                                                                                                         |          |
| *K06013AR0       60       86       69.7       76.3       79.6       1232       782       3555       1706       0.22         K07013AR0       70       96       79.7       86.3       89.6       1456       860       4201       1906       0.25         *K08013AR0       80       106       89.7       96.3       99.6       1623       913       4686       2050       0.28         *K09013AR0       90       116       99.7       106.3       109.6       1791       96.4       5171       2190       0.31         *K10013AR0       100       126       109.7       116.3       119.6       1959       1013       5656       2324       0.34         *K10013AR0       110       136       119.7       126.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       14                                                                                                                                     |          |
| K07013AR0       70       96       79.7       86.3       89.6       1456       860       4201       1906       0.25         *K08013AR0       80       106       89.7       96.3       99.6       1623       913       4686       2050       0.28         *K09013AR0       90       116       99.7       106.3       109.6       1791       96.4       5171       2190       0.31         *K10013AR0       100       126       109.7       116.3       119.6       1959       1013       5656       2324       0.34         *K10013AR0       100       126       109.7       136.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K16013AR0       150       176       <                                                                                                                                |          |
| *K08013AR0       80       106       89.7       96.3       99.6       1623       913       4686       2050       0.28         *K09013AR0       90       116       99.7       106.3       109.6       1791       964       5171       2190       0.31         *K10013AR0       100       126       109.7       116.3       119.6       1959       1013       5656       2324       0.34         *K10013AR0       110       136       119.7       126.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K16013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186                                                                                                                                  |          |
| *K09013AR0       90       116       99.7       106.3       109.6       1791       964       5171       2190       0.31         *K10013AR0       100       126       109.7       116.3       119.6       1959       1013       5656       2324       0.34         *K10013AR0       110       136       119.7       126.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K15013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196 <td>r</td>                                                                                                                   | r        |
| *K10013AR0       100       126       109.7       116.3       119.6       1959       1013       5656       2324       0.34         *K11013AR0       110       136       119.7       126.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K16013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206                                                                                                                           | t        |
| *K11013AR0       110       136       119.7       126.3       129.6       2127       1061       6141       2455       0.37         *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K15013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56         K19013AR0       190       216<                                                                                                                           | 4        |
| *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6625       2583       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.42         *K15013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56         K19013AR0       190       216       199.7       206.3       209.5       3527       1422       10181       3439       0.59                                                                                                                                                                  |          |
| *K12013AR0       120       146       129.7       136.3       139.6       2295       1108       6025       2383       0.39         *K13013AR0       130       156       139.7       146.3       149.6       2519       1171       7272       2748       0.42         *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K15013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56         K19013AR0       190       216       199.7       206.3       209.5       3527       1422       10181       3439       0.59                                                                                                                                                                  |          |
| *K14013AR0       140       166       149.7       156.3       159.5       2687       1215       7757       2869       0.45         *K15013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56         K19013AR0       190       216       199.7       206.3       209.5       3527       1422       10181       3439       0.59                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| *K15013AR0       150       176       159.7       166.3       169.5       2855       1258       8241       2987       0.48         *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51         K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56         K19013AR0       190       216       199.7       206.3       209.5       3527       1422       10181       3439       0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| *K16013AR0       160       186       169.7       176.3       179.5       3023       1301       8726       3104       0.51       L2       L2       L2       L2       L2       L2       L2       L2       L2       L3       L2       L3       L3       18726       3104       0.51       L2       L2       L3       L3       18726       3104       0.51       L2       L3       L3       L3       L3       180       211       3217       0.54       L1       L3       L3       L3       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56       L1       L3       L                                                                                                                                                     |          |
| K17013AR0       170       196       179.7       186.3       189.5       3191       1342       9211       3217       0.54         *K18013AR0       180       206       189.7       196.3       199.5       3359       1382       9696       3329       0.56         K19013AR0       190       216       199.7       206.3       209.5       3527       1422       10181       3439       0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| *K18013AR0         180         206         189.7         196.3         199.5         3359         1382         9696         3329         0.56           K19013AR0         190         216         199.7         206.3         209.5         3527         1422         10181         3439         0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>A</b> |
| K19013AR0 190 216 199.7 206.3 209.5 3527 1422 10181 3439 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| <b>*K20013AR0</b> 200 226 209.7 216.3 219.4 3750 1476 10827 3583 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| <b>*K25013AR0</b> 250 276 259.7 266.3 269.4 4590 1659 13251 4100 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| <b>*K30013AR0</b> 300 326 309.7 316.3 319.3 5486 1840 15837 4618 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _        |
| *K32013AR0 320 346 329.7 336.3 339.3 5822 1904 16806 4804 0.96 ③F=1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| *K34013AR0 340 366 349.7 356.3 359.2 6213 1978 17937 5017 1.02 Bearing corne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| *K36013AR0 360 386 369.7 376.3 379.2 6550 2038 18907 5196 1.07 normally char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itered   |

|                   |      |                 | 2                           | 0mm                         | SERI            | ES                  |        |                     |        |                | Circular pocket                |
|-------------------|------|-----------------|-----------------------------|-----------------------------|-----------------|---------------------|--------|---------------------|--------|----------------|--------------------------------|
|                   |      | D               | imensior                    | าร                          |                 |                     | Сара   | city1               |        |                | separator<br>3/8" (inch) balls |
| KAYDON            | Size | (mm)            | Land [                      | Diameters                   | s (mm)          | Radia               | l (kg) | Axia                | l (kg) | Approx.        | S/O (meny bans                 |
| Bearing<br>Number | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Land<br>Dia. L₃ | Static <sup>®</sup> | Dyn.   | Static <sup>®</sup> | Dyn.   | Weight<br>(kg) |                                |
| *K02520AR0        | 25   | 65              | 40.0                        | 50.0                        | 55              | 1134                | 1155   | 3272                | 2115   | 0.31           |                                |
| *K05020AR0        | 50   | 90              | 65.0                        | 75.0                        | 80              | 1889                | 1460   | 5454                | 2973   | 0.49           |                                |
| *K06020AR0        | 60   | 100             | 75.0                        | 85.0                        | 90              | 2141                | 1547   | 6181                | 3231   | 0.56           |                                |
| *K07020AR0        | 70   | 110             | 85.0                        | 95.0                        | 100             | 2393                | 1633   | 6908                | 3480   | 0.62           | Angular                        |
| *K08020AR0        | 80   | 120             | 95.0                        | 105.0                       | 110             | 2645                | 1717   | 7635                | 3720   | 0.69           | Contact                        |
| *K09020AR0        | 90   | 130             | 105.0                       | 115.0                       | 120             | 3023                | 1851   | 8726                | 4067   | 0.77           | Туре А                         |
| *K10020AR0        | 100  | 140             | 115.0                       | 125.0                       | 130             | 3275                | 1929   | 9453                | 4290   | 0.84           | 2 -                            |
| *K11020AR0        | 110  | 150             | 125.0                       | 135.0                       | 140             | 3527                | 2005   | 10181               | 4507   | 0.91           | <b>≥</b> 20mm                  |
| *K12020AR0        | 120  | 160             | 135.0                       | 145.0                       | 150             | 3778                | 2080   | 10908               | 4719   | 0.97           | 201111                         |
| *K13020AR0        | 130  | 170             | 145.0                       | 155.0                       | 160             | 4030                | 2154   | 11635               | 4927   | 1.04           | F -                            |
| *K14020AR0        | 140  | 180             | 155.0                       | 165.0                       | 170             | 4282                | 2226   | 12362               | 5130   | 1.11           | 20mm                           |
| K15020AR0         | 150  | 190             | 165.0                       | 175.0                       | 180             | 4660                | 2339   | 13453               | 5427   | 1.19           | ⊺_ <b>_</b>                    |
| K16020AR0         | 160  | 200             | 175.0                       | 185.0                       | 190             | 4912                | 2407   | 14180               | 5621   | 1.26           | L2     L3                      |
| K17020AR0         | 170  | 210             | 185.0                       | 195.0                       | 200             | 5146                | 2474   | 14907               | 5811   | 1.32           | └╴╴╹╙╲╌╜╵                      |
| K18020AR0         | 180  | 220             | 195.0                       | 205.0                       | 210             | 5416                | 2540   | 15634               | 5999   | 1.39           |                                |
| *K19020AR0        | 190  | 230             | 205.0                       | 215.0                       | 220             | 5668                | 2605   | 16361               | 6183   | 1.46           |                                |
| K20020AR0         | 200  | 240             | 215.0                       | 225.0                       | 230             | 6045                | 2706   | 17452               | 6455   | 1.54           |                                |
| K25020AR0         | 250  | 290             | 265.0                       | 275.0                       | 280             | 7431                | 3041   | 21452               | 7408   | 1.89           |                                |
| K30020AR0         | 300  | 340             | 315.0                       | 325.0                       | 330             | 8691                | 3317   | 25088               | 8222   | 2.23           | ③ F = 1.5                      |
| *K32020AR0        | 320  | 360             | 335.0                       | 345.0                       | 350             | 9321                | 3454   | 26906               | 8615   | 2.37           | Bearing corners are            |
| *K34020AR0        | 340  | 380             | 355.0                       | 365.0                       | 370             | 9824                | 3556   | 28360               | 8923   | 2.51           | normally chamfered             |
| *K36020AR0        | 360  | 400             | 375.0                       | 385.0                       | 390             | 10454               | 3685   | 30178               | 9300   | 2 66           | nonnany channeled              |

<sup>②</sup> Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement. All dimensions in millimeters.

### REALI-SLIM MM<sup>™</sup> Metric Series Bearing Selections Type C Radial Contact

|                   | 8mm SERIES |                 |                             |                             |                     |                   |                   |                     |  |  |  |  |  |  |  |
|-------------------|------------|-----------------|-----------------------------|-----------------------------|---------------------|-------------------|-------------------|---------------------|--|--|--|--|--|--|--|
|                   |            | Dime            | nsions                      |                             | Сара                | city <sup>①</sup> |                   | 5/32" (inch) balls  |  |  |  |  |  |  |  |
| KAYDON<br>Bearing | Size       | (mm)            | Land Diam                   | eters (mm)                  | Radia               | al (kg)           | Approx.<br>Weight |                     |  |  |  |  |  |  |  |
| Number            | Bore       | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dynamic           | (kg)              |                     |  |  |  |  |  |  |  |
| K02508CP0         | 25         | 41              | 30.9                        | 35.1                        | 303                 | 255               | 0.06              |                     |  |  |  |  |  |  |  |
| K05008CP0         | 50         | 66              | 55.9                        | 60.1                        | 556                 | 350               | 0.08              | Conrad              |  |  |  |  |  |  |  |
| K06008CP0         | 60         | 76              | 65.9                        | 70.1                        | 656                 | 384               | 0.09              | Assembly            |  |  |  |  |  |  |  |
| K07008CP0         | 70         | 86              | 75.9                        | 80.1                        | 758                 | 417               | 0.10              | Туре С              |  |  |  |  |  |  |  |
| K08008CP0         | 80         | 96              | 85.9                        | 90.1                        | 859                 | 448               | 0.11              |                     |  |  |  |  |  |  |  |
| K09008CP0         | 90         | 106             | 95.9                        | 100.1                       | 959                 | 478               | 0.13              |                     |  |  |  |  |  |  |  |
| K10008CP0         | 100        | 116             | 105.9                       | 110.1                       | 1061                | 507               | 0.14              |                     |  |  |  |  |  |  |  |
| K11008CP0         | 110        | 126             | 115.9                       | 120.1                       | 1162                | 534               | 0.15              |                     |  |  |  |  |  |  |  |
| K12008CP0         | 120        | 136             | 125.9                       | 130.1                       | 1262                | 561               | 0.16              |                     |  |  |  |  |  |  |  |
| K13008CP0         | 130        | 146             | 135.9                       | 140.1                       | 1364                | 588               | 0.17              | Market Samm         |  |  |  |  |  |  |  |
| K14008CP0         | 140        | 156             | 145.9                       | 150.1                       | 1465                | 613               | 0.18              |                     |  |  |  |  |  |  |  |
| K15008CP0         | 150        | 166             | 155.9                       | 160.1                       | 1565                | 638               | 0.20              |                     |  |  |  |  |  |  |  |
| K16008CP0         | 160        | 176             | 165.9                       | 170.1                       | 1666                | 662               | 0.20              |                     |  |  |  |  |  |  |  |
| K17008CP0         | 170        | 186             | 175.9                       | 180.1                       | 1767                | 686               | 0.20              | -1                  |  |  |  |  |  |  |  |
| K18008CP0         | 180        | 196             | 185.9                       | 190.1                       | 1868                | 709               | 0.21              |                     |  |  |  |  |  |  |  |
| *K19008CP0        | 190        | 206             | 195.9                       | 200.1                       | 1944                | 725               | 0.21              |                     |  |  |  |  |  |  |  |
| K20008CP0         | 200        | 216             | 205.9                       | 210.1                       | 2045                | 748               | 0.22              |                     |  |  |  |  |  |  |  |
| K25008CP0         | 250        | 266             | 255.9                       | 260.1                       | 2550                | 853               | 0.28              |                     |  |  |  |  |  |  |  |
| K30008CP0         | 300        | 316             | 305.9                       | 310.1                       | 3055                | 949               | 0.35              |                     |  |  |  |  |  |  |  |
| K32008CP0         | 320        | 336             | 325.9                       | 330.1                       | 3257                | 985               | 0.39              | 3 F = 0.8           |  |  |  |  |  |  |  |
| K34008CP0         | 340        | 356             | 345.9                       | 350.1                       | 3459                | 1016              | 0.42              | Bearing corners are |  |  |  |  |  |  |  |
| K36008CP0         | 360        | 376             | 365.9                       | 370.1                       | 3636                | 1050              | 0.46              | normally chamfered  |  |  |  |  |  |  |  |

#### 8mm SERIES (DOUBLE SEALED) Snapover separator 5/32" (inch) balls Dimensions Capacity<sup>①</sup> Torque Limiting **KAYDON** Approx. Land Diameters (mm) Radial (kg) Max. No Size (mm) Conrad **Bearing** Speeds Weight Load Outside Land Land Assembly Number (RPM) (kg) Bore Static<sup>2</sup> Dynamic (N-m) Dia. Dia. L<sub>1</sub> Dia. L<sub>2</sub> Type C \*J02508CP0 25 31.55 34.42 303 5580 0.02 0.06 41 255 \*J05008CP0 50 66 56.55 59.42 556 350 3180 0.04 0.08 8 mm \*J06008CP0 60 76 66.55 69.42 656 384 2710 0.05 0.09 70 \*J07008CP0 86 76.55 79.42 758 417 2360 0.07 0.10 \*J08008CP0 80 96 86.55 89.42 859 448 2090 0.09 0.11 8 mm \*J09008CP0 10 90 106 96.55 99.42 959 478 1880 0.12 0.13 \*J10008CP0 100 106.55 109.42 1061 507 1700 0.15 116 0.14 \*J11008CP0 110 126 116.55 119.42 1162 534 1560 0.18 0.15 L2 129.42 1440 \*J12008CP0 120 136 126.55 1262 561 0.22 0.16 \*J13008CP0 130 146 136.55 139.42 1364 588 1330 0.26 0.17 \*J14008CP0 140 156 146.55 149.42 1465 613 1240 0.30 0.18 ③ F = 0.8 \*J15008CP0 150 166 156.55 159.42 1565 638 1160 0.35 0.20 Bearing corners are \*J16008CP0 160 176 166.55 169.42 1666 662 1090 0.40 0.20 normally chamfered \*J17008CP0 170 186 176.55 179.42 1767 686 1030 0.46 0.20

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

### **REALI-SLIM MM<sup>™</sup> Metric Series Bearing Selections Type C Radial Contact**

|                   |      | 1               | 3mm S                       | ERIES                       |                     |                   |                   | Snapover separator  |
|-------------------|------|-----------------|-----------------------------|-----------------------------|---------------------|-------------------|-------------------|---------------------|
|                   |      | Dime            | nsions                      |                             | Сара                | city <sup>①</sup> |                   | 1/4" (inch) balls   |
| KAYDON<br>Bearing | Size | (mm)            | Land Diam                   | eters (mm)                  | Radia               | al (kg)           | Approx.<br>Weight |                     |
| Number            | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>2</sup> | Dynamic           | (kg)              |                     |
| *K02513CP0        | 25   | 51              | 34.7                        | 41.3                        | 517                 | 535               | 0.11              |                     |
| *K05013CP0        | 50   | 76              | 59.7                        | 66.3                        | 905                 | 697               | 0.18              | Conrad              |
| *K06013CP0        | 60   | 86              | 69.7                        | 76.3                        | 1099                | 775               | 0.21              | Assembly            |
| K07013CP0         | 70   | 96              | 79.7                        | 86.3                        | 1228                | 819               | 0.24              | Type C              |
| *K08013CP0        | 80   | 106             | 89.7                        | 96.3                        | 1358                | 862               | 0.26              |                     |
| *K09013CP0        | 90   | 116             | 99.7                        | 106.3                       | 1551                | 931               | 0.29              |                     |
| *K10013CP0        | 100  | 126             | 109.7                       | 116.3                       | 1681                | 971               | 0.32              |                     |
| *K11013CP0        | 110  | 136             | 119.7                       | 126.3                       | 1875                | 1035              | 0.35              | <b>→</b> 13mm       |
| *K12013CP0        | 120  | 146             | 129.7                       | 136.3                       | 2004                | 1073              | 0.38              |                     |
| *K13013CP0        | 130  | 156             | 139.7                       | 146.3                       | 2133                | 1110              | 0.41              | 13mm                |
| *K14013CP0        | 140  | 166             | 149.7                       | 156.3                       | 2327                | 1169              | 0.44              |                     |
| *K15013CP0        | 150  | 176             | 159.7                       | 166.3                       | 2456                | 1204              | 0.46              |                     |
| *K16013CP0        | 160  | 186             | 169.7                       | 176.3                       | 2586                | 1239              | 0.49              |                     |
| K17013CP0         | 170  | 196             | 179.7                       | 186.3                       | 2780                | 1294              | 0.52              | E1                  |
| *K18013CP0        | 180  | 206             | 189.7                       | 196.3                       | 2909                | 1327              | 0.55              |                     |
| K19013CP0         | 190  | 216             | 199.7                       | 206.3                       | 3038                | 1360              | 0.58              |                     |
| *K20013CP0        | 200  | 226             | 209.7                       | 216.3                       | 3232                | 1411              | 0.61              |                     |
| *K25013CP0        | 250  | 276             | 259.7                       | 266.3                       | 4008                | 1598              | 0.75              |                     |
| *K30013CP0        | 300  | 326             | 309.7                       | 316.3                       | 4719                | 1754              | 0.89              |                     |
| *K32013CP0        | 320  | 346             | 329.7                       | 336.3                       | 5042                | 1823              | 0.95              | 3 F = 1.5           |
| *K34013CP0        | 340  | 366             | 349.7                       | 356.3                       | 5365                | 1889              | 1.01              | Bearing corners are |
| *K36013CP0        | 360  | 386             | 369.7                       | 376.3                       | 5688                | 1954              | 1.06              | normally chamfered  |

|                   |      | 2               | 0mm S                       | ERIES                       |                     |                   |                   | Snapover separator                        |
|-------------------|------|-----------------|-----------------------------|-----------------------------|---------------------|-------------------|-------------------|-------------------------------------------|
|                   |      | Dime            | nsions                      |                             | Сара                | city <sup>①</sup> |                   | 3/8" (inch) balls                         |
| KAYDON<br>Bearing | Size | (mm)            | Land Diam                   | eters (mm)                  | Radia               | al (kg)           | Approx.<br>Weight |                                           |
| Number            | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dynamic           | (kg)              |                                           |
| *K02520CP0        | 25   | 65              | 40.0                        | 50.0                        | 1018                | 1178              | 0.34              |                                           |
| *K05020CP0        | 50   | 90              | 65.0                        | 75.0                        | 1600                | 1410              | 0.51              | Conrad                                    |
| *K06020CP0        | 60   | 100             | 75.0                        | 85.0                        | 1745                | 1452              | 0.58              | Assembly                                  |
| *K07020CP0        | 70   | 110             | 85.0                        | 95.0                        | 2036                | 1573              | 0.65              | Type C                                    |
| *K08020CP0        | 80   | 120             | 95.0                        | 105.0                       | 2181                | 1617              | 0.72              |                                           |
| *K09020CP0        | 90   | 130             | 105.0                       | 115.0                       | 2473                | 1730              | 0.80              |                                           |
| *K10020CP0        | 100  | 140             | 115.0                       | 125.0                       | 2618                | 1773              | 0.86              |                                           |
| *K11020CP0        | 110  | 150             | 125.0                       | 135.0                       | 2909                | 1880              | 0.94              | 20mm                                      |
| *K12020CP0        | 120  | 160             | 135.0                       | 145.0                       | 3200                | 1982              | 1.01              |                                           |
| *K13020CP0        | 130  | 170             | 145.0                       | 155.0                       | 3345                | 2023              | 1.08              | 20mm                                      |
| *K14020CP0        | 140  | 180             | 155.0                       | 165.0                       | 3636                | 2121              | 1.15              |                                           |
| K15020CP0         | 150  | 190             | 165.0                       | 175.0                       | 3781                | 2161              | 1.20              |                                           |
| K16020CP0         | 160  | 200             | 175.0                       | 185.0                       | 4072                | 2254              | 1.30              |                                           |
| K17020CP0         | 170  | 210             | 185.0                       | 195.0                       | 4363                | 2293              | 1.40              | •                                         |
| K18020CP0         | 180  | 220             | 195.0                       | 205.0                       | 4508                | 2383              | 1.50              |                                           |
| *K19020CP0        | 190  | 230             | 205.0                       | 215.0                       | 4800                | 2470              | 1.50              |                                           |
| K20020CP0         | 200  | 240             | 215.0                       | 225.0                       | 4945                | 2507              | 1.60              |                                           |
| K25020CP0         | 250  | 290             | 265.0                       | 275.0                       | 6108                | 2821              | 2.10              |                                           |
| K30020CP0         | 300  | 340             | 315.0                       | 325.0                       | 7272                | 3111              | 2.30              | @F 1F                                     |
| *K32020CP0        | 320  | 360             | 335.0                       | 345.0                       | 7708                | 3213              | 2.42              | ③ F = 1.5                                 |
| *K34020CP0        | 340  | 380             | 355.0                       | 365.0                       | 8144                | 3312              | 2.54              | Bearing corners are<br>normally chamfered |
| *K36020CP0        | 360  | 400             | 375.0                       | 385.0                       | 8581                | 3408              | 2.70              | normany charmered                         |

① Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

② Static capacities are non-brinell limits based on rigid support from the shaft and housing.

③ "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement. All dimensions in millimeters.

### **REALI-SLIM MM<sup>™</sup> Metric Series Bearing Selections Type X Four-Point Contact**

|                   |      |                 | 8                           | 8mm                         | SER                 | IES    |                     |                   |                     |      |                   | Snapover separator               |
|-------------------|------|-----------------|-----------------------------|-----------------------------|---------------------|--------|---------------------|-------------------|---------------------|------|-------------------|----------------------------------|
|                   |      | Dimer           | nsions                      |                             |                     |        | Сара                | city <sub>①</sub> |                     |      |                   | 5/32" (inch) balls               |
| KAYDON<br>Bearing | Size | (mm)            | Land Di<br>(m               | ameters<br>m)               | Radia               | l (kg) | Axia                | l (kg)            | Mon<br>(N-          |      | Approx.<br>Weight |                                  |
| Number            | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sub>2</sub> | Dyn.   | Static <sub>2</sub> | Dyn.              | Static <sub>2</sub> | Dyn. | (kg)              |                                  |
| K02508XP0         | 25   | 41              | 30.9                        | 35.1                        | 334                 | 331    | 758                 | 469               | 49                  | 40   | 0.06              |                                  |
| K05008XP0         | 50   | 66              | 55.9                        | 60.1                        | 555                 | 460    | 1389                | 666               | 158                 | 98   | 0.08              | 4 Point                          |
| K06008XP0         | 60   | 76              | 65.9                        | 70.1                        | 656                 | 506    | 1641                | 745               | 219                 | 127  | 0.09              | Contact                          |
| K07008XP0         | 70   | 86              | 75.9                        | 80.1                        | 757                 | 549    | 1894                | 819               | 290                 | 158  | 0.10              | Туре Х                           |
| K08008XP0         | 80   | 96              | 85.9                        | 90.1                        | 859                 | 591    | 2146                | 890               | 370                 | 191  | 0.11              |                                  |
| K09008XP0         | 90   | 106             | 95.9                        | 100.1                       | 959                 | 631    | 2399                | 959               | 461                 | 228  | 0.13              |                                  |
| K10008XP0         | 100  | 116             | 105.9                       | 110.1                       | 1060                | 670    | 2651                | 1025              | 562                 | 266  | 0.14              | <b>─</b> ► 8mm <b>◄</b> ─        |
| K11008XP0         | 110  | 126             | 115.9                       | 120.1                       | 1162                | 707    | 2903                | 1090              | 672                 | 307  | 0.15              | <sub>E</sub> I` I <b>↓</b>       |
| K12008XP0         | 120  | 136             | 125.9                       | 130.1                       | 1262                | 743    | 3156                | 1152              | 792                 | 350  | 0.16              |                                  |
| K13008XP0         | 130  | 146             | 135.9                       | 140.1                       | 1363                | 778    | 3409                | 1212              | 923                 | 395  | 0.18              | TT 8mm                           |
| K14008XP0         | 140  | 156             | 145.9                       | 150.1                       | 1465                | 812    | 3661                | 1271              | 1063                | 442  | 0.19              |                                  |
| K15008XP0         | 150  | 166             | 155.9                       | 160.1                       | 1565                | 846    | 3914                | 1329              | 1213                | 492  | 0.20              |                                  |
| K16008XP0         | 160  | 176             | 165.9                       | 170.1                       | 1666                | 878    | 4166                | 1386              | 1373                | 543  | 0.20              |                                  |
| K17008XP0         | 170  | 186             | 175.9                       | 180.1                       | 1767                | 910    | 4418                | 1441              | 1543                | 596  | 0.20              |                                  |
| K18008XP0         | 180  | 196             | 185.9                       | 190.1                       | 1868                | 941    | 4671                | 1495              | 1722                | 651  | 0.21              |                                  |
| *K19008XP0        | 190  | 206             | 195.9                       | 200.1                       | 1944                | 963    | 4860                | 1536              | 1888                | 701  | 0.21              |                                  |
| K20008XP0         | 200  | 216             | 205.9                       | 210.1                       | 2045                | 992    | 5113                | 1588              | 2086                | 759  | 0.22              |                                  |
| K25008XP0         | 250  | 266             | 255.9                       | 260.1                       | 2550                | 1133   | 6375                | 1840              | 3226                | 1075 | 0.28              |                                  |
| K30008XP0         | 300  | 316             | 305.9                       | 310.1                       | 3055                | 1261   | 7638                | 2076              | 4614                | 1429 | 0.35              |                                  |
| K32008XP0         | 320  | 336             | 325.9                       | 330.1                       | 3257                | 1310   | 8143                | 2166              | 5238                | 1580 | 0.39              | ③ F = 0.8<br>Bearing corners are |
| K34008XP0         | 340  | 356             | 345.9                       | 350.1                       | 3459                | 1350   | 8648                | 2255              | 5859                | 1728 | 0.42              | normally chamfered               |
| K36008XP0         | 360  | 376             | 365.9                       | 370.1                       | 3636                | 1396   | 9089                | 2330              | 6561                | 1890 | 0.46              |                                  |

|                             |      | 8               | 8mm    | n SEI             | RIES                | (D   | OUB                 | LE S | SEAL                | .ED  | )                           |                           |                           | Snapover separator<br>5/32" (inch) balls |
|-----------------------------|------|-----------------|--------|-------------------|---------------------|------|---------------------|------|---------------------|------|-----------------------------|---------------------------|---------------------------|------------------------------------------|
|                             |      | Dime            | nsions |                   |                     |      | Capad               | tty: |                     |      |                             |                           |                           | 5/52 (IIICII) Dalis                      |
| KAYDON<br>Bearing<br>Number | Size | e (mm)          | Diam   | nd<br>eters<br>m) | Radia               | (kg) | Axial               | (kg) | Mom<br>(N-ı         |      | Limiting<br>Speeds<br>(RPM) | Torque<br>Max. No<br>Load | Approx.<br>Weight<br>(kg) | 4 Point<br>Contact                       |
|                             | Bore | Outside<br>Dia. |        | Land<br>Dia. L₂   | Static <sub>2</sub> | Dyn. | Static <sub>2</sub> | Dyn. | Static <sub>2</sub> | Dyn. |                             | (N-m)                     | (Kg)                      | Туре Х                                   |
| *J02508XP0                  | 25   | 41              | 31.55  | 34.42             | 334                 | 331  | 758                 | 469  | 49                  | 40   | 3000                        | 0.02                      | 0.06                      | — <b>►</b> 8 mm <mark>→</mark>           |
| *J05008XP0                  | 50   | 66              | 56.55  | 59.42             | 555                 | 460  | 1389                | 666  | 158                 | 98   | 1500                        | 0.04                      | 0.08                      |                                          |
| *J06008XP0                  | 60   | 76              | 66.55  | 69.42             | 656                 | 506  | 1641                | 745  | 219                 | 127  | 1270                        | 0.05                      | 0.09                      |                                          |
| *J07008XP0                  | 70   | 86              | 76.55  | 79.42             | 757                 | 549  | 1894                | 819  | 290                 | 158  | 1090                        | 0.07                      | 0.10                      |                                          |
| *J08008XP0                  | 80   | 96              | 86.55  | 89.42             | 859                 | 591  | 2146                | 890  | 370                 | 191  | 950                         | 0.09                      | 0.11                      | (∭⊈ 8 mm                                 |
| *J09008XP0                  | 90   | 106             | 96.55  |                   | 959                 | 631  | 2399                | 959  | 461                 | 228  | 700                         | 0.12                      | 0.13                      |                                          |
| *J10008XP0                  | 100  | 116             | 106.55 |                   | 1060                | 670  | 2651                | 1025 | 562                 | 266  | 630                         | 0.15                      | 0.14                      | L2         🖡                             |
| *J11008XP0                  |      | 126             | 116.55 |                   | 1162                | 707  | 2903                | 1090 | 672                 | 307  | 580                         | 0.18                      | 0.15                      |                                          |
| *J12008XP0                  | 120  | 136             | 126.55 |                   | 1262                | 743  | 3156                | 1152 | 792                 | 350  | 530                         | 0.22                      | 0.16                      | ╘╹Ш╲Ш                                    |
| *J13008XP0                  | 130  | 146             | 136.55 |                   | 1363                | 778  | 3409                | 1212 | 923                 | 395  | 490                         | 0.26                      | 0.18                      |                                          |
| *J14008XP0                  | 140  | 156             | 146.55 | -                 | 1465                | 812  | 3661                | 1271 | 1063                | 442  | 450                         | 0.30                      | 0.19                      |                                          |
| *J15008XP0                  | 150  | 166             | 156.55 |                   | 1565                | 846  | 3914                | 1329 | 1213                | 492  | 420                         | 0.35                      | 0.20                      | ③ F = 0.8                                |
| *J16008XP0                  | 160  | 176             |        | 169.42            |                     | 878  | 4166                | 1386 |                     | 543  | 400                         | 0.40                      | 0.20                      | Bearing corners are                      |
| *J17008XP0                  | 170  | 186             | 176.55 | 179.42            | 1767                | 910  | 4418                | 1441 | 1543                | 596  | 370                         | 0.46                      | 0.20                      | normally chamfered                       |

Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.
 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

"F" is the maximum shaft or housing fillet radius the bearing corners will clear.

④ Torque figures shown are for single bearings with standard lubricant at room temperature and under 5 pounds thrust load.

\*\* Values apply to bearings loaded up to 20% of their dynamic capacity.

### **REALI-SLIM MM<sup>™</sup> Metric Series Bearing Selections** Type X Four-Point Contact

|                   |      |                 | 1                           | 3mm             | SER                 | IES    |                     |       |                     |      |                   | Snapover separator                        |
|-------------------|------|-----------------|-----------------------------|-----------------|---------------------|--------|---------------------|-------|---------------------|------|-------------------|-------------------------------------------|
|                   |      | Dimer           | nsions                      |                 |                     |        | Сара                | city1 |                     |      |                   | 1/4" (inch) balls                         |
| KAYDON<br>Bearing | Size | (mm)            | Land Di<br>(m               | ameters<br>m)   | Radia               | l (kg) | Axial               | (kg)  | Mon<br>(N-          |      | Approx.<br>Weight |                                           |
| Number            | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L₂ | Static <sup>®</sup> | Dyn.   | Static <sup>®</sup> | Dyn.  | Static <sup>®</sup> | Dyn. | (kg)              |                                           |
| *K02513XP0        | 25   | 51              | 34.7                        | 41.3            | 696                 | 689    | 1293                | 869   | 96                  | 96   | 0.13              |                                           |
| *K05013XP0        | 50   | 76              | 59.7                        | 66.3            | 919                 | 910    | 2263                | 1226  | 280                 | 211  | 0.20              | 4 Point                                   |
| *K06013XP0        | 60   | 86              | 69.7                        | 76.3            | 1099                | 1014   | 2747                | 1436  | 393                 | 272  | 0.23              | Contact                                   |
| *K07013XP0        | 70   | 96              | 79.7                        | 86.3            | 1228                | 1074   | 3070                | 1547  | 500                 | 328  | 0.26              | Туре Х                                    |
| *K08013XP0        | 80   | 106             | 89.7                        | 96.3            | 1358                | 1133   | 3393                | 1653  | 619                 | 388  | 0.28              |                                           |
| *K09013XP0        | 90   | 116             | 99.7                        | 106.3           | 1551                | 1224   | 3878                | 1808  | 784                 | 464  | 0.31              |                                           |
| *K10013XP0        | 100  | 126             | 109.7                       | 116.3           | 1681                | 1279   | 4201                | 1906  | 931                 | 532  | 0.34              | _ <b>→</b> 13mm                           |
| *K11013XP0        | 110  | 136             | 119.7                       | 126.3           | 1875                | 1364   | 4686                | 2050  | 1131                | 617  | 0.37              |                                           |
| *K12013XP0        | 120  | 146             | 129.7                       | 136.3           | 2006                | 1415   | 5010                | 2144  | 1307                | 693  | 0.40              |                                           |
| *K13013XP0        | 130  | 156             | 139.7                       | 146.3           | 2133                | 1466   | 5333                | 2235  | 1496                | 771  | 0.43              | 13mm                                      |
| *K14013XP0        | 140  | 166             | 149.7                       | 156.3           | 2327                | 1544   | 5817                | 2368  | 1746                | 869  | 0.46              |                                           |
| *K15013XP0        | 150  | 176             | 159.7                       | 166.3           | 2456                | 1592   | 6141                | 2455  | 1963                | 954  | 0.48              |                                           |
| *K16013XP0        | 160  | 186             | 169.7                       | 176.3           | 2586                | 1639   | 6464                | 2541  | 2193                | 1043 | 0.51              |                                           |
| *K17013XP0        | 170  | 196             | 179.7                       | 186.3           | 2780                | 1711   | 6949                | 2666  | 2494                | 1152 | 0.54              |                                           |
| *K18013XP0        | 180  | 206             | 189.7                       | 196.3           | 2909                | 1756   | 7272                | 2748  | 2753                | 1247 | 0.57              |                                           |
| K19013XP0         | 190  | 216             | 199.7                       | 206.3           | 3038                | 1800   | 7595                | 2829  | 3024                | 1344 | 0.60              |                                           |
| *K20013XP0        | 200  | 226             | 209.7                       | 216.3           | 3232                | 1868   | 8080                | 2948  | 3375                | 1464 | 0.63              |                                           |
| *K25013XP0        | 250  | 276             | 259.7                       | 266.3           | 4008                | 2119   | 10019               | 3403  | 5168                | 2050 | 0.77              |                                           |
| *K30013XP0        | 300  | 326             | 309.7                       | 316.3           | 4719                | 2327   | 11796               | 3794  | 7242                | 2680 | 0.91              |                                           |
| *K32013XP0        | 320  | 346             | 329.7                       | 336.3           | 5042                | 2419   | 12605               | 3966  | 8232                | 2963 | 0.97              | ③ F = 1.5                                 |
| *K34013XP0        | 340  | 366             | 349.7                       | 356.3           | 5365                | 2508   | 13412               | 4133  | 9286                | 3257 | 1.02              | Bearing corners are<br>normally chamfered |
| *K36013XP0        | 360  | 386             | 369.7                       | 376.3           | 5688                | 2594   | 14220               | 4298  | 10403               | 3560 | 1.08              | normally charmered                        |

|                   |      |                 | 2                           | 0mm                         | SER                 | IES    |                     |        |                     |            |                   | Snapover separator  |
|-------------------|------|-----------------|-----------------------------|-----------------------------|---------------------|--------|---------------------|--------|---------------------|------------|-------------------|---------------------|
|                   |      | Dime            | nsions                      |                             |                     |        | Сара                | city1  |                     |            |                   | 3/8" (inch) balls   |
| KAYDON<br>Bearing | Size | (mm)            |                             | ameters<br>m)               | Radia               | l (kg) | Axia                | l (kg) | Mon<br>(N-          | nent<br>m) | Approx.<br>Weight |                     |
| Number            | Bore | Outside<br>Dia. | Land<br>Dia. L <sub>1</sub> | Land<br>Dia. L <sub>2</sub> | Static <sup>®</sup> | Dyn.   | Static <sup>®</sup> | -      | Static <sup>®</sup> | Dyn.       | (kg)              |                     |
| *K02520XP0        | 25   | 65              | 40.0                        | 50.0                        | 1518                | 1503   | 2545                | 1789   | 225                 | 225        | 0.34              |                     |
| *K05020XP0        | 50   | 90              | 65.0                        | 75.0                        | 1845                | 1827   | 3999                | 2418   | 549                 | 470        | 0.52              | 4 Point             |
| *K06020XP0        | 60   | 100             | 75.0                        | 85.0                        | 1906                | 1887   | 4363                | 2562   | 685                 | 556        | 0.59              | Contact             |
| *K07020XP0        | 70   | 110             | 85.0                        | 95.0                        | 2071                | 2050   | 5090                | 2839   | 899                 | 679        | 0.66              | Туре Х              |
| *K08020XP0        | 80   | 120             | 95.0                        | 105.0                       | 2181                | 2111   | 5454                | 2973   | 1070                | 777        | 0.73              |                     |
| *K09020XP0        | 90   | 130             | 105.0                       | 115.0                       | 2473                | 2263   | 6181                | 3231   | 1334                | 916        | 0.80              |                     |
| *K10020XP0        | 100  | 140             | 115.0                       | 125.0                       | 2618                | 2323   | 6545                | 3357   | 1540                | 1026       | 0.87              | 20mm                |
| *K11020XP0        | 110  | 150             | 125.0                       | 135.0                       | 2909                | 2466   | 7272                | 3601   | 1854                | 1179       | 0.94              |                     |
| *K12020XP0        | 120  | 160             | 135.0                       | 145.0                       | 3200                | 2603   | 7999                | 3837   | 2196                | 1341       | 1.01              | 20mm                |
| *K13020XP0        | 130  | 170             | 145.0                       | 155.0                       | 3345                | 2660   | 8363                | 3953   | 2460                | 1468       | 1.07              |                     |
| *K14020XP0        | 140  | 180             | 155.0                       | 165.0                       | 3636                | 2791   | 9090                | 4179   | 2852                | 1643       | 1.15              |                     |
| K15020XP0         | 150  | 190             | 165.0                       | 175.0                       | 3781                | 2845   | 9453                | 4290   | 3152                | 1779       | 1.22              |                     |
| K16020XP0         | 160  | 200             | 175.0                       | 185.0                       | 4072                | 2970   | 10180               | 4507   | 3594                | 1967       | 1.30              | -1 •                |
| K17020XP0         | 170  | 210             | 185.0                       | 195.0                       | 4363                | 3023   | 10907               | 4719   | 3929                | 2113       | 1.37              |                     |
| K18020XP0         | 180  | 220             | 195.0                       | 205.0                       | 4508                | 3143   | 11271               | 4823   | 4421                | 2312       | 1.44              |                     |
| *K19020XP0        | 190  | 230             | 205.0                       | 215.0                       | 4800                | 3260   | 11999               | 5029   | 4942                | 2519       | 1.51              |                     |
| K20020XP0         | 200  | 240             | 215.0                       | 225.0                       | 4945                | 3309   | 12362               | 5130   | 5334                | 2678       | 1.57              |                     |
| K25020XP0         | 250  | 290             | 265.0                       | 275.0                       | 6108                | 3731   | 15271               | 5906   | 8087                | 3706       | 2.10              |                     |
| K30020XP0         | 300  | 340             | 315.0                       | 325.0                       | 7272                | 4119   | 18179               | 6633   | 11410               | 4849       | 2.30              | 3 F = 1.5           |
| *K32020XP0        | 320  | 360             | 335.0                       | 345.0                       | 7708                | 4255   | 19270               | 6897   | 12850               | 5323       | 2.44              | Bearing corners are |
| *K34020XP0        | 340  | 380             | 355.0                       | 365.0                       | 8144                | 4388   | 20361               | 7154   | 14376               | 5812       | 2.58              | normally chamfered  |
| *K36020XP0        | 360  | 400             | 375.0                       | 385.0                       | 8581                | 4518   | 21452               | 7408   | 15988               | 6316       | 2.73              | normany charmered   |

 Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values.

0 Static capacities are non-brinell limits based on rigid support from the shaft and housing.

3 "F" is the maximum shaft or housing fillet radius the bearing corners will clear.

\* Contact KAYDON for lead time and minimum purchase requirement. All dimensions in millimeters.

### **ULTRA-SLIM®** Thin-Section Bearings

#### Ideal for applications in robotics, inspection equipment, satellites, cameras... anywhere precise positioning and lightweight designs are critical.

At just 2.5 mm wide, ULTRA-SLIM<sup>®</sup> bearings are available in bore sizes ranging from 35 mm to 170 mm for an array of applications. Their compact profile allows you to use ULTRA-SLIM<sup>®</sup> bearings in many highly confined spaces.

Precision-engineered ULTRA-SLIM® bearings are made of stainless steel for corrosion resistance. They are available in angular contact (Type A), radial contact (Type C), and fourpoint contact (Type X) styles. (See selection charts at right.)

Hybrid bearings with ceramic balls are available upon request. These configurations are used often when lubrication is marginal or when lower wear generation and/or lower torgue levels are required.

#### Figure 2-11

#### How to identify ULTRA-SLIM® Bearings using our part number code

| Position     | 1        | 2 | 3       | 4  | 5     | 6     | 7    | 8         | 9         | 10           |
|--------------|----------|---|---------|----|-------|-------|------|-----------|-----------|--------------|
| Nomenclature | Material | В | ore (mm | ı) | Width | n(mm) | Туре | Separator | Precision | Internal Fit |
| Example      | S        | 1 | 1       | 0  | 0     | 3     | С    | S         | 0         | К            |

#### **Explanation of position numbers:**

Position 1—Material

S = AISI 440C races and balls (Standard for Series)

Positions 2, 3 and 4—Bore

Nominal bearing bore in mm.

Positions 5 and 6—Width

Nominal radial race width in mm.

#### Position 7—Bearing Type

A = Angular Contact C = Radial Contact X = Four-Point Contact

#### Position 8—Separator

S = Spacer balls

F = Full complement of load balls

#### **Position 9—Precision**

0 = KAYDON standard precision class

#### **Performance and Application Considerations**

ULTRA-SLIM<sup>®</sup> bearings are unique in that their extremely thin cross section enables them to provide great size and weight reductions for light to medium duty applications with slow or intermittent rotation.

Given the fact that these bearings will most likely be used in lightly loaded applications where saving weight and space are the main objective, the loading values shown assume that the shaft and housing will also be of light construction. This will allow for greater bearing ring movement under load than traditional heavy section bearings. Thus the *loading limits* for capacity are not based on ABMA standards. Depending on the support provided by the shaft and housing, this movement can create increased stress levels within the bearing. Distortion of the shaft and housing under load will transfer to the bearing, causing increased stress levels which could lead to premature failure and/or erratic torgue conditions.

Position 10—Internal Fit A = 0.000 - 0.013 mm clearance

C = 0.013 - 0.025 mm clearance

E = 0.025 - 0.051 mm clearance

K = 0.000 - 0.013 mm preload

M = 0.013 - 0.025 mm preload

empty = standard internal fitup if not specified

The impact of non-uniform shaft and housing distortions is best found by testing. If problems are experienced, increased rigidity of the shaft and housing may be necessary. If the shaft and housing are of sufficient rigidity, it may be possible for the bearings to support greater loads than the loading limits provided.

### **ULTRA-SLIM® Bearing Selection Data**

| Bearing<br>Number         Bore<br>Diameter         Outside<br>Dia. L <sub>1</sub> Land<br>Dia. L <sub>2</sub> Radial Newtons<br>Static①         Thrust Newtons③         If<br>Gra           *S03503AS0         35         41         37.2         38.8         382         383         1334         Image: Softward S |            |      | Α        | ngula               | r Co                | ntact               | Туре А  |                |       |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------|---------------------|---------------------|---------------------|---------|----------------|-------|---|
| Number         Bore         Diameter         Dia. L1         Dia. L2         Static①         Dyn.②         Ihrust Newtons③         Gravestar           *S03503AS0         35         41         37.2         38.8         382         383         1334         384         385         383         1334         385         383         1334         385         383         1334         385         383         1334         385         383         1334         385         383         1334         385         385         383         1334         385         385         383         1334         385         385         383         1334         385         385         385         385         385         1112         375         552         1112         375         375         5609         1068         11         375         552         1045         135         385         385         385         385         385         1045         135         315         315         315         315         316         315         316         315         316         316         316         316         316         316         316         316         316         316         316         316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KAYDON     |      | Dimensi  | ons in mi           | n                   | Ca                  | pacity  | Loading Limits | Mass  |   |
| Number         Diameter         Dia. L <sub>1</sub> Dia. L <sub>2</sub> Static()         Dyn.(2)         Dia. L_4         Station         Dia. L_4         Dia. L_4         Station         Dia. L_4         Dia. L_4         Dia. L_4         Dia. L_4         Dia. L_4         Dia. L_4 <thdia. l_4<="" th=""> <thdia. l_4<="" th=""> <thd< th=""><th></th><th>Poro</th><th></th><th></th><th>Land</th><th>Radial</th><th>Newtons</th><th>Thrust Nowtons</th><th>in</th><th></th></thd<></thdia.></thdia.>                                                                                                                                                                                                                                                                                                                                                                                                               |            | Poro |          |                     | Land                | Radial              | Newtons | Thrust Nowtons | in    |   |
| *S06003AS0         60         66         62.2         63.8         649         552         1112         1           *S07003AS0         70         76         72.2         73.8         756         609         1068         1           *S07003AS0         74         80         76.2         77.8         799         632         1045         1           *S08003AS0         80         86         82.2         83.8         863         663         1001         1           *S09003AS0         90         96         92.2         93.8         970         716         956         1           *S10003AS0         100         106         102.2         103.8         1077         765         890         1           *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number     | DOIE | Diameter | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>①</sup> | Dyn.2   |                | Grams |   |
| *S07003AS0         70         76         72.2         73.8         756         609         1068         1           *S07403AS0         74         80         76.2         77.8         799         632         1045         1           *S08003AS0         80         86         82.2         83.8         863         663         1001         1           *S09003AS0         90         96         92.2         93.8         970         716         956         1           *S10003AS0         100         106         102.2         103.8         1077         765         890         1           *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *S03503AS0 | 35   | 41       | 37.2                | 38.8                | 382                 | 383     | 1334           | 5     |   |
| *S07403AS0         74         80         76.2         77.8         799         632         1045         1           *S08003AS0         80         86         82.2         83.8         863         663         1001         1           *S09003AS0         90         96         92.2         93.8         970         716         956         1           *S10003AS0         100         106         102.2         103.8         1077         765         890         1           *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *S06003AS0 | 60   | 66       | 62.2                | 63.8                | 649                 | 552     | 1112           | 9     |   |
| *S08003AS0         80         86         82.2         83.8         863         663         1001         1           *S09003AS0         90         96         92.2         93.8         970         716         956         1           *S10003AS0         100         106         102.2         103.8         1077         765         890         1           *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *S07003AS0 | 70   | 76       | 72.2                | 73.8                | 756                 | 609     | 1068           | 11    |   |
| *S09003AS0         90         96         92.2         93.8         970         716         956         1           *S10003AS0         100         106         102.2         103.8         1077         765         890         1           *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *S07403AS0 | 74   | 80       | 76.2                | 77.8                | 799                 | 632     | 1045           | 11    |   |
| *S10003AS0         100         106         102.2         103.8         1077         765         890         1           *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *S08003AS0 | 80   | 86       | 82.2                | 83.8                | 863                 | 663     | 1001           | 12    |   |
| *S11003AS0         110         116         112.2         113.8         1183         814         867         1           *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *S09003AS0 | 90   | 96       | 92.2                | 93.8                | 970                 | 716     | 956            | 13    |   |
| *S12003AS0         120         126         122.2         123.8         1290         863         823         1           *S13003AS0         130         136         132.2         133.8         1407         912         778         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *S10003AS0 | 100  | 106      | 102.2               | 103.8               | 1077                | 765     | 890            | 15    |   |
| * <b>S13003AS0</b> 130 136 132.2 133.8 1407 912 778 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *S11003AS0 | 110  | 116      | 112.2               | 113.8               | 1183                | 814     | 867            | 16    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *S12003AS0 | 120  | 126      | 122.2               | 123.8               | 1290                | 863     | 823            | 18    |   |
| * <b>S14003AS0</b> 140 146 142.2 143.8 1514 956 734 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *S13003AS0 | 130  | 136      | 132.2               | 133.8               | 1407                | 912     | 778            | 19    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *S14003AS0 | 140  | 146      | 142.2               | 143.8               | 1514                | 956     | 734            | 21    | ] |
| * <b>S15003AS0</b> 150 156 152.2 153.8 1621 1001 712 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *S15003AS0 | 150  | 156      | 152.2               | 153.8               | 1621                | 1001    | 712            | 22    |   |
| <b>*S16003AS0</b> 160 166 162.2 163.8 1727 1045 689 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *S16003AS0 | 160  | 166      | 162.2               | 163.8               | 1727                | 1045    | 689            | 24    |   |
| <b>*S17003AS0</b> 170 176 172.2 173.8 1834 1085 667 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *S17003AS0 | 170  | 176      | 172.2               | 173.8               | 1834                | 1085    | 667            | 25    |   |

Full complement or ball spacer ball 1/16" (inch)



Section 2–Selection Tables

④ F = 0.25 Bearing corners are normally chamfered

|            |      | Radia    | al Cont             | act Typ             | be C     |         |       | Full complement or ball spacer ball 1/16" (inch) |
|------------|------|----------|---------------------|---------------------|----------|---------|-------|--------------------------------------------------|
| KAYDON     |      | Dimensio | ns in mm            |                     | Capa     | acity   | Mass  |                                                  |
| Bearing    | Bore | Outside  | Land                | Land                | Radial N | lewtons | in    |                                                  |
| Number     | bole | Diameter | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static 1 | Dyn.2   | Grams |                                                  |
| *S03503CS0 | 35   | 41       | 37.2                | 38.8                | 418      | 418     | 5     |                                                  |
| *S06003CS0 | 60   | 66       | 62.2                | 63.8                | 711      | 605     | 9     | 2.5                                              |
| *S07003CS0 | 70   | 76       | 72.2                | 73.8                | 827      | 667     | 11    | F - TTTT                                         |
| *S07403CS0 | 74   | 80       | 76.2                | 77.8                | 875      | 689     | 11    |                                                  |
| *S08003CS0 | 80   | 86       | 82.2                | 83.8                | 944      | 725     | 12    |                                                  |
| *S09003CS0 | 90   | 96       | 92.2                | 93.8                | 1062     | 783     | 13    |                                                  |
| *S10003CS0 | 100  | 106      | 102.2               | 103.8               | 1178     | 841     | 15    |                                                  |
| *S11003CS0 | 110  | 116      | 112.2               | 113.8               | 1295     | 894     | 16    |                                                  |
| *S12003CS0 | 120  | 126      | 122.2               | 123.8               | 1412     | 943     | 18    |                                                  |
| *S13003CS0 | 130  | 136      | 132.2               | 133.8               | 1540     | 1001    | 19    |                                                  |
| *S14003CS0 | 140  | 146      | 142.2               | 143.8               | 1658     | 1050    | 21    |                                                  |
| *S15003CS0 | 150  | 156      | 152.2               | 153.8               | 1774     | 1099    | 22    | ④ F = 0.25                                       |
| *S16003CS0 | 160  | 166      | 162.2               | 163.8               | 1891     | 1143    | 24    | Bearing corners are                              |
| *S17003CS0 | 170  | 176      | 172.2               | 173.8               | 2006     | 1192    | 25    | normally chamfered                               |



learing corners are ormally chamfered

|            |      | 4        | Poin                | t Con               | tact i              | Гуре  | X         |              |       | Full complement or ball spacer ball 1/16" (inch) |
|------------|------|----------|---------------------|---------------------|---------------------|-------|-----------|--------------|-------|--------------------------------------------------|
| KAYDON     |      | Dimensio | ons in mr           | n                   | Сара                | city  | Loading   | Limits       | Mass  | ball spacer ball 1/16 (inch)                     |
| Bearing    | Bore | Outside  | Land                | Land                | Radial N            |       | Thrust    | Moment       | in    |                                                  |
| Number     | 20.0 | Diameter | Dia. L <sub>1</sub> | Dia. L <sub>2</sub> | Static <sup>①</sup> | Dyn.② | Newtons ③ | <b>N-m</b> ③ | Grams |                                                  |
| *S03503XS0 | 35   | 41       | 37.2                | 38.8                | 711                 | 585   | 1045      | 7.9          | 5     |                                                  |
| *S06003XS0 | 60   | 66       | 62.2                | 63.8                | 1208                | 847   | 934       | 11.8         | 9     |                                                  |
| *S07003XS0 | 70   | 76       | 72.2                | 73.8                | 1407                | 934   | 890       | 13.0         | 11    |                                                  |
| *S07403XS0 | 74   | 80       | 76.2                | 77.8                | 1487                | 965   | 867       | 13.4         | 11    |                                                  |
| *S08003XS0 | 80   | 86       | 82.2                | 83.8                | 1606                | 1015  | 845       | 14.0         | 12    |                                                  |
| *S09003XS0 | 90   | 96       | 92.2                | 93.8                | 1805                | 1096  | 801       | 14.9         | 13    |                                                  |
| *S10003XS0 | 100  | 106      | 102.2               | 103.8               | 2003                | 1177  | 756       | 15.6         | 15    |                                                  |
| *S11003XS0 | 110  | 116      | 112.2               | 113.8               | 2201                | 1252  | 734       | 16.6         | 16    |                                                  |
| *S12003XS0 | 120  | 126      | 122.2               | 123.8               | 2400                | 1320  | 689       | 17.0         | 18    |                                                  |
| *S13003XS0 | 130  | 136      | 132.2               | 133.8               | 2618                | 1401  | 645       | 17.2         | 19    | L2                                               |
| *S14003XS0 | 140  | 146      | 142.2               | 143.8               | 2818                | 1470  | 623       | 17.8         | 21    |                                                  |
| *S15003XS0 | 150  | 156      | 152.2               | 153.8               | 3016                | 1538  | 601       | 18.4         | 22    | ④ F = 0.25                                       |
| *S16003XS0 | 160  | 166      | 162.2               | 163.8               | 3215                | 1600  | 578       | 18.9         | 24    | Bearing corners are                              |
| *S17003XS0 | 170  | 176      | 172.2               | 173.8               | 3413                | 1669  | 556       | 19.2         | 25    | normally chamfered                               |

① Static radial capacities are based on maximum allowable contact stresses. Adequate support of the races is assumed to help assure uniform ball support. ② Dynamic radial capacities are included for life calculation purposes. These are based on the assumption that the shaft and housing have adequate strength

to support the loads without causing excessive distortion of the bearing rings.

③ Higher loading limits may be achieved with sufficiently rigid supports that will better restrict the movement of the bearing races under load.

 $\circledast$  Corner size is the maximum shaft or housing fillet radius that the bearing corners will clear.

### Only from KAYDON<sup>®</sup>: REALI-SLIM TT<sup>®</sup> Series the new generation of small-scale, thin-section turntable bearings

To save weight, reduce product design envelope sizes and increase design flexibility — without compromising bearing performance and life — customers told us they'd welcome a more compact turntable bearing design.

We listened and responded, by designing the first smallscale, thin-section turntable bearings available for such demanding applications as robotics, radar antennae, and factory positioning and inspection tables... REALI-SLIM TT<sup>®</sup> Series. The advantages of this new series vs. conventional turntable bearings include:

Significantly smaller size for greater design versatility and reduced weight;

Greater accuracy — extended radial bearing section increases rigidity, and optional preload or clearances to meet application torque or deflection requirements;

Easier to use — fast installation and changeout;

Custom configurations to meet your application's specific needs — many drive options, gearing/timing belt, mounting hole types; and

Designed to withstand harsh operating environments — AISI-440C steel races, steel reinforced seals.

#### Figure 2-12



# The configurations and specifications you need for more compact, more precise turntable designs



Holes sized for #4-40 screws, tapped, countersunk, or through gears set at full depth involute, 64 DP., 20° pressure angle

#### Four-Point Contact Bearing (REALI-SLIM TT<sup>®</sup> Series)

Bearings are most often designed to handle either radial or axial load conditions. The unique feature about the REALI-SLIM TT<sup>®</sup> Series four-point contact bearing line is that the gothic arch geometry of the inner and outer races enables a single bearing to carry three types of loading (radial, axial and moment) simultaneously. This makes it the bearing of choice for many applications since a single four-point contact bearing can often replace two bearings, providing a simplified design. REALI-SLIM TT<sup>®</sup> Series bearings may also be furnished with an internal diametral preload for those applications requiring greater stiffness or zero free play. This is accomplished by using balls that are larger than the space provided in the raceways. The balls and raceways, therefore, have some elastic deformation in the absence of an external load.

Figure 2-13 REALI-SLIM TT<sup>®</sup> Series



#### **REALI-SLIM TT® SERIES TURNTABLE BEARINGS (continued)**

| Basic Part Number | Radia  | l (lbs.) | Thrus  | t (lbs.) | Moment | (in lbs.) | Static              | Approx.          |
|-------------------|--------|----------|--------|----------|--------|-----------|---------------------|------------------|
| Basic Part Number | Static | Dynamic  | Static | Dynamic  | Static | Dynamic   | Torque<br>(in lbs.) | Weight<br>(lbs.) |
| T01-00225         | 680    | 520      | 1,710  | 790      | 770    | 440       | 3.4                 | 0.35             |
| T01-00275         | 830    | 580      | 2,090  | 910      | 1,150  | 600       | 4.4                 | 0.43             |
| T01-00325         | 990    | 640      | 2,470  | 1,010    | 1,600  | 780       | 5.5                 | 0.50             |
| T01-00375         | 1,140  | 700      | 2,850  | 1,110    | 2,130  | 980       | 6.5                 | 0.59             |
| T01-00425         | 1,290  | 750      | 3,220  | 1,210    | 2,740  | 1,200     | 7.4                 | 0.67             |
| T01-00450         | 1,370  | 780      | 3,410  | 1,260    | 3,070  | 1,320     | 7.9                 | 0.70             |
| T01-00475         | 1,440  | 810      | 3,600  | 1,310    | 3,420  | 1,440     | 8.5                 | 0.74             |
| T01-00500         | 1,520  | 830      | 3,790  | 1,350    | 3,790  | 1,560     | 9.0                 | 0.78             |
| T01-00525         | 1,590  | 860      | 3,980  | 1,400    | 4,180  | 1,690     | 9.5                 | 0.82             |
| T01-00575         | 1,750  | 910      | 4,360  | 1,480    | 5,020  | 1,950     | 10.4                | 0.89             |
| T01-00625         | 1,900  | 950      | 4,740  | 1,570    | 5,930  | 2,230     | 11.3                | 0.98             |
| T01-00675         | 2,050  | 1,000    | 5,120  | 1,650    | 6,910  | 2,530     | 12.2                | 1.05             |

#### Four-Point Contact Bearing (REALI-SLIM TT<sup>®</sup> Series)

Torque based on seal drag in addition to a light preload

Note: REALI-SLIM TT<sup>®</sup> Series turntable bearings are custom designed to meet your application's needs. Contact KAYDON for lead time.

#### **Non-geared Bearings**

| Part Number with<br>Through Holes | Bore  | O.D.  | Inner Land | Outer Land | Inner Bolt<br>Circle | Number of<br>holes | Outer Bolt<br>Circle | Number of<br>holes |
|-----------------------------------|-------|-------|------------|------------|----------------------|--------------------|----------------------|--------------------|
| T01-00225PAA                      | 1.500 | 3.000 | 2.148      | 2.356      | 1.813                | 6                  | 2.688                | 8                  |
| T01-00275PAA                      | 2.000 | 3.500 | 2.648      | 2.856      | 2.313                | 8                  | 3.188                | 10                 |
| T01-00325PAA                      | 2.500 | 4.000 | 3.148      | 3.356      | 2.813                | 9                  | 3.688                | 12                 |
| T01-00375PAA                      | 3.000 | 4.500 | 3.648      | 3.856      | 3.313                | 10                 | 4.188                | 14                 |
| T01-00425PAA                      | 3.500 | 5.000 | 4.148      | 4.356      | 3.813                | 12                 | 4.688                | 15                 |
| T01-00450PAA                      | 3.750 | 5.250 | 4.398      | 4.606      | 4.063                | 12                 | 4.938                | 16                 |
| T01-00475PAA                      | 4.000 | 5.500 | 4.648      | 4.856      | 4.313                | 14                 | 5.188                | 16                 |
| T01-00500PAA                      | 4.250 | 5.750 | 4.898      | 5.106      | 4.563                | 14                 | 5.438                | 18                 |
| T01-00525PAA                      | 4.500 | 6.000 | 5.148      | 5.356      | 4.813                | 15                 | 5.688                | 18                 |
| T01-00575PAA                      | 5.000 | 6.500 | 5.648      | 5.856      | 5.313                | 16                 | 6.188                | 20                 |
| T01-00625PAA                      | 5.500 | 7.000 | 6.148      | 6.356      | 5.813                | 18                 | 6.688                | 22                 |
| T01-00675PAA                      | 6.000 | 7.500 | 6.648      | 6.856      | 6.313                | 20                 | 7.188                | 22                 |

#### **Externally Geared Bearings**

| Part Number with<br>Through Holes | Bore  | Gear O.D. | Inner<br>Land | Outer<br>Land | Inner<br>Bolt<br>Circle | Number<br>of holes | Outer<br>Bolt<br>Circle | Number<br>of holes | Gear<br>Pitch Dia. | Number<br>of teeth |
|-----------------------------------|-------|-----------|---------------|---------------|-------------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|
| T01-00225EAA                      | 1.500 | 3.078     | 2.148         | 2.356         | 1.813                   | 6                  | 2.688                   | 8                  | 3.047              | 195                |
| T01-00275EAA                      | 2.000 | 3.578     | 2.648         | 2.856         | 2.313                   | 8                  | 3.188                   | 10                 | 3.547              | 227                |
| T01-00325EAA                      | 2.500 | 4.078     | 3.148         | 3.356         | 2.813                   | 9                  | 3.688                   | 12                 | 4.047              | 259                |
| T01-00375EAA                      | 3.000 | 4.578     | 3.648         | 3.856         | 3.313                   | 10                 | 4.188                   | 14                 | 4.547              | 291                |
| T01-00425EAA                      | 3.500 | 5.078     | 4.148         | 4.356         | 3.813                   | 12                 | 4.688                   | 15                 | 5.047              | 323                |
| T01-00450EAA                      | 3.750 | 5.328     | 4.398         | 4.606         | 4.063                   | 12                 | 4.938                   | 16                 | 5.297              | 339                |
| T01-00475EAA                      | 4.000 | 5.578     | 4.648         | 4.856         | 4.313                   | 14                 | 5.188                   | 16                 | 5.547              | 355                |
| T01-00500EAA                      | 4.250 | 5.828     | 4.898         | 5.106         | 4.563                   | 14                 | 5.438                   | 18                 | 5.797              | 371                |
| T01-00525EAA                      | 4.500 | 6.078     | 5.148         | 5.356         | 4.813                   | 15                 | 5.688                   | 18                 | 6.047              | 387                |
| T01-00575EAA                      | 5.000 | 6.578     | 5.648         | 5.856         | 5.313                   | 16                 | 6.188                   | 20                 | 6.547              | 419                |
| T01-00625EAA                      | 5.500 | 7.078     | 6.148         | 6.356         | 5.813                   | 18                 | 6.688                   | 22                 | 7.047              | 451                |
| T01-00675EAA                      | 6.000 | 7.578     | 6.648         | 6.856         | 6.313                   | 20                 | 7.188                   | 22                 | 7.547              | 483                |

#### **REALI-SLIM TT® SERIES TURNTABLE BEARINGS (continued)**

#### **Internally Geared Bearings**

| Part Number with<br>Through Holes | Gear<br>I.D. | O.D.  | Inner<br>Land | Outer<br>Land | Inner<br>Bolt<br>Circle | Number<br>of holes | Outer<br>Bolt<br>Circle | Number<br>of holes | Gear<br>Pitch Dia. | Number<br>of teeth |
|-----------------------------------|--------------|-------|---------------|---------------|-------------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|
| T01-00225NAA                      | 1.422        | 3.000 | 2.148         | 2.356         | 1.813                   | 6                  | 2.688                   | 8                  | 1.453              | 93                 |
| T01-00275NAA                      | 1.922        | 3.500 | 2.648         | 2.856         | 2.313                   | 8                  | 3.188                   | 10                 | 1.953              | 125                |
| T01-00325NAA                      | 2.422        | 4.000 | 3.148         | 3.356         | 2.813                   | 9                  | 3.688                   | 12                 | 2.453              | 157                |
| T01-00375NAA                      | 2.922        | 4.500 | 3.648         | 3.856         | 3.313                   | 10                 | 4.188                   | 14                 | 2.953              | 189                |
| T01-00425NAA                      | 3.422        | 5.000 | 4.148         | 4.356         | 3.813                   | 12                 | 4.688                   | 15                 | 3.453              | 221                |
| T01-00450NAA                      | 3.672        | 5.250 | 4.398         | 4.606         | 4.063                   | 12                 | 4.938                   | 16                 | 3.703              | 237                |
| T01-00475NAA                      | 3.922        | 5.500 | 4.648         | 4.856         | 4.313                   | 14                 | 5.188                   | 16                 | 3.953              | 253                |
| T01-00500NAA                      | 4.172        | 5.750 | 4.898         | 5.106         | 4.563                   | 14                 | 5.438                   | 18                 | 4.203              | 269                |
| T01-00525NAA                      | 4.422        | 6.000 | 5.148         | 5.356         | 4.813                   | 15                 | 5.688                   | 18                 | 4.453              | 285                |
| T01-00575NAA                      | 4.922        | 6.500 | 5.648         | 5.856         | 5.313                   | 16                 | 6.188                   | 20                 | 4.953              | 317                |
| T01-00625NAA                      | 5.422        | 7.000 | 6.148         | 6.356         | 5.813                   | 18                 | 6.688                   | 22                 | 5.453              | 349                |
| T01-00675NAA                      | 5.922        | 7.500 | 6.648         | 6.856         | 6.313                   | 20                 | 7.188                   | 22                 | 5.953              | 381                |

# The design features and options you asked for

Custom REALI-SLIM TT<sup>®</sup> Series thin-section bearings are the proven, single four-point contact ball radial design, consisting of a single row of balls with a unique gothic arch raceway and brass separators for low frictional torque. Radial, axial and moment load-capable, the bearings are prelubricated and ready for use; simply position the bearings on the mounting face and tighten the mounting screws! Bearing versions available with optional internal or external spur gear for ease of drive setup, or non-geared designs.

Geared options are 64 diametral pitch with 20° pressure

angle, up to AGMA Class 10, and provide low-backlash service. Built-in seals are a low-torque design, and made of rugged, reliable, steel-reinforced nitrile rubber.

Mounting holes are sized for #4-40 UNC fasteners with optional styles — .136 through holes and countersunk holes, and tapped through. Non-geared races have mounting piloting diameters controlled to .0008 inches.

The bearings are cleaned and packaged in an ISO Class 7 minimum clean room; ISO Class 5 minimum clean room standards are also available.



No gear with through holes



External gear with tapped holes



Externally geared bearing with countersunk holes



Internal gear with tapped holes

### **Section 3 — Applications Engineering**

|                                       | Page   |
|---------------------------------------|--------|
|                                       | Number |
| Bearing Selection                     |        |
|                                       |        |
| Capacity, Life, and Load Analysis     |        |
| Mounting                              |        |
| - Accuracy                            |        |
| - Load                                |        |
| - Speed                               |        |
| - Other Considerations                |        |
| - Other Considerations                |        |
| Precision Tolerances                  |        |
| - REALI-SLIM <sup>®</sup> Bearings    |        |
| - ENDURA-SLIM <sup>®</sup> Bearings   |        |
| - REALI-SLIM MM <sup>™</sup> Bearings |        |
| - ULTRA-SLIM <sup>®</sup> Bearings    |        |
|                                       |        |

### **Bearing Selection**

#### Type C—Radial Contact



The Type C Radial Contact ball bearing is a single-row radial ball bearing with extra deep ball grooves in both rings (groove depth = 25% of ball diameter). Normally this bearing is assembled by eccentric displacement of the inner race within the outer race which permits insertion of about half of a full complement of balls. After insertion of the balls, the races are positioned concentrically and the balls are spaced about the entire circumference for assembly of the separator. This method of assembly is commonly termed "Conrad Assembly."

An alternate method of assembly is to insert balls through a "filling slot" made by notching the raceway shoulder of one or both races. This method permits assembly with up to a full complement of balls for additional load capacity, however, there are limitations on the operating conditions and these are discussed under Separator Types.

Type C bearings perform best with a small amount of clearance between the balls and races (diametral clearance). Standard bearings are supplied with clearances for:

Interference fitting between bearing races and mounting members;

Differential thermal expansion or contraction of steel races;

Misalignment between shaft and housing and other factors may require the clearance to be adjusted accordingly.

The Type C radial contact bearing is designed to have ball to race contact in the plane of the ball centers

when pure radial load is applied and thrust forces are absent. Necessary diametral clearance may be increased or decreased to meet operating conditions.

While designed primarily for radial load application, the Type C bearing, without a filling slot, will accept some axial (thrust) load in either direction. Its ability to resist axial load, however, is dependent upon the amount of clearance in the bearing after installation. It is this clearance which allows the balls, under axial load, to contact the races at an angle, thereby offering resistance to such load. In the case of the bearing with a filling slot, the notches interrupt the ball contact paths under axial load, minimizing the dynamic thrust capability. Where axial load is present, therefore, rotation of the filling slot bearing must be restricted.

By increasing the diametral clearance beyond the standard amount, the Type C bearing can have a greater angle of contact under axial load, and thus greater thrust capacity. In this case, it is proper to adjust the bearing against another bearing of similar construction to reduce axial movement under reversing thrust forces. Used in this manner, the bearing is essentially an angular contact rather than a radial contact bearing.

#### Type A—Angular Contact



Type A Angular Contact ball bearings differ from Type C bearings in that Type A bearings have sufficient diametral clearance to produce a substantial angle of contact for resistance to axial load. This contact angle is 30° in the standard bearing. As in the Type C bearing, extra deep ball grooves are used (25% of ball diameter).

The distinguishing feature of the Type A bearing lies in the method of assembly. One ring, usually the outer, is counter-bored to reduce one shoulder of the raceway to the extent that with the assistance of a temperature differential between the two rings, the outer ring can be installed over the inner race, ball, and separator assembly. This provides a non-separable bearing capable of carrying greater radial loads while resisting a substantial axial force in one direction. With an axial force applied, the faces of the inner and outer rings are approximately flush to minimize preload adjustments.

This assembly method permits the use of a greater complement of balls than is possible in the Type C bearing without filling slots, and together with the sizable contact angle, gives the Type A bearing its greater thrust capacity.

Because of its uni-directional thrust capability, this bearing should be mounted opposed to another bearing such that an axial force is present to establish and maintain the contact angle and to minimize axial movement under reversing thrust loads.

#### **Back-to-back Mounting**

Figure 3-1



Typical mountings of Type A bearings are shown in Figures 3-1 and 3-2. In Figure 3-1, the bearings are mounted with the lines of contact converging outside

of the bearings. This is commonly called a "back-toback" mounting. In this figure, the bearings are adjustable through the inner races by use of shims under the inner race clamping ring. Sufficient shim thickness is provided initially to allow axial movement of the shaft relative to the housing. The total axial movement can then be measured and the shim thickness reduced by the amount of movement plus any additional amount desired for preload. When two bearings are opposed to each other to the extent that all internal clearance is removed and elastic deformation occurs between the balls and raceways, the bearings are said to be "preloaded."

#### **Face-to-face Mounting**

Figure 3-2



In Figure 3-2, the bearings are mounted "face-to-face" with the contact lines converging inward. Spacers are used between both the inner and outer races and adjustment is possible by varying the length of one spacer relative to the other. Normally, however, the spacers are equal in length and the bearings are furnished as a matched pair with a predetermined internal fit. If the outer race spacer were removed from this assembly, the bearings could be adjusted by use of shims under the outer race clamping ring.

#### **Duplexed Bearings**

Type A bearings are furnished as matched sets available direct from the factory — when they are to be mounted adjacent or with equal length inner and outer race spacers. When required, KAYDON can supply assemblies with matched ground spacers. The arrangements shown in Figures 3-3, 3-4, and 3-5 are known as duplexed bearings — back-to-back, face-toface, and tandem, respectively. Sets of three, four or more bearings can also be matched where conditions require additional capacity and there is insufficient space radially for larger bearings.

The bearings in these sets are matched within close limits for size of bore and outside diameter. Each set is marked with a"V" across the bores and outside diameters at the high point of radial runout and indicate the proper orientation of the races at installation (Figure 3-5). The pairs shown in Figures 3-3 and 3-4 are normally furnished with the race faces ground to provide preload when installed. To accomplish this, a gap is provided between the inner races of the pair in Figure 3-3 and between the outer races of the pair in Figure 3-4. When the bearings are installed and clamped axially, the gap is closed producing a preload on the bearings.

<u>Back-to-back arrangement</u> of Figures 3-1 and 3-3 offers greater rigidity under moment loading and should be used when the space between single bearings is small or when a single pair of adjacent bearings is employed.

<u>Face-to-face arrangement</u> is more tolerant of misalignment between the shaft and housing and should be considered when there are multiple pairs of bearings along an axis. When single bearings are mounted face-to-face, they must be spaced sufficiently to provide resistance to moment load. If

Figure 3-3 Back-to-back (Type DB)

Figure 3-4 Face-to-face (Type DF) Figure 3-5 Tandem (Type DT)





required, a face-to-face pair can be mounted in conjunction with another bearing in a "fixed-float" arrangement with the pair in the fixed position. (Also see Section 3, Mounting.)

<u>Tandem bearing</u> sets have single direction thrust capacity and must be mounted opposed to another bearing or set.

When applying catalog load ratings to matched sets, the total radial capacity is considered equal to the single bearing radial rating multiplied by  $N^{0.7}$ , where N is the number of bearings in the set. The thrust capacity in each direction is considered equal to the single bearing thrust rating multiplied by  $N^{0.7}$ , where N is the number of bearings resisting thrust in that direction.

Unless specifically requested, the outboard faces of bearing sets are not controlled. If outboard face flushness is required for preload purposes, universally ground bearings should be considered. On universally ground bearings, both inboard and outboard faces are matched under a specified gage load to control preload and allow for mounting orientation flexibility.

#### **Type X—Four Point Contact**



The Type X Four-Point Contact ball bearing is distinguished from Types A and C by the geometry of its ball grooves. In Type C, the centers of the radii both lie in the plane of the ball centers (Figure 3-6). In Type A with the races and balls in angular contact, the centers of the groove radii are offset equal amounts on either side of the plane of the ball centers (Figure 3-7). In the Type X bearing the groove in each race has two radii whose centers are offset from the plane of the ball centers (Figure 3-8). The latter construction gives the Type X bearing its unique "Gothic Arch" configuration, making possible four contact points between a ball and the raceways.

Type X bearings are assembled by the methods described in Type C bearings, either Conrad or filling slot. With a filling slot, both the dynamic radial and thrust capabilities are impaired by the interruption of the ball contact path, and speed of rotation must be limited.

The depth of groove in the Type X bearing is the same as in Types A and C (25% of ball diameter). The deep groove combined with the four-point contact geometry enables this bearing to resist a combination of radial, thrust, and moment loading. The manner in which the bearing accomplishes this is similar to that of a pair of Type A bearings duplexed back-to-back.





Referring to Figure 3-9, an axial force applied to the inner race from right to left is passed from the race to the ball at point B. It is then transmitted through the ball to point D where it passes into the outer race and support structure. The line of action BD forms a nominal 30° angle with the radial centerline of the bearing. Because of the elastic deformation of the ball and the race grooves along the load-transmission line, the ball load is relieved at points A and C, permitting smooth rotation around an axis perpendicular to line BD. With an axial force applied to the inner race from left to right, a similar transmission of load occurs between points C and A.



#### **Moment or Overturning Load**

A moment or overturning load is similar to two thrust loads acting in opposite directions at diametrically opposite sides of the bearing. With a moment load, the loading on one side of the bearing will pass from point B to D, relieving points A and C. Directly across the bearing, the load passes from point C to point A, relieving points B and D.

A radial load is resisted equally across the lines of contact CA and BD. Under combined loading the resistance is along both lines of contact with the magnitude of each reaction dependent upon the relationship of the individual loads.

By its ability to resist radial, thrust, and moment loads in any combination, the Type X bearing is often able to replace two bearings—a pair of angular contact ball bearings, a pair of tapered roller bearings, or a combination of thrust and radial bearings, either ball or roller.

As in the case of the Type C bearing, Type X bearings are normally supplied with diametral clearance. The latter bearing, however, is not dependent upon this clearance for its nominal contact angle and thrust capacity. On the contrary, where thrust or moment loading is considerable, the clearance should be minimized to prevent the angle of contact from becoming excessive. For many applications requiring greater stiffness, Type X bearings are furnished with an internal preload. This is accomplished by using balls larger in diameter than the space provided between the raceways. The balls and raceways in this case have some elastic deformation without the presence of external load.

NOTE: Type X Bearings are designed to be used singularly. Use of two Type X bearings on a common shaft could result in objectionable friction torque.



### Capacity, Life, and Load Analysis of REALI-SLIM<sup>®</sup> Ball Bearings

#### **Increased Capacity**

Starting with the 2007 edition of this catalog, KAYDON has changed the method used for calculating the dynamic capacity of REALI-SLIM<sup>®</sup> bearings. The radial and moment capacities of most REALI-SLIM<sup>®</sup> bearings have been increased.

The increased capacities are based on over five years of actual test data. These changes are also supported by modern bearing fatigue life theory. These values are consistent with both ABMA Std. 9 and ISO-281 calculations, when the proper assumptions are considered. The increased capacities apply to bearings with standard internal clearance. The new values assume that a certain amount of clearance is left in the bearing after installation.

The biggest increase is in the radial capacity of four-point contact (X-Type) bearings. Under the old rating system, four-point contact bearings were given the same capacity as radial (C-Type) bearings. However, in this type of bearing the ball loads are distributed over two lines of contact on each race. This gives lower contact stress and longer life, as demonstrated by KAYDON testing.

#### Life

The dynamic capacity values shown in this catalog are based on actual data from fatigue life testing. The capacities are based on 1,000,000 revolutions  $L_{10}$  fatigue life. This is the industry standard that was established for ease of calculation. It is not advisable to apply loads equal to the dynamic capacities in an actual application. Continuous rotation under these conditions would not normally yield acceptable life.

 $L_{10}$  fatigue life is that life which 90% of a representative group of identical bearings can be expected to achieve or exceed before evidence of subsurface material fatigue appears. The life of the remaining 10% is unpredictable. The life which 50% of the bearings may be expected to achieve or exceed is approximately 5 times the  $L_{10}$  life. This is known as the  $L_{50}$  or median life.

There is no significant difference between the dynamic capacity for inner race rotation versus outer race rotation. This is due to the relatively small ratio of ball diameter to pitch diameter in REALI-SLIM<sup>®</sup> bearings.

Static load capacities are shown in this catalog. However,

the actual static load a REALI-SLIM<sup>®</sup> bearing can withstand is dependent upon the amount of support provided by the shaft and housing.

The published capacity numbers allow the user to quickly estimate the bearing  $L_{10}$  life for a onedimensional load case. The life can be estimated using one of the following equations:

$$L_{10} = \left(\frac{C}{P}\right)^3 \bullet 1,000,000 \text{ revolutions}$$

Where:  $L_{10} = life$  in revolutions C = KAYDON dynamic rating

P = Applied load (effective)

or

For determining the life in hours at a given speed of rotation the above formula can be changed to read:

$$L_{h} = \left(\frac{C}{P}\right)^{3} \bullet \left(\frac{16,667}{S}\right)$$
 hours

Where:  $L_h = L_{10}$  life in hours S = Speed in RPM

For multiple load cases or non-standard internal fits, the analysis becomes more complicated. Contact KAYDON Engineering for these cases or consult REALI-DESIGN<sup>™</sup> software available on our website www. kaydonbearings.com.

It should be noted that the capacities published in this catalog are best used for comparison purposes. The actual value of a life calculation is only valid for an individual load case and the internal fitup for which the number was derived. Since it is very rare to have a truly radial or axial or moment load, these are not normally used for a life calculation.

#### **Load Analysis**

Previous versions of this catalog have discussed applying the loads from a free body diagram to a bearing system and solving for each of four reactions. As there are generally three equations (one for radial, one for axial, one for moment loads) and four unknowns, one of the reactions has been assumed to be zero. Once the remaining reactions are resolved, the life of the bearing can be determined.

#### CAPACITY, LIFE, AND LOAD ANALYSIS OF REALI-SLIM® BALL BEARINGS (continued)

This method had several drawbacks, including:

- It suggested very low bearing life for systems with predominantly axial loads.
- Internal bearing fitup could not be included in the life calculation.
- All loading was assumed to be distributed around the bearing as though it were a pure radial load... regardless of its origin.

Modern computers and software allow for a more complicated and accurate method of determining life. Illustrated here are the results of this process. The actual loads are applied to the bearing and the resultant load on each and every ball in that bearing is determined. From this data, the static safety factor and dynamic  $L_{10}$  life can be determined.

To better understand this, the following should be considered:

#### **Primary Radial Loading**

- Larger clearances will have fewer balls carrying the loads, resulting in lower dynamic lives.
- Larger preloads may overload the bearing before the loads are applied.

#### **Primary Axial and Moment Loading**

- Larger clearances will permit a higher contact angle than the ball has with the raceway, and thus better support the applied loading.
  - However, the ball-to-raceway contact area may spill over the edge of the race causing other problems.
- Larger preloads may again overload the bearing before the loads are applied.

The method for calculating either a static safety factor or dynamic life requires the use of a computer to determine the individual ball loads throughout the bearing. When these have been calculated, the maximum loaded ball is used to determine a maximum stress level and thus a static safety factor. All of the ball loads are used in a weighted analysis to determine the dynamic  $L_{10}$  life.

Since these calculations require a computer, the mathematics required are not shown here. To complete such an analysis, utilize the KAYDON supplied software — REALI-DESIGN™ or REALI-DESIGN MM<sup>™</sup> — available at www.kaydonbearings.com.

To better understand these principles, graphical representations of ball distribution around each of three common bearing types are shown in Figures 3-10 through 3-12. Here the ball load distribution and magnitude can be visualized. The higher the peak, the higher the loads.

Figure 3-10



KA040CP0 with 100 lbs. radial load

Clearance in the bearing; few balls carry the load.

This radial bearing has clearance in it. There are only three balls supporting this load, with a very high maximum value for the bottom ball.

Figure 3-11



**KA040CP0K with 100 lbs. radial load** Light preload in the bearing; all balls carry the load.

This radial bearing has a light preload in it. All the balls have some load on them, and as can be seen, the bottom middle ball has far less load than the example above.
### CAPACITY, LIFE, AND LOAD ANALYSIS OF REALI-SLIM® BALL BEARINGS (continued)



KA040CP0P with 100 lbs. radial load. Heavy preload.

This radial contact bearing has a very heavy preload in it. All the balls have load on them, and the load on the bottom ball is just as high as the bearing with clearance in the first example.

- Increased Capacity
- Increased Life
- Backed by Theory and Testing

### Similar diagrams are shown below for other instances.



**KA040XP0 with 100 lbs. Radial Load** Clearance in bearing; few balls carry the load.



KA040XP0 with 100 lbs. Radial Load, 100 lbs. Axial Load Lower ball contact, mostly unloaded.

Figure 3-15



KA040XP0 with 100 lbs. Radial Load, 100 lbs. Axial Load 30 Inch-lbs. Moment Load

Figure 3-16



KA040XP0K with 100 lbs. Radial Load, 100 lbs. Axial Load 30 Inch-lbs. Moment Load

### CAPACITY, LIFE, AND LOAD ANALYSIS OF REALI-SLIM® BALL BEARINGS (continued)

Figure 3-17 shows a typical mounting of two angular contact bearings subject to external forces  $F_r$  and  $F_t$ .



#### Figure 3-17

#### Load Diagram for a Back-to-Back Duplex Pair

Radial Load =  $F_r$ Axial Load =  $F_t$ Moment Load =  $F_ra - F_tb$ 

Consult KAYDON REALI-DESIGN<sup>™</sup> software for resultant load calculations.



Often a bearing system must operate in several modes such as "idle" and "working." In this instance, the loads may vary substantially. It is advantageous to calculate the life of the bearing under the total loading spectrum. To do this, the individual life under each load case can be calculated alone, then combined to provide the system life for a particular duty cycle.

To perform this calculation, break the loading up into discrete sections which can have their respective percentage of revolutions represented as part of the total, such as:

| Case 1              | Case 2              | Case 3              |
|---------------------|---------------------|---------------------|
| Radial <sub>1</sub> | Radial <sub>2</sub> | Radial <sub>3</sub> |
| Axial <sub>1</sub>  | Axial <sub>2</sub>  | Axial <sub>3</sub>  |
| Moment <sub>1</sub> | Moment <sub>2</sub> | Moment <sub>3</sub> |
| % time <sub>1</sub> | % time <sub>2</sub> | % time <sub>3</sub> |
| L <sub>1</sub>      | L <sub>2</sub>      | L <sub>3</sub>      |

Substitute the individual " $L_n$ " lives into the equation below with "t<sub>n</sub>" where t<sub>n</sub> = % time<sub>n</sub>

The total weighted  $L_{10}$  life for this system =

$$L_{10w} = \frac{100}{\frac{t_1}{L_1} + \frac{t_2}{L_2} + \frac{t_3}{L_3}}$$



### Mounting

### Orientation

It is suggested that in an application where the bearing axis will be within 45° of vertical, the bearing be positioned with separator pocket openings down or that a shoulder of the shaft or housing be extended as added assurance of retention. Sealed and shielded bearings have this orientation instruction etched on the O.D. by an arrow and the word "up" as shown below.

#### Figure 3-18



Correct bearing orientation is shown.

### Accuracy

Three primary sources of displacement should be considered in a bearing application. These are looseness, deflection and geometric imperfections of the bearing and mating parts. Bearing imperfections consist of radial runout or eccentricity and axial or face runout. Corresponding to these, and of primary concern, are out-of-round and out-of-flat mounting surfaces of the mating parts.

Looseness can occur either between the bearing and the shaft and housing or within the bearing itself. In some applications, looseness cannot be tolerated, especially within the bearing.

Considering the load condition of Figure 3-19, it can be seen that with internal looseness (diametral clearance) in a Type C or Type X bearing, the thrust load will cause axial movement of the shaft relative to the housing. Because of its unique internal geometry with "built-in" contact angles, a Type X bearing exhibits much less axial movement (axial play) than a Type C bearing of the same dimensions, having the same diametral clearance. So even though the thrust force is within the thrust capability of the Type C bearing, the Type X bearing is the better choice where control of axial movement is important.

### Figure 3-19



Where axial movement must be completely restricted, the Type X bearing can be preloaded by using balls of greater diameter than the space provided for them between the raceways. This is common practice and provides excellent control of axial play. Where speed is appreciable, however, preload is not acceptable in the Type X bearing due to increased friction and wear. The alternative, then, is to use the mounting of Figure 3-20 employing two Type A bearings. Their geometry is more tolerant of preload, and they offer the advantage of adjustment after installation, making it possible to remove clearance while minimizing preload.

### Figure 3-20



Regarding bearing deflection, questions as to bearing spring rate (ratio of load to deflection) are common. To answer them, the nature and magnitude of the load must be considered. Deflection can occur in three modes: axial, radial, and angular, corresponding to the three types of loads. Therefore, there are three types of spring rates. Moreover, deflection in a ball bearing is non-linear and thus the spring rate is not constant. Typical load vs. deflection curves are shown in Figure 3-21.





# Use KAYDON REALI-DESIGN<sup>™</sup> software to generate graphics illustrating the effect of shaft and housing fits for all REALI-SLIM<sup>®</sup> standard bearings.

Deflection data for the three bearing types is shown on pages 104 through 109.

Deflection (the amount of movement associated with compression or stretching of bearing components when placed under load) varies from one type to another within a given series as a function of the contact angle and the number of balls. Conrad assembled bearings (C and X types) will exhibit greater deflection than those assembled by "loading notch" or than a Type A bearing since C and X types have fewer balls. When two bearings are spaced apart to support a moment load, the space between the bearings is most important when considering angular deflection (tilt-of-axis).

Preloading is also a significant factor in reducing deflection, as shown in the load-deflection curve. In Figure 3-21 it can be seen that a deflection is non-linear for the non-preloaded bearing. In addition, the rate of deflection is higher for lower loads than higher loads. Deflection for the preloaded bearings is linear up to the point of preload relief. For loads that exceed the preload relief, the subsequent deflection follows the same slope as the non-preloaded curve but at a reduced rate.



Thus if preload is used, the deflection due to the work load will be markedly less whether preload is relieved or not.

The Type A bearing is more tolerant of preload than is the Type X bearing. If maximum stiffness is required and speed of rotation is significant, Type A bearings are preferred.

Bearing precision, which influences accuracy, is independent of bearing type. Radial and axial runout, bore and O.D. tolerances, etc., are essentially the same for Types C, A, and X bearings of a given precision class.

### **KAYDON offers:**

- a breadth of products.
- a wide range of options.
- additional information on our bearings through KAYDON Engineering.



#### Load

With a pure radial load such as shown in Figure 3-22, it can be seen that the Type C bearings in Figure 3-24 would be ideal. They are designed for radial load, require no adjustment at installation, and are available in a wide variety of sizes. As shown, one bearing is fixed axially on both races and the other bearing is free to "float" in the housing. This arrangement permits differential expansion to occur between the shaft and housing without imposing axial loading on the bearings.

#### Figure 3-22



With an axial load applied as in Figure 3-19, consideration must be given to the thrust capability of the bearings. Type C bearings will accept some thrust loading, but where this loading is substantial, the Type X or Type A bearing is a better choice. The Type X bearing can be used with a Type C bearing as shown in Figure 3-25. This mounting is the same as that of Figure 3-24 except for the Type X bearing which is used at the "fixed" position to resist thrust in either direction while the Type C bearing "floats" and resists only radial load. With Type A bearings, the mounting could be as shown in Figures 3-27A and 3-27B.

In the third load condition (Figure 3-23), the bearing arrangement in Figure 3-24 will be satisfactory for small thrust loads. Where thrust is significant, the arrangement of Figures 3-20, 3-25, and 3-26 should be considered. In the latter case, one Type X bearing will accommodate the combined loads while effecting savings in space, weight, and cost. Figure 3-23



#### Figure 3-24



### Speed

In bearing selection, speed of rotation is equally as important as loading.

Referring to Figure 3-19, arrangements of both Figure 3-20 and Figure 3-25 would satisfy the load conditions, but their suitability for high speed must be considered.



The better arrangement for high speed operation is that using Type A bearings (Figure 3-20), which can be adjusted to provide the optimum internal fit.

There is the possibility of differential expansion creating a problem when two Type A bearings a sizable distance apart are clamped against each other with all internal clearance removed. If this is the case, a "fixed-floating" arrangement can be used as shown in Figures 3-27A and 3-27B with a duplexed pair of Type A bearings at the "fixed" position and a Type C bearing at the "float" position. Another possibility is to spring load the Type A bearings of Figure 3-20.

#### Figure 3-26



Figure 3-27A - Back to Back



Figure 3-27B - Face to Face



Where space is limited, combined loading exists, and speed is relatively high, a pair of Type A bearings as shown in Figure 3-28 would be given preference over the single Type X bearing of Figure 3-26. In this event preloading must be minimized. This can be accomplished by using a short spacer between the outer races and adjusting the bearings through the inner races.





Limiting speeds are given in Section 4.

### **Other Considerations**

### **Friction Torque**

In applications where minimum driving force is a requirement, consideration should be given to friction torque. For low torque, preload should be avoided if possible. Type X bearings under combined loading can be expected to have more friction than Type A bearings. The separators, ball-to-raceway conformity, lubrication method, shaft and housing fits and temperature are among the factors influencing bearing friction. Awareness of a low torque requirement enables the bearing engineer to weigh the compatibility of these factors. Additional information on friction torque is in Section 4. For more information, submit Request for Proposal Data form (see page 129 or website) to KAYDON product engineering or consult REALI-DESIGN<sup>™</sup> software.

### **Bearing Mounting**

What materials are to be used for the shaft and housing? What range of operating temperatures will be encountered? Will there be a temperature differential between the shaft and housing? The answers to these questions are necessary for proper bearing selection and application. Significant differential expansion will cause marked changes in both the external and internal bearing fits, especially in the case of the thin-section, REALI-SLIM<sup>®</sup> bearings. These changes affect accuracy, friction, and bearing life.

### **Ideal Mounting Conditions**

• Shaft and housing of material with coefficient of thermal expansion of approximately .000007 inch per inch per degree F

- Shaft and housing diameters round within bearing radial runout tolerances
- Shoulders flat within bearing axial runout tolerances
- Cross sections sufficiently rigid to provide good load distribution within bearing
- Suitable sealing or shielding to protect bearing from contamination

### **Typical Arrangements**

### Type C and Type A bearings

- Used with a second bearing with sufficient separation to resist moment loads
- When the axis of rotation is within 45° of vertical, snapover separators should be positioned with pocket openings down, or the shaft or housing should be extended as added assurance of separator retention.

### All Types

- Fixed races located axially by positive means
- Snap rings used only for positioning and light loads
- Shoulders, sleeves, or clamping rings used for heavy loads
- No reliance upon interference fits for resistance to applied axial loads

### Temperature

• Means provided to maintain race temperature between -65°F and +250°F with no appreciable differential across the bearing

### Lubrication

- Standard bearings are shipped with preservative oil only.
- Preserved bearings must be flushed and lubricated with oil or grease suitable for speed and temperature conditions. See Section 5.

### Speed

• Within limits of chart in Section 4 — Consult REALI-DESIGN<sup>™</sup> software.

### Load

- Static loads within catalog rating after applying the recommended safety factor
- Check that dynamic L<sub>10</sub> life is sufficient (see page 71). Consult REALI-DESIGN<sup>™</sup> software.

### **Precision Tolerances and Recommended** Fits for REALI-SLIM® Ball Bearings in Normal **Applications**

|                          | TYPE C – PRECISION CLASS 1 (REF. ABEC 1F)         Bearing       Radial & Axial       Rotating Shaft or       Stationary Shaft or |                                      |               |                 |                                        |                                      |      |                        |       |                  |       |                        |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|-----------------|----------------------------------------|--------------------------------------|------|------------------------|-------|------------------|-------|------------------------|--|--|
| Bearing                  |                                                                                                                                  | ring<br>ieters                       |               | & Axial<br>Iout | Rotating<br>Duplex DF                  |                                      | [    | Stationar<br>Duplex DB |       |                  | -     | Diametral              |  |  |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000                                                                                             | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race | Outer<br>Race   | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 |      | iameter<br>ninal       |       | ng Bore<br>ninal | Bef   | ance*<br>ore<br>lation |  |  |
| 010                      | 0004                                                                                                                             | 0005                                 | .0005         | .0008           | +.0004                                 | +.0005                               | 0004 | 0008                   | 0005  | 0010             | .0010 | .0016                  |  |  |
| 015                      | 0005                                                                                                                             | 0005                                 | .0006         | .0008           | +.0005                                 | +.0005                               | 0005 | 0010                   | 0005  | 0010             | .0012 | .0018                  |  |  |
| 017                      | 0006                                                                                                                             | 0005                                 | .0008         | .0010           | +.0006                                 | +.0005                               | 0006 | 0012                   | 0005  | 0010             | .0012 | .0024                  |  |  |
| 020                      | 0006                                                                                                                             | 0005                                 | .0008         | .0010           | +.0006                                 | +.0005                               | 0006 | 0012                   | 0005  | 0010             | .0012 | .0024                  |  |  |
| 025                      | 0006                                                                                                                             | 0005                                 | .0008         | .0010           | +.0006                                 | +.0005                               | 0006 | 0012                   | 0005  | 0010             | .0012 | .0024                  |  |  |
| 030                      | 0006                                                                                                                             | 0006                                 | .0008         | .0010           | +.0006                                 | +.0006                               | 0006 | 0012                   | 0006  | 0012             | .0012 | .0024                  |  |  |
| 035                      | 0008                                                                                                                             | 0006                                 | .0010         | .0012           | +.0008                                 | +.0006                               | 0008 | 0016                   | 0006  | 0012             | .0016 | .0028                  |  |  |
| 040                      | 0008                                                                                                                             | 0006                                 | .0010         | .0012           | +.0008                                 | +.0006                               | 0008 | 0016                   | 0006  | 0012             | .0016 | .0028                  |  |  |
| 042                      | 0008                                                                                                                             | 0008                                 | .0010         | .0014           | +.0008                                 | +.0008                               | 0008 | 0016                   | 0008  | .–0016           | .0016 | .0028                  |  |  |
| 045                      | 0008                                                                                                                             | 0008                                 | .0010         | .0014           | +.0008                                 | +.0008                               | 0008 | 0016                   | 0008  | 0016             | .0016 | .0028                  |  |  |
| 047                      | 0010                                                                                                                             | 0008                                 | .0012         | .0014           | +.0010                                 | +.0008                               | 0010 | 0020                   | 0008  | 0016             | .0020 | .0034                  |  |  |
| 050                      | 0010                                                                                                                             | 0008                                 | .0012         | .0014           | +.0010                                 | +.0008                               | 0010 | 0020                   | 0008  | 0016             | .0020 | .0034                  |  |  |
| 055                      | 0010                                                                                                                             | 0010                                 | .0012         | .0016           | +.0010                                 | +.0010                               | 0010 | 0020                   | 0010  | 0020             | .0020 | .0034                  |  |  |
| 060                      | 0010                                                                                                                             | 0010                                 | .0012         | .0016           | +.0010                                 | +.0010                               | 0010 | 0020                   | 0010  | 0020             | .0020 | .0034                  |  |  |
| 065                      | 0010                                                                                                                             | 0010                                 | .0012         | .0016           | +.0010                                 | +.0010                               | 0010 | 0020                   | 0010  | 0020             | .0020 | .0034                  |  |  |
| 070                      | 0010                                                                                                                             | 0012                                 | .0012         | .0016           | +.0010                                 | +.0012                               | 0010 | 0020                   | 0012  | 0024             | .0024 | .0042                  |  |  |
| 075                      | 0012                                                                                                                             | 0012                                 | .0016         | .0018           | +.0012                                 | +.0012                               | 0012 | 0024                   | 0012  | 0024             | .0024 | .0042                  |  |  |
| 080                      | 0012                                                                                                                             | 0012                                 | .0016         | .0018           | +.0012                                 | +.0012                               | 0012 | 0024                   | 0012  | 0024             | .0024 | .0042                  |  |  |
| 090                      | 0012                                                                                                                             | 0012                                 | .0016         | .0018           | +.0012                                 | +.0012                               | 0012 | 0024                   | 0012  | 0024             | .0024 | .0042                  |  |  |
| 100                      | 0014                                                                                                                             | 0014                                 | .0018         | .0020           | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014  | 0028             | .0028 | .0048                  |  |  |
| 110                      | 0014                                                                                                                             | 0014                                 | .0018         | .0020           | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014  | 0028             | .0028 | .0048                  |  |  |
| 120                      | 0014                                                                                                                             | 0014                                 | .0018         | .0020           | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014  | 0028             | .0028 | .0048                  |  |  |
| 140                      | 0016                                                                                                                             | 0016                                 | .0018         | .0020           | +.0016                                 | +.0016                               | 0016 | 0032                   | 0016  | 0032             | .0032 | .0052                  |  |  |
| 160                      | 0018                                                                                                                             | 0018                                 | .0018         | .0020           | +.0018                                 | +.0018                               | 0018 | 0036                   | 0018  | 0036             | .0036 | .0056                  |  |  |
| 180                      | 0018                                                                                                                             | 0018                                 | .0020         | .0020           | +.0018                                 | +.0018                               | 0018 | 0036                   | 0018  | 0036             | .0036 | .0056                  |  |  |
| 200                      | 0020                                                                                                                             | 0020                                 | .0020         | .0020           | +.0020                                 | +.0020                               | 0020 | 0040                   | -0020 | 0040             | .0040 | .0060                  |  |  |
| 210                      | 0020                                                                                                                             | 0020                                 | .0020         | .0020           | +.0020                                 | +.0020                               | 0020 | 0040                   | -0020 | 0040             | .0040 | .0060                  |  |  |
| 220                      | 0020                                                                                                                             | 0020                                 | .0020         | .0020           | +.0020                                 | +.0020                               | 0020 | 0040                   | -0020 | 0040             | .0040 | .0060                  |  |  |
| 250                      | 0030                                                                                                                             | 0030                                 | .0020         | .0020           | +.0030                                 | +.0030                               | 0030 | 0060                   | 0030  | 0060             | .0060 | .0080                  |  |  |
| 300                      | 0030                                                                                                                             | 0030                                 | .0020         | .0020           | +.0030                                 | +.0030                               | 0030 | 0060                   | 0030  | 0060             | .0060 | .0080                  |  |  |
| 350                      | 0040                                                                                                                             | 0040                                 | .0020         | .0020           | +.0040                                 | +.0040                               | 0040 | 0080                   | 0040  | 0080             | .0080 | .0100                  |  |  |
| 400                      | 0040                                                                                                                             | 0040                                 | .0020         | .0020           | +.0040                                 | +.0040                               | 0040 | 0080                   | 0040  | 0080             | .0080 | .0100                  |  |  |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, nonstandard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

Race Width Tolerance:

+.000 -.010

Up thru 12" Bearing Bore +.000 -.005 Over 12" Bearing Bore

|                          |                                      | ТҮРЕ Х                               |               | <b>A</b> –     | PRECIS                                 | SION C                               | LASS | 1 (RE                  | F. AB                  | EC 1F            | )               |                    |
|--------------------------|--------------------------------------|--------------------------------------|---------------|----------------|----------------------------------------|--------------------------------------|------|------------------------|------------------------|------------------|-----------------|--------------------|
| Bearing                  | Bea<br>Diam                          | ring<br>ieters                       |               | & Axial<br>out | Rotating<br>Duplex DF                  | Shaft or<br>Mounting                 | ſ    | Stationar<br>Duplex DB | y Shaft or<br>Mounting |                  |                 | Diametral<br>ance* |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000 | Bearing<br>O.D.<br>Nominal<br>+.0000 | lnner<br>Race | Outer<br>Race  | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 |      | iameter<br>ninal       |                        | ng Bore<br>ninal | (Type "Z<br>Bef |                    |
| 010                      | 0004                                 | 0005                                 | .0003         | .0004          | +.0004                                 | +.0005                               | 0004 | 0008                   | 0005                   | 0010             | .0010           | .0015              |
| 015                      | 0005                                 | 0005                                 | .0004         | .0004          | +.0005                                 | +.0005                               | 0005 | 0010                   | 0005                   | 0010             | .0012           | .0017              |
| 017                      | 0006                                 | 0005                                 | .0005         | .0005          | +.0006                                 | +.0005                               | 0006 | 0012                   | 0005                   | 0010             | .0012           | .0022              |
| 020                      | 0006                                 | 0005                                 | .0005         | .0005          | +.0006                                 | +.0005                               | 0006 | 0012                   | 0005                   | 0010             | .0012           | .0022              |
| 025                      | 0006                                 | 0005                                 | .0005         | .0005          | +.0006                                 | +.0005                               | 0006 | 0012                   | 0005                   | 0010             | .0012           | .0022              |
| 030                      | 0006                                 | 0006                                 | .0006         | .0006          | +.0006                                 | +.0006                               | 0006 | 0012                   | 0006                   | 0012             | .0012           | .0022              |
| 035                      | 0008                                 | 0006                                 | .0006         | .0006          | +.0008                                 | +.0006                               | 0008 | 0016                   | 0006                   | 0012             | .0016           | .0026              |
| 040                      | 0008                                 | 0006                                 | .0006         | .0006          | +.0008                                 | +.0006                               | 0008 | 0016                   | 0006                   | 0012             | .0016           | .0026              |
| 042                      | 0008                                 | 0008                                 | .0008         | .0008          | +.0008                                 | +.0008                               | 0008 | 0016                   | 0008                   | .–0016           | .0016           | .0026              |
| 045                      | 0008                                 | 0008                                 | .0008         | .0008          | +.0008                                 | +.0008                               | 0008 | 0016                   | 0008                   | 0016             | .0016           | .0026              |
| 047                      | 0010                                 | 0008                                 | .0008         | .0008          | +.0010                                 | +.0008                               | 0010 | 0020                   | 0008                   | 0016             | .0020           | .0030              |
| 050                      | 0010                                 | 0008                                 | .0008         | .0008          | +.0010                                 | +.0008                               | 0010 | 0020                   | 0008                   | 0016             | .0020           | .0030              |
| 055                      | 0010                                 | 0010                                 | .0010         | .0010          | +.0010                                 | +.0010                               | 0010 | 0020                   | 0010                   | 0020             | .0020           | .0030              |
| 060                      | 0010                                 | 0010                                 | .0010         | .0010          | +.0010                                 | +.0010                               | 0010 | 0020                   | 0010                   | 0020             | .0020           | .0030              |
| 065                      | 0010                                 | 0010                                 | .0010         | .0010          | +.0010                                 | +.0010                               | 0010 | 0020                   | 0010                   | 0020             | .0020           | .0030              |
| 070                      | 0010                                 | 0012                                 | .0010         | .0010          | +.0010                                 | +.0012                               | 0010 | 0020                   | 0012                   | 0024             | .0024           | .0034              |
| 075                      | 0012                                 | 0012                                 | .0012         | .0012          | +.0012                                 | +.0012                               | 0012 | 0024                   | 0012                   | 0024             | .0024           | .0034              |
| 080                      | 0012                                 | 0012                                 | .0012         | .0012          | +.0012                                 | +.0012                               | 0012 | 0024                   | 0012                   | 0024             | .0024           | .0034              |
| 090                      | 0012                                 | 0012                                 | .0012         | .0012          | +.0012                                 | +.0012                               | 0012 | 0024                   | 0012                   | 0024             | .0024           | .0034              |
| 100                      | 0014                                 | 0014                                 | .0014         | .0014          | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014                   | 0028             | .0028           | .0038              |
| 110                      | 0014                                 | 0014                                 | .0014         | .0014          | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014                   | 0028             | .0028           | .0038              |
| 120                      | 0014                                 | 0014                                 | .0014         | .0014          | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014                   | 0028             | .0028           | .0038              |
| 140                      | 0014                                 | 0014                                 | .0014         | .0014          | +.0014                                 | +.0014                               | 0014 | 0028                   | 0014                   | 0028             | .0028           | .0038              |
| 160                      | 0016                                 | 0016                                 | .0016         | .0016          | +.0016                                 | +.0016                               | 0016 | 0032                   | 0016                   | 0032             | .0032           | .0042              |
| 180                      | 0016                                 | 0016                                 | .0016         | .0016          | +.0016                                 | +.0016                               | 0016 | 0032                   | 0016                   | 0032             | .0032           | .0042              |
| 200                      | 0018                                 | 0018                                 | .0018         | .0018          | +.0018                                 | +.0018                               | 0018 | 0036                   | -0018                  | 0036             | .0036           | .0046              |
| 210                      | 0018                                 | 0018                                 | .0018         | .0018          | +.0018                                 | +.0018                               | 0018 | 0036                   | -0018                  | 0036             | .0036           | .0046              |
| 220                      | 0018                                 | 0018                                 | .0018         | .0018          | +.0018                                 | +.0018                               | 0018 | 0036                   | -0018                  | 0036             | .0036           | .0046              |
| 250                      | 0018                                 | 0018                                 | .0018         | .0018          | +.0018                                 | +.0018                               | 0018 | 0036                   | 0018                   | 0036             | .0036           | .0046              |
| 300                      | 0018                                 | 0018                                 | .0018         | .0018          | +.0018                                 | +.0018                               | 0018 | 0036                   | 0018                   | 0036             | .0036           | .0046              |
| 350                      | 0020                                 | 0020                                 | .0020         | .0020          | +.0020                                 | +.0020                               | 0020 | 0040                   | 0020                   | 0040             | .0040           | .0050              |
| 400                      | 0020                                 | 0020                                 | .0020         | .0020          | +.0020                                 | +.0020                               | 0020 | 0040                   | 0020                   | 0040             | .0040           | .0050              |

\* Diametral clearance after installation theoretically can range rather widely if all

contributing bearing, housing, and shaft tolerances are at either of their extremes.

Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters are for steer supports with standard bearing diameter clearance, non-standard diameteral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

Total Width Tolerance—Duplexed Type A Bearings: Up thru 12" Bearing Bore +.000 -.010

Over 12" Bearing Bore +.000 -.020

Race Width Tolerance—Single Type C, X, A

Bearings:

Up thru 12" Bearing Bore +.000 -.005 Over 12" Bearing Bore

+.000 -.010

|                          | T                                    | YPE C,                               | XAN             | D A -          | PREC                                   | ISION                                | I CLASS 3 (REF. ABEC 3F) |                        |      |                         |        |                                  |  |
|--------------------------|--------------------------------------|--------------------------------------|-----------------|----------------|----------------------------------------|--------------------------------------|--------------------------|------------------------|------|-------------------------|--------|----------------------------------|--|
| Bearing                  |                                      | ring<br>leters                       | Radial &<br>Run | & Axial<br>out |                                        | Shaft or<br>Mounting                 |                          | Stationar<br>Duplex DB |      | 9                       | Cleara | Diametral<br>ance*               |  |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000 | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race   | Outer<br>Race  | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 |                          | iameter<br>1inal       |      | Housing Bore<br>Nominal |        | 'X"and<br>only)<br>ore<br>lation |  |
| 010                      | 0002                                 | 0003                                 | .0003           | .0004          | +.0002                                 | +.0003                               | 0002                     | 0004                   | 0003 | 0006                    | .0007  | .0011                            |  |
| 015                      | 0003                                 | 0003                                 | .0004           | .0004          | +.0003                                 | +.0003                               | 0003                     | 0006                   | 0003 | 0006                    | .0008  | .0012                            |  |
| 017                      | 0004                                 | 0004                                 | .0004           | .0005          | +.0004                                 | +.0004                               | 0004                     | 0008                   | 0004 | 0008                    | .0008  | .0018                            |  |
| 020                      | 0004                                 | 0004                                 | .0004           | .0005          | +.0004                                 | +.0004                               | 0004                     | 0008                   | 0004 | 0008                    | .0008  | .0018                            |  |
| 025                      | 0004                                 | 0004                                 | .0004           | .0005          | +.0004                                 | +.0004                               | 0004                     | 0008                   | 0004 | 0008                    | .0008  | .0018                            |  |
| 030                      | 0004                                 | 0004                                 | .0004           | .0006          | +.0004                                 | +.0004                               | 0004                     | 0008                   | 0004 | 0008                    | .0008  | .0018                            |  |
| 035                      | 0005                                 | 0004                                 | .0005           | .0006          | +.0005                                 | +.0004                               | 0005                     | 0010                   | 0004 | 0008                    | .0010  | .0020                            |  |
| 040                      | 0005                                 | 0004                                 | .0005           | .0006          | +.0005                                 | +.0004                               | 0005                     | 0010                   | 0004 | 0008                    | .0010  | .0020                            |  |
| 042                      | 0005                                 | 0005                                 | .0005           | .0008          | +.0005                                 | +.0005                               | 0005                     | 0010                   | 0005 | .–0010                  | .0010  | .0020                            |  |
| 045                      | 0005                                 | 0005                                 | .0005           | .0008          | +.0005                                 | +.0005                               | 0005                     | 0010                   | 0005 | 0010                    | .0010  | .0020                            |  |
| 047                      | 0006                                 | 0005                                 | .0006           | .0008          | +.0006                                 | +.0005                               | 0006                     | 0012                   | 0005 | 0010                    | .0012  | .0022                            |  |
| 050                      | 0006                                 | 0005                                 | .0006           | .0008          | +.0006                                 | +.0005                               | 0006                     | 0012                   | 0005 | 0010                    | .0012  | .0022                            |  |
| 055                      | 0006                                 | 0006                                 | .0006           | .0009          | +.0006                                 | +.0006                               | 0006                     | 0012                   | 0006 | 0012                    | .0012  | .0022                            |  |
| 060                      | 0006                                 | 0006                                 | .0006           | .0009          | +.0006                                 | +.0006                               | 0006                     | 0012                   | 0006 | 0012                    | .0012  | .0022                            |  |
| 065                      | 0006                                 | 0006                                 | .0006           | .0009          | +.0006                                 | +.0006                               | 0006                     | 0012                   | 0006 | 0012                    | .0012  | .0022                            |  |
| 070                      | 0006                                 | 0007                                 | .0006           | .0010          | +.0006                                 | +.0007                               | 0006                     | 0012                   | 0007 | 0014                    | .0014  | .0024                            |  |
| 075                      | 0007                                 | 0007                                 | .0008           | .0010          | +.0007                                 | +.0007                               | 0007                     | 0014                   | 0007 | 0014                    | .0014  | .0024                            |  |
| 080                      | 0007                                 | 0007                                 | .0008           | .0010          | +.0007                                 | +.0007                               | 0007                     | 0014                   | 0007 | 0014                    | .0014  | .0024                            |  |
| 090                      | 0007                                 | 0007                                 | .0008           | .0010          | +.0007                                 | +.0007                               | 0007                     | 0014                   | 0007 | 0014                    | .0014  | .0024                            |  |
| 100                      | 0008                                 | 0008                                 | .0010           | .0012          | +.0008                                 | +.0008                               | 0008                     | 0016                   | 0008 | 0016                    | .0016  | .0026                            |  |
| 110                      | 0008                                 | 0008                                 | .0010           | .0012          | +.0008                                 | +.0008                               | 0008                     | 0016                   | 0008 | 0016                    | .0016  | .0026                            |  |
| 120                      | 0008                                 | 0009                                 | .0010           | .0014          | +.0008                                 | +.0009                               | 0008                     | 0016                   | 0009 | 0018                    | .0018  | .0028                            |  |
| 140                      | 0008                                 | 0009                                 | .0012           | .0014          | +.0008                                 | +.0009                               | 0008                     | 0016                   | 0009 | 0018                    | .0018  | .0028                            |  |
| 160                      | 0009                                 | 0010                                 | .0014           | .0016          | +.0009                                 | +.0010                               | 0009                     | 0018                   | 0010 | 0020                    | .0020  | .0030                            |  |
| 180                      | 0009                                 | 0010                                 | .0014           | .0016          | +.0009                                 | +.0010                               | 0009                     | 0018                   | 0010 | 0020                    | .0020  | .0030                            |  |
| 200                      | 0010                                 | 0012                                 | .0016           | .0018          | +.0010                                 | +.0012                               | 0010                     | 0020                   | 0012 | 0024                    | .0024  | .0034                            |  |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes.

Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

Total Width Tolerance—Duplexed Type A Bearings:

Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore +.000 -.020 Race Width Tolerance—Single Type C, X, A Bearings: Up thru 12" Bearing Bore +.000 -.005 Over 12" Bearing Bore +.000 -.010

|               | TYPE C, X AND A – PRECISION CLASS 4 (REF. ABEC 5F)         Bearing       Rotating Shaft or       Stationary Shaft or       Bearing Diametral |                   |        |          |           |       |                   |                   |         |                      |        |         |                               |       |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|----------|-----------|-------|-------------------|-------------------|---------|----------------------|--------|---------|-------------------------------|-------|
| Bearing       | Bea<br>Diam                                                                                                                                  | 5                 | Ra     | dial & A | kial Runc | out   |                   | ex DF             |         | tationar<br>uplex DB |        |         | Bearing I<br>Clear<br>(Type " | ance* |
| Size<br>(Inch | Bearing<br>Bore                                                                                                                              | Bearing<br>O.D.   | Inner  | Race     | Outer     | Race  | Shaft<br>Diameter | Housing<br>Bore   | Shaft D | iameter              | Housin | ng Bore | "C" (                         | only) |
| Series)       |                                                                                                                                              | Nominal<br>+.0000 | Radial | Axial    | Radial    | Axial | Nominal<br>+.0000 | Nominal<br>+.0000 |         | ninal                |        | ninal   | Bef<br>Instal                 |       |
| 010           | 0002                                                                                                                                         | 0002              | .0002  | .0003    | .0002     | .0003 | +.0002            | +.0002            | 0002    | 0004                 | 0002   | 0004    | .0005                         | .0009 |
| 015           | 0002                                                                                                                                         | 0002              | .0002  | .0003    | .0002     | .0003 | +.0002            | +.0002            | 0002    | 0004                 | 0002   | 0004    | .0005                         | .0009 |
| 017           | 0003                                                                                                                                         | 0003              | .0002  | .0003    | .0003     | .0004 | +.0003            | +.0003            | 0003    | 0006                 | 0003   | 0006    | .0006                         | .0012 |
| 020           | 0003                                                                                                                                         | 0003              | .0002  | .0003    | .0003     | .0004 | +.0003            | +.0003            | 0003    | 0006                 | 0003   | 0006    | .0006                         | .0012 |
| 025           | 0003                                                                                                                                         | 0003              | .0002  | .0003    | .0003     | .0004 | +.0003            | +.0003            | 0003    | 0006                 | 0003   | 0006    | .0006                         | .0012 |
| 030           | 0003                                                                                                                                         | 0003              | .0002  | .0003    | .0004     | .0005 | +.0003            | +.0003            | 0003    | 0006                 | 0003   | 0006    | .0006                         | .0012 |
| 035           | 0003                                                                                                                                         | 0003              | .0003  | .0004    | .0004     | .0005 | +.0003            | +.0003            | 0003    | 0006                 | 0003   | 0006    | .0006                         | .0012 |
| 040           | 0003                                                                                                                                         | 0003              | .0003  | .0004    | .0004     | .0005 | +.0003            | +.0003            | 0003    | 0006                 | 0003   | 0006    | .0006                         | .0012 |
| 042           | 0003                                                                                                                                         | 0004              | .0003  | .0004    | .0004     | .0005 | +.0003            | +.0004            | 0003    | 0006                 | 0004   | 0008    | .0008                         | .0014 |
| 045           | 0003                                                                                                                                         | 0004              | .0003  | .0004    | .0004     | .0005 | +.0003            | +.0004            | 0003    | 0006                 | 0004   | 0008    | .0008                         | .0014 |
| 047           | 0004                                                                                                                                         | 0004              | .0003  | .0004    | .0004     | .0005 | +.0004            | +.0004            | 0004    | 0008                 | 0004   | 0008    | .0008                         | .0014 |
| 050           | 0004                                                                                                                                         | 0004              | .0003  | .0004    | .0004     | .0005 | +.0004            | +.0004            | 0004    | 0008                 | 0004   | 0008    | .0008                         | .0014 |
| 055           | 0004                                                                                                                                         | 0005              | .0003  | .0004    | .0005     | .0006 | +.0004            | +.0005            | 0004    | 0008                 | 0005   | 0010    | .0010                         | .0016 |
| 060           | 0004                                                                                                                                         | 0005              | .0003  | .0004    | .0005     | .0006 | +.0004            | +.0005            | 0004    | 0008                 | 0005   | 0010    | .0010                         | .0016 |
| 065           | 0004                                                                                                                                         | 0005              | .0003  | .0004    | .0005     | .0006 | +.0004            | +.0005            | 0004    | 0008                 | 0005   | 0010    | .0010                         | .0016 |
| 070           | 0004                                                                                                                                         | 0005              | .0003  | .0004    | .0005     | .0006 | +.0004            | +.0005            | 0004    | 0008                 | 0005   | 0010    | .0010                         | .0016 |
| 075           | 0005                                                                                                                                         | 0005              | .0004  | .0005    | .0005     | .0006 | +.0005            | +.0005            | 0005    | 0010                 | 0005   | 0010    | .0010                         | .0016 |
| 080           | 0005                                                                                                                                         | 0005              | .0004  | .0005    | .0005     | .0006 | +.0005            | +.0005            | 0005    | 0010                 | 0005   | 0010    | .0010                         | .0016 |
| 090           | 0005                                                                                                                                         | 0005              | .0004  | .0005    | .0005     | .0006 | +.0005            | +.0005            | 0005    | 0010                 | 0005   | 0010    | .0010                         | .0016 |
| 100           | 0005                                                                                                                                         | 0005              | .0005  | .0006    | .0006     | .0007 | +.0005            | +.0005            | 0005    | 0010                 | 0005   | 0010    | .0010                         | .0016 |
| 110           | 0005                                                                                                                                         | 0005              | .0005  | .0006    | .0006     | .0007 | +.0005            | +.0005            | 0005    | 0010                 | 0005   | 0010    | .0010                         | .0016 |
| 120           | 0005                                                                                                                                         | 0006              | .0005  | .0006    | .0007     | .0008 | +.0005            | +.0006            | 0005    | 0010                 | 0006   | 0012    | .0012                         | .0018 |
| 140           | 0006                                                                                                                                         | 0006              | .0005  | .0007    | .0007     | .0008 | +.0006            | +.0006            | 0006    | 0012                 | 0006   | 0012    | .0012                         | .0018 |
| 160           | 0006                                                                                                                                         | 0007              | .0007  | .0008    | .0008     | .0009 | +.0006            | +.0007            | 0006    | 0012                 | 0007   | 0014    | .0014                         | .0020 |
| 180           | 0006                                                                                                                                         | 0007              | .0007  | .0008    | .0008     | .0009 | +.0006            | +.0007            | 0006    | 0012                 | 0007   | 0014    | .0014                         | .0020 |
| 200           | 0007                                                                                                                                         | 0008              | .0008  | .0009    | .0009     | .0010 | +.0007            | +.0008            | 0006    | 0014                 | 0007   | 0016    | .0016                         | .0022 |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 12" Bearing Bore
 +.000 -.010

 Over 12" Bearing Bore
 +.000 -.020

 Over 12" Bearing Bore
 +.000 -.020

 Race Width Tolerance—Single Type C, X, A

 Bearings:

 Up thru 12" Bearing Bore

 Over 12" Bearing Bore

 +.000 -.010

|                          | T                                    | YPE C,                               | XAN             | D A -         | PREC                                   | ISION                                | CLAS           | S 6 (F                 | REF. A                  | BEC 7 | F)                                                  |       |
|--------------------------|--------------------------------------|--------------------------------------|-----------------|---------------|----------------------------------------|--------------------------------------|----------------|------------------------|-------------------------|-------|-----------------------------------------------------|-------|
| Bearing                  | Bea<br>Diam                          | ring<br>leters                       | Radial &<br>Run |               | Rotating<br>Duplex DF                  |                                      |                | Stationar<br>Duplex DB |                         |       | Bearing I<br>Clear                                  | ance* |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000 | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race   | Outer<br>Race | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 | Shaft D<br>Nom |                        | Housing Bore<br>Nominal |       | (Type "X"and<br>"C" only)<br>Before<br>Installation |       |
| 010                      | 00015                                | 00020                                | .00015          | .0002         | +.00015                                | +.00020                              | 00015          | 00030                  | 00020                   | 00040 | .0004                                               | .0008 |
| 015                      | 00020                                | 00020                                | .00015          | .0002         | +.00020                                | +.00020                              | 00020          | 00040                  | 00020                   | 00040 | .0004                                               | .0008 |
| 017                      | 0002                                 | 0002                                 | .00015          | .0002         | +.0002                                 | +.0002                               | 0002           | 0004                   | 0002                    | 0004  | .0004                                               | .0010 |
| 020                      | 0002                                 | 0002                                 | .00015          | .0002         | +.0002                                 | +.0002                               | 0002           | 0004                   | 0002                    | 0004  | .0004                                               | .0010 |
| 025                      | 0002                                 | 0002                                 | .00015          | .0002         | +.0002                                 | +.0002                               | 0002           | 0004                   | 0002                    | 0004  | .0004                                               | .0010 |
| 030                      | 0002                                 | 0003                                 | .00015          | .0002         | +.0002                                 | +.0003                               | 0002           | 0004                   | 0003                    | 0006  | .0006                                               | .0012 |
| 035                      | 00025                                | 00030                                | .0002           | .0002         | +.00025                                | +.00030                              | 00025          | 00050                  | 00030                   | 00060 | .0006                                               | .0012 |
| 040                      | 00025                                | 00030                                | .0002           | .0002         | +.00025                                | +.00030                              | 00025          | 00050                  | 00030                   | 00060 | .0006                                               | .0012 |
| 042                      | 00025                                | 00040                                | .0002           | .0003         | +.00025                                | +.00040                              | 00025          | 00050                  | 00040                   | 00080 | .0008                                               | .0014 |
| 045                      | 00025                                | 00040                                | .0002           | .0003         | +.00025                                | +.00040                              | 00025          | 00050                  | 00040                   | 00080 | .0008                                               | .0014 |
| 047                      | 0003                                 | 0004                                 | .0003           | .0003         | +.0003                                 | +.0004                               | 0003           | 0006                   | 0004                    | 0008  | .0008                                               | .0014 |
| 050                      | 0003                                 | 0004                                 | .0003           | .0003         | +.0003                                 | +.0004                               | 0003           | 0006                   | 0004                    | 0008  | .0008                                               | .0014 |
| 055                      | 0003                                 | 0004                                 | .0003           | .0003         | +.0003                                 | +.0004                               | 0003           | 0006                   | 0004                    | 0008  | .0008                                               | .0014 |
| 060                      | 0003                                 | 0004                                 | .0003           | .0003         | +.0003                                 | +.0004                               | 0003           | 0006                   | 0004                    | 0008  | .0008                                               | .0014 |
| 065                      | 0003                                 | 0004                                 | .0003           | .0003         | +.0003                                 | +.0004                               | 0003           | 0006                   | 0004                    | 0008  | .0008                                               | .0014 |
| 070                      | 0003                                 | 0004                                 | .0003           | .0004         | +.0003                                 | +.0004                               | 0003           | 0006                   | 0004                    | 0008  | .0008                                               | .0014 |
| 075                      | 0004                                 | 0004                                 | .0003           | .0004         | +.0004                                 | +.0004                               | 0004           | 0008                   | 0004                    | 0008  | .0008                                               | .0014 |
| 080                      | 0004                                 | 0004                                 | .0003           | .0004         | +.0004                                 | +.0004                               | 0004           | 0008                   | 0004                    | 0008  | .0008                                               | .0014 |
| 090                      | 0004                                 | 0004                                 | .0003           | .0004         | +.0004                                 | +.0004                               | 0004           | 0008                   | 0004                    | 0008  | .0008                                               | .0014 |
| 100                      | 0005                                 | 0005                                 | .0004           | .0004         | +.0005                                 | +.0005                               | 0005           | 0010                   | 0005                    | 0010  | .0010                                               | .0016 |
| 110                      | 0005                                 | 0005                                 | .0004           | .0004         | +.0005                                 | +.0005                               | 0005           | 0010                   | 0005                    | 0010  | .0010                                               | .0016 |
| 120                      | 0005                                 | 0005                                 | .0004           | .0005         | +.0005                                 | +.0005                               | 0005           | 0010                   | 0005                    | 0010  | .0010                                               | .0016 |
| 140                      | 0005                                 | 0006                                 | .0004           | .0005         | +.0005                                 | +.0006                               | 0005           | 0010                   | 0006                    | 0012  | .0012                                               | .0018 |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 12" Bearing Bore
 +.000 -.010

 Over 12" Bearing Bore
 +.000 -.020

 Race Width Tolerance—Single Type C, X, A Bearings:

| Up thru 12" Bearing Bore | +.000005 |
|--------------------------|----------|
| Over 12" Bearing Bore    | +.000010 |

|                          | TYPE C WITH ENDURAKOTE® PLATING – PRECISION CLASS 1         Bearing       Radial & Axial       Rotating Shaft or       Stationary Shaft or       Bearing Diametral |                                      |               |                |                                        |                                      |                |                        |      |                  |              |                                  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|----------------|----------------------------------------|--------------------------------------|----------------|------------------------|------|------------------|--------------|----------------------------------|--|--|
| Bearing                  | Bea<br>Diam                                                                                                                                                        | -                                    |               | & Axial<br>out | -                                      | Shaft or<br>Mounting                 | [              | Stationar<br>Duplex DB |      |                  | Clear        | ance*                            |  |  |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000                                                                                                                               | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race | Outer<br>Race  | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 | Shaft D<br>Non | iameter<br>ninal       |      | ng Bore<br>ninal | "C" o<br>Bef | 'X"and<br>only)<br>ore<br>lation |  |  |
| 010                      | 0006                                                                                                                                                               | 0007                                 | .0005         | .0008          | .0006                                  | .0007                                | 0006           | 0012                   | 0007 | 0014             | .0010        | .0016                            |  |  |
| 015                      | 0007                                                                                                                                                               | 0007                                 | .0006         | .0008          | .0007                                  | .0007                                | 0007           | 0014                   | 0007 | 0014             | .0012        | .0018                            |  |  |
| 017                      | 0008                                                                                                                                                               | 0007                                 | .0008         | .0010          | .0008                                  | .0007                                | 0008           | 0016                   | 0007 | 0014             | .0012        | .0024                            |  |  |
| 020                      | 0008                                                                                                                                                               | 0007                                 | .0008         | .0010          | .0008                                  | .0007                                | 0008           | 0016                   | 0007 | 0014             | .0012        | .0024                            |  |  |
| 025                      | 0008                                                                                                                                                               | 0007                                 | .0008         | .0010          | .0008                                  | .0007                                | 0008           | 0016                   | 0007 | 0014             | .0012        | .0024                            |  |  |
| 030                      | 0008                                                                                                                                                               | 0008                                 | .0008         | .0010          | .0008                                  | .0008                                | 0008           | 0016                   | 0008 | 0016             | .0012        | .0024                            |  |  |
| 035                      | 0010                                                                                                                                                               | 0008                                 | .0010         | .0012          | .0010                                  | .0008                                | 0010           | 0020                   | 0008 | 0016             | .0016        | .0028                            |  |  |
| 040                      | 0009                                                                                                                                                               | 0007                                 | .0010         | .0012          | .0009                                  | .0007                                | 0009           | 0018                   | 0007 | 0014             | .0016        | .0028                            |  |  |
| 042                      | 0009                                                                                                                                                               | 0009                                 | .0010         | .0014          | .0009                                  | .0009                                | 0009           | 0018                   | 0009 | 0018             | .0016        | .0028                            |  |  |
| 045                      | 0009                                                                                                                                                               | 0009                                 | .0010         | .0014          | .0009                                  | .0009                                | 0009           | 0018                   | 0009 | 0018             | .0016        | .0028                            |  |  |
| 047                      | 0011                                                                                                                                                               | 0009                                 | .0012         | .0014          | .0011                                  | .0009                                | 0011           | 0022                   | 0009 | 0018             | .0020        | .0034                            |  |  |
| 050                      | 0011                                                                                                                                                               | 0009                                 | .0012         | .0014          | .0011                                  | .0009                                | 0011           | 0022                   | 0009 | 0018             | .0020        | .0034                            |  |  |
| 055                      | 0011                                                                                                                                                               | 0011                                 | .0012         | .0016          | .0011                                  | .0011                                | 0011           | 0022                   | 0011 | 0022             | .0020        | .0034                            |  |  |
| 060                      | 0011                                                                                                                                                               | 0011                                 | .0012         | .0016          | .0011                                  | .0011                                | 0011           | 0022                   | 0011 | 0022             | .0020        | .0034                            |  |  |
| 065                      | 0011                                                                                                                                                               | 0011                                 | .0012         | .0016          | .0011                                  | .0011                                | 0011           | 0022                   | 0011 | 0022             | .0020        | .0034                            |  |  |
| 070                      | 0011                                                                                                                                                               | 0013                                 | .0012         | .0016          | .0011                                  | .0013                                | 0011           | 0022                   | 0013 | 0026             | .0024        | .0042                            |  |  |
| 075                      | 0013                                                                                                                                                               | 0013                                 | .0016         | .0018          | .0013                                  | .0013                                | 0013           | 0026                   | 0013 | 0026             | .0024        | .0042                            |  |  |
| 080                      | 0013                                                                                                                                                               | 0013                                 | .0016         | .0018          | .0013                                  | .0013                                | 0013           | 0026                   | 0013 | 0026             | .0024        | .0042                            |  |  |
| 090                      | 0013                                                                                                                                                               | 0013                                 | .0016         | .0018          | .0013                                  | .0013                                | 0013           | 0026                   | 0013 | 0026             | .0024        | .0042                            |  |  |
| 100                      | 0015                                                                                                                                                               | 0015                                 | .0018         | .0020          | .0015                                  | .0015                                | 0015           | 0030                   | 0015 | 0030             | .0028        | .0048                            |  |  |
| 110                      | 0015                                                                                                                                                               | 0015                                 | .0018         | .0020          | .0015                                  | .0015                                | 0015           | 0030                   | 0015 | 0030             | .0028        | .0048                            |  |  |
| 120                      | 0015                                                                                                                                                               | 0015                                 | .0018         | .0020          | .0015                                  | .0015                                | 0015           | 0030                   | 0015 | 0030             | .0028        | .0048                            |  |  |
| 140                      | 0017                                                                                                                                                               | 0017                                 | .0018         | .0020          | .0017                                  | .0017                                | 0017           | 0034                   | 0017 | 0034             | .0032        | .0052                            |  |  |
| 160                      | 0019                                                                                                                                                               | 0019                                 | .0018         | .0020          | .0019                                  | .0019                                | 0019           | 0038                   | 0019 | 0038             | .0036        | .0056                            |  |  |
| 180                      | 0019                                                                                                                                                               | 0019                                 | .0020         | .0020          | .0019                                  | .0019                                | 0019           | 0038                   | 0019 | 0038             | .0036        | .0056                            |  |  |
| 200                      | 0021                                                                                                                                                               | 0021                                 | .0020         | .0020          | .0021                                  | .0021                                | 0021           | 0042                   | 0021 | 0042             | .0040        | .0060                            |  |  |
| 210                      | 0021                                                                                                                                                               | 0021                                 | .0020         | .0020          | .0021                                  | .0021                                | 0021           | 0042                   | 0021 | 0042             | .0040        | .0060                            |  |  |
| 220                      | 0021                                                                                                                                                               | 0021                                 | .0020         | .0020          | .0021                                  | .0021                                | 0021           | 0042                   | 0021 | 0042             | .0040        | .0060                            |  |  |
| 250                      | 0031                                                                                                                                                               | 0031                                 | .0020         | .0020          | .0031                                  | .0031                                | 0031           | 0062                   | 0031 | 0062             | .0060        | .0080                            |  |  |
| 300                      | 0031                                                                                                                                                               | 0031                                 | .0020         | .0020          | .0031                                  | .0031                                | 0031           | 0062                   | 0031 | 0062             | .0060        | .0080                            |  |  |
| 350                      | 0041                                                                                                                                                               | 0041                                 | .0020         | .0020          | .0041                                  | .0041                                | 0041           | 0082                   | 0041 | 0082             | .0080        | .0100                            |  |  |
| 400                      | 0041                                                                                                                                                               | 0041                                 | .0020         | .0020          | .0041                                  | .0041                                | 0041           | 0082                   | 0041 | 0082             | .0080        | .0100                            |  |  |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 12" Bearing Bore
 +.000 -.010

 Over 12" Bearing Bore
 +.000 -.020

Race Width Tolerance—Single Type C, X, A

Bearings: Up thru 12" Bearing Bore +.000 -.005

 Over 12" Bearing Bore
 +.000 -.010

Section 3-Applications Engineering

All dimensions in inches.

|                          | TYPE X AND A WITH ENDURAKOTE® PLATING - PRECISION CLASS 1         Bearing       Radial & Axial       Rotating Shaft or       Stationary Shaft or       Bearing Diametral |                                      |               |                 |                                        |                                      |      |                        |      |                  |              |                                               |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|-----------------|----------------------------------------|--------------------------------------|------|------------------------|------|------------------|--------------|-----------------------------------------------|--|--|
| Bearing                  |                                                                                                                                                                          | ring<br>leters                       |               | & Axial<br>Iout | Rotating<br>Duplex DF                  |                                      | [    | Stationar<br>Duplex DB |      |                  | Clear        | ance*                                         |  |  |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000                                                                                                                                     | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race | Outer<br>Race   | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 |      | iameter<br>ninal       |      | ng Bore<br>ninal | "C" o<br>Bef | 'X"and<br>only)<br><sup>c</sup> ore<br>lation |  |  |
| 010                      | 0006                                                                                                                                                                     | 0007                                 | .0003         | .0004           | .0006                                  | .0007                                | 0006 | 0012                   | 0007 | 0014             | .0010        | .0015                                         |  |  |
| 015                      | 0007                                                                                                                                                                     | 0007                                 | .0004         | .0004           | .0007                                  | .0007                                | 0007 | 0014                   | 0007 | 0014             | .0012        | .0017                                         |  |  |
| 017                      | 0008                                                                                                                                                                     | 0007                                 | .0005         | .0005           | .0008                                  | .0007                                | 0008 | 0016                   | 0007 | 0014             | .0012        | .0022                                         |  |  |
| 020                      | 0008                                                                                                                                                                     | 0007                                 | .0005         | .0005           | .0008                                  | .0007                                | 0008 | 0016                   | 0007 | 0014             | .0012        | .0022                                         |  |  |
| 025                      | 0008                                                                                                                                                                     | 0007                                 | .0005         | .0005           | .0008                                  | .0007                                | 0008 | 0016                   | 0007 | 0014             | .0012        | .0022                                         |  |  |
| 030                      | 0008                                                                                                                                                                     | 0008                                 | .0006         | .0006           | .0008                                  | .0008                                | 0008 | 0016                   | 0008 | 0016             | .0012        | .0022                                         |  |  |
| 035                      | 0010                                                                                                                                                                     | 0008                                 | .0006         | .0006           | .0010                                  | .0008                                | 0010 | 0020                   | 0008 | 0016             | .0016        | .0026                                         |  |  |
| 040                      | 0009                                                                                                                                                                     | 0007                                 | .0006         | .0006           | .0009                                  | .0007                                | 0009 | 0018                   | 0007 | 0014             | .0016        | .0026                                         |  |  |
| 042                      | 0009                                                                                                                                                                     | 0009                                 | .0008         | .0008           | .0009                                  | .0009                                | 0009 | 0018                   | 0009 | 0018             | .0016        | .0026                                         |  |  |
| 045                      | 0009                                                                                                                                                                     | 0009                                 | .0008         | .0008           | .0009                                  | .0009                                | 0009 | 0018                   | 0009 | 0018             | .0016        | .0026                                         |  |  |
| 047                      | 0011                                                                                                                                                                     | 0009                                 | .0008         | .0008           | .0011                                  | .0009                                | 0011 | 0022                   | 0009 | 0018             | .0020        | .0030                                         |  |  |
| 050                      | 0011                                                                                                                                                                     | 0009                                 | .0008         | .0008           | .0011                                  | .0009                                | 0011 | 0022                   | 0009 | 0018             | .0020        | .0030                                         |  |  |
| 055                      | 0011                                                                                                                                                                     | 0011                                 | .0010         | .0010           | .0011                                  | .0011                                | 0011 | 0022                   | 0011 | 0022             | .0020        | .0030                                         |  |  |
| 060                      | 0011                                                                                                                                                                     | 0011                                 | .0010         | .0010           | .0011                                  | .0011                                | 0011 | 0022                   | 0011 | 0022             | .0020        | .0030                                         |  |  |
| 065                      | 0011                                                                                                                                                                     | 0011                                 | .0010         | .0010           | .0011                                  | .0011                                | 0011 | 0022                   | 0011 | 0022             | .0020        | .0030                                         |  |  |
| 070                      | 0011                                                                                                                                                                     | 0013                                 | .0010         | .0010           | .0011                                  | .0013                                | 0011 | 0022                   | 0013 | 0026             | .0024        | .0034                                         |  |  |
| 075                      | 0013                                                                                                                                                                     | 0013                                 | .0012         | .0012           | .0013                                  | .0013                                | 0013 | 0026                   | 0013 | 0026             | .0024        | .0034                                         |  |  |
| 080                      | 0013                                                                                                                                                                     | 0013                                 | .0012         | .0012           | .0013                                  | .0013                                | 0013 | 0026                   | 0013 | 0026             | .0024        | .0034                                         |  |  |
| 090                      | 0013                                                                                                                                                                     | 0013                                 | .0012         | .0012           | .0013                                  | .0013                                | 0013 | 0026                   | 0013 | 0026             | .0024        | .0034                                         |  |  |
| 100                      | 0015                                                                                                                                                                     | 0015                                 | .0014         | .0014           | .0015                                  | .0015                                | 0015 | 0030                   | 0015 | 0030             | .0028        | .0038                                         |  |  |
| 110                      | 0015                                                                                                                                                                     | 0015                                 | .0014         | .0014           | .0015                                  | .0015                                | 0015 | 0030                   | 0015 | 0030             | .0028        | .0038                                         |  |  |
| 120                      | 0015                                                                                                                                                                     | 0015                                 | .0014         | .0014           | .0015                                  | .0015                                | 0015 | 0030                   | 0015 | 0030             | .0028        | .0038                                         |  |  |
| 140                      | 0015                                                                                                                                                                     | 0015                                 | .0014         | .0014           | .0015                                  | .0015                                | 0015 | 0030                   | 0015 | 0030             | .0028        | .0038                                         |  |  |
| 160                      | 0017                                                                                                                                                                     | 0017                                 | .0016         | .0016           | .0017                                  | .0017                                | 0017 | 0034                   | 0017 | 0034             | .0032        | .0042                                         |  |  |
| 180                      | 0017                                                                                                                                                                     | 0017                                 | .0016         | .0016           | .0017                                  | .0017                                | 0017 | 0034                   | 0017 | 0034             | .0032        | .0042                                         |  |  |
| 200                      | 0019                                                                                                                                                                     | 0019                                 | .0018         | .0018           | .0019                                  | .0019                                | 0019 | 0038                   | 0019 | 0038             | .0036        | .0046                                         |  |  |
| 210                      | 0019                                                                                                                                                                     | 0019                                 | .0018         | .0018           | .0019                                  | .0019                                | 0019 | 0038                   | 0019 | 0038             | .0036        | .0046                                         |  |  |
| 220                      | 0019                                                                                                                                                                     | 0019                                 | .0018         | .0018           | .0019                                  | .0019                                | 0019 | 0038                   | 0019 | 0038             | .0036        | .0046                                         |  |  |
| 250                      | 0019                                                                                                                                                                     | 0019                                 | .0018         | .0018           | .0019                                  | .0019                                | 0019 | 0038                   | 0019 | 0038             | .0036        | .0046                                         |  |  |
| 300                      | 0019                                                                                                                                                                     | 0019                                 | .0018         | .0018           | .0019                                  | .0019                                | 0019 | 0038                   | 0019 | 0038             | .0036        | .0046                                         |  |  |
| 350                      | 0021                                                                                                                                                                     | 0021                                 | .0020         | .0020           | .0021                                  | .0021                                | 0021 | 0042                   | 0021 | 0042             | .0040        | .0050                                         |  |  |
| 400                      | 0021                                                                                                                                                                     | 0021                                 | .0020         | .0020           | .0021                                  | .0021                                | 0021 | 0042                   | 0021 | 0042             | .0040        | .0050                                         |  |  |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

86 www.kaydonbearings.com 1-800-514-3066

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 12" Bearing Bore
 +.000 -.010

 Over 12" Bearing Bore
 +.000 -.020

Race Width Tolerance—Single Type C, X, A Bearings:

| Up thru 12" Bearing Bore | +.000005 |
|--------------------------|----------|
| Over 12" Bearing Bore    | +.000010 |

| 1                        | ТҮРЕ С                               | , X, AN                              | ND A V        | VITH E         | NDUR/                                  | <b>ΑΚΟΤΕ</b>         | <sup>®</sup> PLAT | ING –                  | PRECIS                 | SION C           | LASS         | 3                                |
|--------------------------|--------------------------------------|--------------------------------------|---------------|----------------|----------------------------------------|----------------------|-------------------|------------------------|------------------------|------------------|--------------|----------------------------------|
| Bearing                  |                                      | ring<br>ieters                       |               | & Axial<br>out |                                        | Shaft or<br>Mounting | [                 | Stationar<br>Duplex DB | y Shaft or<br>Mounting |                  | Clear        | Diametral<br>ance*               |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000 | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race | Outer<br>Race  | Shaft<br>Diameter<br>Nominal<br>+.0000 |                      |                   | iameter<br>ninal       |                        | ng Bore<br>ninal | "C" o<br>Bef | 'X"and<br>only)<br>ore<br>lation |
| 010                      | 0004                                 | 0005                                 | .0003         | .0004          | .0004                                  | .0005                | 0004              | 0008                   | 0005                   | 0010             | .0007        | .0011                            |
| 015                      | 0005                                 | 0005                                 | .0004         | .0004          | .0005                                  | .0005                | 0005              | 0010                   | 0005                   | 0010             | .0008        | .0012                            |
| 017                      | 0006                                 | 0006                                 | .0004         | .0005          | .0006                                  | .0006                | 0006              | 0012                   | 0006                   | 0012             | .0008        | .0018                            |
| 020                      | 0006                                 | 0006                                 | .0004         | .0005          | .0006                                  | .0006                | 0006              | 0012                   | 0006                   | 0012             | .0008        | .0018                            |
| 025                      | 0006                                 | 0006                                 | .0004         | .0005          | .0006                                  | .0006                | 0006              | 0012                   | 0006                   | 0012             | .0008        | .0018                            |
| 030                      | 0006                                 | 0006                                 | .0004         | .0006          | .0006                                  | .0006                | 0006              | 0012                   | 0006                   | 0012             | .0008        | .0018                            |
| 035                      | 0007                                 | 0006                                 | .0005         | .0006          | .0007                                  | .0006                | 0007              | 0014                   | 0006                   | 0012             | .0010        | .0020                            |
| 040                      | 0007                                 | 0006                                 | .0005         | .0006          | .0007                                  | .0006                | 0007              | 0014                   | 0006                   | 0012             | .0010        | .0020                            |
| 042                      | 0007                                 | 0007                                 | .0005         | .0008          | .0007                                  | .0007                | 0007              | 0014                   | 0007                   | 0014             | .0010        | .0020                            |
| 045                      | 0007                                 | 0007                                 | .0005         | .0008          | .0007                                  | .0007                | 0007              | 0014                   | 0007                   | 0014             | .0010        | .0020                            |
| 047                      | 0008                                 | 0007                                 | .0006         | .0008          | .0008                                  | .0007                | 0008              | 0016                   | 0007                   | 0014             | .0012        | .0022                            |
| 050                      | 0008                                 | 0007                                 | .0006         | .0008          | .0008                                  | .0007                | 0008              | 0016                   | 0007                   | 0014             | .0012        | .0022                            |
| 055                      | 0008                                 | 0008                                 | .0006         | .0009          | .0008                                  | .0008                | 0008              | 0016                   | 0008                   | 0016             | .0012        | .0022                            |
| 060                      | 0008                                 | 0008                                 | .0006         | .0009          | .0008                                  | .0008                | 0008              | 0016                   | 0008                   | 0016             | .0012        | .0022                            |
| 065                      | 0008                                 | 0008                                 | .0006         | .0009          | .0008                                  | .0008                | 0008              | 0016                   | 0008                   | 0016             | .0012        | .0022                            |
| 070                      | 0008                                 | 0009                                 | .0006         | .0010          | .0008                                  | .0009                | 0008              | 0016                   | 0009                   | 0018             | .0014        | .0024                            |
| 075                      | 0009                                 | 0009                                 | .0008         | .0010          | .0009                                  | .0009                | 0009              | 0018                   | 0009                   | 0018             | .0014        | .0024                            |
| 080                      | 0009                                 | 0009                                 | .0008         | .0010          | .0009                                  | .0009                | 0009              | 0018                   | 0009                   | 0018             | .0014        | .0024                            |
| 090                      | 0009                                 | 0009                                 | .0008         | .0010          | .0009                                  | .0009                | 0009              | 0018                   | 0009                   | 0018             | .0014        | .0024                            |
| 100                      | 0010                                 | 0010                                 | .0010         | .0012          | .0010                                  | .0010                | 0010              | 0020                   | 0010                   | 0020             | .0016        | .0026                            |
| 110                      | 0010                                 | 0010                                 | .0010         | .0012          | .0010                                  | .0010                | 0010              | 0020                   | 0010                   | 0020             | .0016        | .0026                            |
| 120                      | 0010                                 | 0011                                 | .0010         | .0014          | .0010                                  | .0011                | 0010              | 0020                   | 0011                   | 0022             | .0018        | .0028                            |
| 140                      | 0010                                 | 0011                                 | .0012         | .0014          | .0010                                  | .0011                | 0010              | 0020                   | 0011                   | 0022             | .0018        | .0028                            |
| 160                      | 0011                                 | 0012                                 | .0014         | .0016          | .0011                                  | .0012                | 0011              | 0022                   | 0012                   | 0024             | .0020        | .0030                            |
| 180                      | 0011                                 | 0012                                 | .0014         | .0016          | .0011                                  | .0012                | 0011              | 0022                   | 0012                   | 0024             | .0020        | .0030                            |
| 200                      | 0012                                 | 0014                                 | .0016         | .0018          | .0012                                  | .0014                | 0012              | 0024                   | 0014                   | 0028             | .0024        | .0034                            |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 12" Bearing Bore
 +.000 -.010

 Over 12" Bearing Bore
 +.000 -.020

 Race Width Tolerance—Single Type C, X, A

Bearings: Up thru 12" Bearing Bore +.000 -.005

Over 12" Bearing Bore +.000 -.010

All dimensions in inches.

| Т                                | YPE C,            | X, AN             | DA     | WITH     |          | DUR/  | <b>\KOTE</b> ®    | PLATI                       | NG –   | PREC             | ISIO                | N CL/  | ASS 4   |                         |
|----------------------------------|-------------------|-------------------|--------|----------|----------|-------|-------------------|-----------------------------|--------|------------------|---------------------|--------|---------|-------------------------|
|                                  |                   | ring<br>leters    | Radia  | al and A | Axial Ru | inout | or Dup            | g Shaft<br>blex DF<br>nting | Statio | nary Sh<br>DB Mo | aft or D<br>ounting | ouplex | Diam    | ring<br>netral<br>ance* |
| Bearing<br>Size (inch<br>series) | Bearing<br>Bore   | Bearing<br>OD     | Inner  | Race     | Oute     | Race  | Shaft<br>Diameter | Housing<br>Bore             |        | aft<br>neter     | 1                   | sing   | (Type " |                         |
|                                  | Nominal<br>+.0000 | Nominal<br>+.0000 | Radial | Axial    | Radial   | Axial | Nominal<br>–.0000 | Nominal<br>–.0000           |        | ninal            | -                   | ninal  |         | ore<br>lation           |
| 010                              | 0004              | 0004              | .0002  | .0003    | .0002    | .0003 | .0004             | .0004                       | 0004   | 0008             | 0004                | 0008   | .0005   | .0009                   |
| 015                              | 0004              | 0004              | .0002  | .0003    | .0002    | .0003 | .0004             | .0004                       | 0004   | 0008             | 0004                | 0008   | .0005   | .0009                   |
| 017                              | 0005              | 0005              | .0002  | .0003    | .0003    | .0004 | .0005             | .0005                       | 0005   | 0010             | 0005                | 0010   | .0006   | .0012                   |
| 020                              | 0005              | 0005              | .0002  | .0003    | .0003    | .0004 | .0005             | .0005                       | 0005   | 0010             | 0005                | 0010   | .0006   | .0012                   |
| 025                              | 0005              | 0005              | .0002  | .0003    | .0003    | .0004 | .0005             | .0005                       | 0005   | 0010             | 0005                | 0010   | .0006   | .0012                   |
| 030                              | 0005              | 0005              | .0002  | .0003    | .0004    | .0005 | .0005             | .0005                       | 0005   | 0010             | 0005                | 0010   | .0006   | .0012                   |
| 035                              | 0005              | 0005              | .0003  | .0004    | .0004    | .0005 | .0005             | .0005                       | 0005   | 0010             | 0005                | 0010   | .0006   | .0012                   |
| 040                              | 0005              | 0005              | .0003  | .0004    | .0004    | .0005 | .0005             | .0005                       | 0005   | 0010             | 0005                | 0010   | .0006   | .0012                   |
| 042                              | 0005              | 0006              | .0003  | .0004    | .0004    | .0005 | .0005             | .0006                       | 0005   | 0010             | 0006                | 0012   | .0008   | .0014                   |
| 045                              | 0005              | 0006              | .0003  | .0004    | .0004    | .0005 | .0005             | .0006                       | 0005   | 0010             | 0006                | 0012   | .0008   | .0014                   |
| 047                              | 0006              | 0006              | .0003  | .0004    | .0004    | .0005 | .0006             | .0006                       | 0006   | 0012             | 0006                | 0012   | .0008   | .0014                   |
| 050                              | 0006              | 0006              | .0003  | .0004    | .0004    | .0005 | .0006             | .0006                       | 0006   | 0012             | 0006                | 0012   | .0008   | .0014                   |
| 055                              | 0006              | 0007              | .0003  | .0004    | .0005    | .0006 | .0006             | .0007                       | 0006   | 0012             | 0007                | 0014   | .0010   | .0016                   |
| 060                              | 0006              | 0007              | .0003  | .0004    | .0005    | .0006 | .0006             | .0007                       | 0006   | 0012             | 0007                | 0014   | .0010   | .0016                   |
| 065                              | 0006              | 0007              | .0003  | .0004    | .0005    | .0006 | .0006             | .0007                       | 0006   | 0012             | 0007                | 0014   | .0010   | .0016                   |
| 070                              | 0006              | 0007              | .0003  | .0004    | .0005    | .0006 | .0006             | .0007                       | 0006   | 0012             | 0007                | 0014   | .0010   | .0016                   |
| 075                              | 0007              | 0007              | .0004  | .0005    | .0005    | .0006 | .0007             | .0007                       | 0007   | 0014             | 0007                | 0014   | .0010   | .0016                   |
| 080                              | 0007              | 0007              | .0004  | .0005    | .0005    | .0006 | .0007             | .0007                       | 0007   | 0014             | 0007                | 0014   | .0010   | .0016                   |
| 090                              | 0007              | 0007              | .0004  | .0005    | .0005    | .0006 | .0007             | .0007                       | 0007   | 0014             | 0007                | 0014   | .0010   | .0016                   |
| 100                              | 0007              | 0007              | .0005  | .0006    | .0006    | .0007 | .0007             | .0007                       | 0007   | 0014             | 0007                | 0014   | .0010   | .0016                   |
| 110                              | 0007              | 0007              | .0005  | .0006    | .0006    | .0007 | .0007             | .0007                       | 0007   | 0014             | 0007                | 0014   | .0010   | .0016                   |
| 120                              | 0007              | 0008              | .0005  | .0006    | .0007    | .0008 | .0007             | .0008                       | 0007   | 0014             | 0008                | 0016   | .0012   | .0018                   |
| 140                              | 0008              | 0008              | .0005  | .0007    | .0007    | .0008 | .0008             | .0008                       | 0008   | 0016             | 0008                | 0016   | .0012   | .0018                   |
| 160                              | 0008              | 0009              | .0007  | .0008    | .0008    | .0009 | .0008             | .0009                       | 0008   | 0016             | 0009                | 0018   | .0014   | .0020                   |
| 180                              | 0008              | 0009              | .0007  | .0008    | .0008    | .0009 | .0008             | .0009                       | 0008   | 0016             | 0009                | 0018   | .0014   | .0020                   |
| 200                              | 0009              | 0010              | .0008  | .0009    | .0009    | .0010 | .0009             | .0010                       | 0009   | 0018             | 0010                | 0020   | .0016   | .0022                   |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

Total Width Tolerance—Duplexed Type A Bearings: Up thru 12" Bearing Bore +.000 -.010 Over 12" Bearing Bore +.000 -.020 Race Width Tolerance—Single Type C, X, A Bearings:

| Up thru 12" Bearing Bore | +.000005 |
|--------------------------|----------|
| Over 12" Bearing Bore    | +.000010 |

| 1                        | ГҮРЕ С                               | , X, AM                              | ND A V                   | VITH E        | NDUR/                                  | <b>ΑΚΟΤΕ</b>                         | <sup>®</sup> PLAT         | ING –                  | PRECIS | SION C             |                                                     | 6     |  |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------|---------------|----------------------------------------|--------------------------------------|---------------------------|------------------------|--------|--------------------|-----------------------------------------------------|-------|--|
| Bearing                  |                                      | ring<br>leters                       | Radial & Axial<br>Runout |               | -                                      | Shaft or<br>Mounting                 |                           | Stationar<br>Duplex DB | Clear  | Diametral<br>ance* |                                                     |       |  |
| Size<br>(Inch<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000 | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race            | Outer<br>Race | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 | Shaft Diameter<br>Nominal |                        |        | ng Bore<br>ninal   | (Type "X"and<br>"C" only)<br>Before<br>Installation |       |  |
| 010                      | 00035                                | 0004                                 | .00015                   | .0002         | .00035                                 | .0004                                | 00035                     | 0007                   | 0004   | 0008               | .0004                                               | .0008 |  |
| 015                      | 0004                                 | 0004                                 | .00015                   | .0002         | .0004                                  | .0004                                | 0004                      | 0008                   | 0004   | 0008               | .0004                                               | .0008 |  |
| 017                      | 0004                                 | 0004                                 | .00015                   | .0002         | .0004                                  | .0004                                | 0004                      | 0008                   | 0004   | 0008               | .0004                                               | .0010 |  |
| 020                      | 0004                                 | 0004                                 | .00015                   | .0002         | .0004                                  | .0004                                | 0004                      | 0008                   | 0004   | 0008               | .0004                                               | .0010 |  |
| 025                      | 0004                                 | 0004                                 | .00015                   | .0002         | .0004                                  | .0004                                | 0004                      | 0008                   | 0004   | 0008               | .0004                                               | .0010 |  |
| 030                      | 0004                                 | 0005                                 | .00015                   | .0002         | .0004                                  | .0005                                | 0004                      | 0008                   | 0005   | 0010               | .0006                                               | .0012 |  |
| 035                      | 00045                                | 0005                                 | .0002                    | .0002         | .00045                                 | .0005                                | 00045                     | 0009                   | 0005   | 0010               | .0006                                               | .0012 |  |
| 040                      | 00045                                | 0005                                 | .0002                    | .0002         | .00045                                 | .0005                                | 00045                     | 0009                   | 0005   | 0010               | .0006                                               | .0012 |  |
| 042                      | 00045                                | 0006                                 | .0002                    | .0003         | .00045                                 | .0006                                | 00045                     | 0009                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 045                      | 00045                                | 0006                                 | .0002                    | .0003         | .00045                                 | .0006                                | 00045                     | 0009                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 047                      | 0005                                 | 0006                                 | .0003                    | .0003         | .0005                                  | .0006                                | 0005                      | 0010                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 050                      | 0005                                 | 0006                                 | .0003                    | .0003         | .0005                                  | .0006                                | 0005                      | 0010                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 055                      | 0005                                 | 0006                                 | .0003                    | .0003         | .0005                                  | .0006                                | 0005                      | 0010                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 060                      | 0005                                 | 0006                                 | .0003                    | .0003         | .0005                                  | .0006                                | 0005                      | 0010                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 065                      | 0005                                 | 0006                                 | .0003                    | .0003         | .0005                                  | .0006                                | 0005                      | 0010                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 070                      | 0005                                 | 0006                                 | .0003                    | .0004         | .0005                                  | .0006                                | 0005                      | 0010                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 075                      | 0006                                 | 0006                                 | .0003                    | .0004         | .0006                                  | .0006                                | 0006                      | 0012                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 080                      | 0006                                 | 0006                                 | .0003                    | .0004         | .0006                                  | .0006                                | 0006                      | 0012                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 090                      | 0006                                 | 0006                                 | .0003                    | .0004         | .0006                                  | .0006                                | 0006                      | 0012                   | 0006   | 0012               | .0008                                               | .0014 |  |
| 100                      | 0007                                 | 0007                                 | .0004                    | .0004         | .0007                                  | .0007                                | 0007                      | 0014                   | 0007   | 0014               | .0010                                               | .0016 |  |
| 110                      | 0007                                 | 0007                                 | .0004                    | .0004         | .0007                                  | .0007                                | 0007                      | 0014                   | 0007   | 0014               | .0010                                               | .0016 |  |
| 120                      | 0007                                 | 0007                                 | .0004                    | .0005         | .0007                                  | .0007                                | 0007                      | 0014                   | 0007   | 0014               | .0010                                               | .0016 |  |
| 140                      | 0007                                 | 0008                                 | .0004                    | .0005         | .0007                                  | .0008                                | 0007                      | 0014                   | 0008   | 0016               | .0012                                               | .0018 |  |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in inches.

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 12" Bearing Bore
 +.000 -.010

 Over 12" Bearing Bore
 +.000 -.020

 Race Width Tolerance—Single Type C, X, A

 Bearings:
 Up thru 12" Bearing Bore
 +.000 -.005

 Over 12" Bearing Bore
 +.000 -.010

### Precision Tolerances and Recommended Fits for REALI-SLIM MM<sup>™</sup> Metric Series Bearings shown on pages 54 thru 59

### KAYDON class 1 for A, C, X type bearings All dimensions in millimeters.

| Bearing                |                                      | ring<br>leters                       |               | Radial & Axial<br>Runout |                                        | Shaft or<br>Mounting                 |     | Stationar<br>uplex DB |     |                  | Bearing Diametral<br>Clearance* |       |  |  |
|------------------------|--------------------------------------|--------------------------------------|---------------|--------------------------|----------------------------------------|--------------------------------------|-----|-----------------------|-----|------------------|---------------------------------|-------|--|--|
| Size<br>(mm<br>Series) | Bearing<br>Bore<br>Nominal<br>+.0000 | Bearing<br>O.D.<br>Nominal<br>+.0000 | Inner<br>Race | Outer<br>Race            | Shaft<br>Diameter<br>Nominal<br>+.0000 | Housing<br>Bore<br>Nominal<br>+.0000 |     | iameter<br>ninal      |     | ng Bore<br>ninal | Before<br>Installation          |       |  |  |
| 020                    | 010                                  | 010                                  | .008          | .010                     | +.010                                  | +.010                                | 010 | 020                   | 010 | 020              | 0.025                           | 0.038 |  |  |
| 025                    | 010                                  | 010                                  | .008          | .010                     | +.010                                  | +.010                                | 010 | 020                   | 010 | 020              | 0.025                           | 0.038 |  |  |
| 050                    | 012                                  | 013                                  | .013          | .013                     | +.012                                  | +.013                                | 012 | 024                   | 013 | 026              | 0.030                           | 0.056 |  |  |
| 060                    | 015                                  | 013                                  | .013          | .013                     | +.015                                  | +.013                                | 015 | 030                   | 015 | 030              | 0.030                           | 0.056 |  |  |
| 070                    | 015                                  | 015                                  | .015          | .015                     | +.015                                  | +.015                                | 015 | 030                   | 015 | 030              | 0.030                           | 0.056 |  |  |
| 080                    | 015                                  | 015                                  | .015          | .015                     | +.015                                  | +.015                                | 015 | 030                   | 015 | 030              | 0.030                           | 0.056 |  |  |
| 090                    | 020                                  | 015                                  | .015          | .015                     | +.020                                  | +.015                                | 020 | 040                   | 020 | 040              | 0.041                           | 0.066 |  |  |
| 100                    | 020                                  | 015                                  | .015          | .015                     | +.020                                  | +.015                                | 020 | 040                   | 020 | 040              | 0.041                           | 0.066 |  |  |
| 110                    | 020                                  | 018                                  | .015          | .020                     | +.020                                  | +.018                                | 020 | 040                   | 020 | 040              | 0.041                           | 0.066 |  |  |
| 120                    | 020                                  | 018                                  | .020          | .020                     | +.020                                  | +.018                                | 020 | 036                   | 020 | 036              | 0.041                           | 0.066 |  |  |
| 130                    | 025                                  | 018                                  | .025          | .025                     | +.025                                  | +.018                                | 025 | 051                   | 018 | 036              | 0.051                           | 0.076 |  |  |
| 140                    | 025                                  | 025                                  | .025          | .025                     | +.025                                  | +.025                                | 025 | 051                   | 025 | 051              | 0.051                           | 0.076 |  |  |
| 150                    | 025                                  | 025                                  | .025          | .025                     | +.025                                  | +.025                                | 025 | 051                   | 025 | 051              | 0.051                           | 0.076 |  |  |
| 160                    | 025                                  | 025                                  | .025          | .025                     | +.025                                  | +.025                                | 025 | 051                   | 025 | 051              | 0.051                           | 0.076 |  |  |
| 170                    | 025                                  | 025                                  | .025          | .025                     | +.025                                  | +.025                                | 025 | 051                   | 025 | 051              | 0.051                           | 0.076 |  |  |
| 180                    | 025                                  | 030                                  | .025          | .025                     | +.025                                  | +.030                                | 025 | 051                   | 030 | 061              | 0.051                           | 0.076 |  |  |
| 190                    | 025                                  | 030                                  | .025          | .025                     | +.025                                  | +.030                                | 025 | 051                   | 030 | 061              | 0.051                           | 0.076 |  |  |
| 200                    | 030                                  | 030                                  | .030          | .030                     | +.030                                  | +.030                                | 030 | 061                   | 030 | 061              | 0.061                           | 0.086 |  |  |
| 250                    | 036                                  | 036                                  | .046          | .051                     | +.036                                  | +.036                                | 036 | 071                   | 036 | 071              | 0.071                           | 0.100 |  |  |
| 300                    | 036                                  | 036                                  | .046          | .051                     | +.036                                  | +.036                                | 036 | 071                   | 036 | 071              | 0.071                           | 0.100 |  |  |
| 320                    | 036                                  | 036                                  | .046          | .051                     | +.036                                  | +.036                                | 036 | 071                   | 036 | 071              | 0.071                           | 0.100 |  |  |
| 340                    | 036                                  | 036                                  | .046          | .051                     | +.036                                  | +.036                                | 036 | 071                   | 036 | 071              | 0.071                           | 0.100 |  |  |
| 360                    | 036                                  | 036                                  | .046          | .051                     | +.036                                  | +.036                                | 036 | 071                   | 036 | 071              | 0.071                           | 0.100 |  |  |

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

 Total Width Tolerance—Duplexed Type A Bearings:

 Up thru 300 mm Bearing Bore
 +.000 -.254

 Over 300 mm Bearing Bore
 +.000 -.508

 Race Width Tolerance—Single Type C, X, A

 Bearings:

Up thru 300 mm Bearing Bore +.000 -.127 Over 300 mm Bearing Bore +.000 -.254

All dimensions in millimeters.

### Precision Tolerances and Recommended Fits for ULTRA-SLIM<sup>®</sup> Bearings shown on page 61

### KAYDON class 1 for A, C, X type bearings **All dimensions in millimeters.**

| Bearing<br>Size | ① Bore<br>and O.D.              | Axial         | ial and<br>Race<br>outs |                                  | Shaft or<br>Mounting           |                           | y Shaft or<br>Mounting  | Bea<br>Diam<br>Cleara                | etral |  |
|-----------------|---------------------------------|---------------|-------------------------|----------------------------------|--------------------------------|---------------------------|-------------------------|--------------------------------------|-------|--|
| (mm<br>Series)  | Tolerances<br>Nominal<br>+0.000 | Inner<br>Race | Outer<br>Race           | Shaft Diameter<br>Nominal +.0000 | Housing Bore<br>Nominal +.0000 | Shaft Diameter<br>Nominal | Housing Bore<br>Nominal | Type X & C<br>Before<br>Installation |       |  |
| 035             | -0.013                          | 0.010         | 0.010                   | 35 +0.013/-0.000                 | 41 +0.013/-0.000               | 34.987 +0.000/-0.013      | 40.987 +0.000/-0.013    | 0.030                                | 0.046 |  |
| 060             | -0.013                          | 0.013         | 0.013                   | 60 +0.013/-0.000                 | 66 +0.013/-0.000               | 59.987 +0.000/-0.013      | 65.987 +0.000/-0.013    | 0.030                                | 0.046 |  |
| 070             | -0.013                          | 0.015         | 0.015                   | 70 +0.013/-0.000                 | 76 +0.013/-0.000               | 69.987 +0.000/-0.013      | 75.987 +0.000/-0.013    | 0.030                                | 0.046 |  |
| 074             | -0.013                          | 0.015         | 0.015                   | 74 +0.013/-0.000                 | 80 +0.013/-0.000               | 73.987 +0.000/-0.013      | 79.987 +0.000/-0.013    | 0.030                                | 0.046 |  |
| 080             | -0.013                          | 0.015         | 0.015                   | 80 +0.013/-0.000                 | 86 +0.013/-0.000               | 79.987 +0.000/-0.013      | 85.987 +0.000/-0.013    | 0.030                                | 0.046 |  |
| 090             | -0.013                          | 0.015         | 0.015                   | 90 +0.013/-0.000                 | 96 +0.013/-0.000               | 89.987 +0.000/-0.013      | 95.987 +0.000/-0.013    | 0.030                                | 0.046 |  |
| 100             | -0.013                          | 0.015         | 0.015                   | 100 +0.013/-0.000                | 106 +0.013/-0.000              | 99.987 +0.000/-0.013      | 105.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 110             | -0.013                          | 0.020         | 0.020                   | 110 +0.013/-0.000                | 116 +0.013/-0.000              | 109.987 +0.000/-0.013     | 115.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 120             | -0.013                          | 0.020         | 0.020                   | 120 +0.013/-0.000                | 126 +0.013/-0.000              | 119.987 +0.000/-0.013     | 125.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 130             | -0.013                          | 0.020         | 0.020                   | 130 +0.013/-0.000                | 136 +0.013/-0.000              | 129.987 +0.000/-0.013     | 135.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 140             | -0.013                          | 0.025         | 0.025                   | 140 +0.013/-0.000                | 146 +0.013/-0.000              | 139.987 +0.000/-0.013     | 145.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 150             | -0.013                          | 0.025         | 0.025                   | 150 +0.013/-0.000                | 156 +0.013/-0.000              | 149.987 +0.000/-0.013     | 155.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 160             | -0.013                          | 0.025         | 0.025                   | 160 +0.013/-0.000                | 166 +0.013/-0.000              | 159.987 +0.000/-0.013     | 165.987 +0.000/-0.013   | 0.030                                | 0.046 |  |
| 170             | -0.013                          | 0.025         | 0.025                   | 170 +0.013/-0.000                | 176 +0.013/-0.000              | 169.987 +0.000/-0.013     | 175.987 +0.000/-0.013   | 0.030                                | 0.046 |  |

① Diameter tolerances apply to average dimensions. Due to the thin nature of these bearings, they cannot be measured with 2 point gauges.

2 The runout values apply to individual bearing races.

\* Diametral clearance after installation theoretically can range rather widely if all contributing bearing, housing, and shaft tolerances are at either of their extremes. Diametral clearances shown do not apply to Type A (angular contact) bearings.

Race Width Tolerance-Single Type C, X, A Bearings: All sizes +.000 -.127

Listed shaft and housing diameters are for steel supports with standard bearing diametral clearance. Recommended shaft and housing diameters can change greatly based on orientation, temperature, speed, non-standard diametral clearances, and desired performance characteristics. Contact KAYDON for design assistance when required.

All dimensions in millimeters.

#### CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

### **NEED SERVICE FAST?**

### 1-800-514-3066

Website: www.kaydonbearings.com

## Section 4 — Separator Types, Ball Count, and Performance

|                                      | Page<br>Number |
|--------------------------------------|----------------|
| • Separator Types                    |                |
|                                      |                |
| Number of Balls in Standard Bearings |                |
| Performance                          | 98             |
| - Limiting Speeds                    |                |
| - Torque                             |                |
| - Axis Deviation                     |                |
| - Deflection Curves                  |                |
|                                      |                |

### **Overview of Separator Types Used in REALI-SLIM® Bearings**

| Code<br>Letter* | Description                                                        | Design Features                                                                                                                   | Precautions                                                                                                                                                       | Material                                                                                  | Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р               | One piece formed ring<br>with "snapover"<br>pockets.               | Standard ball complement. Used in<br>Type C and X bearings for "KA"<br>through "KG" cross-section<br>bearings.                    | Commercial type cage, not<br>recommended for low torque<br>applications. Consult factory<br>for temperatures below -65°F and above<br>250°F.                      | Brass or non-metallic composite.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R               | One piece formed ring with circular pockets.                       | Standard ball complement. Used<br>in Type A bearings for "KA"<br>through "KG" cross-section<br>bearings.                          | Commercial type cage, not<br>recommended for low torque<br>applications. Consult factory<br>for temperatures below -65°F and above<br>250°F.                      | Brass or non-metallic composite.                                                          | $\{\bigcirc\bigcirc\bigcirc\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L               | One piece molded ring<br>with "snapover"<br>pockets.               | Standard ball complement. Used in<br>Type C and X KAA cross-section<br>bearings.                                                  | Consult factory for temperatures below<br>-65°F and above 250°F.                                                                                                  | Nylon. Fiberglass<br>reinforced.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| G               | One piece molded ring with circular pockets.                       | Standard ball complement. Used in<br>Type A KAA cross-section bearings.                                                           | Consult factory for temperatures below<br>-65°F and above 250°F.                                                                                                  | Nylon. Fiberglass<br>reinforced.                                                          | $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D               | One piece machined<br>ring with "snapover"<br>pockets.             | Standard ball complement. Used in<br>Type C and X bearing when low<br>torque, lightweight or vacuum<br>impregnation is required.  | Not recommended above 250°F. Longer<br>lead time and higher cost than "P" type<br>separators.                                                                     | Phenolic laminate.                                                                        | $\left[ \bigcap_{i \in \mathcal{A}} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Н               | One piece machined<br>ring with circular<br>pockets.               | Standard ball complement. Used in<br>Type A bearing when low torque,<br>lightweight or vacuum impregnation<br>is required.        | Not recommended above 250°F. Longer<br>lead time and higher cost than "R" type<br>separators. Use toroid ball spacer when<br>possible.                            | Phenolic laminate.                                                                        | $\bigcirc \bigcirc \bigcirc \bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N               | Molded strip with<br>"snap over" pockets                           | Slightly higher ball count, used in<br>Type C and X bearings. Available<br>for all diameters over 4 inches.                       | Shaft or housing protrusions can grab<br>separator and remove from bearing.<br>180°F max suggested operating temp.                                                | Nylon 12                                                                                  | MININ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| J               | Molded strip with circular pockets                                 | Slightly higher ball count, used in<br>Type A bearings. Available for all<br>diameters over 4 inches.                             | 180°F max suggested operating temp.                                                                                                                               | Nylon 12                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| x               | One piece molded<br>ring with "snap over"<br>pockets               | Excellent for vacuums                                                                                                             | Limited availability                                                                                                                                              | PEEK                                                                                      | $\bigcap_{i} \bigcap_{i} \bigcap_{i$ |
| Q               | One piece molded ring with circular pockets                        | Excellent for vacuums                                                                                                             | Limited availability                                                                                                                                              | PEEK                                                                                      | $\bigcirc\bigcirc\bigcirc\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| М               | Formed wire strip or<br>segmental cage with<br>"snapover" pockets. | Increased ball complement. Used in<br>Type A, C, and X bearings for<br>greater capacity (approx. 150%) and<br>higher temperature. | Higher torque and lower speed capability<br>than "R" type separators. Comparatively<br>high wear rate. Requires loading notch<br>for "C" and "X" bearings.        | 17-7 PH stainless steel                                                                   | EEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| w               | Formed wire strip or segmental cage with "snapover" pockets.       | Used in Type C and X bearings for<br>high temperature applications.<br>Standard ball complement.                                  | Higher torque and lower speed capability<br>than "R" type separators. Comparatively<br>high wear rate.                                                            | 17-7 PH stainless steel                                                                   | ÉFÉL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| F               | Full complement bearing.                                           | Max. ball complement. Used in Type C, X, and A bearings for maximum capacity and stiffness.                                       | High torque and low limiting speed due to<br>ball rubbing. Not recommended for<br>dynamic applications. Loading notches are<br>required for "C" and "X" bearings. | Steel (Per ABMA Standard 10).                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| s               | Helical coil spring.                                               | Reduced ball complement. Used in<br>Type C and X bearings for low<br>torque and high temperature.                                 | Increased assembly cost. Should only be<br>considered when PTFE spacer slugs cannot<br>be used. Slow speed and light load only.                                   | 300 Series stainless steel.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Z               | Spacer slugs.                                                      | Standard ball complement. Used in<br>Type C or X bearings for low torque.<br>Prevents separator wind-up.                          | Not recommended for temperatures<br>greater than 250°F or speeds in excess of<br>500 ft/min pitch line velocity. (Example:<br>KA040CZ0 max speed = 450 rpm).      | PTFE tubing                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| z               | Toroid ball spacers.                                               | Increased ball complement. Used in<br>Type A bearings for low torque.<br>Prevents separator wind-up.                              | Not recommended for speeds greater than<br>500 ft/min pitch line velocity. PTFE is<br>limited to 250°F. Vespel® is limited to 500°F.                              | PTFE or Vespel <sup>®</sup> SP-1<br>polyamide plastic.                                    | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Z               | Spacer ball.                                                       | Requires a loading notch for C and<br>X assembly. Low speed capability.<br>Relatively high torque.                                | Increased ball complement. Used in<br>Type A bearings for low torque.<br>Prevents separator wind-up.                                                              | Steel per ABMA Standard<br>10. (Spacer balls are<br>smaller than load carrying<br>balls.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

\*Code descriptions are Position 7 of bearing identification number - see page 3.

### **Separator Types**

The principal function of a bearing separator is to space the rolling elements uniformly, thereby preventing contact between them. Minute differentials in rolling element motion result from differences in individual rolling element loads and the inherent elasticity of bearing and mounting components. Without a separator some rolling elements will eventually contact each other. Due to the shape of the rolling elements and the opposite direction of motion of the contacting surfaces, a combination of relatively high contact stress and rapid motion is possible. Consequent abrasion of the rolling elements and residue of wear in the raceways affect life and torque characteristics, limiting the use of full complement bearings to slow speed applications where relatively large torque variations can be tolerated.

KAYDON separators for REALI-SLIM<sup>®</sup> bearings are designated by a single letter character in coded part numbers (page 3), standard P, R, L, and G separators have proved to be suitable for a wide range of operating conditions. Requirements, however, may dictate the use of different materials. This may affect capacities. For assistance in selecting REALI-SLIM<sup>®</sup> bearings, contact KAYDON Engineering. Operating temperatures for various separator materials are shown on page 93.

#### **Continuous Ring "Snapover Pocket" Separator**

Figure 4-1 - Snapover Pocket



Designed for use in bearing types C and X, this style is installed after Conrad assembly of the races and balls. The tangs of the alternate "snap" pockets deform elastically to snap over the balls for retention of the separator. Centered on the balls at room temperature, the separator becomes outer race land riding or inner race land riding when temperatures cause differential thermal expansion or contraction.

Close control of roundness and wall thickness insures effective piloting in either case, limiting separator "whip" and friction between the separator and race lands for smooth operation.

# Different materials are available for unusual operating conditions including stainless steel and non-metallics such as phenolic laminate, PTFE, and PEEK.

- Stainless steel separators are used in stainless steel bearings or high temperature applications for corrosion resistance.
- Phenolic laminate is used where light weight and/ or lubricant absorption is desired.
- The "snap-over" non-metallic separator is ideal for high-speed applications of bearings too small in cross section for the two-piece riveted design (bearing Series C and lighter sections). It is also desirable in low speed, minimum torque applications.

For more information on how to use our bearings, contact KAYDON Engineering.

#### Orientation

It is suggested that in an application where the bearing axis will be within 45° of vertical, the bearing be positioned with separator pocket openings down or that a shoulder of the shaft or housing be extended as added assurance of retention. Sealed and shielded bearings have this orientation instruction etched on the O.D. by an arrow and the word "up" as shown below.

#### Figure 4-2



Correct bearing orientation is shown.

### SEPARATOR TYPES (continued)

### **Continuous Ring Circular Separators**

Figure 4-3 - Continuous Ring Pocket



Figure 4-4 - Riveted Ring Circular Pocket



Designed for use in Type A bearings, the one-piece separator shown in Figure 4-3 is positioned around the inner race with the balls placed in pockets before the outer race is expanded thermally and dropped over the balls. This method of assembly permits the use of more balls than in the Conrad bearing Types C and X. In addition to the standard separators of brass, nonmetallic composite and reinforced nylon, this style can be furnished in phenolic laminate, stainless steel, and aluminum.

Designed for use in non-standard bearings of Type C or Type X, the separator shown in Figure 4-4 is installed after Conrad assembly of the races and bearing and riveted together. Because of the space required for rivets, use is limited to Series D and heavier sections. Usually machined all over, this style is recommended in phenolic laminate for very high speeds. Where very high strength is required, it is furnished in bronze, aluminum, or stainless steel.

As in the case of the continuous ring "snapover" pocket separator, both of these styles are centered on the balls at room temperature, becoming either outer race land riding or inner race land riding as the temperature changes.

### Segmental Separators

Segmental separators of either the ring or "snapover" design offer advantages for certain applications.

- When larger diameter bearings are subjected to high temperatures, expansion differentials between the separator and the races may exceed the normal clearances provided.
- 2. When oscillatory motion, variable loading and a vertical axis combine to cause differential ball travel with no "vacation zone," torque may become objectionably high or erratic.

A segmental separator may consist of a one-piece open ring or it may be composed of two or more segments. Where differential expansion creates a problem, sufficient clearance is provided between the ends of the open ring or between the several segments to allow for this expansion. Where torque is of concern, the selection of the number of segments is made based upon experience. In all other respects, segmental separators satisfy the above descriptions for **Continuous Ring** "Snapover Pocket" Separators.

Segmenting the separator imposes somewhat greater restrictions on the bearings. Maximum allowable speed of rotation is reduced due to the centrifugal force ("brake banding") energized by the segments against the outer race lands. Also, in the case of the "snapover pocket" style, a shaft or housing shoulder should be extended to assure retention of the separator irrespective of the operating position of the bearing. See next page.

### **SEPARATOR TYPES (continued)**

#### **Formed Wire Separator**

Figure 4-5



When the need exists for maximum capacity and thus the greatest possible number of balls, a formed wire separator may be used to avoid the disadvantages of a full complement bearing. It has been most successfully employed in Type A bearings, where the greater number of balls can be installed without resorting to use of a loading slot. Use in bearing Types C and X should be restricted to very low speed applications.

Comparatively high wear rate coupled with relatively light section can cause the wear life of the wire separator to be a limiting factor in the life a bearing, especially if the loads are high. However, where weight or space are at a premium and the added capacity is an important consideration, this separator may be considered a good compromise.

A bearing with a wire separator and maximum allowable ball complement has a static load capacity of 180% of the catalog static rating.

### **Toroid Separators**

#### Figure 4-6A



### **PTFE Spacer Slugs**

Figure 4-6B



### **Spacer Balls**

### Figure 4-6C



### **Helical Spring Separators**

### Figure 4-6D



In some critical positioning applications, uniformity of torque is more important than the actual mean torque level. Specially designed toroids (Figure 4-6A), PTFE spacer slugs (Figure 4-6B), spacer balls (Figure 4-6C) or helical compression springs (Figure 4-6D) have proved in a number of such instances to be satisfactory for ball separation—by their nature they give a large amount of individual and cumulative circumferential freedom to the balls. To prevent this freedom from being abused, however, speeds must be low and loads comparatively light.

Applications involving use of these separators should be referred to KAYDON for review and recommendation.

### Number of Balls in Standard REALI-SLIM<sup>®</sup> Bearings

#### Figure 4-7

| Boring |     |     | -   | Type A |     |     | -   |     |     | Ту  | pes C and | d X |     |     |
|--------|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----------|-----|-----|-----|
| Size   | KAA | KA  | KB  | KC     | KD  | KF  | KG  | KAA | KA  | KB  | КС        | KD  | KF  | KG  |
| 010    | 28  |     |     |        |     |     |     | 21  |     |     |           |     |     |     |
| 015    | 40  |     |     |        |     |     |     | 29  |     |     |           | İ   |     |     |
| 017    | 44  |     |     |        |     |     |     | 33  |     |     |           |     |     |     |
| 020    |     | 36  | 31  |        |     |     |     |     | 27  | 23  |           | 1   |     |     |
| 025    |     | 44  | 38  |        |     |     |     |     | 33  | 28  |           |     |     |     |
| 030    |     | 52  | 44  |        |     |     |     |     | 39  | 33  |           | 1   |     |     |
| 035    |     | 60  | 51  |        |     |     |     |     | 45  | 38  |           |     |     |     |
| 040    |     | 68  | 58  | 49     | 36  | 26  | 20  |     | 51  | 43  | 35        | 27  | 19  | 15  |
| 042    |     | 72  | 61  | 52     | 38  | 27  | 21  |     | 54  | 45  | 37        | 28  | 20  | 15  |
| 045    |     | 76  | 64  | 55     | 40  | 29  | 22  |     | 57  | 48  | 39        | 30  | 21  | 16  |
| 047    |     | 80  | 68  | 58     | 42  | 30  | 23  |     | 60  | 50  | 41        | 31  | 22  | 17  |
| 050    |     | 84  | 71  | 61     | 44  | 31  | 24  |     | 63  | 53  | 43        | 33  | 23  | 18  |
| 055    |     | 92  | 78  | 66     | 48  | 34  | 26  |     | 69  | 58  | 47        | 36  | 25  | 19  |
| 060    |     | 100 | 85  | 72     | 52  | 37  | 28  |     | 75  | 63  | 51        | 39  | 27  | 21  |
| 065    |     | 108 | 91  | 78     | 56  | 40  | 30  |     | 81  | 68  | 55        | 42  | 29  | 22  |
| 070    |     | 116 | 98  | 83     | 60  | 43  | 32  |     | 87  | 73  | 59        | 45  | 31  | 24  |
| 075    |     | 124 | 105 | 89     | 64  | 45  | 34  |     | 93  | 78  | 63        | 48  | 33  | 25  |
| 080    |     | 132 | 112 | 95     | 68  | 48  | 36  |     | 99  | 83  | 67        | 51  | 35  | 27  |
| 090    |     | 148 | 125 | 106    | 76  | 54  | 40  |     | 111 | 93  | 75        | 57  | 39  | 30  |
| 100    |     | 164 | 139 | 118    | 84  | 59  | 44  |     | 123 | 103 | 83        | 63  | 43  | 33  |
| 110    |     | 180 | 152 | 129    | 92  | 65  | 48  |     | 135 | 113 | 91        | 69  | 47  | 36  |
| 120    |     | 196 | 166 | 140    | 100 | 70  | 52  |     | 147 | 123 | 99        | 75  | 51  | 39  |
| 140    |     |     | 192 | 163    | 116 | 81  | 60  |     |     | 143 | 115       | 87  | 59  | 45  |
| 160    |     |     | 219 | 186    | 132 | 92  | 68  |     |     | 163 | 131       | 99  | 67  | 51  |
| 180    |     |     | 246 | 209    | 148 | 104 | 76  |     |     | 183 | 147       | 111 | 75  | 57  |
| 200    |     |     | 273 | 231    | 164 | 115 | 84  |     |     | 203 | 163       | 123 | 83  | 63  |
| 210    |     |     |     |        | 172 |     |     |     |     |     |           | 129 |     |     |
| 220    |     |     |     |        |     |     | 92  |     |     |     |           |     |     | 69  |
| 250    |     |     |     | 288    | 204 | 142 | 104 |     |     |     | 203       | 153 | 103 | 78  |
| 300    |     |     |     | 345    | 244 | 170 | 124 |     |     |     | 243       | 183 | 123 | 93  |
| 350    |     |     |     |        |     | 198 | 144 |     |     |     |           |     | 143 | 108 |
| 400    |     |     |     |        |     | 226 | 164 |     |     |     |           |     | 163 | 123 |



KAYDON software for REALI-SLIM<sup>®</sup> bearings available at: www.kaydonbearings.com

# **Limiting Speeds**

The following limiting speed information is provided for reference only. For actual speeds, use the REALI-DESIGN<sup>™</sup> software found on our website, www.kaydonbearings.com.

The determination of maximum safe operating speeds is largely empirical. Various complex factors play a part in limiting the speed of rotation, some of which are:

- Bearing diameter
- Ratio of bearing diameter to cross-section
- Bearing type and internal configuration
- Ratio of ball groove radius to ball diameter
- Bearing internal fit-up (diametral clearance or preload)
- Operating contact angle(s)
- Bearing precision (runouts)
- Ball separator material and design
- Precision of mount (roundness, flatness under load)
- Lubrication
- Ambient temperature and provision for heat dissipation
- Seals
- Loads
- Life requirement

While precise speed limits cannot be set, experience in actual applications and in the KAYDON test laboratories can serve as a basis for setting general limits. Figure 4-10 takes into account some of the factors and assumes proper installation and adequate provision for heat dissipation. These limits are based upon achieving the full service life of 1,000,000 revolutions. If a shorter life is acceptable, higher speeds may be tolerated, except for bearings using formed wire and helical spring separators.

For speeds near or over the limits in the table, special attention must be given to lubrication and heat. Greases should be of types specially formulated for high speed bearings. Frequency of regreasing must be adequate to insure presence of lubricant at all times. If oil is used, viscous drag should be minimized by controlling the level, using slingers and/or metering small amounts as a liquid or mist. Windage effects at high speeds can make the introduction of oil to the critical surfaces very difficult, and the design of the lubrication system then becomes important. Please consult lubrication manufacturer. Generally speaking, operating temperature will be limited by the allowable maximum temperature for the lubricant. If, however, bearing temperature is expected to exceed 250°F for extended periods, the bearings should be given stabilization treatment by KAYDON. This treatment will permit operation at temperatures up to 400°F.

While maximum temperature is important, consideration must also be given to possible temperature differential across the bearing. Generally, heat is lost through the housing at a higher rate than through the shaft. The housing fit and the bearing internal clearance before installation must be sufficient to allow for this as well as for the shaft fit if the necessary running clearance is to be realized.

### **Examples of Limiting Speed Calculations**

### **Example 1 (Standard Bearing)**

Limited speed calculation for bearing part number KG040XP0.

Conditions: light thrust loads (<20%), grease lubrication.

From Figure 4-8: slimness symbol = I

From Figure 4-9: derating factor = 1.0

From Figure 4-10: Type X; Separator P; Grease; Class 1; Charted figure = 9

**Calculation:** N = (1.0) (9) (1000) = 2,250

### **Example 2 (High Performance Bearing)**

Limiting speed calculation for bearing number KD100AH6.

Conditions: loading at 25%, oil lubrication

From Figure 4-8: slimness symbol = II

From Figure 4-9: derating factor = 0.9

From Figure 4-10: Type A; Separator H; Oil; Class 6; Charted figure = 32

**Calculation:** N = (0.9)(32)(1000) = 2,88010

### LIMITING SPEEDS (continued)

D



### Figure 4-8 - Slimness Symbol (S<sub>s</sub>)

# Limiting Speeds for Unsealed Lightly Loaded REALI-SLIM<sup>®</sup> Ball Bearings

Limiting Speed (N) = 
$$\frac{(F_l)(C_f)(1000)}{F_l}$$

where

D = Bearing bore in inches

N = RPM

| Figure 4-9 - Derating Factor (Fi | Figure | 4-9 - | Derating | Factor | ( <b>F</b> <sub>I</sub> ) |
|----------------------------------|--------|-------|----------|--------|---------------------------|
|----------------------------------|--------|-------|----------|--------|---------------------------|

| For bearings loaded<br>to following percent<br>of dynamic rating | Multiply DN values by following factors |
|------------------------------------------------------------------|-----------------------------------------|
| 20                                                               | 1.0                                     |
| 33                                                               | .9                                      |
| 50                                                               | .8                                      |
| 67                                                               | .7                                      |
| 100                                                              | .5                                      |
| 150                                                              | .2                                      |

### Figure 4-10 - Charted Figures (C<sub>f</sub>)

|                                 |                                       |                   |                |     |     |     |    |     |    |    |         | N CLASS AND LUBRICATION |    |    |     |    |     |    |          |     |     |     |
|---------------------------------|---------------------------------------|-------------------|----------------|-----|-----|-----|----|-----|----|----|---------|-------------------------|----|----|-----|----|-----|----|----------|-----|-----|-----|
| Bearing<br>Type                 | Load<br>Conditions                    | Separator<br>Type | CLASS 1, 3 & 4 |     |     |     |    |     |    |    | CLASS 6 |                         |    |    |     |    |     |    |          |     |     |     |
| .,,-                            |                                       |                   | GREASE         |     |     |     |    | OIL |    |    | GREASE  |                         |    |    | OIL |    |     |    | OIL MIST |     |     |     |
| Slimness Symbol from Figure 4-8 |                                       |                   | I              | Ш   | III | IV  | I  | Ш   | ш  | IV | I       | Ш                       | Ш  | IV | I   | Ш  | III | IV | I        | Ш   | III | IV  |
| C                               |                                       | P, L, X           | 15             | 12  | 9   | 6   | 21 | 18  | 15 | 12 | 21      | 18                      | 15 | 12 | 27  | 24 | 21  | 18 | 30       | 27  | 24  | 21  |
| with Diametral<br>Clearance     | Radial                                | К                 | 20             | 16  | 12  | 8   | 28 | 24  | 20 | 16 | 28      | 24                      | 20 | 16 | 36  | 32 | 28  | 24 | 40       | 36  | 32  | 28  |
| Α                               | Radial                                | R                 | 15             | 12  | 9   | 6   | 21 | 18  | 15 | 12 | 21      | 18                      | 15 | 12 | 27  | 24 | 21  | 18 | 30       | 27  | 24  | 21  |
| Spring Loaded or                | and/or                                | G, H              | 20             | 16  | 12  | 8   | 28 | 24  | 20 | 16 | 28      | 24                      | 20 | 16 | 36  | 32 | 28  | 24 | 40       | 36  | 32  | 28  |
| Axially Adjusted                | Thrust                                | М                 | 8              | 6   | 5   | 3   | 11 | 9   | 8  | 6  | 11      | 9                       | 8  | 6  | 14  | 12 | 11  | 9  | 15       | 14  | 12  | 11  |
| x                               | Thrust<br>Only                        | P, L, X           | 9              | 8   | 7   | 6   | 11 | 10  | 9  | 8  | 11      | 10                      | 9  | 8  | 14  | 12 | 11  | 9  | 15       | 14  | 12  | 11  |
| with Diametral<br>Clearance     | Radial Only<br>or Combined<br>Loading | P, L, X           | 3.0            | 2.5 | 2.0 | 1.5 | 4  | 3.5 | 3  | 2  | 4       | 3.5                     | 3  | 2  | 4.5 | 4  | 3.5 | 3  | 5        | 4.5 | 4   | 3.5 |

### **Torque Considerations**

Torque, as it applies to bearings, is defined as the moment required to turn the rotating race with respect to the stationary race.

Usually the torque requirement of a ball bearing is only a small part of the demand of a mechanical system. In many REALI-SLIM® bearing applications, however, masses and consequent inertias are slight and the amount of work being done is not great. In such cases, it may be important to know as accurately as possible how much turning effort must be provided.

Many factors contribute to the resistance to rotation of a lightly loaded anti-friction bearing, and most of this resistance comes from the more unpredictable ones separator drag; viscous drag of the lubricant; minute deviations from true geometry in the balls, race ways, and mounting surfaces of bearing, shaft, and housing; internal fit-up of the bearing; and the presence of contaminants.

Bearings can be furnished to a maximum torque level specification.

In the selection of the lubricant and lubricating system, their effects on torque should be kept in mind. To be considered are operating temperatures; speeds of rotation; type, viscosity and quantity of lubricant. All are major factors in determining lubricant drag. Please consult lubrication manufacturer.

In tolerancing the shaft and housing it is important to set limits for out-of-roundness and out-of-flatness of the bearing seats. For normal requirements a good rule of thumb is to use the bearing radial and axial runout tolerances as the respective limits. For critical torque applications, closer tolerances should be specified since even a very small amount of localized internal preload (negative clearance) will create surprisingly large ball loads and consequent high torque. Where torque must be minimized it is important to limit out-of-roundness of housing or shaft to values which will insure against complete loss of internal clearance.

Cleanliness is extremely important in maintaining uniformity of torque as well as a low level of torque. Very small amounts of microscopic particles of lint, dust, and other common contaminants can cause bearing torque to vary several hundred percent in just a few degrees of rotation. For this reason bearings should be kept in their original unopened package until time for installation. Every effort should be made to protect them from foreign matter, whether or not torque is critical.

The accompanying charts show approximate torque levels of REALI-SLIM<sup>®</sup> bearings under stated conditions. Estimates can be furnished for more unusual situations. Information submitted should contain all operating conditions of load, speed, lubricant, and environment including temperature together with a print of the intended mounting, showing materials and radial sections. If a limit has been set on permissible system error in terms of axis deviation—radial translation, axial translation, or angular rotation (page 102) — this information should also be submitted.

Additional processing is used to achieve the lowest possible torque levels. High precision races and balls, super-finished ball tracks, and precisely set internal fit-ups assure optimum performance.

- Low-torque ball separators
- Clean-room assembly
- Factory-lubricated bearings
- ABMA Grade 10 balls
- Super-finish ball track

### Materials

| Races            | AISI 52100 (Precision Class 6)                  |
|------------------|-------------------------------------------------|
| Balls            | AISI 52100 (Grade 10)                           |
| Cage (Type A)    | PTFE or Vespel <sup>®</sup> toroid ball spacers |
| Cage (Types C, X | () Slugs                                        |

### Starting Torque vs. Load Computer generated torque curves for mounted REALI-SLIM<sup>®</sup> bearings can be provided by KAYDON Product Engineering



### **Notes Applying to These Charts**

1. Values shown are statistical ratings<sup>\*</sup> based on:

- KAYDON Precision Class 1 bearings with some internal clearance remaining after installation
- A rigid mounting, round and flat within respective radial and axial bearing runout limits
- Light oil lubrication
- Room temperature

- 2. Running torque at speeds up to 10 RPM usually averages from 25 to 50% of starting torque, and increases with increasing speed to as much as 200% at maximum allowable diametral clearance (page 103).
- 3. Interpolate for intermediate sizes.
- 4. Curve number indicates bearing bore in tenths of an inch.

\*Usually not more than 10% of a group of bearings will have torque demands higher than those shown.

### **Bearing Axis Deviation Due to Clearance And Deflection**

REALI-SLIM<sup>®</sup> bearings are often used in applications where the position of a rotating part relative to the stationary structure is critical. Knowledge of the displacement of the axis of rotation and the factors contributing to it are thus important.

The axis of rotation can be displaced from its true position in three ways—radially, axially, and angularly. These deviations are referred to as radial translation, axial translation, and tilt (angular rotation) respectively.

In addition to the obvious effects of bearing runout, total deviation of bearing axis in any one of the above conditions is due to the effects of bearing diametral clearance and elastic deflection (deformation) at the ball or roller contacts. The diametral clearance after installation changes due to the combined effects of external fitting practice, differential thermal expansion or contraction of the bearing races and mounting structures, and relative rigidity of the races and mating parts.

Elastic deflection at the ball or roller contacts results from the externally applied bearing loads and is influenced by ball or roller diameter, race groove radius, raceway diameters, and contact angle.

The following three equations are given to aid in determining displacement. The internal diametral clearance (DC) must be calculated or approximated. The remaining independent variables can be obtained from the graphs on pages 104 through 109.

| RT | = | RD + <u>DC</u><br>2 |
|----|---|---------------------|
| AT | = | AD + <u>AC</u><br>2 |
| AR | = | MD + AC/PD          |

Where:

| RT | = | Radial Translation                                   | – in inches                     |
|----|---|------------------------------------------------------|---------------------------------|
| AT | = | Axial Translation                                    | – in inches                     |
| AR | = | Angular Rotation                                     | – in inches/<br>inch or radians |
| RD | = | Radial deflection due<br>to radial load              | – in inches                     |
| AD | = | Axial deflection due to axial load                   | – in inches                     |
| MD | = | Moment deflection due<br>to moment load              | – in inches/<br>inch or radians |
| DC | = | Diametral clearance                                  | – in inches                     |
| AC | = | Axial clearance                                      | – in inches                     |
| PD | = | Pitch diameter $\frac{\text{O.D.} + \text{Bore}}{2}$ | – in inches                     |

The equations may be used in applications where the radial, axial, or moment load is applied singly or where one type of loading predominates. For assistance in selecting REALI-SLIM<sup>®</sup> bearings, contact KAYDON Engineering.

Computer-generated reports and graphs for REALI-SLIM<sup>®</sup> bearings are available from KAYDON engineering and from our REALI-DESIGN<sup>™</sup> computer software, available for download at www.kaydonbearings.com.

### **Axial Clearance vs. Diametral Clearance**



### CONTACT KAYDON AT— KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102 NEED SERVICE FAST? 1-800-514-3066

Website: www.kaydonbearings.com

## **Axial Deflection vs. Axial Load** Type A Angular Contact

### For more detailed information, use KAYDON REALI-DESIGN<sup>™</sup> software



104 <u>www.kaydonbearings.com</u> 1-800-514-3066

# Radial Deflection vs. Radial Load Type A Angular Contact

For more detailed information, use KAYDON REALI-DESIGN<sup>™</sup> software



1-800-514-3066 www.kaydonbearings.com |105

### Radial Deflection vs. Radial Load Type C Radial Contact For more detailed information, use KAYDON REALI-DESIGN<sup>™</sup> software



# Axial Deflection vs. Axial Load Type X Four-Point Contact

For more detailed information, use KAYDON REALI-DESIGN<sup>™</sup> software



1-800-514-3066 www.kaydonbearings.com 107

### Radial Deflection vs. Radial Load Type X Four-Point Contact For more detailed information, use KAYDON REALI-DESIGN<sup>™</sup> software


### Moment Deflection vs. Moment Load Type X Four-Point Contact For more detailed information, use KAYDON REALI-DESIGN<sup>™</sup> software



MOMENT LOAD IN INCH-POUNDS

MOMENT LOAD IN INCH-POUNDS

### Section 5 — Installation and Maintenance of REALI-SLIM<sup>®</sup> Thin-Section Bearings

|                                        | Page<br>Number |
|----------------------------------------|----------------|
| Inspection and Installation Procedures |                |
| Lubrication and Maintenance            |                |

### Inspection and Installation Procedures for REALI-SLIM<sup>®</sup> Thin-Section Bearings

#### Inspection

The unique proportions of REALI-SLIM<sup>®</sup> bearings make some of the usual gaging practices impractical. Since very light pressure is sufficient to deflect the thin rings, conventional two-point measurement of bearing bore and outside diameter must not be used. Air gages of the open jet type, or other proximity devices, must be used to hold error from distortion to an acceptable level. Measurements must be made at enough points to yield a true average size, which may not be the mean of the maximum and minimum measurement. A REALI-SLIM<sup>®</sup> bearing may be out-ofround in the free state<sup>®</sup> more than the ABMA tolerance for its precision class. This presents no problem since the races will conform readily to a round shaft diameter and housing bore.

To determine the true runout of each race, by excluding the effect of out of roundness, measurement is made of variation in individual wall thickness. This is schematically illustrated in Figure 5-1. The indicator must contact the raceway at the ball or roller contact, and must be properly positioned for the particular runout (axial or radial) being checked.

#### Measurement of Radial Runout of Type C Inner Race

Figure 5-1



Diametral clearance of REALI-SLIM<sup>®</sup> bearings is controlled by selective assembly of races and balls following measurement with gages specially designed for this purpose.

Standard inspection and quality control procedures at KAYDON meet the requirements of government procurement agencies and major aerospace industries. However, a certificate of compliance to specifications can be furnished if required.

#### Installation

To realize the potential accuracy and long life of a REALI-SLIM<sup>®</sup> bearing, it is important that the installation be properly done in a clean environment. Cleanliness is vital to satisfactory bearing performance. Work surfaces and tools must be free of dirt, chips, and burrs. Disposable wipers or clean, lint-free cloths should be used.

Under no circumstances should a bearing be used as a gage during grinding or machining of mating parts. Just a few grains of grinding grit or chips of metal (soft as well as hard) can seriously damage the precise geometry and finishes of bearing raceways and rolling elements, and are nearly impossible to remove from an assembled bearing.

The shaft and housing should be thoroughly cleaned, special attention being given to holes and crevices which could hold dirt, chips, and cutting oil. Unfinished surfaces of castings should be painted or otherwise sealed. The mounting surfaces for the bearing must be carefully checked, cleaned, and lightly oiled to ease fitting and minimize danger of scoring. Housing bore, shaft diameter, shoulder squareness, and fillet sizes should all be verified.

The bearing should not be removed from its protective package until this preparation is complete and it is time for installation.

### INSPECTION AND INSTALLATION PROCEDURES FOR REALI-SLIM® THIN-SECTION BEARINGS (continued)

Interference fitting any bearing to the shaft or housing must be carefully done to avoid damage to the bearing. For REALI-SLIM® bearings, the use of temperature difference to expand the outer member is recommended to minimize or eliminate the installation force necessary. To calculate the differential required, use a coefficient of expansion of .000007 inch per inch per degree F for AISI 52100 steel races and .0000056 for AISI 440C races. For a KAYDON Precision Class 1 bearing of 2" bore to be fitted to a steel shaft, the differential required to eliminate all interference between a maximum diameter shaft and minimum diameter bearing is 90°F; for a 4" bore it is 60°F. Either dry heat or hot oil may be used. Electrical resistance tape is convenient for the large bearings. Care must be taken to avoid overheating the bearing. Do not exceed 250°F.

If pressure is necessary, an arbor press should be used with a suitable pusher to apply the force to the full face of the ring being press fitted — never through the bearing, as damage will be done to the balls and raceways.

All duplexed bearings are marked with a single "V" on the bores and outside diameters to indicate the proper relative circumferential position of inner and outer races. This "V" is located at the high points of race eccentricity so that these may be placed at the low points of shaft and housing eccentricity for the canceling effect.



After mounting, the bearings must be given continued protection from contamination until the assembly is closed. Adherence to these procedures will assure a successful installation.

If it is necessary to return a bearing to KAYDON, it should be coated with protective oil and wrapped the same as when shipped from the factory to prevent damage during transit. If bearings are being returned after use for a failure analysis, they should be returned in the as removed condition, since the condition of the part (cleanliness, lubricated condition, etc.) will provide important data for failure analysis.

#### CONTACT KAYDON AT-

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

**NEED SERVICE FAST?** 

1-800-514-3066

Website: www.kaydonbearings.com

### Lubrication and Maintenance of REALI-SLIM<sup>®</sup> Thin-Section Bearings

The lubricant in an anti-friction bearing serves to reduce friction and wear between moving parts, to dissipate heat, and to prevent corrosion of critical surfaces. KAYDON recommends the selection of the proper lubricant be based on an evaluation by the system design engineer of the operating conditions, including at a minimum: rotational speed, type and magnitude of loads, and ambient temperature.

The three types of lubricant commonly used are oil, grease, and dry film or surface treatment.

Oil normally provides more complete lubrication. Because of its liquid state, it provides better coverage of the critical surfaces and assists in dissipating heat more readily, the latter being especially true when circulation and cooling are provided. In high-speed applications where the heating effect is more pronounced, oil is specified (see page 99). Where minimum torque is a requirement, oil will usually provide lower friction values.

Grease offers certain advantages of its own. Because it is more easily retained, the design of bearing housings and seals is simplified. In many applications, the lubricant itself serves to exclude contaminants when used in conjunction with labyrinths or close clearances between the rotating and stationary structures. For the higher speeds within the range suitable for grease lubrication, a channeling type of grease is often selected.

Dry films and surface treatments have been used as bearing lubricants in applications subject to environmental extremes, particularly where conventional lubricants cannot be tolerated or will not survive. A wide variety of types are available for selection; options include Tungsten disulfide, graphite, and Molybdenum disulfide.

It is important to note that the quantity of lubricant affects bearing performance under certain operating conditions. Only relatively small amounts of lubricant are necessary to reduce friction and wear if a film can be maintained on all contacting surfaces. Where speed is significant, excessive amounts of oil or grease will result in higher operating temperatures, leading to the possibility of early bearing fatigue.

Unsealed bearings are supplied with a coating of preservative-type lubricating oil for the prevention of corrosion during storage. KAYDON recommends that this preservative be removed with clean petroleum solvent prior to lubrication. If the lubricant is not removed, the compatibility of the lubricant with the preservative oil must be confirmed.

In applications where minimum torque is required, the coating should be removed by washing with a clean petroleum solvent followed by immediate relubrication with an oil selected for the application. An option is to have REALI-SLIM<sup>®</sup> bearings factory lubricated with a commercial grease or oil selected by the customer in order to facilitate installation.

Sealed bearings are packed approximately one-third full with a multi-purpose industrial grease. Exterior surfaces are given a light coating of the same lubricant for protection during storage in the original package.

#### LUBRICATION AND MAINTENANCE OF REALI-SLIM® THIN-SECTION BEARINGS (continued)

Bearings, with or without seals, can be supplied with optional lubricants. Shown in the accompanying table are some of the greases and oils more frequently specified. Several have been developed to meet the requirements of unusual operating conditions. Because of this and the variation in cost, it is recommended that lubricants be selected with the assistance of a lubrication expert.

Due to the finite shelf life of any wet lubricant, factory lubricated bearings should not be held more than two years prior to use. Contact KAYDON for refurbishment instructions for product held beyond two years of receipt.

To realize the full potential of a REALI-SLIM<sup>®</sup> bearing, KAYDON recommends that the customer's maintenance instructions and schedules consider the operating conditions and include procedures to assure the bearings are adequately protected against the intrusion of foreign matter of all types, and fresh oil or grease introduced with sufficient frequency to cleanse the bearing and assure adequate lubrication.

#### Figure 5-2

#### **Lubrication Temperature Ranges**



### **Section 6 — Other Products**

|                                           | Page<br>Number |
|-------------------------------------------|----------------|
| • Metric Series Ball Bearings - BB Series | 116            |
| • Bearings for Demanding Applications     | 119            |
| • KT Series Tapered Roller Bearings       | 121            |

### **Metric Series Ball Bearings (BB Series)** Drop-in Replacements For Cross-Roller Bearings



KAYDON BB Metric Series four-point contact ball bearings are dimensionally interchangeable with cross-roller bearings.

#### BB Series Bearings Are Available to Match the Bores and Widths of Common Cross-Roller Bearings.

When factors such as cost, availability, corrosion resistance, tighter tolerances, torque, seal/shield options, and temperature resistance are important in your application, it pays to consider BB Series fourpoint contact metric ball bearings as an alternative to cross-roller bearings. The additional design flexibility they offer can often help you achieve your design objectives with optimum performance and economy.

Additional features not commonly available in standard cross-roller bearings include a protective package for corrosion resistance, custom sealing for extreme environments, application-specific lubrication and temperature capability.

#### **Optimize Your Design Options**

With additional features not commonly available in standard cross-roller bearings, BB Series bearings provide greater design flexibility.

**ENDURAKOTE**<sup>®</sup> **plating**—For applications requiring superior corrosion resistance we offer our proprietary ENDURAKOTE<sup>®</sup> plating. This thin, dense chrome plating gives AISI 52100 bearing material corrosion resistance equal to or better than that of AISI 440C stainless steel. Unlike many traditional chrome platings, the extremely hard surface of ENDURAKOTE<sup>®</sup> plating doesn't peel and flake from the bearing race under stress, so corrosion resistance is retained and surface wear is minimized. The performance of ENDURAKOTE<sup>®</sup> plating has been proven in critical military, aerospace, and deep space applications.

Seals/Shields—Standard industry seals are generally available from nitrile rubber. KAYDON can also provide custom seals manufactured from silicone or Viton<sup>®</sup> materials for applications where high temperature or extreme environments are likely to be encountered.

**Temperature Capability**—Standard cross-roller bearings have a maximum full capacity operating temperature of only 212°F. In contrast, KAYDON bearings can operate at higher temperatures due to our heat treating procedures.

Lubrication Options—KAYDON offers a full range of lubricants, allowing you to optimize bearing performance in a range of applications with special requirements for moisture resistance, hot or cold temperatures, vacuum, and low torque.

**Separators**—The common roller spacer for many crossroller bearings is a non-metallic composite. High temperature and/or horizontal axis applications, however, require non-standard materials or a nonstandard separator design. KAYDON four-point contact ball bearings are available with separator options to meet a wide range of applications.

Internal Fitup—KAYDON can help you optimize internal fitup of our BB Series four-point contact ball bearings to provide the desired operating performance. Pre-loaded bearings are recommended for greater stiffness, and diametral clearance is recommended for lower torque applications.

#### **METRIC SERIES BALL BEARINGS - BB SERIES (continued)**





**Open Bearing** 

**Sealed Bearing** 

#### All dimensions in mm

(REALI-SLIM® replacements for RB Series standard cross-roller bearings)

|                 |                    | Approx.        | _                    |                      |                       |                 | Dynamic Capacity |            |              |  |  |  |  |
|-----------------|--------------------|----------------|----------------------|----------------------|-----------------------|-----------------|------------------|------------|--------------|--|--|--|--|
| Model<br>Number | KAYDON<br>Part No. | Weight<br>(kg) | Bore<br>(nominal +0) | O.D.<br>(nominal +0) | Width<br>(nominal +0) | "R"             | Radial (kg)      | Axial (kg) | Moment (N-m) |  |  |  |  |
| BB3010          | 39318001           | 0.1            | 30 -0.01             | 55 -0.013            | 10 -0.12              | 1               | 497              | 675        | 78           |  |  |  |  |
| BB3510          | 39319001           | 0.11           | 35 -0.012            | 60 -0.013            | 10 -0.12              | 1               | 513              | 709        | 90           |  |  |  |  |
| BB4010          | 39320001           | 0.12           | 40 -0.012            | 65 -0.013            | 10 -0.12              | 1               | 553              | 776        | 107          |  |  |  |  |
| BB4510          | 39321001           | 0.13           | 45 -0.012            | 70 -0.013            | 10 -0.12              | 1               | 591              | 839        | ) 125        |  |  |  |  |
| BB5013          | 39322001           | 0.24           | <b>50</b> -0.012     | 80 -0.013            | 13 -0.12              | 13 -0.12 1 948  |                  | 1321       | 1 227        |  |  |  |  |
| BB6013          | 39323001           | 0.3            | <b>60</b> -0.015     | 90 -0.013            | 13 -0.12              | 1               | 1010             | 1436       | 279          |  |  |  |  |
| BB7013          | 39324001           | 0.31           | <b>70</b> -0.015     | <b>100</b> -0.015    | 13 -0.12              | 1               | 1108             | 1601       | 346          |  |  |  |  |
| BB8016          | 39325001           | 0.62           | 80 -0.015            | 120 -0.015           | 16 -0.12              | 1               | 1679             | 2417       | 618          |  |  |  |  |
| BB9016          | 39326001           | 0.73           | 90 -0.02             | <b>130</b> -0.015    | 16 -0.12              | 1.5             | 1773             | 2584       | 718          |  |  |  |  |
| BB10020         | 39327001           | 1.21           | 100 -0.02            | <b>150</b> -0.015    | 20 -0.12              | 1.5             | 2395             | 3480       | 1102         |  |  |  |  |
| BB11015         | 39328001           | 0.66           | 110 -0.02            | 145 -0.018           | 15 -0.12              | 1               | 1390             | 2097       | 652          |  |  |  |  |
| BB11020         | 39329001           | 1.36           | 110 -0.02            | 160 -0.02            | 20 -0.12              | 20 -0.12 1.5    |                  | 3720       | 1300         |  |  |  |  |
| BB12025         | 39330001           | 2.13           | 120 -0.02            | 180 -0.02            | 25 -0.12              | 25 -0.12 2 3981 |                  | 5745       | 2197         |  |  |  |  |
| BB13025         | 39331001           | 2.27           | 130 -0.025           | <b>190</b> -0.025    | 25 -0.12 2 4          |                 | 4098             | 5968       | 2412         |  |  |  |  |
| BB14025         | 39332001           | 2.5            | 140 -0.025           | 200 -0.025           | 25 -0.12 2            |                 | 4359             | 6402       | 2726         |  |  |  |  |
| BB15013         | 39333001           | 0.61           | <b>150</b> -0.025    | 180 -0.025           | 13 -0.12 1            |                 | 1590             | 2455       | 965          |  |  |  |  |
| BB15025         | 39334001           | 2.72           | <b>150</b> -0.025    | 210 -0.025           | 25 -0.12 2            |                 | 4468             | 6614       | 2959         |  |  |  |  |
| BB15030         | 39335001           | 4.54           | <b>150</b> -0.025    | 230 -0.025           | 30 -0.12              | 2               | 6403             | 9325       | 4475         |  |  |  |  |
| BB20025         | 39336001           | 3.4            | 200 -0.03            | 260 -0.03            | 25 -0.12 2.           |                 | 5121             | 7820       | 4333         |  |  |  |  |
| BB20030         | 39337001           | 5.72           | 200 -0.03            | 280 -0.03            | 30 -0.12              | 2.5             | 7288             | 10980      | 6435         |  |  |  |  |
| BB20035         | 39338001           | 8.17           | 200 -0.03            | 295 -0.03            | 35 -0.12              | 2.5             | 9367             | 13921      | 8529         |  |  |  |  |
| BB25025         | 39339001           | 4.09           | 250 -0.03            | 310 -0.035           | 25 -0.12              | 3               | 5718             | 8939       | 5891         |  |  |  |  |
| BB25030         | 39340001           | 7.04           | 250 -0.03            | 330 -0.035           | 30 -0.12              | 3               | 8100             | 12519      | 8641         |  |  |  |  |
| BB25040         | 39341001           | 9.08           | 250 -0.03            | 355 -0.035           | 40 -0.12              | 3               | 10324            | 15812      | 11489        |  |  |  |  |
| BB30025         | 39342001           | 4.99           | 300 -0.035           | 360 -0.035           | 25 -0.12              | 3               | 6163             | 9821       | 7482         |  |  |  |  |
| BB30035         | 39343001           | 11.8           | 300 -0.035           | <b>395</b> -0.035    | 35 -0.12              | 3               | 11263            | 17595      | 14399        |  |  |  |  |
| BB30040         | 39344001           | 15.44          | 300 -0.035           | 405 -0.035           | 40 -0.12              | 3               | 11240            | 17595      | 14576        |  |  |  |  |
| BB40035         | 39345001           | 12.03          | 400 -0.04            | 480 -0.04            | 35 -0.25              | 3.5             | 12701            | 20518      | 20560        |  |  |  |  |
| BB40040         | 39346001           | 20.66          | 400 -0.04            | 510 -0.04            | 40 -0.25              | 3.5             | 12888            | 20919      | 21572        |  |  |  |  |
| BB50040         | 39347001           | 22.7           | 500 -0.045           | <b>600</b> -0.045    | 40 -0.25              | 3.5             | 14381            | 23996      | 29099        |  |  |  |  |
| BB50050         | 39348001           | 38.05          | 500 -0.045           | 625 -0.045           | 50 -0.25              | 3.5             | 14555            | 24367      | 30120        |  |  |  |  |
| BB60040         | 39349001           | 27.24          | 600 -0.045           | 700 -0.045           | 40 -0.2               | 40 -0.2 4 15    |                  | 26887      | 37565        |  |  |  |  |
| BB70045         | 39350001           | 44.95          | 700 -0.045           | 815 -0.045           | 45 -0.25              | 4               | 16887            | 29634      | 47062        |  |  |  |  |
| BB80070         | 39351001           | 98.52          | 800 -0.05            | <b>950</b> -0.05     | 70 -0.25              |                 |                  | 47799      | 86420        |  |  |  |  |
| BB90070         | 39352001           | 109.87         | 900 -0.05            | <b>1050</b> -0.05    | 70 -0.25              | 5               | 28307            | 51478      | 101535       |  |  |  |  |

Note 1: Capacities listed are not simultaneous. For combined loading see discussion of Bearing Selection and Load Analysis. Dynamic capacities are based upon 1 million revolutions of L10 life. Published capacities do not apply to hybrid series bearings P, X, and Y - contact KAYDON product engineering for values. Note 2: Standard bearings are supplied without seals and shields, and they are assembled with a light clearance. Alternate features can be obtained by adding the following suffix letter to the basic part number.

CO = standard clearance

U = single seal

UU = double seal

- CI = greater than standard clearance
- CCO = preload T = single shield

TT = double shield Check for availability.

#### **METRIC SERIES BALL BEARINGS - BB SERIES (continued)**

#### All dimensions in mm

| Model Number | Bore              | O.D.              | Width           | Width Standard Diametral |       | kial Runout |
|--------------|-------------------|-------------------|-----------------|--------------------------|-------|-------------|
| wodel Number | (nominal +0)      | (nominal +0)      | (nominal +0)    | Clearance                | Inner | Outer       |
| BB3010       | 30 -0.01          | 55 -0.013         | 10 -0.12        | 0.025-0.038              | 0.01  | 0.01        |
| BB3510       | 35 -0.012         | <b>60</b> -0.013  | 10 -0.12        | 0.03-0.043               | 0.01  | 0.01        |
| BB4010       | 40 -0.012         | 65 -0.013         | 10 -0.12        | 0.03-0.043               | 0.013 | 0.013       |
| BB4510       | 45 -0.012         | 70 -0.013         | <b>10</b> -0.12 | 0.03-0.043               | 0.013 | 0.013       |
| BB5013       | <b>50</b> -0.012  | 80 -0.013         | 13 -0.12        | 0.03-0.056               | 0.013 | 0.013       |
| BB6013       | <b>60</b> -0.015  | 90 -0.013         | 13 -0.12        | 0.03-0.056               | 0.013 | 0.013       |
| BB7013       | 70 -0.015         | <b>100</b> -0.015 | 13 -0.12        | 0.03-0.056               | 0.015 | 0.015       |
| BB8016       | 80 -0.015         | <b>120</b> -0.015 | <b>16</b> -0.12 | 0.03-0.056               | 0.015 | 0.015       |
| BB9016       | 90 -0.02          | <b>130</b> -0.015 | 16 -0.12        | 0.041-0.066              | 0.015 | 0.015       |
| BB10020      | 100 -0.02         | <b>150</b> -0.015 | 20 -0.12        | 0.041-0.066              | 0.015 | 0.015       |
| BB11015      | 110 -0.02         | 145 -0.018        | 15 -0.12        | 0.041-0.066              | 0.015 | 0.02        |
| BB11020      | 110 -0.02         | 160 -0.02         | 20 -0.012       | 0.041-0.066              | 0.015 | 0.02        |
| BB12025      | 120 -0.02         | 180 -0.02         | 25 -0.12        | 0.05-0.08                | 0.02  | 0.02        |
| BB13025      | 130 -0.025        | <b>190</b> -0.025 | 25 -0.12        | 0.05-0.08                | 0.025 | 0.025       |
| BB14025      | 140 -0.025        | 200 -0.025        | 25 -0.12        | 0.05-0.08                | 0.025 | 0.025       |
| BB15013      | <b>150</b> -0.025 | 180 -0.025        | 13 0.23         | 0.05-0.08                | 0.025 | 0.025       |
| BB15025      | <b>150</b> -0.025 | 210 -0.025        | 25 -0.12        | 0.05-0.08                | 0.025 | 0.025       |
| BB15030      | <b>150</b> -0.025 | 230 -0.025        | 30 -0.12        | 0.05-0.08                | 0.025 | 0.025       |
| BB20025      | 200 -0.03         | 260 -0.03         | 25 -0.12        | 0.06-0.09                | 0.03  | 0.03        |
| BB20030      | 200 -0.03         | 280 -0.03         | 30 -0.12        | 0.06-0.09                | 0.03  | 0.03        |
| BB20035      | 200 -0.03         | 295 -0.03         | 35 -0.12        | 0.06-0.09                | 0.03  | 0.03        |
| BB25025      | 250 -0.03         | 310 -0.035        | 25 -0.12        | 0.07-0.1                 | 0.035 | 0.035       |
| BB25030      | 250 -0.03         | <b>330</b> -0.035 | 30 -0.12        | 0.07-0.1                 | 0.035 | 0.035       |
| BB25040      | 250 -0.03         | 355 -0.035        | 40 0.12         | 0.07-0.1                 | 0.035 | 0.035       |
| BB30025      | 300 -0.035        | <b>360</b> -0.035 | 25 -0.12        | 0.07-0.1                 | 0.035 | 0.035       |
| BB30035      | 300 -0.035        | <b>395</b> -0.035 | 35 -0.12        | 0.07-0.1                 | 0.035 | 0.035       |
| BB30040      | 300 -0.035        | 405 -0.035        | 40 -0.12        | 0.07-0.1                 | 0.035 | 0.035       |
| BB40035      | 400 -0.04         | 480 -0.04         | 35 -0.25        | 0.08-0.11                | 0.04  | 0.04        |
| BB40040      | 400 -0.04         | 510 -0.04         | 40 -0.2         | 0.08-0.11                | 0.04  | 0.04        |
| BB50040      | <b>500</b> -0.045 | 600 -0.045        | 40 -0.25        | 0.09-0.12                | 0.045 | 0.045       |
| BB50050      | <b>500</b> -0.045 | 625 -0.045        | <b>50</b> -0.25 | 0.09-0.12                | 0.045 | 0.045       |
| BB60040      | 600 -0.045        | 700 -0.045        | 40 -0.25        | 0.09-0.12                | 0.045 | 0.045       |
| BB70045      | 700 -0.045        | 815 -0.045        | 45 -0.25        | 0.09-0.12                | 0.045 | 0.045       |
| BB80070      | 800 -0.05         | 950 -0.05         | 70 -0.25        | 0.09-0.12                | 0.05  | 0.05        |
| BB90070      | <b>900</b> -0.05  | 1050 -0.05        | 70 -0.25        | 0.1-0.13                 | 0.05  | 0.05        |

### CONTACT KAYDON AT—

KAYDON Corporation • Muskegon, Michigan 49443 Telephone: 231/755-3741 • Fax: 231/759-4102

#### **NEED SERVICE FAST?**

1-800-514-3066

Website: www.kaydonbearings.com

### **Bearings for Demanding Applications** (Material Codes S, P, X, and Y)

#### KAYDON stainless steel bearings are used where high precision and corrosion resistance are required.

REALI-SLIM<sup>®</sup> thin-section bearings are available in AISI 440C stainless steel races, brass or non-metallic separators, and your choice of either stainless steel or ceramic balls. Offered in either radial contact "C," angular contact "A," or four-point contact "X" configurations. These bearings, available in popular sizes, minimize the surface degradation and particulate formation so common in harsh environment applications. (See pages 49-52.)

#### Hybrid bearings are very well suited for applications where lubrication is marginal.

KAYDON REALI-SLIM<sup>®</sup> thin-section bearing product line has been expanded to include several additional bearing series specifically engineered to bring the advantages of REALI-SLIM<sup>®</sup> bearings to designs intended for service in the most severe or extreme environments. We offer REALI-SLIM<sup>®</sup> bearings with a variety of packaged features to meet specific operation requirements for:

- Chemical resistance/high temperature—P Series (See next page.)
- High performance/low torque—Q Series
- High performance/low particle—X, Y Series

Applications requiring low particle generation, high accuracy, high speeds, and/or which must operate in adverse or no-lube conditions, can benefit from hybrid bearings. Tests have shown that significant reductions in particle generation can be obtained with hybrid designs which incorporate the use of ceramic rolling elements on hardened steel races. In addition, the physical properties of the ceramic rolling elements (precision, hardness, light weight) provide additional benefits such as improved repeatability, low torque, high stiffness, and resistance to breakdown under marginal or no-lube conditions.

Tremendous benefits in performance can be obtained by matching not just size but also material to the application. These alternative race and ball materials interact differently than traditional chrome steel bearings. Capacities, life calculations and stiffness will differ from other products in this catalog. Contact KAYDON for technical characteristics of hybrid REALI-SLIM<sup>®</sup> bearings.

#### **BEARINGS FOR DEMANDING APPLICATIONS (continued)**

#### **Series P—Chemical Resistant**

In applications where both corrosion resistance and chemical resistance are required, series P bearings may be required. These bearings feature AISI 17-4PH steel races and ceramic balls. They're manufactured to provide a greater level of corrosion and chemical resistance than either KAYDON Series N or Series S bearings. Due to the hardening limitations of AISI 17-4PH steel, an adjustment factor of .17 must be applied to the standard dynamic capacity ratings. Thus, the use of P Series bearings should be carefully reviewed prior to selection to determine if the life and capacity are adequate.

#### **Specifications for Hybrid REALI-SLIM® Bearings**

#### ITEM DESCRIPTION **REFERENCE SPECIFICATION MATERIAL ANALYSIS** RACES AISI 440C Stainless steel **ASTM A-756** BALLS AISI 440C Stainless steel or ceramic: Silicon Nitride **SEPARATORS** P Type—Brass or non-metallic composite ASTM B-36 or B-134 other C, X BEARINGS L Type—Nylon, fiberglass reinforced options, A BEARINGS R Type—Brass or non-metallic composite ASTM B-36 or B-134 see p. 93 G Type—Nylon, fiberglass reinforced PRECISION KAYDON Precision Class 1, Higher classes available **RACE DIMENSIONS** ABMA ABEC-1F or better **RACE RUNOUTS** KAYDON Precision Class 1, Higher classes available ABMA ABEC-1F or better ABMA Grade 10 Stainless steel or Grade 5 ceramic BALLS ANSI/ABMA/ISO 3290

| materia |                                                                            |
|---------|----------------------------------------------------------------------------|
| Races   | AISI 17-4PH steel                                                          |
| Balls   | Borosilicate, glass, or ceramic                                            |
| Cage    | Type A; PTFE or Vespel® toroid ball spacers<br>or<br>300 series steel ring |
|         | Types C & X; Stainless steel or<br>non-metallic composite ring             |

### **KT Series** Tapered Roller Bearings



The KAYDON concept of standard bearings with light weight, thin sections, and large bore diameters includes tapered and radial roller bearings as well as ball bearings.

KT Series tapered roller bearings offer advantages to those designs

requiring a bearing of higher capacity, which would benefit from the many unique advantages of a thinsection bearing. KT tapered roller bearings are used to advantage in applications ranging from oil field equipment to machine tool tables where space and weight considerations are meaningful.

KT Series standard tapered roller bearings have races and rollers of through-hardened AISI 52100 steel with a one-piece stamped steel cage. When specified, they can be furnished in pairs match ground for use with or without spacers.

The tapered roller bearings in this catalog are of the single-row radial type, designed primarily for application of radial load. While of separable construction, the rolling elements are retained in the separator.

Since this bearing assumes a contact angle of approximately 12° under an axial force, it does have a reasonable amount of thrust capacity. This capacity is uni-directional and is realized when the axial force is applied to the wide faces of the races.

As in the case of the angular contact ball bearing, the single row tapered roller bearing is commonly mounted in opposition to another bearing (usually of similar construction) to provide an axial force for establishing and maintaining the angle of contact. Two bearings of this type maybe mounted with the lines of contact converging outside of the bearings (back-to-back) or inside (face-to-face) with the former preferred for stability in the presence of overturning load.

|                              | KAYDON   | Bore   | Outside   |            | Factor |                | ng at<br>PM for | Cone       | Cup        | Sh         | oulder     | Diamet     | ers        | Approx.        |
|------------------------------|----------|--------|-----------|------------|--------|----------------|-----------------|------------|------------|------------|------------|------------|------------|----------------|
|                              | Bearing  | d      | Dia.<br>D | Width<br>T | K      |                | rs. L-10        | Width<br>B | Width<br>C | Sh         | aft        | Hou        | sing       | Bearing<br>Wt. |
| <b>◄</b> T►<br>  <b>◄</b> C► | Number   | (IN)   | (IN)      | (IN)       | (IN)   | Radial<br>(LB) | Thrust<br>(LB)  | . – .      | (IN)       | S1<br>(IN) | S2<br>(IN) | H1<br>(IN) | H2<br>(IN) | (LB)           |
|                              | KT-070   | 7.000  | 8.500     | .812       | 1.74   | 4970           | 2860            | .812       | .625       | 7.375      | 7.300      | 8.125      | 8.250      | 3.11           |
|                              | KT-091   | 9.125  | 10.250    | .718       | 1.79   | 4920           | 2750            | .722       | .597       | 9.625      | 9.312      | 9.850      | 10.050     | 2.88           |
|                              | • KT-098 | 9.875  | 11.500    | 1.062      | 1.85   | 9260           | 5000            | 1.062      | .875       | 10.375     | 10.225     | 11.063     | 11.250     | 6.05           |
|                              | KT-100   | 10.000 | 11.125    | .625       | 1.79   | 4020           | 2250            | .625       | .500       | 10.500     | 10.300     | 10.750     | 10.900     | 2.88           |
|                              | KT-110   | 11.000 | 12.500    | .875       | 1.86   | 7620           | 4100            | .875       | .688       | 11.438     | 11.250     | 12.000     | 12.250     | 5.06           |
|                              | KT-112   | 11.250 | 12.750    | .812       | 1.86   | 7150           | 3860            | .812       | .625       | 11.688     | 11.500     | 12.313     | 12.500     | 4.72           |
| $  H_1  $                    | KT-118   | 11.875 | 13.562    | .937       | 1.76   | 7250           | 4120            | .812       | 1.125      | 12.438     | 12.210     | 13.000     | 13.320     | 6.63           |
| d d                          | KT-130   | 13.000 | 14.562    | .843       | 1.44   | 5580           | 3880            | .843       | .594       | 13.438     | 13.320     | 14.125     | 14.300     | 5.20           |
|                              | KT-132   | 13.250 | 15.000    | .937       | 1.69   | 6160           | 3650            | .937       | .750       | 13.875     | 13.625     | 14.375     | 14.500     | 6.79           |
| <b>←</b> B ── ▶              | KT-151   | 15.125 | 17.375    | 1.125      | 1.72   | 11760          | 6840            | 1.125      | .812       | 15.750     | 15.625     | 16.750     | 16.875     | 13.57          |
|                              | KT-165   | 16.500 | 18.750    | .875       | 1.78   | 8220           | 4620            | .882       | .812       | 17.250     | 17.000     | 18.125     | 18.500     | 11.14          |
|                              | KT-180   | 18.000 | 19.625    | .812       | 1.69   | 7400           | 4330            | .812       | .687       | 18.438     | 18.375     | 19.188     | 19.300     | 8.19           |
|                              | KT-200   | 20.000 | 21.750    | .812       | 1.80   | 7930           | 4400            | .812       | .687       | 20.625     | 20.375     | 21.125     | 21.250     | 9.78           |

• Available from Stock—check for availability of other sizes.

Tolerances are: Bore: +.001" - .000" up to KT-110; +.002" - .000" for KT-110 to KT-200

Outside Diameter: Same as for bore. Width: ±.010" up to KT-112; ±.015" for KT-112 to KT-200

Cup Radial Runout .0015" Max. F.I.M., Cone Radial Runout .0020" Max. F.I.M.

### Section 7 — Appendix and Sales Information

|                                                      | Page<br>Number |
|------------------------------------------------------|----------------|
| • Terms and Definitions                              | 123            |
| a and the                                            | S              |
| Warranty Information and Legal Notices               | 124            |
| - Disclaimer                                         |                |
| - Hazard Notice                                      |                |
| - Terms and Conditions of Sale - Warranty            |                |
| - Responsibility Statement and Registered Trademarks |                |
| • Engineering Design Aids and Technical Literature   | 127            |
| Request for Bearing Proposal Data Form               | 129            |
| Conversion Factors                                   | 131            |

### **Bearing Definitions and Terms**

#### **Axial Clearance:**

The total amount of free axial movement between the inner and outer race of a bearing. Bearings with internal clearance will contain both axial and radial clearance.

#### Axial Load:

Load applied to the bearing parallel with the bearing axis of rotation — also known as thrust load.

#### **Capacity:**

Dynamic capacity is the basic "C" rating which represents a load that the bearing can theoretically endure for 1 million revolutions. Static capacity is the approximate load the bearing can endure before permanent deformation occurs on the ball or raceway. Published capacities do not apply to hybrid series bearings P, X, and Y. Contact KAYDON product engineering.

#### **Deflection:**

The amount of movement associated with compression or stretching of bearing components when placed under load.

#### **Diameter Tolerance:**

The range in which the average diameter of a bore or O.D. may fall. REALI-SLIM<sup>®</sup> bearings are considered "non-rigid" rings and all diameters are averaged using multi-point gaging techniques per ABMA Std. 26.2.

#### **Diametral Clearance:**

The total free movement of the inner race relative to the outer race in a radial plane, also referred to as radial clearance. "X" and "C" type bearings are made with some internal clearance as a standard factory internal fit before mounting.

#### L<sub>10</sub> Life:

The theoretical life span of a bearing under a specific set of dynamic operating conditions associated with 90% reliability.

#### **Moment Load:**

Load such that when applied to a bearing system, tends to overturn or bend the axis of rotation in an angular direction.

#### **Pitch Diameter:**

The theoretical median diameter of a bearing, which passes through the center of the rolling elements. REALI-SLIM<sup>®</sup> pitch diameters are equivalent to: (OD+Bore)/2.

#### Preload:

The amount of load placed on the rolling elements before the application of any external loads. Preload can be created in "X" and "C" type bearings by controlling internal fits of the ball and the raceway at the factory. Preload in angular contact bearings is controlled by a "preload gap" between the duplexed races. Tight mounting conditions will increase the final bearing preload. Preload stiffens the bearing and eliminates axial and radial play, but the load on the balls increases friction and shortens  $L_{10}$  life.

#### Radial Load:

Load applied perpendicular to the bearing axis of rotation.

#### Runout:

The maximum axial or radial race wall thickness variation of an inner or outer bearing race. Runout influences the repeatable location variation of rotating components.

#### Radial Thickness Separator Outer Axial Race Radial Width Ball Inner Race Ball Groove Depth Outside Inside Diameter Diameter

#### Standard bearing nomenclature

# Warranty Information and Legal Notices

#### Disclaimer

The design and application information contained in this catalog is for illustration only. Responsibility for the application of the products contained in this catalog rests solely with the equipment designer or user. In spite of our best efforts, the material contained in this catalog may contain inaccuracies and typographical errors.

#### **Hazard Notice**

The use of any part, such as those described in this catalog, may be hazardous and have the potential to cause serious injury, including death, to people or property. The purchaser is responsible for evaluating the hazards associated with any part used in their application.

#### KAYDON Standard Terms and Conditions of Sale

- **1) Scope.** Prices quoted are for acceptance within thirty (30) days from date of quotation unless otherwise stated. The terms and conditions of sale set forth below apply to all quotations made and purchase orders accepted by Seller.
- 2) Acceptance of Orders. All orders are subject to acceptance by authorized officials at Seller's division or subsidiary offices. All sales are made in accordance with these terms and conditions of sale. Any other document containing additional or different terms and conditions, or any attempt to vary these terms and conditions, shall be deemed a material alteration or modification hereof and all sales are made without such additional or different terms and conditions.
- **3) Scheduling.** Shipping dates are approximate and are based upon prompt receipt of all necessary information. Buyer shall furnish to Seller written shipping instructions in sufficient time to permit Seller to make shipment at Seller's option within any time or times herein specified for shipment. In the event of a delay in delivery due to any reason described in Section 16 below, the delivery date shall be deferred for a period equal to the time lost by reason of delay. In the event such delay shall continue for more than two weeks, then, at Seller's option, the order will be deemed cancelled without liability to Seller.
- **4) Quantities.** Seller reserves the right to ship quantities (or weight, as applicable) that are within ten percent (10%) of the quantity (or weight) specified by Buyer, and Seller shall not be liable for any overshipment or undershipment within this limit. In the event of any overshipment within this limit, Buyer shall pay for the actual quantity (or weight) shipped.
- **5) Delivery and Transportation.** Seller's delivery dates are approximate. Seller shall not be liable for delays in delivery or other defaults in performance of this order arising out of causes beyond Seller's control. Unless otherwise agreed to in writing by Seller, delivery of the products hereunder shall be made F.O.B. at the point of shipment with delivery to the initial carrier to constitute delivery to the Buyer. Title to products passes to Buyer and products are at risks to Buyer from and after delivery to the initial carrier. Transportation expenses will be paid by Buyer and risk of loss, shortage, delay or damage to products in transit shall fall upon Buyer, whose responsibility it shall be to file claims with the carrier.
- 6) Terms of Payment. Invoices are due and payable (30) thirty days from the date of invoice unless other terms are shown on the face hereof. A 1-1/2% (one-and-a-half percent) carrying charge will be applied to all past due amounts. If shipments are delayed by Buyer, payments shall become due on the date when Seller is prepared to make shipment. If the work covered

by the purchase order is delayed by Buyer, payments shall be made based on the purchase price and the percentage of completion. Seller reserves the right to ship to its order and make collection by sight draft with bill of lading attached.

- 7) Taxes. Prices do not include foreign or domestic sales, use, excise or similar taxes. Consequently, in addition to the prices specified herein, the amount of any present or future sales, use, excise or other general or specific tax, or imports, duties or penalties or other governmental charges fixed or imposed by any lawful authority(s) upon or applicable to the production, sale, shipment, delivery or use of the products sold hereunder shall be added to the price and be paid by Buyer or, in lieu thereof, Buyer shall provide Seller with a tax exemption certificate acceptable to the taxing authorities. If such tax is paid by Seller, Buyer shall reimburse Seller upon presentation of invoice.
- 8) Warranty. Seller warrants the products manufactured by it to be free from defects in material and workmanship only. The extent of Seller's obligation hereunder is to either repair or replace its work or the defective products, F.O.B. Seller's plant, if returned within twelve (12) months after date of delivery. No allowance will be granted for repairs or alterations made by Buyer without Seller's written approval. The warranty shall not be construed to cover the cost of any work done by Buyer on material furnished by Seller or the cost of removal or installation of product. Products and parts not manufactured by Seller are warranted only to the extent and in the manner that the same are warranted to Seller by Seller's vendors and then only to the extent Seller is able to enforce such warranty. There is no other warranty, expressed or implied, in fact or by law.

THE FOREGOING STATES THE SOLE AND EXCLUSIVE WARRANTY OF BUYER AND THE SOLE AND EXCLUSIVE WARRANTY OF SELLER. THE WARRANTIES STATED IN THIS PARAGRAPH ARE IN LIEU OF ALL OTHER WARRANTIES WRITTEN OR VERBAL, STATUTORY, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED.

Seller's agreement to sell the products is made upon the condition and agreement that, with respect to the products, there have been no representations or undertakings made by or on behalf of Seller and Seller makes no guarantees or warranties, expressed or implied, in fact or in law, except as expressly stated above.

- 9) Limitation of Liability. Seller shall not be responsible, obligated, or liable for any injury or damage resulting from an application or use of its products, either singly or in combination with other products. SELLER'S SOLE LIABILITY FOR BREACH OF WARRANTY OR ANY OTHER CLAIM SHALL BE LIMITED TO REPAIR OR REPLACEMENT OF THE PRODUCTS OR RETURN OF THE PURCHASE PRICE, AT SELLER'S SOLE OPTION. SELLER SHALL NOT BE LIABLE FOR DAMAGES, INCLUDING BUT NOT LIMITED TO CONSEQUENTIAL OR SPECIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE PRODUCTS OR ARISING OUT OF ACCEPTANCE OF THIS ORDER.
- **10)** Acceptance of Products. Products will be deemed accepted without any claim by Buyer unless written notice of non-acceptance is received by Seller within thirty (30) days of delivery if shipped F.O.B. point of shipment, or ten (10) days of delivery if shipped F.O.B. point of destination. Such written notice shall not be considered received by Seller unless it is accompanied by all freight bills for such shipment, with agent's notations as to damages, shortages and conditions of equipment, containers and seals. Non-accepted products are subject to return policy stated below.

#### WARRANTY INFORMATION AND LEGAL NOTICES (continued)

- **11) Return of Products.** No product may be returned to Seller without Seller's prior written permission, which permission may be withheld by Seller in its sole discretion.
- **12) Damages to Returned Products.** If Buyer elects to return product(s) to Seller for refurbishment, Buyer agrees to accept all risk of damage or destruction of such returned product(s), and Seller shall not be liable for any failure or inability on the part of Seller to complete refurbishment upon any such returned products.
- 13) Limitations of Actions. Irrespective of whether Seller agreed to perform field start-up or any other service after the delivery of the product, all claims or actions must be brought within one (1) year of date of tender of delivery, or eighteen (18) months of Buyer's order, if no tender of delivery is made, notwithstanding any statutory period of limitation to the contrary.
- **14) Patents.** Buyer shall hold Seller harmless against any expense or loss resulting from infringement of patents or trademarks arising from compliance with Buyer's design, specifications or instructions.

The sale of products or parts thereof by Seller does not convey any license by implication, estoppel, or otherwise under patent claims covering combinations of these products or parts with other devices or elements.

- 15) Financial Responsibility. If in the sole judgment of Seller the financial resources of Buyer become impaired or unsatisfactory at any time during the term of the agreement between the parties, then Seller may require of Buyer a deposit or suitable security or margin for performance by Buyer in such amount or amounts from time to time as Seller shall specify. Upon requirement of deposit, Buyer shall make such deposit not later than the close of Seller's next business day. If Buyer fails to make such deposit, then Seller may at its option (1) cancel the agreement between the parties or the undelivered portion thereof, in which case Buyer agrees to pay Seller the difference between the market price on date of cancellation and the contract price; (2) resell at any time for Buyer's account all or any undelivered portion of the products, in which case Buyer agrees to pay Seller the difference between the resale price and the contract price, or (3) otherwise change the terms of payment. In the event Buyer shall be or becomes insolvent, or admits in writing Buyer's inability to pay Buyer's debts as they mature, or if Buyer shall make an assignment with creditors or if there are instituted by or against Buyer proceedings in bankruptcy or under any insolvency laws or for reorganization, receivership or dissolution, Seller may terminate the agreement between the parties at any time and without notice.
- **16) Force Majeure.** In the event of war, fire, epidemics, quarantine restrictions, flood, strike, labor trouble, breakage of equipment, accident, riot, the imposition of any government price control regulation or any other act of governmental authority, acts of God or other contingencies (whether similar or dissimilar to the foregoing) beyond the reasonable control of Seller, interfering with the production, supply, transportation, or consumption practice of Seller at the time respecting the products covered by the agreement between the parties or in the event of inability to obtain on terms deemed by Seller to be practicable any raw material (including energy source) used in connection therewith, quantities so affected shall be eliminated from the contract without liability, but the contract shall otherwise remain unaffected. Seller may during any period of shortage due to any of these causes, allocate its supply of such raw material among its various uses therefore (e.g. manufacturing and sales) in such manner as Seller deems practicable and

allocate its supply of such products among such various uses thereof in any manner which Seller deems fair and reasonable.

- **17) Reasonable Attorneys' Fees.** In the event suit or other proceeding shall be brought for the recovery of the purchase price, or any unpaid balance or the breach by Buyer of any term of the agreement between Seller and Buyer, Buyer shall pay to Seller, in addition to any damages provided by law, reasonable attorneys' fees and costs of collection.
- **18) Security Title.** Security title and right of possession of the products sold hereunder shall remain with Seller until all payments due from Buyer to Seller (including deferred payments whether evidenced by notes or otherwise) shall have been made in cash and Buyer agrees to do all acts necessary to perfect and maintain such security right and title in Seller.
- **19) Cancellations.** Buyer may cancel an order only upon written consent and upon payment to Seller of cancellation charges, which shall take into account among other things expenses incurred and commitments already made by Seller, and Seller's profit margin.

#### 20) General

(a) The agreement between Buyer and Seller and matters connected with the performance thereof shall be construed in accordance with and governed by the law of the State of Seller's accepting offices, as referenced in Section 2, as though it were executed and performed entirely within the State of Seller's accepting offices, as referenced in Section 2, and shall be construed to be between merchants.

**(b)** Any assignment of the agreement between Buyer and Seller or any rights or obligation of the agreement by Buyer without written consent of Seller shall be void.

(c) Except as may be expressly provided to the contrary in writing, the provisions of the agreement between Buyer and Seller are for the benefit of the parties hereto and not for any other person.

(d) No waiver by Seller of any breach of any provision of the agreement between Buyer and Seller will constitute a waiver of any other breach.

(e) The terms and conditions set forth above contain all the representations, stipulations, warranties, agreements and understandings with respect to the subject matter of the agreement between Buyer and Seller, and its execution has not been induced by any representation, stipulation, warranty, agreement or understanding (including any course of prior dealings between the parties hereto) of any kind other than those set forth above.

(f) No amendment, addition to, alteration, modification or waiver of all or part of the agreement between Buyer and Seller shall be of any force or effect unless in writing and signed by Seller. If the terms and conditions set forth above conflict with those of any purchase order of Buyer written in connection with the sale of the products or any portion thereof, then the terms set forth above shall govern.

21) Arbitration. Any controversy or claim arising out of or relating to the agreement between Buyer and Seller, or the breach thereof, shall be settled in the City and State of the Seller's accepting offices, as referenced in Section 2, by arbitration in accordance with the Rules of the American Arbitration Association, and judgment upon the award rendered by the arbitrator may be entered in any court having jurisdiction thereof.

# "RESPONSIBILITY STATEMENT"

### WARNING

FAILURE OF, OR IMPROPER SELECTION OF, OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Kaydon Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise. Before you select or use any product or system, it is important that you analyze all aspects of your application and review the information concerning the product in the current product catalog. The user, through its own analysis and testing, is solely responsible for making the final selection of the product or system and assuring that all performance, safety and warning requirements of the application are met. The products and systems described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Kaydon Corporation and its subsidiaries at any time without notice.

The following are registered trademarks of Kaydon Corporation: ENDURAKOTE®, ENDURA-SLIM®, LAMI-SEAL®, LAMI-SHIELD®, REALI-DESIGN®, REALI-DESIGN MM®, REALI-SLIM®, REALI-SLIM TT®, REALI-SLIM MM™, ULTRA-SLIM®.

# Visit our website: www.kaydonbearings.com

for latest releases — newest features — and downloads of catalogs, software, or CAD drawings.



- Save hours of tedious computations.
- Reduce bearing selection time to seconds.
- Accurately compute essential life and load analyses.
- Determine safe operating speeds.
- Calculate load deflections.

The REALI-DESIGN<sup>®</sup> program group is not simply a catalog on disk. This innovative software is an actual engineering aid designed to apply the calculating power of the computer to your complex power transmission design computations. Use this as a supplement to KAYDON Catalog 300 to select the exact REALI-SLIM<sup>®</sup> thin section bearing for your application.

### Application Information to Help In Your Designs

All available for download from our website www.kaydonbearings.com.



1. REALI-SLIM<sup>®</sup> thin-section bearings catalog

Complete engineering and selection information on the entire product line, including REALI-SLIM MM<sup>™</sup> metric series, REALI-SLIM TT<sup>®</sup> turntable series, and ULTRA-SLIM<sup>®</sup> series. 132 pages. Request **Catalog 300**.



2. An illustrated mounting guide for REALI-SLIM<sup>®</sup> bearings

Gives ideas on how to improve designs through better mounting and use of bearing assemblies. 24 pages. Catalog 306 downloadable from website.



#### 3. REALI-DESIGN<sup>®</sup> and REALI-DESIGN MM<sup>®</sup> software

Speeds REALI-SLIM<sup>®</sup> bearing selection process. Includes data sheets, life calculations, and CAD-ready DXF library for both inch and metric series. Software downloadable from www.kaydonbearings.com.



4. A design engineer's selection guide for REALI-SLIM<sup>®</sup> bearings in semiconductor applications

Engineering recommendations for use of KAYDON bearings in semiconductor manufacturing equipment. 8 pages. Download Catalog 315 from website.



#### 5. Slewing ring/turntable bearing catalog

Complete engineering and selection information on standard and custom turntable bearings up to 240". 132 pages. Request Catalog 390.



#### 6. Kaydon's Bearing Remanufacturing Program brochure

Overview of ISO-certified repair services provided by Kaydon to remanufacture 10" to 240" diameter bearings to like-new quality and warranty, any OEM. 6 pages. Request Reman brochure or download from website.

### **Request For Bearing Proposal Data Form**

Detach and fax completed form or complete and submit online at www.kaydonbearings.com.

#### Attention: KAYDON Sales

|                                                                                                                                                                                                                                                                                                                  | Date:                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| <b>TO:</b> KAYDON Corporation<br>Muskegon, Michigan 49443<br>Fax: 231-759-4102 Phone: 231-755-3741                                                                                                                                                                                                               | FROM:                                                                       |
| Project Description:         Application:         Type:         Type:         Quotation Quantity:         Quotation Quantity:         Program Start Date:         Response from KAYDON Needed by:                                                                                                                |                                                                             |
| For a preferred Size and Style of Bearing:     Preselected KAYDON Bearing Model #: or     Bore: inches O.D.: inches Width     or     Envelope Size : Min. Bore inches M                                                                                                                                          |                                                                             |
| For an L <sub>10</sub> life calculation: [Describe loads and/or mass on be<br>Dynamic Radial avg.: pounds<br>Dynamic Axial avg.: pounds<br>Dynamic Moment avg.: inch-lbs.<br>RPM (max) RPM (min) or Oscillation:<br>Bearing axis is (vert/horiz) with the (inner/outer) race rotation r<br>Minimum Hours needed: | Angle Duty Cycle                                                            |
| For a Safety factor calculation: [describe any maximum sho<br>[Note: Do not include Safety factor in these loading values]<br>Static Radial Max: pounds<br>Static Axial Max: pounds<br>Static Moment Max: inch-lbs.                                                                                              |                                                                             |
| For determining Shaft and Housing sizes: [Attach proposed<br>Material Radial Thickness Low Temperature<br>Shaft                                                                                                                                                                                                  | l mounting sketch if possible]<br>e Normal Temperature High Temperature<br> |
| For Accuracy concerns: KAYDON Precision Class or Radial Runout Axial Runout                                                                                                                                                                                                                                      | Mounting Sketch                                                             |
| For Stiffness or Deflection concerns: Springrate: or Movement under load:                                                                                                                                                                                                                                        |                                                                             |
| For Torque to Rotate concerns: Maximum allowable Starting Torque:                                                                                                                                                                                                                                                |                                                                             |
| For Other or Environmental Conditions:         Operating Temperature Range:         Vacuum Range:         Proposed Lubricant is :         Seals or Shields:         Protective Coating:                                                                                                                          |                                                                             |

REALI-SLIM® Bearings Catalog 300 ©KAYDON® Corporation Issue 10

Fax Request for Bearing Proposal Data Form to:

### (231) 759-4102

# **Conversion Factors**

|                   | English-Metric            | Metric-English         |  |  |  |
|-------------------|---------------------------|------------------------|--|--|--|
| Loweth            | 1 in = 25.4 mm            | 1 mm = .03937 in       |  |  |  |
| Length            | 1 ft = .3048 m            | 1 m = 3.281 ft         |  |  |  |
| Force             | 1 lb = 4.448 N            | 1 N = 0.2248 lb        |  |  |  |
|                   | 1 ft-lb = 1.356 N-m       | 1 N-m = .7376 ft-lb    |  |  |  |
| Torque/Moment     | 1 in-lb = .113 N-m        | 1 N-m = 8.851 in-lb    |  |  |  |
|                   | 1 in-oz = 72.01 gf-cm     | 1 gf-cm = .01389 in-oz |  |  |  |
| Maight            | 1 lb = .4536 kg           | 1 kg = 2.205 lb        |  |  |  |
| Weight            | 1 oz = 28.35 g            | 1 g = .03527 oz        |  |  |  |
| Strong / Drogging | 1 psi = 6895 Pa (N/m²)    | 1 Pa = .000145 psi     |  |  |  |
| Stress / Pressure | 1 ksi = 6.895 MPa (N/mm²) | 1 MPa = .145 ksi       |  |  |  |
| Temperature       | (°F -32 ) /1.8 = °C       | 1.8 x °C + 32 = °F     |  |  |  |

(rounded to 4 significant digits)



KAYDON Corporation 2860 McCracken Street Muskegon, Michigan 49441 U.S.A. Phone: +1 (231) 755-3741 Fax: +1 (231) 759-4102

15K-10-04-01 Catalog 300

**Need Service Fast?** 1-800-514-3066

Visit our website: www.kaydonbearings.com