

Technisches Taschenbuch

Technisches Taschenbuch

Dieses technische Taschenbuch wurde mit großer Sorgfalt erstellt und alle Angaben auf ihre Richtigkeit hin überprüft. Für etwaige fehlerhafte oder unvollständige Angaben kann jedoch keine Haftung übernommen werden.

Die Normblattangaben werden mit Genehmigung des Deutschen Normenausschusses wiedergegeben. Maßgebend ist die jeweils neueste Ausgabe des Normblattes (Beuth-Vertrieb GmbH, Berlin und Köln).

Herausgeber: Schaeffler KG 91072 Herzogenaurach Hausadresse:

Industriestraße 1-3 91074 Herzogenaurach

www.ina.com

 $\ensuremath{\mathbb{O}}$ Schaeffler KG \cdot 2002, Mai \cdot 7., veränderter Nachdruck

Zusammenstellung und Bearbeitung: Prof. em. Dr.-Ing. Ernst-Günter Paland, Universität Hannover

Alle Rechte vorbehalten.

Nachdruck, auch auszugsweise, ohne unsere Genehmigung nicht gestattet.

Gesamtherstellung: Stürtz GmbH, 97080 Würzburg

Printed in Germany

Vorwort

I. Technische Tabellen

Das Technische Taschenbuch liegt nunmehr mit der 6. Auflage in einer überarbeiteten Ausgabe vor. Gegenüber der 5. Auflage wurden sämtliche Normenangaben auf den neuesten Stand gebracht. Durch die Umstellung eines großen Teils der DIN-Normen auf EN- oder ISO-Normen ergaben sich insbesondere in den Abschnitten 9 und 10 wesentliche Änderungen.

Das Taschenbuch will in erster Linie dem Ingenieur und Techniker sowie den Studierenden des Maschinenbaues nicht als Lehrbuch, sondern als Nachschlagewerk dienen. Eine umfassende Darstellung bestimmter Themengebiete ist im Rahmen eines Taschenbuches nicht möglich.

Ich danke allen, die durch Anregungen, Vorschläge und Hinweise zur weiteren Ausgestaltung des Technischen Taschenbuches beigetragen haben.

Hannover, Januar 2001 Prof. em. Dr.-Ing. Paland

II. Wälzlagertechnik

INA steht weltweit für

- durchdachte Wälzlagertechnik
- modernste Produktionsstätten
- höchste Qualitätsstandards

Dieser Teil des Technischen Taschenbuches zeigt einen repräsentativen Querschnitt aus dem aktuellen INA-Produktprogramm. Darin finden sich INA-Qualitätsprodukte in den unterschiedlichsten Abmessungen für rotierende und lineare Bewegungen sowie für ganz spezielle Anwendungen. Abgerundet wird dieser Teil durch einen Auszug aus den aktuellen INA-Katalogen zu "Grundlagen der Wälzlagertechnit"

Herzogenaurach, Mai 2002 Schaeffler KG

I. Technische Tabellen

- 1 Maßeinheiten
- 2. Mathematik
- 3. Technische Statistik
- 4. Physik
- 5 Chemie
- 6. Mechanik (Dynamik)
- 7. Mechanische Schwingungen
- 8. Festigkeitsberechnung
- 9. Konstruktionswerkstoffe
- 10. Technische Zeichnungen
- 11. Toleranzen
- 12. ISO-Toleranzen und ISO-Passungen
- 13. Konstruktionselemente
- 14. Hydraulik Pneumatik
- 15. Betriebstechnik
- 16. Anhang
- 17 Stichwortverzeichnis

II. Wälzlagertechnik

- 1. Wälzlager-Bauformen-Übersicht
- 2. INA-Katalogprogramm
- 3. Grundlagen (Auszug aus INA-Katalogen)

Inhaltsverzeichnis

l.	Technische Tabellen	11
1	Maßeinheiten	11
1.1	Das SI-System	11
1.2	Nicht mehr anzuwendende Einheitensysteme	
1.3	Längen-, Flächen- und Raum-Maße	
1.4	Umrechnung der wichtigsten Einheiten des fps- in das SI-System	
1.5	Volumeneinheiten, Durchflussmenge	
	Total Total Total Total Tale Total T	
2	Mathematik	21
2.1	Mathematische Zeichen	21
2.1	Häufig gebrauchte Zahlen	
2.3	Einige pythagoreische Zahlen	
2.4	Primzahlen	
2.5	Die Binominalkoeffizienten	
2.6	Logarithmen	
2.7	Formeln der Arithmetik	
2.8	Formein der Altitilieur	
2.9	Folgen und Reihen	
2.10	Zinseszinsrechnung	
2.11	Winkelfunktionen	
2 12	Tafel der Winkelfunktionen	
2.13	Flächen-Berechnungen	
2.14	Schwerpunktlagen von ebenen Flächen	
2.15	Bogenlängen, Bogenhöhen, Sehnenlängen und Kreisabschnitte für	00
2.10	den Halbmesser r = 1	36
2.16	Geometrische Grundlagen	38
2.17	Körper-Berechnungen	
2.18	Schwerpunkte von Körpern	
2.19	Schwerpunktlagen von Linien	
2.20	Ableitungen und Differentiale	
2.21	Grundintegrale	
2.22	Zeichen der Mengenlehre	
2.23	Zahlensysteme in der Datenverarbeitung	
3	Technische Statistik	49
3.1	Begriffe und Größen der Statistik	49
3.2	Beispiel für eine statistische Auswertung	
3.3	Normal- oder Gauß-Verteilung	
3.4	Weibull-Verteilung	
3.5	Regression und Korrelation	
4	Physik	58
4.1	Grundbausteine der Materie	
4.1 4.2	Atomphysikalische und andere Größen	
⊤.∠	Atomphysikalische und andere Groben	JJ

4.3	Wichtige physikalische Konstanten	60
4.4	Elektromagnetische Strahlung	62
4.5	Unser Sonnensystem	63
4.6	Größenzahlen der Erde	63
4.7	Wissenswerte Geschwindigkeiten	63
4.8	Astronomische Einheiten	64
4.9	Temperatureinheiten-Umrechnungstabelle	65
4.10	Wichtige Temperaturpunkte	65
4.11	Wärmeausdehnung von Körpern und Gasen	66
4.12	Ähnlichkeitskennzahlen	67
5	Chemie	68
5.1	Das Periodensystem der Elemente	68
5.1 5.2	Chemische Elemente	70
5.2 5.3	Schmelztemperaturen von Salzen für Salzbäder	70 72
5.4	Bezeichnungen und Formeln technisch wichtiger chemischer Stoffe	
5.4 5.5	Stoffwerte einiger Flüssigkeiten	
5.6	Storiwerte einiger Flussigkeiten	75 76
5.6 5.7	Stoffwerte einiger fester Stoffe	77
5.8	Metallsalze im Wasser	77
5.9	Elektrolytische Spannungsreihe	78
5.10	Thermoelektrische Spannungsreihe	78
6	Mechanik (Dynamik)	79
6.1	Größen und Einheiten in der Mechanik	79
6.2		80
6.3	Die Bewegungsgleichungen	81
6.4	Zusammenstellung der wichtigsten Kräfte der Kinetik	82
6.5		84
6.6	Der Energiesatz Zusammenstellung der wichtigsten Energieformen der Kinetik	85
6.7	Massenmomente 2. Grades von homogenen Körpern	86 86
6.8		87
6.9	Der Impulssatz Der Drehimpulssatz	87
6.10	Stoßgesetze	89
	Der zentrale Kraftstoß	
6.10.1		89
6.10.2 6.11	Der Drehstoß	90 91
6.11 6.11.1	Stoßgesetze für den Stoß fester Körper	91
	Gerader, zentraler Stoß	
6.11.2 6.11.3	Schiefer, zentraler Stoß	92 92
6.11.4	Schiefer, exzentrischer Stoß	93
7	Mechanische Schwingungen	94
7.1	Begriffe, Formelzeichen und Einheiten	95
7.1 7.2	Freie, ungedämpfte Schwingungen	96
7.2 7.3	Bewegungsgleichungen für den freien, ungedämpften und gedämpften	90
1.3		101
7.4	Schwinger	101
7.4	Bewegungsgleichungen für den fremderregten, ungedämpften Schwinger	102
7.5	Vergrößerungsfunktion für die erzwungene, ungedämpfte Schwingung	103
7.6	Bewegungsgleichungen für den fremderregten, gedämpften Schwinger	104
7.7	Vergrößerungsfunktionen für die erzwungene, gedämpfte Schwingung	106

8	Festigkeitsberechnung	109
8.1	Größen und Einheiten in der Festigkeitsberechnung	110
8.2	Werkstoffkennwerte	
8.3	Zusammenstellung der wichtigsten Beanspruchungsarten	112
8.4	Knickung schlanker Stäbe	
8.5	Mechanismus der Bruchformen für den einachsigen Spannungszustand	117
8.6	Die wichtigsten Festigkeitshypothesen für den mehrachsigen	
	Spannungszustand	118
8.7	Axiale Flächenmomente 2. Grades und Widerstandsmomente	119
8.8	Flächenmomente 2. Grades und Widerstandsmomente für Kreisquerschnitte	121
8.9	Flächenmomente 2. Grades für verschiedene Bezugsachsen	122
8.10	Torsionsflächenmomente und -widerstandsmomente	123
8.11	Schubmittelpunkte von dünnwandigen Profilen	124
8.12	Ebene Auflagerarten und Zwischenelemente	125
8.13	Lagerreaktionen, Momenten- und Querkraftverläufe für einfache,	
	belastete Träger	126
8.14	Gleichung der elastischen Biegelinie für einfache, belastete Träger	
8.15	Prinzip der passiven Formänderungsarbeit	
8.16	Tafeln der Integrale ∫ M · M · dx	
8.17	Berechnungsgleichungen für wichtige HERTZsche Kontaktpaarungen	
8.17.1	Beiwerte nach HERTZ für die Berührung gekrümmter Oberflächen unter Last	
8.17.2	Hilfswerte zur Berechnung der HERTZschen Pressung in Wälzlagern	
8.17.3	Spannungszustand unter HERTZschen Kontakten	
8.18	Dynamische Beanspruchung – Gestaltfestigkeit	
8.19	Dauerfestigkeit der allgemeinen Baustähle	142
•	Konstruktionswerkstoffe	4.40
9		
9.1	Unlegierte Baustähle DIN EN 10 025 (März 1994) Auszug	
9.2	Vergütungsstähle DIN EN 10 083 (Oktober 1996) Auszug	
9.3	Einsatzstähle DIN EN 10 084 (Juni 1998), Auszug	
9.4	Wälzlagerstähle DIN EN ISO 683-17 (April 2000)	
9.5	Automatenstähle DIN EN 10 087 (Januar 1999), Auszug	
9.6	Gusseisen mit Lamellengraphit DIN EN 1561 (August 1997), Auszug	
9.7	Gusseisen mit Kugelgraphit DIN EN 1563 (August 1997), Auszug	
9.8	Stahlguss für allgemeine Verwendungszwecke DIN 1681 (Juni 1985), Auszug	
9.9	Warmfester Stahlguss DIN EN 10 213-2 (Januar 1996), Auszug	
9.10	Temperguss DIN EN 156 2 (August 1997), Auszug	
9.11	Kunststoffe	
9.11.1	Aufbau und Eigenschaften	
9.11.2	Einteilung der Kunststoffe	155
9.11.3	Festigkeitskennwerte und Formbeständigkeit thermoplastischer	
	Kunststoffe, unverstärkt	156
9.11.4	Festigkeitskennwerte und Formbeständigkeit thermoplastischer	4
0445	Kunststoffe, verstärkt	
9.11.5 9.11.6	Festigkeitskennwerte und Formbeständigkeit duroplastischer Kunststoffe Verarbeitungsverfahren und besondere Verwendungsformen der	158
9.11.0	wichtigsten Kunststoffe	160
	wichtigsten Kunststoffe	100
10	Technische Zeichnungen	161
10.1	Normzahlen und Normzahlreihen DIN 323 (August 1974)	
10.2	Blattgrößen nach DIN EN ISO 5457 (Juli 1999)	
10.3	Isometrische und dimetrische Projektion nach DIN ISO 5456 (April 1998)	
10.4	Linienarten und Liniengruppen nach DIN ISO 128-20 (Dez. 1997)	163

10.5 10.6 10.7 10.8 10.9	Maßstäbe nach DIN ISO 5455 (Dezember 1979). ISO-Normschrift nach DIN EN ISO 3098 (April 1998) Angabe der Oberflächenbeschaffenheit in Zeichnungen DIN ISO 1302 (Dez.1993). Oberflächen-Rauheitskenngrößen Erreichbare Mittenrauwerte R _a nach DIN 4766-2 (März 1981)	164
11	Toleranzen	171
11.1 11.2	Allgemeintoleranzen	171 172
12	ISO-Toleranzen und ISO-Passungen	177
12.1 12.2	Das ISO-Toleranzsystem	177
12.3	und ISO-Grundtoleranzen ISO-Toleranzen für Wellen (Auswahl)	178 182
12.4 12.5	ISO-Toleranzen für Bohrungen (Auswahl) Passsysteme "Einheitswelle" und "Einheitsbohrung"	184 186
12.6	Anwendungsbeispiele von ISO-Passtoleranzfeldern	187
12.7 12.8	Wälzlagertoleranzen und ISO-Toleranzen für Wellen und Gehäuse	188
	von den Umlaufverhältnissen	188
13	Konstruktionselemente	189
13.1 13.1.1	Schraubenverbindungen Befestigungsschrauben	189 189
13.1.2	Übersicht über genormte Schrauben	190
13.1.3	Übersicht über genormte Muttern	191
13.1.4	Metrisches ISO-Gewinde nach DIN 13, Teil 1	192
13.1.5 13.1.6	Festigkeitsklassen für Schrauben	193 194
13.1.7	Festigkeitsklassen für Muttern	194
13.1.8	Berechnung von Schraubenverbindungen	195
13.1.9	Reibungszahlen μ_{G} und μ_{K} (VDI 2230)	196
	Vorspannkraft F _V und Anziehdrehmoment M _A	197 198
13.1.12	Flächenpressungen in den Kopf- und Mutternauflageflächen	200
13.2	Wellen – Nabenverbindungen	201
13.2.1	Übersicht	201
13.2.2	Passfeder-Verbindung	202
13.2.3 13.2.4	Passfedern, Nuten, hohe Form DIN 6885 Teil 1/Teil 2	
13.2.5	Berechnung eines zylindrischen Pressverbandes (Elastische Beanspruchung)	
13.2.6	Der axial vorgespannte Kegelpressverband	208
13.3	Elastische Elemente, Federn	209
13.3.1	Federraten, Verformungen und Beanspruchung metallischer Federn	
13.3.2 13.3.3	Federraten für einige elastische Systeme	211
13.3.4	Eigenschaften von Elastomeren für Gummifedern	212
13.4	Wälzlager	
13.4.1	Wälzlager-Bauformen-Übersicht	214
13.4.2	Wälzlager-Bauformen und ihre Bezeichnungen	
13.4.3	Maßreihen nach DIN 616	
13.4.4	Bohrungskennzahlen für die Lagerbohrung	216

	Tragfähigkeit und Lebensdauer Dynamische Tragfähigkeit und Lebensdauer Statische Tragfähigkeit Lagerluft und Betriebsspiel Schmierung	217 223 224
14	Hydraulik – Pneumatik	231
14.1 14.2 14.3 14.4	Hydrogetriebe	232 233
14.5 14.6	charakteristischen Merkmale Sinnbilder und Benennung für ölhydraulische Anlagen Sinnbilder und Benennung für pneumatische Anlagen	235
15	Betriebstechnik	241
15.1	Wärmebehandlung von Stahl	
15.1.1 15.1.2	Übersicht über die wichtigsten Wärmebehandlungsverfahren	
15.1.3	Übliche Temperaturen beim Einsatzhärten von Einsatzstählen nach DIN EN 10084	044
15.1.4 15.1.5	nach Din En 10084 Wärmebehandlung von Wälzlagerstählen Umwertungstabelle für Vickershärte, Brinellhärte, Rockwellhärte	
15.2	und Zugfestigkeit Schalltechnik	
15.2.1 15.2.2	Schall, Schalldruck, Schallpegel Größen, Einheiten und Beziehungen der Schalltechnik	247
	•	
I 6 I6.1	Anhang Alphabete	
16.1 16.2	Buchstabiertafel	
16.3	Morsealphabet	
16.4	Nationalitätskennzeichen	
16.5 16.6	Römisches Zahlensystem Kalendarische Berechnungen	
17	Stichwortverzeichnis	253
I.	Wälzlagertechnik	259

Fasziniert von allem, was sich bewegt?

Kommen Sie zur Schaeffler Gruppe.

www.ina.de www.fag.de www.luk.de

Gemeinsam bewegen wir die Welt

Schaeffler KG

Bewerbermanagement (INA) Industriestraße 1–3 91074 Herzogenaurach bewerbung.ina@schaeffler.com

Schaeffler KG

Bewerbermanagement (FAG) Postfach 1260 97419 Schweinfurt bewerbung.fag@schaeffler.com

LuK GmbH & Co. oHG

Bewerbermanagement Industriestraße 3 77815 Bühl (Baden) jobs@luk.de Sie haben etwas gegen Stillstand? Möchten keine ruhige Kugel schieben? Stattdessen brennen Sie darauf, technische Entwicklungen ins Rollen zu bringen, die die Welt bewegen. Dann bewerben Sie sich bei uns. Als Praktikant, Diplomand oder Berufseinsteiger. Beweisen Sie Ihr Können in einem starken Team der Schaeffler Gruppe.

Die Schaeffler Gruppe ist ein führender Anbieter in der Wälzlagerindustrie und gefragter Partner im internationalen Automobilbau. Sie ist bekannt für Innovationskraft und internationalen Erfolg, ihre starken Marken LuK, INA und FAG für Präzision und höchste Qualität.

SCHAEFFLER GRUPPE

1 Maßeinheiten

1.1 Das SI-System

Am 2. Juli 1970 trat das Gesetz über Einheiten im Messwesen vom 2. Juli 1969 in Kraft. In diesem Gesetz sind für den geschäftlichen Verkehr die bis spätestens zum 31. 12. 1977 einzuführenden gesetzlichen Einheiten im Messwesen und insbesondere die Basisgrößen und Basiseinheiten des Internationalen Einheitensystems (SI = Système International d'unités) festoeleot.

Basisgröße	Basiseinheit		Definition		
	Bezeichnung	Kurz- zeichen			
Länge	Meter	m	Die Basiseinheit 1 Meter ist die Länge der Strecke, die Licht im Vakuum während der Zeit von 1/299 792 458 Sekunden durchläuft. 17. CGPM 1983 ¹⁾		
Masse	Kilogramm	kg	Die Basiseinheit 1 Kilogramm ist die Masse des Internationalen Kilogrammprototyps. 1. CGPM 1889 und 3. CGPM 1901		
Zeit	Sekunde	s	Die Basiseinheit 1 Sekunde ist das 9 192 631 770fache der Periodendauer der dem Übergang zwischen den beiden Hyper- feinstrukturniveaus des Grundzustandes von Atomen des Nuklids ¹³³ Cs entsprechenden Strahlung. 13. CGPM 1967		
Elektrische Stromstärke	Ampere	A	Die Basiseinheit Ampere ist die Stärke eines zeitlich unveränder- lichen Stromes, der, durch zwei im Vakuum parallel im Abstand 1 Meter vonseinander angeordnete, geradlinige, unendlich lange Leiter von vernachlässigbar kleinem kreisförmigem Querschnitt fließend, zwischen diesen Leitern je 1 Meter Leiterlänge elektro- dynamisch die Kraft 1/5 000 000 Kilogrammeter durch Sekunden- quadrat hervorrufen würde. 9. GCPM 1989.		
Thermodyn. Temperatur	Kelvin	К	Die Basiseinheit 1 Kelvin ist der 273,16te Teil der thermodynami- schen Temperatur des Tripelpunktes ²⁾ des Wassers. 13. CGPM 1967		
Stoffmenge	Mol	mol	Die Basiseinheit 1 Mol ist die Stoffmenge eines Systems, das aus ebensoviel Einzelfeilchen besteht, wie Atome in 12/1000 Kllogramm des Kohlenstörfluklids ¹² Ce enthalten sind. Bei Verwendung des Mol müssen die Einzelfeilchen des Systems spezifiziert sein und können Atome, Moleküle, Ionen, Elektronen sowie andere Teilchen oder Gruppen solcher Teilchen genau angegebener Zusammensetzung sein.		
Lichtstärke	Candela	cd	Basiseinheit der Lichtstärke Die Candela ist die Lichtstärke einer Strahlungsquelle, welche mono- chromatische Strahlung der Frequenz 540 · 10 ¹² Hertz in eine bestimmte Richtung aussendet, in der die Strahlstärke 1/683 Watt durch Steradiant beträgt. 16. CGPM – 1979 – Resolution 3		

¹⁾ CGPM: Conférence Génerale des Poids et Mesures (Generalkonferenz für Maß und Gewicht)

²⁾ Fixpunkt der internationalen Temperaturskala. Der Tripelpunkt ist der einzige Zustand, bei dem alle drei Aggregatzustände (fest, flüssig, gasförmig) miteinander im Gleichgewicht stehen (bei 1013,25 hPa). Er liegt mit 273,16 K um 0,01 K über dem Eispunkt des Wassers (273,15).

Ein "Schwarzer Strahler" ist dadurch gekennzeichnet, dass er die auf ihn fallende Licht- und W\u00e4rmestrahlung restlos verschluckt und daher, wenn er erhitzt wird, das Maximum an Licht aussendet, das ein K\u00f6rper auszustrahlen vermag.

Masse, Wägewert, Kraft, Gewichtskraft, Gewicht, Last

Da im SI-System die Masse als Basisgröße definiert ist, muss die Kraft aufgrund des NEWTONschen Gesetzes eine abgeleitete Größe sein, der man als kohärente Größe den neuen Einheitennamen "NEWTON" mit dem Kurzzeichen "N" gab.

Begriffe DIN 1305 (Jan. 1988)

1 Anwendungsbereich

Diese Norm gilt für den Bereich der klassischen Physik und ihrer Anwendung in Technik und Wirtschaft

2 Masse

Die Masse m beschreibt die Eigenschaft eines Körpers, die sich sowohl in Trägheitswirkungen gegenüber einer Änderung seines Bewegungszustandes als auch in der Anziehung auf andere Körper äußert.

3 Wägewert

Bei einer Wägung in einem Fluid (Flüssigkeit oder Gas) der Dichte $\varrho_{\rm fl}$ ist der Wägewert W durch folgende Beziehung festgelegt:

$$W = m \frac{1 - \frac{Q_{fl}}{Q}}{1 - \frac{Q_{fl}}{Q_{G}}}.$$
 (1)

Dabei ist ϱ die Dichte des Wägegutes und ϱ_{G} die Dichte der Gewichtstücke.

Anmerkung: Der Wägewert eines Wägegutes (einer Ware) ist gleich der Masse der Gewichtstücke, die die Waage im Gleichgewicht halten bzw. die gleiche Anzeige an der Waage wie das Wägegut liefern.

4 Konventioneller Wägewert

Der konventionelle Wägewert W_{std} wird aus Gleichung (1) mit den Standardbedingungen $\rho_{fl} = 1,2 \text{ kg/m}^3 \text{ und } \rho_{Gl} = 8000 \text{ kg/m}^3 \text{ errechnet.}$

Dabei ist für ϱ die Dichte des Wägegutes bei 20 °C einzusetzen.

5 Kraft

Die Kraft F ist das Produkt aus der Masse m eines Körpers und der Beschleunigung a, die er durch die Kraft F erfährt oder erfahren würde:

$$F = m a$$
 (2)

6 Gewichtskraft

Die Gewichtskraft F_G eines Körpers der Masse m ist das Produkt aus Masse m und Fallbeschleunigung σ .

$$F_G = m q. (3)$$

7 Gewicht

Das Wort Gewicht wird vorwiegend in drei verschiedenen Bedeutungen gebraucht:

- a) anstelle von Wägewert:
- b) als Kurzform für Gewichtskraft;
- c) als Kurzform für Gewichtstück

(siehe DIN 8120 Teil 2).
Wenn Missverständnisse zu befürchten sind, soll anstelle des Wortes Gewicht die jeweils zutreffende Benennung Wägewert, Gewichtskraft oder Gewichtstück verwendet werden.

8 Last

Das Wort Last wird in der Technik mit unterschiedlichen Bedeutungen verwendet (z. B. für die Leistung, die Kraft oder für einen Gegenstand).

Wenn Missverständnisse zu befürchten sind, soll das Wort Last vermieden werden.

Erläuterungen

Wir leben und wägen auf dem Boden eines Luftozeans. Bei kaum einer Wägung wird – wie es eigentlich erforderlich wäre – der Luftauftrieb korrigiert. Man begnügt sich fast immer mit dem unkorrigierten Messwert, der auch die Grundlage für Abrechnungen im Handel ist, wenn Waren nach Gewicht verkauft werden. Es ist aber erforderlich, zwischen der Masse und dem Ergebnis einer Wägung in Luft – dem Wägewert – zu unterscheiden. Bei Wägegütern geringer Dichte, wie z. B. Mineralölen, beträgt der relative Unterschied zwischen Masse und Wägewert tetwa 1 Promille. Bei Wägegütern hoher Dichte ist er kleiner. Luft hat den Wägewert Null. Körper mit gleicher Masse, aber unterschiedlicher Dichte haben verschiedene Wägewerte. Außerdem ändert sich der Wägewert eines Körpers, wenn sich die Dichte der umgebenden Luft ändert. Der Wägewert ist vom Wetter abhängig.

SI-Einheiten und daraus abgeleitete Einheiten

Größe	Formelzeichen	Gesetzliche Ei Einheitenname SI-Einheiten	nheiten ab 2.7. en Weitere	1970 Einheiten- zeichen	Seit dem 1.1.1978 nicht mehr anzuwendende Einheiten und ihre
	For		Einheiten	Umrechnung	Umrechnung
Länge	I	Meter	_	m	Mikron 1 μ = 1 μ m = 10 ⁻⁶ m
		_	Seemeile	1 sm = 1852 m	1 μ = 1 μm = 10 ° m
Fläche	Α	Quadratmeter	-	m ²	Angström 1 A = 10 ⁻¹⁰ m
		_	Ar	1 a = 100 m ²	1 A = 10 ° m
		-	Hektar	1 ha = 10^4m^2	X-Einheit
Volumen	٧	Kubikmeter	_	m ³	1 XE = 10 ⁻¹³ m
		-	Liter	1 l = 10 ⁻³ m ³	
Dehnung	ε	o ¹⁾	_	m/m	
Ebener Winkel	α	Radiant	-	1 rad = 1 m/m ²⁾	Rechter Winkel
	β	_	Grad	$1^{\circ} = \pi/180 \text{ rad}$	1 L = (π/2) rad Neugrad
	1	_	Minute	$1' = \pi/10800 \text{ rad}$	1 g = 1 gon
		_	Sekunde	$1'' = \pi/648000 \text{ rad}$	Neuminute
		_	Gon	1 gon = $\pi/200$ rad	1' = 1 cgon Neusekunde
Raumwinkel	Ω	Steradiant	_	$1 \text{ sr} = 1 \text{ m}^2/\text{m}^2$	1" = 0,1 mgon
Masse	m	Kilogramm	_	kg	Gamma
		_	Gramm	$1 g = 10^{-3} kg$	1 γ = 1 μg
		-	Tonne	1 t = 10 ³ kg	Doppelzentner 1 dz = 100 kg
Masse von Edelsteinen		_	Metr. Karat	1 Kt = 0,2.10 ⁻³ kg	
Masse/Länge	m′	0	_	kg/m	
Masse von textilen Fasern	-	-	Tex	$1 \text{ tex} = 10^{-6} \text{ kg/m}$	
Masse/Fläche	m"	0	_	kg/m ²	Der Zahlenwert der
Dichte	6	0	_	kg/m ³	Wichte in kp/m ³ ist gleich dem Zahlen-
Spez. Volumen	v	0	_	m ³ /kg	wert der Dichte
Zeit	t	Sekunde	_	s	
		-	Minute	1 min = 60 s	
		-	Stunde	1 h = 3600 s	
		-	Tag	1 d = 86400 s	
		-	Jahr	1 a = 365 d	
Drehzahl	n	0	-	1/s	U/min weiterhin zu- lässig, jedoch besser
		_	Umdr./Minute	1 U/min = 1 min ⁻¹	durch min ⁻¹ ersetzen

SI-Einheiten und daraus abgeleitete Einheiten (Fortsetzung)

Größe	Formelzeichen	Gesetzliche Einheiten ab 2.7.1		Einheiten-	Seit dem 1.1.1978 nicht mehr anzuwendende
	Formela	SI-Einheiten Weitere Einheiten		zeichen Umrechnung	Einheiten und ihre Umrechnung
Frequenz	f	Hertz	-	1 Hz = 1/s	
Kreisfrequenz	ω	-	1/s		
Geschwindigkeit	v	0	_	m/s	
		_	Kilom./Std.	1 km/h = (1/3,6) m/s	
			Knoten	1 kn = 1 sm/h	
Beschleunigung	а	0	_	m/s ²	
Winkelgeschw.	ω	0	_	rad/s	
Winkelbeschl.	ώ	0	-	rad/s ²	
Volumenstrom	Ÿ	0	_	m³/s	
Massenstrom	ṁ	0	_	kg/s	
Kraft	F	Newton	_	1 N = 1 kg m/s ²	Kilopond
Impuls	р	0	_	kg m/s	1 kp = 9,80665 N Techn. Atmosphäre
Drehimpuls	L	0	_	kg m ² /s	1 at = 1 kp/cm ²
Druck	р	Pascal	_	1 Pa = 1 N/m ²	Physik. Atmosphäre 1 atm = 1,01325 bar
Spannung	σ	0	Newton/Qua- dratmillimeter	1 N/mm ² = 1 MPa	Wassersäule 1 mm WS = 1 kp/m ²
		0	Bar	1 bar = 10 ⁵ Pa	Quecksilbersäule 1 mm Hg = 1,3332 hPa
Arbeit, Energie	W E	Joule	_	1 J = 1 N m	Kilopondmeter 1 kpm = 9,81 J
Wärmemenge	Q	Wattsekunde	_	1 Ws = 1 kg m^2/s^2	PS-Stunde 1 PSh = 0,7355 kWh
		-	Kilowatt- stunde	1 kW h = 3,6 MJ	Kilocalorie 1 kcal = 4,1868 kJ
Moment einer Kraft	М	Newtonmeter	_	N m	Kilopondmeter 1 kpm = 9,81 Nm
Leistung, Energiestrom,	P	Watt	_	1 W = 1 J/s = 1 N m/s	Pferdestärke 1 PS = 0,7355 kW
Wärmestrom	ġ		-	1.5 1.1 1.2	1 kcal/s = 4,1868 kW
Dynamische Viskosität	η	Pascal- sekunde		1 Pa s = 1 N s/m ²	Poise 1 P = 0,1 Pa s Zentipoise 1 cP = 1 mPa s
Kinematische Viskosität	ν	0	-	m²/s	Stokes 1 St = 10 ⁻⁴ m ² /s Zentistokes 1 cSt = 1 mm ² /s

SI-Einheiten und daraus abgeleitete Einheiten (Fortsetzung)

Größe	Formelzeichen			2.7.1970 Einheiten- zeichen	Seit dem 1.1.1978 nicht mehr anzuwendende Einheiten und ihre	
	Fon	Or Emmonor	Einheiten	Umrechnung	Umrechnung	
Elektr. Stromstärke	I	Ampere	-	Α		
Elektr. Spannung	U	Volt	_	1 V = 1 W/A		
Elektr. Widerstand	R	Ohm	-	1 Ω = 1 V/A		
Elektr. Leitwert	G	Siemens	_	1 S = 1/Ω		
Scheinleistung	S	-	Voltampere	1 W = 1 VA		
Blindleistung	Q	-	var	1 var = 1 W		
Elektrizitätsmenge,	Q	Coulomb	-	1 C = 1 A s		
Elektr. Ladung		-	Ampere- stunde	1 A h = 3600 C		
Elektr. Kapazität	С	Farad	_	1 F = 1 C/V		
Elektr. Fluss	ψ	-	-	С		
Elektr. Flussdichte	D	-	-	C/m ²		
Elektr. Feldstärke	Е	-	-	V/m		
Magn. Fluss		Weber	-	1 Wb = 1 V s	Maxwell 1 M = 10 ⁻⁸ Wb	
Magn. Flussdichte		Tesla	-	1 T = 1 Wb/m ²	Gauß 1 G = 10 ⁻⁴ T	
Induktivität	L	Henry	-	1 H = 1 Wb/A		
Magn. Feldstärke		_	_	A/m	Oerstedt 1 Oe = 10 ³ /(4π)A/m = 79,58 A/m	
Temperatur	Т	Kelvin		K		
Celsius-Temperatur	t	-	Grad Celsius	1 °C = 1 K ³⁾		
Temperaturleitfähigkeit	а	-	-	m²/s		
Spez. Wärmekapazität	С	-	-	J/(kg K)	1 kcal/(kg grd) = 4,187 kJ/(kg K)	
Entropie	S	-	-	J/kg		
Spez. Entropie		-	-	J/(kg K)		
Enthalpie H		Joule	-	J		
Wärmeleitfähigkeit		-	-	W/(m K)	1 kcal/(m h grad) = 1,163 W/(m K)	
Wärmeübergangszahl	α	-	-	W/(m ² K)		
Wärmedurchgangszahl	k	-	-	W/(m ² K)		

SI-Einheiten und daraus abgeleitete Einheiten (Fortsetzung)

Größe	Formelzeichen	Gesetzliche Einheiten ab 2.7.1970 Einheitennamen Einheiten- zeichen			Seit dem 1.1.1978 nicht mehr anzuwendende
	Form	SI-Einheiten	Weitere Einheiten	Umrechnung	Einheiten und ihre Umrechnung
Stoffmenge	n	Mol	_	mol	
Atomare Masseneinheit	u	_	-	1,6606.10 ⁻²⁷ kg	
Energie	W	Elektronvolt	_	1 eV = 1,6022.10 ⁻¹⁹ J	
Aktivität einer radioaktiven Substanz	Α	Becquerel	-	1 Bq = 1 s ⁻¹	Curie 1 Ci = 3,7.10 ¹⁰ s ⁻¹
Energiedosis	D	Gray	_	1 Gy = 1 J/kg	Rem 1 rem = 10 ⁻² J/kg
Energiedosisrate	Ď	-	-	W/kg	
Ionendosis	J	-	_	C/kg	Röntgen 1 R = 258.10 ⁻⁶ C/kg
Ionendosisrate	j	-	_	A/kg	
Lichtstärke	I	Candela	-	cd	
Leuchtdichte	L	_	_	cd/m ²	Stilb 1 sb = 10^4 cd/m ² Apostilb 1 asb = $1/\pi$ cd/m ²
Lichtstrom	Φ	Lumen	_	1 lm = 1 cd sr	
Lichtmenge	Q	-	-	lm s	
Beleuchtungs- stärke	Е	Lux	_	1 lx = 1 lm/m ²	
Brechwert von Linsen	D	_	Dioptrie	1 dpt = 1/m	

- SI-Einheiten ohne besonderen Einheitennamen. Die Einheiten werden aus den Einheiten der Basisgrößen gebildet
- 2) Die Einheit rad kann beim Rechnen durch "1" ersetzt werden.
- 3) Celsius-Temperatur t wird die besondere Differenz einer beliebigen thermodynamischen Temperatur T gegenüber der Temperatur T_0 = 273,15 K genannt. Es ist also t = T T_0 = T 273,15 K. Der Grad Celsius ist der besondere Name für das Kelvin bei der Angabe von Celsius-Temperaturen.

Temperaturdifferenzen sind bei zusammengesetzten Einheiten in K anzugeben,

z. B. kJ/(m s K).

Schreibweise bei Toleranzangaben für Celsius-Temperaturen,

z. B. $t = (50 \pm 2)$ °C oder t = 50 °C ± 2 °C oder t = 50 °C ± 2 K.

Weitere aus den Basisgrößen abgeleitete Größen und deren Einheiten sind in den jeweiligen Abschnitten angegeben.

International festgelegte Vorsätze

Dezimale Teile oder Vielfache der SI-Einheiten werden durch Vorsätze vor den Namen der Einheit bzw. Vorsatzzeichen vor den Einheitenzeichen bezeichnet. Das Vorsatzzeichen wird ohne Zwischenraum vor das Einheitenzeichen gesetzt und bildet mit diesem eine eigene Maßeinheit, z.B. Millimeter (mm). Zusammengesetzte Vorsätze, z.B. Millikilogramm (mkg) dürfen nicht verwendet werden.

Bei den Winkeleinheiten Grad, Minute, Sekunde, den Zeiteinheiten Minute, Stunde, Jahr und Tag und der Temperatureinheit Grad Celsius dürfen keine Vorsätze verwendet werden.

Faktor, mit dem die Einheit multipliziert wird		Einheit multipliziert wird		Vorsatz	Vorsatz- zeichen		nit dem die nultipliziert wird	Vorsatz	Vorsatz- zeichen
10 ⁻¹⁸	Trillionstel	Atto	а	10 ¹	Zehn	Deka	da		
10^{-15}	Billiardstel	Femto	f	10 ²	Hundert	Hekto	h		
10 ⁻¹²	Billionstel	Piko	р	10 ³	Tausend, Tsd.	Kilo	k		
10 ⁻⁹	Milliardstel	Nano	n	10 ⁶	Million, Mio.	Mega	M		
10^{-6}	Millionstel	Mikro	μ	10 ⁹	Milliarde, Mrd. 1)	Giga	G		
10 ⁻³	Tausendstel	Milli	m	10 ¹²	Billion, Bio.1)	Tera	T		
10 ⁻²	Hundertstel	Zenti	С	10 ¹⁵	Billiarde	Peta	P		
10 ⁻¹	Zehntel	Dezi	d	10 ¹⁸	Trillion	Exa	E		

¹⁾ In den USA: $10^9 = 1$ Billion, $10^{12} = 1$ Trillion

1.2 Nicht mehr anzuwendende Einheitensysteme

Das Physikalische Maßsystem

Das Physikalische Maßsystem verwendete wie das SI die Basisgrößen Länge, Masse und Zeit, benützte aber dafür die Basiseinheiten:

Basisgröße	Basiseinheit			
	Name	Zeichen		
Länge	Zentimeter	cm		
Masse	Gramm	g		
Zeit	Sekunde	s		

Das Technische Maßsystem

Das Technische Maßsystem verwendete folgende Basisgrößen und Basiseinheiten:

Basisgröße	Basiseinheit	
	Name	Zeichen
Länge	Meter	m
Kraft	Kilopond	kp
Zeit	Sekunde	s

Im Technischen Maßsystem war die Kraft als Basisgröße mit dem Einheitennamen "Kilopond" (kp) festgelegt worden. Alle Kräfte wurden mit der Anziehungskraft der Erde – der Gewichtskraft – verglichen. Die Fallbeschleunigung und damit die Gewichtskraft sind jedoch – im Gegensatz zur Masse – ortsabhängig. Es wurde deshalb folgende Definition getroffen:

1 Kilopond ist die Kraft, mit der die Masse von 1 Kilogramm am Ort der Normfallbeschleunigung $(g_n = 9,80665 \text{ m/s}^2)$ auf ihre Unterlage drückt

1 kp = 1 kg · 9,80665 m/s² = 9,80665
$$\frac{\text{kg m}}{\text{s}^2}$$

Der Zusammenhang zwischen dem Internationalen Maßsystem und dem Technischen Maßsystem ist dadurch gegeben, dass im SI-System für die Kraft die abgeleitete, kohärente Größe mit dem Einheitennamen "Newton"

$$1N = \frac{kg m}{s^2}$$

festgelegt wurde. Damit ist

$$1 \text{ kp} = 9.80665 \text{ N}$$

Für technische Umrechnungen von einem System in das andere reicht meistens aus:

$$1 \text{ kp} = 9.81 \text{ N}.$$

1.3 Längen-, Flächen- und Raum-Maße

Umwandlung deutscher und englischer Maße

The state of the s	
Längenmaße	
1 mm = 0,03937014 inches (ZoII)	1 inch = 25,399956 mm
1 cm = 0,39370147 inches	1 foot = 12 inch = 304,799472 mm
1 m = 3,280851 feet (Fuß)	= 0,304799 m
1 m = 1,093616 yards	1 yard = 3 feet
1 m = 0,546808 fathoms	= 36 inch = 0,914398 m
1 km = 0,621372 statute miles	1 fathom = 2 yards
1 km = 0,539614 nautical miles	= 6 feet
1 km = 0,539037 admirality miles	= 72 inch = 1,828797 m
1 deutsche Landmeile = 7,5 km	1 stat. mile = 880 fathoms
1 deutsche Seemeile = 1,852 km	= 1760 yards
1 geografische Meile = 7,42043854 km	= 5280 feet
(15 Meilen = 1 Äquatorgrad)	= 1 engl. Meile = 1,609341 km
1 Äquatorgrad = 111,3066 km 1 Meridiangrad = 111,1206 km	1 gewöhnliche engl. Meile
1 Meridiangrad = 111,1206 km	= 5000 feet = 1,523995 km
	1 naut.mile = 6080 feet = 1,853178 km
	1 adm. mile = 6086,5 feet = 1,85516 km
	= 1/4 geografische Meile
	= 1/60 des Äquatorgrades
Flächenmaße	
$1 \text{ mm}^2 = 0.00155001 \text{ square in. } (Zoll^2)$	1 sq. inch = $6,451578 \text{ cm}^2$
$1 \text{ cm}^2 = 0,15500635 \text{ square in. } (Zoll^2)$	1 sq. foot = 144 sq. inch = 929,0272 cm ²
1 m ² = 10,76398328 square feet (Fuß ²)	
1 m ² = 1,19599596 square yards	1 sq. yard = 9 sq. feet = 8361,24480 cm ²
1 a = 100 m ² = 0,024711 acres	1 acres = 160 sq. poles
1 ha = 100 a = 2,471063 acres	= 4840 sq. yards
$1 \text{ km}^2 = 100 \text{ ha}$	$= 40,4684 a = 4046,8425 m^2$
 0,386100 square miles 	1 sq. mile = 640 acres = 2,59 km ²
1 geografische Quadratmeile	1 sq. poles = $25,298676 \text{ m}^2$
= 55,06291 km ²	1 circular inch
	$= \pi/4 \text{ sq. inch} = 5,067057 \text{ cm}^2$
Raummaße	
$1 \text{ cm}^3 = 0.061024 \text{ cubic inch (Zoll}^3)$	1 cub. inch = $16,386979 \text{ cm}^3$
$1 \text{ dm}^3 = 0.035315 \text{ cubic feet (Fuß}^3)$	1 cub. foot = 1728 cub. inch = 28,316700 dm ³
= 61,024061 cubic inch	1 cub. yard = 27 cub. feet = 0,764551 m ³
1 m ³ = 1,307957 cubic yards	1 reg. ton = 100 cub. feet = 2,831670 m ³
= 35,314850 feet ³	1 imperial gallon
1 m ³ = 0,353148 register tons	= 277,26 cubic inch
1 I = 0,220097 imperial gallons	= 4,543454 I
1 I = 0,027512 bushels	1 bushel = 8 gallons = 36,347632 l
1 I = 0,003439 imperial quarters	1 imperial quarter
1 hl = 100 l	= 8 bushel = 64 gallons
= 0,343901 imperial quarters	= 290,781056 I = 2,907811 hl

1.4 Umrechnung der wichtigsten Einheiten des fps- in das SI-System

	fps		SI (MKS)	
Länge	1 ft	= 1/3 yd = 12 in	1 ft	= 0,3048 m
Fläche	1 ft ²	$= 144 in^2$	1 ft ²	$= 0,092903 \text{ m}^2$
Volumen	1 ft ³ 1 gal (US)	= 1728 in ³ = 6,2282 gal (UK) = 0,83268 gal (UK)	1 ft ³	= 0,0283169 m ²
Geschwindigkeit	1 ft/s 1 knot	= 1,15767 mile/h = 1,6877 ft/s	1 ft/s	= 0,3048 m/s
Beschleunigung	1 ft/s ²		1 ft/s ²	$= 0.3048 \text{ m/s}^2$
Masse	1 lb 1 slug	= cwt/112 = 32,174 lb	1 lb 1 slug	= 0,453592 kg = 14,5939 kg
Kraft	1 lbf 1 pdl	= 0,031081 lbf	1 lbf 1 pdl	= 4,44822 N = 0,138255 N
Arbeit	1 ft lb 1 btu	$= 0,323832 \text{ cal}_{\text{IT}}$ = 252 cal _{IT} = 778,21 ft lb	1 ft lb 1 btu	= 1,35582 J = 1,05506 kJ
Druck	1 lb/ft ² 1 lb/in ² 1 atm	= 6,9444 · 10 ⁻³ lb/in ² = 0,068046 atm = 29,92 in Hg = 33,90 ft water	1 lb/ft ² 1 lb/in ² 1 atem	= 47,88 N/m ² = 6894,76 N/m ² = 1,01325 bar
Dichte	1lb/ft ³ 1lb/gal	= 5,78704 · 10 ⁻⁴ lb/in ³ = 6,2282 lb/ft ³	1 lb/ft ³ 1 lb/gal	= 16,0185 kg/m ³ = 99,7633 kg/m ³
Temperatur	32 deg F 212 deg F		1 deg F	= 0,5556 °C
Leistung	1 ft lb/s	= $1.8148 \cdot 10^{-3} \text{ hp}$ = $1.28182 \cdot 10^{-3} \text{ btu/s}$	1 ft lb/s	= 1,35334 W
spezifische Wärmekapazität	1 btu/(lb de	eg F)	1 btu/ (lb deg F)	= 4,1868 kJ/(kg K)
Wärmeleitzahl	1 btu/(ft h	deg F)	1 btu/ (ft h deg F)	= 1,7306 W/(m K)
Wärmeübergangs- (durchgangs) koeffizient	1 btu/(ft ² h	deg F)	1 btu/ (ft ² h deg F)	, , ,
Viskosität kinematisch dynamisch	1 ft²/s 1 lb/(ft s)		1 ft ² /s 1 lb/(ft s)	= 0,092903 m ² /s = 1,48816 kg /(m s)

Quelle: DUBBEL, 14. Auflage

1.5 Volumeneinheiten, Durchflussmenge

				Um					
	in ³	l ft ³	l vd ³	Um pt	rechnung liq pt	von gal	gal	barrel	l ft ³ min
		II.	, .	(UK)	(US)	(UK)	(US)	petrol.	cfm
	in cm ³	in I	in m ³	in I	in I	in I	in I	in I	in m ³ /h
1,0	16,4	28,3	0,765	0,568	0,473	4,55	3,79	159	1,70
1,1	18,0	31,1	0,841	0,625	0,520	5,00	4,16	175	1,87
1,2	19,7	34,0	0,917	0,682	0,568	5,46	4,54	191	2,04
1,3	21,3	36,8	0,994	0,739	0,615	5,91	4,92	207	2,21
1,4	22,9	39,6	1,07	0,796	0,662	6,36	5,30	223	2,38
1,5	24,6	42,5	1,15	0,852	0,710	6,82	5,68	238	2,55
1,6	26,2	45,3	1,22	0,909	0,757	7,27	6,06	254	2,72
1,7	27,9	48,1	1,30	0,966	0,804	7,73	6,44	270	2,89
1,8	29,5	51,0	1,38	1,02	0,852	8,18	6,81	286	3,06
1,9	31,1	53,8	1,45	1,08	0,899	8,64	7,19	302	3,23
2,0	32,8	56,6	1,53	1,14	0,946	9,09	7,57	318	3,40
2,1	34,4	59,5	1,61	1,19	0,994	9,55	7,95	334	3,57
2,2	36,1	62,3	1,68	1,25	1,04	10,0	8,33	350	3,74
2,3	37,7	65,1	1,76	1,31	1,09	10,5	8,71	366	3,91
2,4	39,3	68,0	1,83	1,36	1,14	10,9	9,08	382	4,08
2,5	41,0	70,8	1,91	1,42	1,18	11,4	9,46	397	4,25
2,6	42,6	73,6	1,99	1,48	1,23	11,8	9,84	413	4,42
2,7	44,2	76,5	2,06	1,53	1,28	12,3	10,2	429	4,59
2,8	45,9	79,3	2,14	1,59	1,32	12,7	10,6	445	4,76
2,9	47,5	82,1	2,22	1,65	1,37	13,2	11,0	461	4,93
3,0	49,2	85,0	2,29	1,70	1,42	13,6	11,4	477	5,10
3,2	52,4	90,6	2,45	1,82	1,51	14,5	12,1	509	5,44
3,4	55,7	96,3	2,60	1,93	1,61	15,5	12,9	541	5,78
3,6	59,0	102	2,75	2,05	1,70	16,4	13,6	572	6,12
3,8	62,3	108	2,91	2,16	1,80	17,3	14,4	604	6,46
4,0	65,5	113	3,06	2,27	1,89	18,2	15,1	636	6,80
4,2	68,8	119	3,21	2,39	1,99	19,1	15,9	668	7,14
4,4	72,1	125	3,36	2,50	2,08	20,0	16,7	700	7,48
4,6	75,4	130	3,52	2,61	2,18	20,9	17,4	731	7,82
4,8	78,7	136	3,67	2,73	2,27	21,8	18,2	763	8,16
5,0	81,9	142	3,82	2,84	2,37	22,7	18,9	795	8,50
5,2	85,2	147	3,98	2,95	2,46	23,6	19,7	827	8,83
5,4	88,5	153	4,13	3,07	2,56	24,5	20,4	859	9,17
5,6	91,8	159	4,28	3,18	2,65	25,5	21,2	890	9,51
5,8	95,0	164	4,43	3,30	2,74	26,4	22,0	922	9,85
6,0	98,3	170	4,59	3,41	2,84	27,3	22,7	954	10,2
6,2	102	176	4,74	3,52	2,93	28,2	23,5	986	10,5
6,4	105	181	4,89	3,64	3,03	29,1	24,2	1018	10,9
6,6	108	187	5,05	3,75	3,12	30,0	25,0	1049	11,2
6,8	111	193	5,20	3,86	3,22	30,9	25,7	1081	11,6
7,0	115	198	5,35	3,98	3,31	31,8	26,5	1113	11,9
7,5	123	212	5,73	4,26	3,55	34,1	28,4	1192	12,7
8,0	131	227	6,12	4,55	3,79	36,4	30,3	1272	13,6
8,5	139	241	6,50	4,83	4,02	38,6	32,2	1351	14,4
9,0	147	255	6,88	5,11	4,26	40,9	34,1	1431	15,3
9,5	156	269	7,26	5,40	4,50	43,2	36,0	1510	16,1

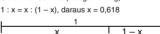
Die Tabelle gilt auch für dezimale Vielfache und Teile Beispiele: 1 in 3 = 16,4 cm 3 ; 3 gal (UK) = 13,6 l; 30 gal (UK) = 136 l

Quelle: Bosch, Kraftfahrtechnisches Taschenbuch

2 Mathematik

2.1 Mathematische Zeichen

+	plus	$\sqrt{}$	Wurzel aus (n/ n-te Wurzel aus)
_	minus	n!	n Fakultät (z. B. 3! = 1 · 2 · 3 = 6)
· oder ×	mal	x	Betrag von x
- oder /	geteilt durch	\rightarrow	nähert sich, strebt nach
oder:	ŭ	00	unendlich
=	gleich	i oder j	imaginäre Einheit, i² = −1
≠	nicht gleich	Ι,	rechtwinklig zu
<	kleiner als	II	parallel zu
≤	kleiner oder gleich	<	Winkel
>	größer als	Δ	Dreieck
≥	größer oder gleich	lim	limes (Grenzwert)
≈	ungefähr gleich	Δ	Delta (Differenz zweier Werte)
≪	sehr klein gegen	d	vollständiges Differential
≫	sehr groß gegen	δ	partielles Differential
△	entspricht	ſ	Integral
	und so weiter, bis	ĺog	Logarithmus
~	proportional	In	Logarithmus zur Basis e
Σ	Summe		$e = 1 + 1/1! + 1/2! + 1/3! + \dots$
П	Produkt	lg	Logarithmus zur Basis 10


2.2 Häufig gebrauchte Zahlen

е	= 2,718282	In 10	= 2,302585	π_	= 3,14159
e ²	= 7,389056	1/ln 10	= 0,434294	√π	= 1,77245
1/e	= 0,367879	$\sqrt{2}$	= 1,41421	1/π	= 0,31831
lg e	= 0,434294	1/√2	= 0,70711	π^2	= 9,86960
√e 1/lq e	= 1,648721	√3	= 1,73205	180/π	= 57,29578
1/lg e	= 2,302585	g _n	$= 9,80665 \text{ m/s}^2$	$\pi/180$	= 0,017453

Umrechnung von Logarithmen

 $IgN = 0,434294 \cdot In N,$ $InN = 2.302585 \cdot IgN$

Goldener Schnitt (stetige Teilung)

2.3 Einige pythagoreische Zahlen

Pythagoreische Zahlen sind ganze Zahlen x, y, z, zwischen denen die Gleichung $x^2+y^2=z^2$ gilt. Setzt man x=2 p q, $y=p^2-q^2$, $z=p^2+q^2$, worin p, q beliebige ganze Zahlen sind, so erhält man pythagoreische Zahlen.

р	q	х	у	Z	р	q	х	У	Z
2	1	4	3	5	4	2	16	12	20
3	1	6	8	10	5	2	20	21	29
4	1	8	15	17	4	3	24	7	25
5	1	10	24	26	5	3	30	16	34
3	2	12	5	13	5	4	40	9	41

Die aus den Seiten x, y, z in beliebiger Längeneinheit gebildeten Dreiecke sind rechtwinklig.

2.4 Primzahlen und die nicht durch 2, 3 oder 5 teilbaren zusammengesetzten Zahlen mit ihren kleinsten Faktoren, unter 1000

		400		000	-	007		407		-00			40	700		044		040	
1 7		103 107		203 209	7	307 311		407 409	11	509 511	7	611 613	13	709 713	23	811 817	19	913 917	11 7
11		109		211		313		413	7	517	11	617		719	23	821	13	919	· '
13		113		217	7	317		419		521		619		721	7	823		923	13
17		119	7	221	13	319	11	421		523		623	7	727		827		929	
									_										_
19 23		121 127	11	223 227		323 329	17 7	427 431	7	527 529	17 23	629 631	17	731 733	17	829 833	7	931 937	7
29		131		229		331		433		533	13	637	7	737	11	839		941	
31		133	7	233		337		437	19	539	7	641	,	739		841	29	943	23
37		137		239		341	11	439		541		643		743		847	7	947	
		400		044		0.40	_	440		- 4-		0.47		740	_	054		0.40	40
41 43		139 143	11	241	13	343 347	7	443 449		547 551	19	647 649	11	749 751	7	851 853	23	949 953	13
43		143	11	251	13	349		449	11	553	7	653	- 11	757		857		959	7
49	7	151		253	11	353		457		557	,	659		761		859		961	31
53	•	157		257		359		461		559	13	661		763	7	863		967	
		404	_	050	7	004	40	400				007		707	40	000		074	
59 61		161 163	7	259 263	/	361 367	19	463 467		563 569		667 671	23	767 769	13	869 871	11 13	971 973	7
67		167		269		371	7	469	7	571		673	- 11	773		877	13	977	_ ′
71		169	13	271		373	,	473	11	577		677		779	19	881		979	11
73		173		277		377	13	479		581	7	679	7	781	11	883		983	
	_																		
77 79	7	179 181		281 283		379 383		481 487	13	583 587	11	683 689	13	787 791	7	887 889	7	989 991	23
83		187	11	283	7	389		487		589	19	691	13	791	13	893	19	997	
89		191		289	17	391	17	493	17	593	13	697	17	797	13	899	29	331	
91	7	193		293		397		497	7	599		701		799	17	901	17		
															١				
97		197		299	13	401	10	499		601		703	19	803	11	907			
101		199		301	7	403	13	503		607		707	7	809		911			

2.5 Die Binominalkoeffizienten

 $\binom{n}{1}$ bis $\binom{n}{15}$

n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	(n) 5	(n)	(n)	(n)	(n)	$\binom{n}{10}$	$\binom{n}{11}$	$\binom{n}{12}$	$\binom{n}{13}$	$\binom{n}{14}$	(n 15)	
1	1	1															
2	1	2	1														
3	1	3	3	1													
4	1	4	6	4	1												
5	1	5	10	10	5	1											
6	1	6	15	20	15	6	1										
7	1	7	21	35	35	21	7	1									
8	1	8	28	56	70	56	28	8	1								
9	1	9	36	84	126	126	84	36	9	1							
10	1	10	45	120	210	252	210	120	45	10	1						
11	1	11	55	165	330	462	462	330	165	55	11	1					
12	1	12	66	220	495	792	924	792	495	220	66	12	1				
13	1	13	78	286	715	1287	1716	1716	1287	715	286	78	13	1			
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001	364	91	14	1		
15	1	15	105	455	1365	3003	5005	6435	6435	5005	3003	1365	455	105	15	1	

2.6 Logarithmen

Allgemeiner Logarithmus:

blog a = c b Basis, a Numerus, c Logarithmus.

blog a = c bedeutet b^c = a. (Es soll a > 0, b > 1 sein.)

 $b\log 0 = -\infty$ $b\log 1 = 0$ $b\log b = 1$ $b\log \infty = \infty$

 $^{b}log (a c) = ^{b}log a + ^{b}log c$

 $^{b}\log \frac{a}{c} = ^{b}\log a - ^{b}\log c$

blog (an) = n blog a

 $b \log \sqrt[n]{a} = \frac{1}{n} b \log a$

Natürlicher Logarithmus:

Die Logarithmen für die Grundzahl e = 2,718281828459... heißen natürliche Logarithmen. Man schreibt In a statt $^{\rm e}$ log a.

M_b = ^blog e = 1 : In b heißt Modul des Systems mit Basis b.

blog a = Mb In a.

Briggsscher Logarithmus:

Die Logarithmen für die Grundzahl 10 heißen Briggssche Logarithmen.

Man schreibt Ig a statt 10 log a.

Es ist $\lg (10^n) = n$ $\lg (10^{-n}) = -n$ $\lg (a \cdot 10^n) = \lg a + n$

 $\label{eq:final_energy} Ig\;(a:10^n) = Ig\;a - n \qquad \qquad \text{Ferner In } (e^{\pm n}) = \pm\,n$

 $\ln (a \cdot 10^n) = \ln a + \ln (10^n)$ $\ln (a : 10^n) = \ln a - \ln (10^n)$.

Die (positiven oder negativen) ganzen Einheiten eines gewöhnlichen Logarithmus nennt man die Kennziffer und den echten Dezimalbruch die Mantisse des Logarithmus. Für 10 > a >1 hat Ig a die Kennziffer 0.

 $M_{10} = 0,4342944819 = lg e = 1 : ln 10 = 1 : 2,3025850930$

 $\lg x = \lg e \ln x = 0,4342944819 \ln x$

Logarithmengesetze:

$$lg (u \cdot v) = lg u + lg v lg \frac{u}{v} = lg u - lg v$$

$$\lg \frac{v}{u} = -\lg \frac{u}{v} \qquad \qquad \lg u^n = n \cdot \lg u \qquad \qquad \lg \sqrt[n]{u} = \frac{1}{n} \cdot \lg u$$

27 Formeln der Arithmetik

Vorzeichenregeln

$$a + (-b) = a - b$$

$$a - (-b) = a + b$$

$$a \cdot (-b) = -ab$$

$$(-a) \cdot (-b) = ab$$

$$(-a) \cdot b = -ab$$

$$(-a) : b = -\frac{a}{b}$$

$$a: (-b) = -\frac{a}{b}$$

$$(-a): (-b) = \frac{a}{b}$$

Kommutatives Gesetz

$$a + b = b + a$$

$$a \cdot b = b \cdot a$$

Assoziatives Gesetz

$$(a + b) + c = a + (b + c)$$

$$(a + b) + c = a + (b + c)$$
 $(ab) \cdot c = a \cdot (bc) = a \cdot b \cdot c$

Produkte algebraischer Summen, Binome

$$(a + b) \cdot (c + d) = ac + ad + bc + bd$$

$$(a + b)^2$$
 = $a^2 + 2 ab + b^2$

$$(a - b)^2 = a^2 - 2ab + b^2$$

$$(a + b) \cdot (a - b) = a^2 - b^2$$

$$(a \pm b)^3$$
 = $a^3 \pm 3 a^2 b + 3 ab^2 \pm b^3$

$$(a \pm b)^4$$
 = $a^4 \pm 4 a^3 b + 6 a^2 b^2 \pm 4 ab^3 + b^4$

$$(a + b + c)^2$$
 = $a^2 + b^2 + c^2 + 2 ab + 2 ac + 2 bc$

Mittelwerte

Arithmetisches Mittel:
$$\frac{a+b}{2}$$
; $\frac{a+b+c}{3}$ usw.

Geometrisches Mittel:
$$\sqrt{a \cdot b}$$
; $\sqrt[3]{a \cdot b \cdot c}$ usw.

Harmonisches Mittel:
$$\frac{2 ab}{a + b}$$

Potenzen

$$a^n \cdot a^m = a^{n+m}$$
 $\frac{a^m}{a^n} = a^{m-n}$ $a^n \cdot b^n = (ab)^n$

$$\frac{\mathbf{a}^n}{\mathbf{b}^n} = \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^n$$

$$(a^m)^n = a^{m \cdot n}$$
 $a^{-n} = \frac{1}{a^{-n}}$

$$a^{-n} = \frac{1}{a}$$

$$a^0 = 1$$
 $(a \neq 0)$

Wurzeln
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 $(\sqrt[n]{a})^n = a$ $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m \qquad \sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$$

$$\sqrt[m]{n}\sqrt{a} = \sqrt[m-1]{a}$$
 $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

2.8 Formeln der Algebra

Algebraische Gleichung 2. Grades

$$ax^2 + bx + c = 0$$

Lösung der quadratischen Gleichung

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x_1, x_2$$

Normalform:

$$x^2 + px + q = 0$$

Lösungsformel:

$$x_{1, 2} = -\frac{p}{2} \pm \sqrt{(p/2)^2 - q}$$

Diskriminante $\Delta = (p/2)^2 - q$

Betrag von z ist: $r = \sqrt{x^2 + y^2}$

 $\Delta > 0$ ergibt 2 verschiedene reelle Lösungen

 Δ = 0 ergibt 2 gleiche reelle Lösungen

Δ < 0 ergibt 2 konjugiert komplexe Lösungen

Komplexe Zahlen

Eine komplexe Zahl besteht aus einem reellen und einem imaginären Teil:

$$z = x + iy$$

$$i = \sqrt{-1}$$
; $i^2 = -1$; $i^3 = -i$; $i^4 = 1$; $1/i = -i$; $(a + b i) (a - b i) = a^2 + b^2$

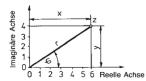
Konjugierte von z ist: $z^* = x - iy$;

Argument von z ist: $\tan \varphi = y/x$ bzw. $\varphi = \arctan y/x$;

Normalform von z ist: $z = x + iy = r (\cos \varphi + i \sin \varphi)$

Exponentialform der komplexen Zahl:

$$e^{i \, \phi} = \cos \phi + i \sin \phi$$
 (Eulersche Gleichung)


$$z = r (\cos \phi + i \sin \phi) = r \cdot e^{i\phi}$$

$$e^{-i\phi} \ = cos \ \phi - i \ sin \ \phi$$

Potenzieren einer komplexen Zahl:

$$z^n = r^n \; (\cos n \; \phi + i \; sin \; n \; \phi)$$

Die komplexe Zahl z entspricht einem Punkt in einer Zahlenebene:

Darstellung der komplexen Zahl

$$z = 6 + i 4$$

$$x = 6; y = 4$$

$$r = \sqrt{36 + 16} = \sqrt{52} = 7, 2$$

 $\omega = \arctan v/x = \arctan 0.0667$

$$\phi = 33.7^{\circ}$$

$$z = 7.2 (\cos 33.7^{\circ} + i \sin 33.7^{\circ})$$

25

Zwei Gleichungen 1. Grades mit 2 Unbekannten

$$a_{11} x_1 + a_{12} x_2 = k_1$$

$$a_{21} x_1 + a_{22} x_2 = k_2$$

Determinante D =
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{21} a_{12}$$

$$\begin{split} \textbf{Z\"{a}hler determinanten} \ D_{x1} \ = \ \begin{vmatrix} k_1 & a_{12} \\ k_2 & a_{22} \end{vmatrix} \ = k_1 \cdot a_{22} - k_2 \cdot a_{12} \\ \\ D_{x2} \ = \ \begin{vmatrix} a_{11} \ k_1 \\ a_{21} \ k_2 \end{vmatrix} \ = a_{11} \cdot k_2 - a_{21} \cdot k_1 \end{split}$$

Lösung des Gleichungssystems für D≠0

$$x_1 = \frac{D_{x1}}{D}$$
; $x_2 = \frac{D_{x2}}{D}$ eindeutige Lösung

2.9 Folgen und Reihen

Arithmetische Folge

$$a, a + d, a + 2d, a + 3d, \dots, a + (n-1) d$$

Die **Differenz** d zweier aufeinander folgender Glieder ist konstant.

Arithmetische Reihe

$$a + (a + d) + (a + 2d) + (a + 3d) + (a + (n - 1)) d$$

k-tes Glied
$$a_k = a + (k-1) \cdot d$$

Endqlied
$$a_{-} = a + (n-1) \cdot d$$

Summe
$$s = \frac{n}{2} \cdot (a + a_n) = \frac{n}{2} [2a + (n-1) \cdot d]$$

Geometrische Folge

$$a_1$$
, a_1q , a_1q^2 , a_1q^3 , ..., a_1q^n-1

Der **Quotient** q zweier aufeinander folgender Glieder ist konstant.

Geometrische Reihe

$$a_1 + a_1q + a_1q^2 + a_1q^3 + \cdots + a_1q^{n-1}$$

k-tes Glied
$$a_k = a_1 + q^{k-1}$$

Endglied
$$a_n = a_1 + q^{n-1}$$

$$\text{Summe} \hspace{1cm} s \; = \; \frac{a_1 - a_n q}{1 - q} (q < 1) \hspace{1cm} s = \frac{a_n \cdot q - a_1}{q - 1} (q > 1);$$

$$s \ = \ \frac{a_1 \cdot (1-q^n)}{1-q} (q < 1); \quad s = \frac{a_1 \cdot (q^n-1)}{q-1} (q > 1)$$

2.10 Zinseszinsrechnung

b Anfangsbetrag, p Zinssatz in %, bn Endbetrag nach n Jahren

Zinsfaktor:
$$q = 1 + \frac{p}{100}$$

Endbetrag nach n Jahren bei Zinseszins:

$$b_n = b \cdot q^n = b \cdot \left(1 + \frac{p}{100}\right)^n$$

Beispiel:

Auf welchen Endbetrag wachsen 30 000 € zu 5,5% verzinst in 5 Jahren an?

Lösung:

$$b_5 = 30\ 000 \in \left(1 + \frac{5.5}{100}\right)^5 = 39\ 209 \in$$

Zinseszinstabelle

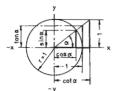
Wachstum eines Kapitals von b = 1 € durch Zins und Zinseszins bei jährlichem Zinszuschlag nach der Formel

$$b_n = b \cdot \left(1 + \frac{p}{100}\right)^n = b \cdot q^n$$

Zinssatz	q ⁿ für n	Jahre								
p in %	5	10	15	20	25	30	35	40	45	50
3,00	1,159	1,344	1,558	1,806	2,094	2,427	2,814	3,262	3,782	4,384
3,25	1,173	1,377	1,616	1,896	2,225	2,610	3,063	3,594	4,217	4,949
3,50	1,188	1,411	1,675	1,990	2,363	2,807	3,334	3,959	4,702	5,585
3,75	1,202	1,445	1,737	2,088	2,510	3,017	3,627	4,360	5,242	6,301
4,00	1,217	1,480	1,801	2,191	2,666	3,243	3,946	4,801	5,841	7,107
4,25	1,231	1,516	1,867	2,299	2,831	3,486	4,295	5,285	6,508	8,013
4,50	1,246	1,553	1,935	2,412	3,005	3,745	4,667	5,816	7,248	9,033
5,00	1,286	1,629	2,079	2,653	3,386	4,322	5,516	7,040	8,985	11,47
5,50	1,307	1,708	2,232	2,918	3,813	4,984	6,514	8,513	11,13	14,54
6,00	1,338	1,791	2,397	3,207	4,292	5,743	7,686	10,29	13,76	18,42
7,00	1,403	1,967	2,759	3,870	5,427	7,612	10,68	14,97	21,00	29,46
8,00	1,469	2,159	3,172	4,661	6,848	10,06	14,79	21,72	31,92	46,90
9,00	1,539	2,367	3,642	5,604	8,623	13,27	20,41	31,41	48,33	74,36
10,00	1,611	2,594	4,177	6,727	10,83	17,45	28,10	45,26	72,89	117,4

Vermehrung eines auf Zinseszins gegebenen Grundbetrags durch regelmäßige Zuzahlungen:

 b_0 Grundbetrag, r regelmäßige Zuzahlung am Ende eines jeden Jahres, Endbetrag b_n nach n Jahren:


$$b_n = b_0 \cdot q^n + \frac{r(q^n - 1)}{q - 1}$$

Verminderung eines auf Zinseszins gegebenen Grundbetrags durch regelmäßige Rückzahlungen (Rente) am Ende eines jeden Jahres:

Endbetrag nach n Jahren:

$$b_n = b_0 \cdot q^n - \frac{r(q^n-1)}{q-1}. \hspace{1cm} \text{Für } b_n = 0 \text{ ergibt sich die Tilgungsformel:} \hspace{3em} b_0 \cdot q^n = \frac{r(q^n-1)}{q-1}.$$

2 11 Winkelfunktionen

φ	=	± α	90 ± α	180 $\pm \alpha$	270 $\pm \alpha$
sin φ	=	\pm sin α	$\cos \alpha$	\mp sin α	– $\cos \alpha$
$\cos\phi$	=	$+\cos\alpha$	\mp sin α	$-\cos\alpha$	\pm sin α
$tan \ \phi$	=	\pm tan α	\mp cot α	\pm tan α	\mp cot α
cot φ	=	$\pm \cot \alpha$	\mp tan α	$\pm \cot \alpha$	\mp tan α

$$\widehat{\alpha} = \text{arc } \alpha = \frac{\pi \cdot \alpha}{180^{\circ}} \text{ rad } = \frac{\alpha}{57.3^{\circ}} \qquad \widehat{1^{\circ}} = \text{arc } 1^{\circ} = \frac{\pi}{180} = 0.017453$$

$$\text{arc } 57.3^{\circ} = 1$$

$$\begin{aligned} &\cos^2\alpha + \sin^2\alpha = 1 \\ &\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{1}{\cot\alpha} \\ &\sec\alpha = \frac{1}{\cos\alpha} \end{aligned}$$

$$\sin 2 \ \alpha = 2 \sin \alpha \cos \alpha$$

$$\cos 2 \ \alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\sin 3 \alpha = 3 \sin \alpha - 4 \sin^3 \alpha$$
$$\cos 3 \alpha = 4 \cos^3 \alpha - 3 \cos \alpha$$

$$\sec \alpha = \frac{1}{\cos \alpha}$$
$$\csc \alpha = \frac{1}{\sin \alpha}$$

$$\tan 2\alpha = \frac{2}{\cot \alpha - \tan \alpha}$$
$$\cot 2\alpha = \frac{\cot \alpha - \tan \alpha}{2}$$

$$\sin\frac{\alpha}{2} = \frac{1}{2} \cdot \sqrt{2 - 2\cos\alpha}$$

$$\cos\frac{\alpha}{2} = \frac{1}{2} \cdot \sqrt{2 + 2\cos\alpha}$$

Additionstheoreme

$$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos \left(\alpha \pm \beta\right) \ = \cos \alpha \cos \beta \ \mp \sin \alpha \, \sin \beta$$

$$tan(\alpha \pm \beta) = \frac{tan \alpha \pm tan \beta}{1 \mp tan \alpha tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot\alpha \cdot \cot\beta \mp 1}{\cot\beta \pm \cot\alpha}$$

$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cdot \cos \frac{\alpha \mp \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha - \beta}{2}$$

$$\tan \alpha \pm \tan \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cdot \cos \beta}$$

$$\cot\alpha\pm\cot\beta\ = \frac{\sin(\beta\pm\alpha)}{\sin\alpha\cdot\sin\beta}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
; $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ wobei $i = \sqrt{-1}$

Eulersche Formel (Grundlage der symbolischen Rechnung): $e^{\pm ix} = \cos x \pm i$. $\sin x$

Hyperbelfunktionen (sinh wird gelesen "Sinus hypberbolicus" usw.)

$$sinh x = (e^{x} - e^{-x})/2$$

 $cosh x = (e^{x} + e^{-x})/2$

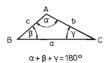
$$tanhx = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$sinh x + cosh x = e^x$$

$$tanh x = \frac{sinh x}{cosh x}$$

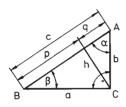

$$coth x = \frac{cosh x}{sinh x}$$

$$sinh 2x = 2 sinh x cosh x$$

$$cosh 2x = cosh^{2} x + sinh^{2} x$$

$$cosh^{2} x - sinh^{2} x = 1$$

Formeln für das ebene Dreieck


Der Sinussatz:

 $a:b:c=\sin\alpha:\sin\beta:\sin\gamma$

Der Kosinussatz:

$$a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$$

Formeln für das rechtwinklige Dreieck

Satz des Pythagoras:

$$c^2 = a^2 + b^2$$
: $c = \sqrt{a^2 + b^2}$

Höhensatz:

$$h^2 = p \cdot q$$
; $h = \sqrt{p \cdot q}$

Kathetensatz:

$$a^2 = p \cdot c$$
; $a = \sqrt{p \cdot c}$

$$b^2 = q \cdot c$$
; $b = \sqrt{q \cdot c}$

Trigonometrische Funktionen

Seitenverhältnis

$\sin \alpha = a : c$	Gegenkathete : Hypotenuse	$\sin \beta = b : c$
$\cos \alpha = b : c$	Ankathete : Hypotenuse	$\cos\beta=a:c$
$tan \alpha = a : b$	Gegenkathete : Ankathete	$tan \beta = b : a$
$\cot \alpha = b : a$	Ankathete : Gegenkathete	$\cot \beta = a : b$

Kathete	a =	$\sqrt{c^2-b^2}$	b · tanα	b· cotβ	c·sinα	c·cosβ
Kathete	b =	$\sqrt{c^2-a^2}$	a · tanβ	a · cotα	c · sinβ	c ⋅ cosα
Hypotenuse	c =	$\sqrt{a^2 + b^2}$	$\frac{a}{\sin \alpha}$	$\frac{a}{\cos\beta}$	$\frac{b}{\sin \beta}$	$\frac{b}{\cos \alpha}$
Winkel	α =	90° – β	$\sin \alpha = \frac{a}{c}$	$\tan \alpha = \frac{a}{b}$	$\cos \alpha = \frac{b}{c}$	$\cot \alpha = \frac{b}{a}$
Winkel	β =	90° – α	$\sin \beta = \frac{b}{c}$	$\tan \beta = \frac{b}{a}$	$\cos \beta = \frac{a}{c}$	$\cot \beta = \frac{a}{b}$
Fläche	A =	$\frac{\mathbf{a} \cdot \mathbf{b}}{2}$	$\frac{a \cdot c \cdot \sin \beta}{2}$	$\frac{a^2 \cdot \tan \beta}{2}$	$\frac{b \cdot c \cdot \cos \beta}{2}$	$\frac{b^2 \cdot \cot \beta}{2}$
i lacile	Λ=	$\frac{c^2 \cdot \sin\alpha \cdot \cos\alpha}{2}$	$\frac{b\cdot c\cdot \sin\alpha}{2}$	$\frac{b^2 \cdot tan\alpha}{2}$	$\frac{a \cdot c \cdot \cos \alpha}{2}$	$\frac{a^2 \cdot \cot \alpha}{2}$

2.12 Tafel der Winkelfunktionen

Grad	Srad							
Grad	0'	10'	20'	30′	40′	50′	60′	
0°	0,00000	0,00291	0,00582	0,00873	0,01164	0,01454	0,01745	89°
1	0,01745	0,02036	0,02327	0,02618	0,02908	0,03199	0,03490	88
2	0,03490	0,03781	0,04071	0,04362	0,04653	0,04943	0,05234	87
3	0,05234	0,05524	0,05814	0,06105	0,06395	0,06685	0,06976	86
4 5	0,06976 0.08716	0,07266 0.09005	0,07556 0.09295	0,07846 0.09585	0,08136 0.09874	0,08426 0.10164	0,08716 0.10453	85 84
6	0,10453	0,09003	0,09293	0,09363	0,09674	0,10164	0,10455	83
7	0.12187	0.12476	0.12764	0.13053	0.13341	0.13629	0.13917	82
8	0,13917	0,14205	0,14493	0,14781	0,15069	0,15356	0,15643	81
9	0,15643	0,15931	0,16218	0,16505	0,16792	0,17078	0,17365	80
10	0,17365	0,17651	0,17937	0,18224	0,18509	0,18795	0,19081	79
11	0,19081	0,19366	0,19652	0,19937	0,20222	0,20507	0,20791	78
12	0,20791	0,21076	0,21360	0,21644	0,21928	0,22212	0,22495	77
13	0,22495	0,22778	0,23062	0,23345	0,23627	0,23910	0,24192	76
14	0,24192	0,24474	0,24756	0,25038	0,25320	0,25601	0,25882	75
15 16	0,25882 0.27564	0,26163 0,27843	0,26443 0.28123	0,26724	0,20704 0,28680	0,27284 0.28959	0,27564 0.29237	74 73
	.,		-, -	.,		.,	.,	
17 18	0,29237 0.30902	0,29515 0.31178	0,29793 0.31454	0,30071 0.31730	0,30348	0,30625 0.32282	0,30902 0.32557	72 71
19	0,32557	0,32832	0,33106	0,33381	0,33655	0,33929	0,34202	70
20	0,34202	0,34475	0,34748	0,35021	0,35293	0,35565	0,35837	69
21	0.35837	0.36108	0.36379	0.36650	0.36921	0.37191	0.37461	68
22	0,37461	0,37730	0,37999	0,38268	0,38537	0,38805	0,39073	67
23	0,39073	0,39341	0,39608	0,39875	0,40141	0,40408	0,40674	66
24	0,40674	0,40939	0,41204	0,41469	0,41734	0,41998	0,42262	65
25	0,42262	0,42525	0,42788	0,43051	0,43313	0,43575	0,43837	64
26	0,43837	0,44098	0,44359	0,44620	0,44880	0,45140	0,45399	63
27 28	0,45399 0.46947	0,45658 0.47204	0,45917 0,47460	0,46175	0,46433 0,47971	0,46690 0.48226	0,46947 0.48481	62 61
28 29	0,48947	0,47204	0,47460	0,47716 0.49242	0,47971	0,48226	0,48481	60
30	0,50000	0,50252	0,50503	0,50754	0,51004	0,51254	0,51504	59
31	0.51504	0,51753	0.52002	0.52250	0.52498	0,52743	0.52992	58
32	0,52992	0,53238	0,52002	0,52230	0,53975	0,54220	0,54464	57
33	0,54464	0,54708	0,54951	0,55194	0,55436	0,55678	0,55919	56
34	0,55919	0,56160	0,56401	0,56641	0,56880	0,57119	0,57358	55
35	0,57358	0,57596	0,57833	0,58070	0,58307	0,58543	0,58779	54
36	0,58779	0,59014	0,59248	0,59482	0,59716	0,59949	0,60182	53
37	0,60182	0,60414	0,60645	0,60876	0,61107	0,61337	0,61566	52
38 39	0,61566 0.62932	0,61795 0,63158	0,62024 0,63383	0,62251 0,63608	0,62479 0,63832	0,62706 0,64056	0,62932 0,64279	51 50
39 40	0,62932	0,63136	0,63363	0,63608	0,65166	0,65386	0,65606	49
41	0,65606	0,65825	0,66044	0,66262	0,66480	0,66697	0,66913	48
42 43	0,66913	0,67129 0.68412	0,67344	0,67559	0,67773 0.69046	0,67987 0.69256	0,68200 0.69466	47 46
	.,	-,	.,	.,	.,	.,	.,	
44°	0,69466	0,69675	0,69883	0,70091	0,70298	0,70505	0,70711	45°
	60'	50'	40'	30'	20'	10'	0'	Grac

2.12 Tafel der Winkelfunktionen (Fortsetzung)

0	000							
Grad	0′	10'	20'	30'	40'	50′	60'	
0°	1,00000	1,00000	0,99998	0,99996	0,99993	0,99989	0,99985	89°
1	0,99985	0,99979	0,99973	0,99966	0,99958	0,99949	0,99939	88
2	0,99939	0,99929	0,99917	0,99905	0,99892	0,99878	0,99863	87
3	0,99863	0,99847	0,99831	0,99813	0,99795	0,99776	0,99756	86
4	0,99756	0,99736	0,99714	0,99692	0,99668	0,99644	0,99619	85
5	0,99619	0,99594	0,99567	0,99540	0,99511	0,99482	0,99452	84
6	0,99452	0,99421	0,99390	0,99357	0,99324	0,99290	0,99255	83
7	0,99255	0,99219	0,99182	0,99144	0,99106	0,99067	0,99027	82
8 9	0,99027	0,98986	0,98914	0,98902	0,98858	0,98814	0,98769	81 80
-	0,98769	0,98723	0,98676	0,98629	0,98580	0,98531	0,98481	
10	0,98481	0,98430	0,98378	0,98325	0,98272	0,98218	0,98163	79
11	0,98163	0,98107	0,98050	0,97992	0,97934	0,97875	0,97815	78
12	0,97815	0,97754	0,97692	0,97630	0,97566	0,97502	0,97437	77
13	0,97437	0,97371	0,97304	0,97237	0,97169	0,97100	0,97030	76
14	0,97030	0,96959	0,96887	0,96815	0,96742	0,96667	0,96593	75
15	0,96593	0,96517	0,96440	0,96363	0,96285	0,96206	0,96126	74
16	0,96126	0,96046	0,95964	0,95882	0,95799	0,95715	0,95630	73
17	0,95630	0,95545	0,95459	0,95372	0,95284	0,95195	0,95106	72
18	0,95106	0,95015	0,94924	0,94832	0,94740	0,94646	0,94552	71
19	0,94552	0,94457	0,94361	0,94264	0,94167	0,94068	0,93969	70
20	0,93969	0,93869	0,93769	0,93667	0,93565	0,93462	0,93358	69
21	0,93358	0,93253	0,93148	0,93042	0,92935	0,92827	0,92718	68
22	0,92718	0,92609	0,92499	0,92388	0,92276	0,92164	0,92050	67
23	0,92050	0,91936	0,91822	0,91706	0,91590	0,91472	0,91355	66
24	0,91355	0,91236	0,91116	0,90996	0,90875	0,90753	0,90631	65
25	0,90631	0,90507	0,90383	0,90259	0,80133	0,90007	0,89879	64
26	0,89879	0,89752	0,89623	0,89493	0,89363	0,89232	0,89101	63
27	0,89101	0,88968	0,88835	0,88701	0,88566	0,88431	0,88295	62
28	0,88295	0,88158	0,88020	0,87882	0,87743	0,87603	0,87462	61
29	0,87462	0,87321	0,87178	0,87036	0,86892	0,86748	0,86603	60
30	0,86603	0,86457	0,86310	0,86163	0,86015	0,85866	0,85717	59
31	0,85717	0,85567	0,85416	0,85264	0,85112	0,84959	0,84805	58
32	0,84805	0,84650	0,84495	0,84339	0,84182	0,84025	0,83867	57
33	0,83867	0,83708	0,83549	0,83389	0,83228	0,83066	0,82904	56
34	0,82904	0,82741	0,82577	0,82413	0,82248	0,82082	0,81915	55
35	0,81915	0,81748	0,81580	0,81412	0,81242	0,81072	0,80902	54
36	0,80902	0,80730	0,80558	0,80386	0,80212	0,80038	0,79864	53
37	0,79864	0,79688	0,79512	0,79335	0,79158	0,78980	0,78801	52
38	0,78801	0,78622	0,78442	0,78261	0,78079	0,77897	0,77715	51
39	0,77715	0,77531	0,77347	0,77162	0,76977	0,76791	0,76604	50
40	0,76604	0,76417	0,76229	0,76041	0,75851	0,75661	0,75471	49
41	0,75471	0,75280	0,75088	0,74696	0,74703	0,74509	0,74314	48
42	0,74314	0,74120	0,73924	0,73728	0,73531	0,73333	0,73135	47
43	0,73135	0,72937	0,72737	0,72537	0,72337	0,72136	0,71934	46
44°	0,71934	0,71732	0,71529	0,71325	0,71121	0,70916	0,70711	45°
	60'	50'	40'	30'	20'	10'	0'	0
		•		sin		1		Grad

2.12 Tafel der Winkelfunktionen (Fortsetzung)

Grad	tan							
Grad	0'	10'	20'	30'	40'	50'	60′	
0°	0,00000	0,00291	0,00582	0,00873	0,01164	0,01455	0,01746	89°
1	0,01746	0,02036	0,02328	0,02619	0,02910	0,03201	0,03492	88
2	0,03492	0,03783	0,04075	0,04366	0,04658	0,04949	0,05241	87
3	0,05241	0,05533	0,05824	0,06116	0,06408	0,06700	0,06993	86
4	0,06993	0,07285	0,07578	0,07870	0,08163	0,08456	0,08749	85
5	0,08749	0,09042	0,09335	0,09629	0,09923	0,10216	0,10510	84
6	0,10510	0,10805	0,11099	0,11394	0,11688	0,11983	0,12278	83
7	0,12278	0,12574	0,12869	0,13165	0,13461	0,13758	0,14054	82
8	0,14054	0,14351	0,14648	0,14945	0,15243	0,15540	0,15838	81
9	0,15838	0,16137	0,16435	0,16734	0,17033	0,17333	0,17633	80
10	0,17633	0,17933	0,18233	0,18534	0,18835	0,19136	0,19438	79
11	0,19438	0,19740	0,20042	0,20345	0,20648	0,20952	0,21256	78
12	0,21256	0,21560	0,21864	0,22169	0,22475	0,22781	0,23087	77
13	0,23087	0,23393	0,23700	0,24008	0,24316	0,24624	0,24933	76
14	0,24933	0,25242	0,25552	0,25862	0,26172	0,26483	0,26795	75
15	0,26795	0,27107	0,27419	0,27732	0,28046	0,28360	0,28675	74
16	0,28675	0,28990	0,29305	0,29621	0,29938	0,30255	0,30573	73
17	0,30573	0,30891	0,31210	0,31530	0,31850	0,32171	0,32492	72
18	0,32492	0,32814	0,33136	0,33460	0,33783	0,34108	0,34433	71
19	0,34433	0,34758	0,35085	0,35412	0,35740	0,36068	0,36397	70
20	0,36397	0,36727	0,37057	0,37388	0,37720	0,38053	0,38386	69
21	0,38386	0,38721	0,39055	0,39391	0,39727	0,40065	0,40403	68
22	0,40403	0,40741	0,41081	0,41421	0,41763	0,42105	0,42447	67
23	0,42447	0,42791	0,43136	0,43481	0,43828	0,44175	0,44523	66
24	0,44523	0,44872	0,45222	0,45573	0,45924	0,46277	0,46631	65
25	0,46631	0,46985	0,47341	0,47698	0,48055	0,48414	0,48773	64
26	0,48773	0,49134	0,49495	0,49858	0,50222	0,50587	0,50953	63
27	0,50953	0,51319	0,51688	0,52057	0,52427	0,52798	0,53171	62
28	0,53171	0,53545	0,53920	0,54296	0,54673	0,55051	0,55431	61
29	0,55431	0,55812	0,56194	0,56577	0,56962	0,57348	0,57735	60
30	0,57735	0,58124	0,58513	0,58905	0,59297	0,59691	0,60086	59
31	0,60086	0,60183	0,60881	0,61280	0,61681	0,62083	0,62487	58
32	0,62487	0,62892	0,63299	0,63707	0,64117	0,64528	0,64941	57
33	0,64941	0,65355	0,65771	0,66189	0,66608	0,67028	0,67451	56
34	0,67451	0,67875	0,68301	0,68728	0,69157	0,69588	0,70021	55
35	0,70021	0,70455	0,70891	0,71329	0,71769	0,72211	0,72654	54
36	0,72654	0,73100	0,73547	0,73996	0,74447	0,74900	0,75355	53
37	0,75355	0,75812	0,76272	0,76733	0,77196	0,77661	0,78129	52
38	0,78129	0,78598	0,79070	0,79544	0,80020	0,80498	0,80978	51
39	0,80978	0,81461	0,81946	0,82434	0,82923	0,83415	0,83910	50
40	0,83910	0,84407	0,84906	0,85408	0,85912	0,86419	0,86929	49
41	0,86929	0,87441	0,87955	0,88473	0,88992	0,89515	0,90040	48
42	0,90040	0,90569	0,91099	0,91633	0,92170	0,92709	0,93252	47
43	0,93252	0,93797	0,94345	0,94896	0,95451	0,96008	0,96569	46
44°	0,96569	0,97133	0,97700	0,98270	0,98843	0,99420	1,00000	45°
·	60'	50'	40′	30'	20'	10'	0'	Grad
	cot							

2.12 Tafel der Winkelfunktionen (Fortsetzung)

Grad	cot							
	0'	10'	20'	30'	40'	50'	60'	
0°	00	343,77371	171,88540	114,58865	85,93979	68,75009	57,28996	89°
1 2	57,28996 28,63625	49,10388 26,43160	42,96408 24,54176	38,18846 22,90377	34,36777 21,47040	31,24158 20,20555	28,63625 19,08114	88 87
3	19,08114	18,07498	17,16934	16,34986	15,60478	14,92442	14,30067	86
4	14,30067	13,72674	13,19688	12,70621	12,25051	11,82617	11,43005	85 84
5 6	11,43005 9,51436	11,05943 9,25530	10,71191 9,00983	10,38540 8,77689	10,07803 8,55555	9,78817 8,34496	9,51436 8,14435	83
7	8,14435	7,95302	7,77035	7,59575	7,42871	7,26873	7,11537	82
8	7,11537	6,96823	6,82694	6,69116	6,56055	6,43484	6,31375	81
9	6,31375	6,19703	6,08444	5,97576	5,87080	5,76937	5,67128	80
10	5,67128	5,57638	5,48451	5,39552	5,30928	5,22566	5,14455	79
11	5,14455	5,06584	4,98940	4,91516	4,84300	4,77286	4,70463	78
12 13	4,70463 4,33148	4,63825 4,27471	4,57363 4,21933	4,51071 4,16530	4,44942 4,11256	4,38969 4,06107	4,33148 4,01078	77 76
14	4.01078	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75
15	3,73205	3,68909	3,64705	3,60588	3,56557	3,52609	3,48741	74
16	3,48741	3,44951	3,41236	3,37594	3,34023	3,30521	3,27085	73
17	3,27085	3,23714	3,20406	3,17159	3,13972	3,10842	3,07768	72
18 19	3,07768 2,90421	3,04749 2,87700	3,01783 2,85023	2,98869 2,82391	2,96004 2,79802	2,93189 2,77254	2,90421 2,74748	71 70
20	2,74748	2,72281	2,69853	2,67462	2,79802	2,62791	2,60509	69
21	2,74746	2,72261	2,56046	2,53865	2,65109	2,02791	2,60509	68
22	2,47509	2,45451	2,43422	2,33603	2,39449	2,37504	2,35585	67
23	2,35585	2,33693	2,31826	2,29984	2,28167	2,26374	2,24604	66
24	2,24604	2,22857	2,21132	2,19430	2,17749	2,16090	2,14451	65
25 26	2,14451	2,12832	2,11233	2,09654	2,08094	2,06553	2,05030	64 63
27	2,05030	2,03526	2,02039	2,00569	1,99116	1,97680	1,96261	
28	1,96261 1,88073	1,94858 1,86760	1,93470 1,85462	1,92098 1,84177	1,90741 1,82966	1,89400 1,81649	1,88073 1,80405	62 61
29	1,80405	1,79174	1,77955	1,76749	1,75556	1,74375	1,73205	60
30	1,73205	1,72047	1,70901	1,69766	1,68643	1,67530	1,66428	59
31	1,66428	1,65337	1,64256	1,63185	1,62125	1,61074	1,60033	58
32 33	1,60033	1,59002	1,57981	1,56969	1,55966	1,54972 1,49190	1,53987	57 56
34	1,53987 1.48256	1,53010 1,47330	1,52043 1,46411	1,51084 1.45501	1,50133 1.44598	1,49190	1,48256 1,42815	55
35	1,40230	1,47330	1,40411	1,40195	1,39336	1,38484	1,42615	54
36	1,37638	1,36800	1,35958	1,35142	1,34323	1,33511	1,32704	53
37	1,32704	1,31904	1,31110	1,30323	1,29541	1,28764	1,27994	52
38	1,27994	1,27230	1,26471	1,25717	1,24969	1,24227	1,23490	51
39	1,23490	1,22758	1,22031	1,21310	1,20593	1,19882	1,19175	50
40	1,19175	1,18474	1,17777	1,17085	1,16398	1,15715	1,15037	49
41 42	1,15037 1,11061	1,14363 1,10414	1,13694 1,09770	1,13029 1,09131	1,12369 1,08496	1,11713 1,07864	1,11061 1,07237	48 47
43	1,07237	1,06613	1,05770	1,05378	1,04766	1,04158	1,03553	46
44°	1,03553	1,02952	1,02355	1,01761	1,01170	1,00583	1,00000	45°
	60′	50'	40'	30'	20'	10'	0'	Crod
				tan				Grad

Flächen-Berechnungen 2.13

$$A = a^{2}$$

$$a = \sqrt{A}$$

$$d = a\sqrt{2}$$

$$A = \frac{d^2\pi}{4} = r^2\pi$$

$$\approx 0.785 d^2$$

$$U = 2 r \pi = d \pi$$

Rechteck

$$a = b h$$

$$d = \sqrt{b^2 + h^2}$$

Kreisring

d = 2r

$$A = \pi (R^2 - r^2)$$
$$\approx (2r + b) \pi b$$

$$b = R - r$$

Parallelogramm

$$A = b h$$

 $b = \frac{A}{b}$

$$A = \frac{r^2 \pi \alpha^{\circ}}{360^{\circ}}$$
$$= \frac{b \ r}{2}$$

$$b = \frac{r\pi\alpha^{\circ}}{180^{\circ}}$$

Trapez

$$m = \frac{b+c}{2}$$

Kreisabschnitt

$$A = \frac{h}{6 s} (3h^2 + 4s^2)$$

$$s = 2 r \sin \alpha$$

$$r = \frac{h}{2} + \frac{s^2}{8h}$$

$$h = r(1 - \cos\alpha) = \frac{s}{2} \tan \frac{\alpha}{2}$$

Dreieck

$$A = \frac{b \ h}{2}$$

$$b = \frac{2 A}{h}$$

Kreisringausschnitt

$$A = \frac{\pi (R^2 - r^2)\alpha^{\circ}}{180^{\circ}}$$

Gleichseitiges Dreieck

$$A = \frac{a^2}{4} \sqrt{3}$$

$$h = \frac{a}{2}\sqrt{3}$$

Ellipse

$$A=a\;b\;\pi$$

Sechseck

$$A = \frac{3 \ R^2 \sqrt{3}}{2}$$

$$e = 2 R$$

 $e = 1,155 s$
 $s = 0,866 e$

Polynomfläche

$$y = b(x/a)^n$$

$$A_1 = \frac{n}{n+1} a b$$

 $A_2 = \frac{1}{n+1} a b$

2.14 Schwerpunktlagen von ebenen Flächen

	1		i -
Dreieck		Kreisringausschnitt	
	$y_{S} = \frac{b+c}{3}$ $z_{S} = \frac{h}{3}$	R 20 y	$z_S = \frac{2(R^3 - r^3)\sin\alpha}{3(R^2 - r^2)\alpha}$
Rechtw. Dreieck		Ellipsenabschnitt	
z h	$y_{S} = \frac{b}{3}$ $z_{S} = \frac{h}{3}$	Ellipse 2α $r = b$ y	$z_S = \frac{4r sin^3 \alpha}{3(2\alpha - sin \ 2\alpha)}$
Parallelogramm		Parabelabschnitt	
b c y	$y_{S} = \frac{b+c}{2}$ $z_{S} = \frac{h}{2}$	Parabel y	$z_s = \frac{3}{5}h$
Trapez		Parabelabschnitt	
z c h	$y_{S} = \frac{b^{2}-c^{2}+d(b+2c)}{3(b+c)}$ $z_{S} = \frac{h(b+2c)}{3(b+c)}$	z Parabel	$y_{S_1} = \frac{3}{8}b; y_{S_2} = \frac{3}{4}b$ $z_{S_1} = \frac{3}{5}h; z_{S_2} = \frac{3}{10}h$
Halbkreis		CosAbschnitt	
z 1	$z_S = \frac{4r}{3\pi}$	cos-Linie	$y_{S} = \left(1 - \frac{2}{\pi}\right)b$ $z_{S} = \frac{\pi}{8}h$
Kreisabschnitt		Sechskanthälfte	
20 7	$z_{S} = \frac{4 r \sin^{3} \alpha}{3(2\alpha - \sin 2\alpha)}$	z a	$z_{S} = \frac{4r}{3\pi} \frac{\alpha(3 + \cos \alpha)}{4 \sin \alpha}$
Kreisausschnitt		Sechskanthälfte	
Z Q Z T Y	$z_S = \frac{2r\sin\alpha}{3\alpha}$	z α S y	$z_{S} = \frac{4r}{3\pi} \frac{\alpha/2}{\sin \alpha/2}$

2.15 Bogenlängen, Bogenhöhen, Sehnenlängen und Kreisabschnitte für den Halbmesser r = 1

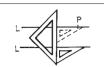
Zentri- winkel φ	Bogen- länge	Bogen- höhe	b	Sehnen- länge	Inhalt des Kreis- abschn.	Zentri- winkel φ	Bogen- länge	Bogen- höhe	b	Sehnen- länge	Inhalt des Kreis- abschn.
	b	h	ĥ	S			b	h	þ	S	
1°	0,0175	0,0000	458,37	0,0175	0,00000	46°	0,8029	0,0795	10,10	0,7815	0,04176
2	0,0349	0,0002	229,19	0,0349	0,00000	47	0,8203	0,0829	9,89	0,7975	0,04448
3	0,0524	0,0003	152,80	0,0524	0,00001	48	0,8378	0,0865	9,69	0,8135	0,04731
4	0,0698	0,0006	114,60	0,0698	0,00003	49	0,8552	0,0900	9,50	0,8294	0,05025
5	0,0873	0,0010	91,69	0,0872	0,00006	50	0,8727	0,0937	9,31	0,8452	0,05331
6	0,1047	0,0014	76,41	0,1047	0,00010	51	0,8901	0,0974	9,14	0,8610	0,05649
7	0,1222	0,0019	65,50	0,1221	0,00015	52	0,9076	0,1012	8,97	0,8767	0,05978
8	0,1396	0,0024	57,32	0,1395	0,00023	53	0,9250	0,1051	8,80	0,8924	0,06319
9	0,1571	0,0031	50,96	0,1569	0,00032	54	0,9425	0,1090	8,65	0,9080	0,06673
10	0,1745	0,0038	45,87	0,1743	0,00044	55	0,9599	0,1130	8,49	0,9235	0,07039
11	0,1920	0,0046	41,70	0,1917	0,00059	56	0,9774	0,1171	8,35	0,9389	0,07417
12	0,2094	0,0055	38,23	0,2091	0,00076	57	0,9948	0,1212	8,21	0,9543	0,07808
13	0,2269	0,0064	35,30	0,2264	0,00097	58	1,0123	0,1254	8,07	0,9696	0,08212
14	0,2443	0,0075	32,78	0,2437	0,00121	59	1,0297	0,1296	7,94	0,9848	0,08629
15	0,2618	0,0086	30,60	0,2611	0,00149	60	1,0472	0,1340	7,81	1,0000	0,09059
16	0,2793	0,0097	28,69	0,2783	0,00181	61	1,0647	0,1384	7,69	1,0151	0,09502
17	0,2967	0,0110	27,01	0,2956	0,00217	62	1,0821	0,1428	7,56	1,0301	0,09958
18	0,3142	0,0123	25,52	0,3129	0,00257	63	1,0996	0,1474	7,46	1,0450	0,10428
19	0,3316	0,0137	24,18	0,3301	0,00302	64	1,1170	0,1520	7,35	1,0598	0,10911
20	0,3491	0,0152	22,98	0,3473	0,00352	65	1,1345	0,1566	7,24	1,0746	0,11408
21	0,3665	0,0167	21,89	0,3645	0,00408	66	1,1519	0,1613	7,14	1,0893	0,11919
22	0,3840	0,0184	20,90	0,3816	0,00468	67	1,1694	0,1661	7,04	1,1039	0,12443
23	0,4014	0,0201	20,00	0,3987	0,00535	68	1,1868	0,1710	6,94	1,1184	0,12982
24	0,4189	0,0219	19,17	0,4158	0,00607	69	1,2043	0,1759	6,85	1,1328	0,13535
25	0,4363	0,0237	18,41	0,4329	0,00686	70	1,2217	0,1808	6,76	1,1472	0,14102
26	0,4538	0,0256	17,71	0,4499	0,00771	71	1,2392	0,1859	6,67	1,1614	0,14683
27	0,4712	0,0276	17,06	0,4669	0,00862	72	1,2566	0,1910	6,58	1,1756	0,15279
28	0,4887	0,0297	16,45	0,4838	0,00961	73	1,2741	0,1961	6,50	1,1896	0,15889
29	0,5061	0,0319	15,89	0,5008	0,01067	74	1,2915	0,2014	6,41	1,2036	0,16514
30	0,5236	0,0341	15,37	0,5176	0,01180	75	1,3090	0,2066	6,34	1,2175	0,17154
31	0,5411	0,0364	14,88	0,5345	0,01301	76	1,3265	0,2120	6,26	1,2313	0,17808
32	0,5585	0,0387	14,42	0,5513	0,01429	77	1,3439	0,2174	6,18	1,2450	0,18477
33	0,5760	0,0412	13,99	0,5680	0,01566	78	1,3614	0,2229	6,11	1,2586	0,19160
34	0,5934	0,0437	13,58	0,5847	0,01711	79	1,3788	0,2284	6,04	1,2722	0,19859
35	0,6109	0,0463	13,20	0,6014	0,01864	80	1,3963	0,2340	5,97	1,2856	0,20573
36	0,6283	0,0489	12,84	0,6180	0,02027	81	1,4137	0,2396	5,90	1,2989	0,21301
37	0,6458	0,0517	12,50	0,6346	0,02198	82	1,4312	0,2453	5,83	1,3221	0,22045
38	0,6632	0,0545	12,17	0,6511	0,02378	83	1,4486	0,2510	5,77	1,3252	0,22804
39	0,6807	0,0574	11,87	0,6676	0,02568	84	1,4661	0,2569	5,71	1,3383	0,23578
40	0,6981	0,0603	11,58	0,6840	0,02767	85	1,4835	0,2627	5,65	1,3512	0,24367
41	0,7156	0,0633	11,30	0,7004	0,02976	86	1,5010	0,2686	5,59	1,3640	0,25171
42	0,7330	0,0664	11,04	0,7167	0,03195	87	1,5184	0,2746	5,53	1,3767	0,25990
43	0,7505	0,0696	10,78	0,7330	0,03425	88	1,5359	0,2807	5,47	1,3893	0,26825
44	0,7679	0,0728	10,55	0,7492	0,03664	89	1,5533	0,2867	5,42	1,4018	0,27675
45°	0,7854	0,0761	10,32	0,7654	0,03915	90°	1,5708	0,2929	5,36	1,4142	0,28540

Sehnenlänge s = 2 r sin $\frac{\varphi}{2}$

Bogenhöhe h =
$$r\left(1 - \cos\frac{\phi}{2}\right) = \frac{s}{2}\tan\frac{\phi}{4} = 2r\sin^2\frac{\phi}{4}$$

Bogenlänge b =
$$\pi r \frac{\phi^{\circ}}{180^{\circ}}$$
 = 0,017 453 $r \cdot \phi \approx \sqrt{s^2 + \frac{16}{3}h^2}$

2.15 Bogenlängen, Bogenhöhen, Sehnenlängen und Kreisabschnitte für den Halbmesser r = 1 (Fortsetzung)


Zentri- winkel φ	Bogen- länge	Bogen- höhe	h	Sehnen- länge	Inhaltdes Kreis- abschn.	Zentri- winkel φ	Bogen- länge	Bogen- höhe	b	Sehnen- länge	Inhaltdes Kreis- abschn.
Ψ	b	h	þ h	s	absciii.	Ψ	b	h	ĥ	s	absciii.
91°	1,5882	0,2991	5,31	1,4265	0,29420	136°	2,3736	0,6254	3,80	1,8544	0,83949
92	1,6057	0,3053	5,26	1,4387	0,30316	137	2,3911	0,6335	3,77	1,8608	0,85455
93	1,6232	0,3116	5,21	1,4507	0,31226	138	2,4086	0,6416	3,75	1,8672	0,86971
94	1,6406	0,3180	5,16	1,4627	0,32152	139	2,4260	0,6498	3,73	1,8733	0,88497
95	1,6581	0,3244	5,11	1,4746	0,33093	140	2,4435	0,6580	3,71	1,8794	0,90034
96	1,6755	0,3309	5,06	1,4863	0,34050	141	2,4609	0,6662	3,69	1,8853	0,91580
97	1,6930	0,3374	5,02	1,4979	0,35021	142	2,4784	0,6744	3,67	1,8910	0,93135
98	1,7104	0,3439	4,97	1,5094	0,36008	143	2,4958	0,6827	3,66	1,8966	0,94700
99	1,7279	0,3506	4,93	1,5208	0,37009	144	2,5133	0,6910	3,64	1,9021	0,96274
100	1,7453	0,3572	4,89	1,5321	0,38026	145	2,5307	0,6993	3,62	1,9074	0,97858
101	1,7628	0,3639	4,84	1,5432	0,39058	146	2,5482	0,7076	3,60	1,9126	0,99449
102	1,7802	0,3707	4,80	1,5543	0,40104	147	2,5656	0,7160	3,58	1,9176	1,01050
103	1,7977	0,3775	4,76	1,5652	0,41166	148	2,5831	0,7244	3,57	1,9225	1,02658
104	1,8151	0,3843	4,72	1,5760	0,42242	149	2,6005	0,7328	3,55	1,9273	1,04275
105	1,8326	0,3912	4,68	1,5867	0,43333	150	2,6180	0,7412	3,53	1,9319	1,05900
106	1,8500	0,3982	4,65	1,5973	0,44439	151	2,6354	0,7495	3,52	1,9363	1,07532
107	1,8675	0,4052	4,61	1,6077	0,45560	152	2,6529	0,7581	3,50	1,9406	1,09171
108	1,8850	0,4122	4,57	1,6180	0,46695	153	2,6704	0,7666	3,48	1,9447	1,10818
109	1,9024	0,4193	4,54	1,6282	0,47845	154	2,6878	0,7750	3,47	1,9487	1,12472
110	1,9199	0,4264	4,50	1,6383	0,49008	155	2,7053	0,7836	3,45	1,9526	1,14132
111	1,9373	0,4336	4,47	1,6483	0,50187	156	2,7227	0,7921	3,44	1,9563	1,15799
112	1,9548	0,4408	4,43	1,6581	0,51379	157	2,7402	0,8006	3,42	1,9598	1,17472
113	1,9722	0,4481	4,40	1,6678	0,52586	158	2,7576	0,8092	3,41	1,9633	1,19151
114	1,9897	0,4554	4,37	1,6773	0,53806	159	2,7751	0,8178	3,39	1,9665	1,20835
115	2,0071	0,4627	4,34	1,6868	0,55041	160	2,7925	0,8264	3,38	1,9696	1,22525
116	2,0246	0,4701	4,31	1,6961	0,56289	161	2,8100	0,8350	3,37	1,9726	1,24221
117	2,0420	0,4775	4,28	1,7053	0,57551	162	2,8274	0,8436	3,35	1,9754	1,25921
118	2,0595	0,4850	4,25	1,7143	0,58827	163	2,8449	0,8522	3,34	1,9780	1,27626
119	2,0769	0,4925	4,22	1,7233	0,60116	164	2,8623	0,8608	3,33	1,9805	1,29335
120	2,0944	0,5000	4,19	1,7321	0,61418	165	2,8798	0,8695	3,31	1,9829	1,31049
121	2,1118	0,5076	4,16	1,7407	0,62734	166	2,8972	0,8781	3,30	1,9851	1,32766
122	2,1293	0,5152	4,13	1,7492	0,64063	167	2,9147	0,8868	3,28	1,9871	1,34487
123	2,1468	0,5228	4,11	1,7576	0,65404	168	2,9322	0,8955	3,27	1,9890	1,36212
124	2,1642	0,5305	4,08	1,7659	0,66759	169	2,9496	0,9042	3,26	1,9908	1,37940
125	2,1817	0,5383	4,05	1,7740	0,68125	170	2,9671	0,9128	3,25	1,9924	1,39671
126	2,1991	0,5460	4,03	1,7820	0,69505	171	2,9845	0,9215	3,24	1,9938	1,41404
127	2,2166	0,5538	4,00	1,7899	0,70897	172	3,0020	0,9302	3,23	1,9951	1,43140
128	2,2340	0,5616	3,98	1,7976	0,72301	173	3,0194	0,9390	3,22	1,9963	1,44878
129	2,2515	0,5695	3,95	1,8052	0,73716	174	3,0369	0,9477	3,20	1,9973	1,46617
130	2,2689	0,5774	3,93	1,8126	0,75144	175	3,0543	0,9564	3,19	1,9981	1,48359
131	2,2864	0,5853	3,91	1,8199	0,76584	176	3,0718	0,9651	3,18	1,9988	1,50101
132	2,3038	0,5933	3,88	1,8271	0,78034	177	3,0892	0,9738	3,17	1,9993	1,51845
133	2,3213	0,6013	3,86	1,8341	0,79497	178	3,1067	0,9825	3,16	1,9997	1,53589
134	2,3387	0,6093	3,84	1,8410	0,80970	179	3,1241	0,9913	3,15	1,9999	1,55334
135°	2,3562	0,6173	3,82	1,8478	0,82454	180°	3,1416	1,0000	3,14	2,0000	1,57080

Inhalt des Kreisabschnittes $=\frac{r^2}{2}\Big(\frac{\pi}{180}\phi-\sin\phi\Big)$

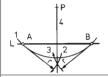
Inhalt des Kreisausschnittes = $\frac{\pi}{360} \pi r^2 = 0,00872665 \phi r^2$

b = r entspricht ϕ = 57°17′44,86″ = 57,295 779 5° = 206 264,86″

2.16 Geometrische Grundlagen

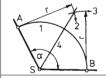
Ziehen von Parallelen

Gegeben: L und P.


- 1. Lege einen Winkel an L an.
- 2. Lege einen zweiten Winkel an den ersten.
- Verschiebe den ersten Winkel bis Punkt P und ziehe die gesuchte Parallele L'.

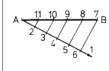
Errichten von Mittelloten

Gegeben: AB.


- Ziehe Kreisbögen mit Halbmesser r um A (r muss größer sein als ½ AB).
- 2. Ziehe Kreisbögen mit r um B.
- Die Verbindungslinie der Schnittpunkte ist das gesuchte Mittellot.

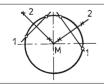
Fällen von Loten

Gegeben: L und P.


- 1. Ziehe beliebigen Kreisbogen um P (Schnittpunkte A und B).
- 2. Ziehe Kreisbogen mit r um A (r muss größer sein als ½ AB).
- 3. Ziehe Kreisbogen mit r um B.
- 4. Die Verbindungslinie des Schnittpunkts mit P ist das gesuchte Lot.

Halbieren von Winkeln

Gegeben: Winkel a.


- 1. Ziehe beliebigen Kreisbogen um S (Schnittpunkte A und B).
- Ziehe Kreisbogen mit r um A (r muss größer sein als ½ AB).
- Ziehe Kreisbogen mit r um B.
- 4. Die Verbindungslinie des Schnittpunktes mit S ist die gesuchte Winkelhalbierungslinie.

Teilen von Strecken (Verhältnisteilung)

Gegeben: AB.

- 1. Ziehe von A einen Strahl unter beliebigem Winkel.
- ... 6. Trage auf dem Strahl in der gewünschten Teilzahl gleich lange Strecken von beliebiger Größe ab.
- 7. Verbinde den letzten Endpunkt mit B.
- 11. Ziehe Parallelen zu B—6; man erhält dadurch die gewünschte Aufteilung der Strecke AB.

Aufsuchen eines Kreismittelpunktes

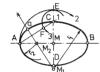
Gegeben: Kreislinie ohne Mittelpunkt.

- 1. Ziehe 2 beliebige Sehnen.
- Errichte darauf die beiden Mittellote. Ihr Schnittpunkt ist der gesuchte Mittelpunkt M.
 - (Sehnen möglichst unter 90° zueinander; dies erhöht die Genauigkeit der Konstruktion.)

2.16 Geometrische Grundlagen

Rundung an Winkel

Gegeben: Winkel ASB und Rundungshalbmesser r.


- 1. Trage r rechtwinklig zu den Schenkeln an.
- Ziehe die Parallelen zu AS und BS. Ihr Schnittpunkt M ist der gesuchte Rundungsmittelpunkt.
- Die Schnittpunkte der Lote von M auf die Schenkel a und b sind die Übergangspunkte.

Rundung an Kreis

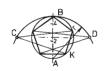
Gegeben: Kreisbogen B und Rundungshalbmesser r.

 Ziehe von M einen Strahl und trage von a aus r ab. Der Endpunkt ist der gesuchte Rundungsmittelpunkt M₁. a ist Übergangspunkt.

Ellipsenannäherungskonstruktion (Korbbogen)

Gegeben: Achsen AB und CD.

- 1. Ziehe AC.
- 2. Ziehe Kreisbogen mit Halbmesser MA um M.
- 3. Ziehe Kreisbogen mit CE um C.
- Errichte Mittellot auf AF. Schnittpunkte M₁ und M₂ sind die gesuchten Mittelpunkte für r₁ und r₂. a ist Übergangspunkt.



Sechseck - Zwölfeck

Geaeben: Kreis.

- 1. Ziehe Kreisbögen mit r um A.
- 2. Ziehe Kreisbögen mit r um B.
- 3. Ziehe Sechsecklinien.

Für Zwölfeck sind die Zwischenpunkte festzulegen. Einstich in C und D.

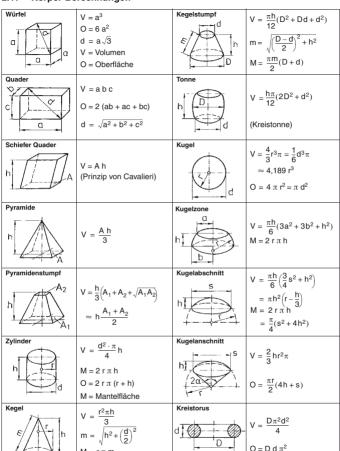
Regelmäßiges Vieleck im Kreis (z. B. Fünfeck)

Gegeben: Kreis.

Teile AB in 5 Teile (z. B. durch Verhältnisteilung).

Ziehe Kreisbogen mit $r = \overline{AB}$ um A.

Verbinde C und D mit 1 und 3 (sämtliche ungeraden Zahlen); die Schnittpunkte mit dem Kreis ergeben das gesuchte 5-Eck. Bei Vielecken mit **gerader** Eckenzahl ist C und D mit 2, 4, 6 usw. (sämtlichen **geraden** Zahlen) zu verbinden.



Regelmäßiges Vieleck aus gegebener Seitenlänge (z. B. Fünfeck)

Gegeben: AB.

Ziehe Kreisbögen mit $r=\overline{AB}$ um A bzw. B. Schnitt in C. Kreisbogen mit r um D ergibt Punkt 3. Suche durch Probieren mit Stechzirkel die Punkte 1, 2, 4 und 5 (gleiche Abstände). Kreisbogen um C mit \overline{C} -5 ergibt 5' und 7'. 5' ist Mittelpunkt eines Fünfecks. 7' ist Mittelpunkt eines 7-Ecks (usw.). Ziehe Kreis um 5' und trage \overline{AB} 5-mal ab. Man erhält so das gesuchte 5-Eck.

2.17 Körper-Berechnungen

 $Q = r \pi (r + m)$

2.18 Schwerpunktlagen von homogenen Körpern

2.18 Schwerpunktlagen von homogenen Körpern						
Prisma, Zylinder	$z_S = \frac{h}{2}$	Zylinderhuf h	$x_{S} = \frac{3\pi r}{16}$ $z_{S} = \frac{3\pi h}{32}$			
Abgeschr. Kreiszylinder	$x_{S} = \frac{r^{2} \tan \alpha}{4h}$ $z_{S} = \frac{h}{2} + \frac{r^{2} \tan^{2} \alpha}{8h}$	Kugelabschnitt	$z_S = \frac{3}{4} \frac{(2r-h)^2}{(3r-h)}$			
Pyramide, Kegel	$z_s = \frac{h}{4}$	Halbkugel	$z_S = \frac{3}{8} \cdot r$			
Kegelstumpf	$z_{S} = \frac{h}{4}.$ $\frac{R^{2} + 2Rr + 3r^{2}}{R^{2} + Rr + r^{2}}$	Kugelausschnitt	$z_{S} = \frac{3r(1 + \cos \alpha)}{8}$ $= \frac{3(2r - h)}{8}$			
Keil b	$z_{S} = \frac{h}{2} \frac{a+b}{2a+b}$	Rotationsparaboloid	$z_S = \frac{h}{3}$			
Keilstumpf	$z_{S} = \frac{h}{2} \cdot \frac{ac + ad + bc + 3bd}{2ac + ad + bc + 2bd}$	Ellipsoid S h	$z_S = \frac{3}{8} \cdot h$			

2.19 Schwerpunktlagen von Linien

1			
b y	$z_S = \frac{h^2}{2(b+h)}$	So r	$z_S = \frac{2r}{\pi}$
s y	$y_S = \frac{b^2}{2(b+h)}$ $z_S = \frac{h^2}{2(b+h)}$	2 1 59 220 r	$z_S = \frac{r \sin \alpha}{\alpha}$
So at y	$y_S = \frac{a^2 + b^2 \cos \alpha}{2(a+b)}$ $z_S = \frac{b^2 \sin \alpha}{2(a+b)}$	beliebiger flacher Bogen	z _S ≈2h/3
h_1 S_o h_2 b y	$y_{S} = \frac{b(b/2 + h_{2})}{b + h_{1} + h_{2}}$ $z_{S} = \frac{h_{1}^{2} + h_{2}^{2}}{2(b + h_{1} + h_{2})}$	5° y	$z_{S}=\frac{a}{6}\sqrt{3}$
n ₁ b h ₂ y	$y_{S} = \frac{b(b/2 + h_{2})}{b + h_{1} + h_{2}}$ $z_{S} = \frac{h_{1}^{2} - h_{2}^{2}}{2(b + h_{1} + h_{2})}$	So h y	$y_{S} = \frac{a'(a+a') - b'(b+b')}{2(a+b+c)}$ $z_{S} = \frac{h(a+b)}{2(a+b+c)}$
S y	$z_S = \frac{a^2 - 2r^2}{2a + \pi r}$	S° h	$y_{S} = \frac{a+c}{2}$ $z_{S} = \frac{h}{2}$

2.20 Ableitungen und Differentiale

Differentiationsregeln

Ableitung von Summe und Differenz

$$y = u(x) \pm v(x);$$
 $y' = u'(x) \pm v'(x)$

Ableitung von Produkt und Quotient

$$y = u(x) \cdot v(x);$$
 $y' = u(x) \cdot v'(x) + v(x) \cdot u'(x)$

$$y = \frac{u(x)}{v(x)}; \qquad \qquad y' = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2}$$

Kettenregel

$$y = f(z);$$
 $z = g(w);$ $w = h(x)$

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dw} \cdot \frac{dw}{dx}$$

Differentialformen der Grundfunktionen

Funktion	1. Ableitung
y = a	y' = 0
y = x	y' = 1
y = mx + b	y'= m
$y = ax^n$	$y' = n \cdot a \cdot x^{n-1}$ $y' = 1/(2 \cdot \sqrt{x})$
$y=\sqrt{x}$	$y' = 1/(2 \cdot \sqrt{x})$
y = 1/x	$y' = -1/x^2$
$y = a^x$	$y' = a^x \cdot \ln a$
$y = e^x$	$y' = e^x$ $y' = a \cdot e^{ax}$
y = e ^{ax}	y'=a·e ^{ax}
$y = x^x$	$y' = x^x (1 + \ln x)$
$y = log_a x$	$y' = \frac{1}{x} \cdot \log_a e$
y = Inx	$y' = \frac{1}{x}$

Funktion	1. Ableitung
$y = \sin x$	y' = cos x
y = sin (ax)	$y' = a \cdot \cos(ax)$
y = cos x	y' = - sin x
y = tan x	$y' = 1/\cos^2 x$
$y = \cot x$	$y' = -1/\sin^2 x$
y = In sin x	y' = cot x
y = In tan x	y' = 2/sin (2x)
y = arcsin x	$y'=1/\sqrt{1-x^2}$
y = arccos x	$y' = -1/\sqrt{1-x^2}$
y = arctan x	$y' = 1/(1 + x^2)$
y = arccot x	$y' = -1/(1 + x^2)$
y = sinh x	y' = cosh x

2.21 Grundintegrale

$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{für}[n \neq -1]$	$\int \!\! \cosh x \; dx = \sinh x + C$
$\int \frac{\mathrm{d}x}{x} = \ln x + C$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C$
$\int e^x dx = e^x + C$	$\int \frac{dx}{\cosh^2 x} = \tanh x + C$
$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$	$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C = -\arccos x + C$
$\int \ln x dx = x \ln x - x + C$	$\int \frac{dx}{\sqrt{x^2 + 1}} = \operatorname{arsinh} x + C$ $= \ln(x + \sqrt{x^2 + 1}) + C$
$\int a^{bx} dx = \frac{1}{b \ln a} a^{bx} + C$	$\int \frac{dx}{\sqrt{x^2 - 1}} = \operatorname{arcosh} x + C$ $= \ln(x + \sqrt{x^2 - 1}) + C$
$\int a^x \ln a dx = a^x + C$	$\int \frac{dx}{1+x^2} = \arctan x + C = -\operatorname{arccot} x + C$
$\int \sin x dx = -\cos x + C$	$\int \frac{dx}{1 - x^2} = \operatorname{artanh} x + C = \frac{1}{2} \ln \frac{1 + x}{1 - x} + C$ $\operatorname{für} \left[x^2 < 1 \right]$
$\int \cos x dx = \sin x + C$	$= \operatorname{arcothx} + C = \frac{1}{2} \ln \frac{x+1}{x-1} + C$ $\operatorname{für} [x^2 > 1]$
$\int \frac{\mathrm{d}x}{\sin^2 x} = -\cot x + C$	$\int \frac{\sqrt{1+x}}{\sqrt{1-x}} dx = \arcsin x - \sqrt{1-x^2} + C$
$\int \frac{\mathrm{d}x}{\cos^2 x} = \tan x + C$	$\int \frac{\mathrm{d}x}{x\sqrt{x^2 - 1}} = \arccos \frac{1}{x} + C$
$\int \sinh x dx = \cosh x + C$	$\int \frac{dx}{x\sqrt{1\pm x^2}} = -\ln\frac{1+\sqrt{1\pm x^2}}{x} + C$

2.22 Zeichen der Mengenlehre

Zeichen	Verwendung	Sprechweise
€	x ∈ M	x ist Element von M
∉	x ∉ M	x ist nicht Element von M
	$x_1, \ldots, x_n \in A$	x_1, \dots, x_n sind Elemente von A
{ }	$\{x \phi\}$	Die Menge (Klasse) aller x mit ϕ
{, ,}	$\{x_1, \ldots, x_n\}$	Die Menge mit den Elementen x_1, \dots, x_n
⊂ oder ⊆	$\begin{array}{c} A \subset B \\ oder \ A \subseteq B \end{array}$	A ist Teilmenge von B, A sub B, B ist Obermenge von A
≨	A⊊B	A ist echt enthalten in B
\cap	$A \cap B$	A geschnitten mit B, A Durchschnitt B
U	$A \cup B$	A vereinigt mit B, A Vereinigung B
- oder (- A oder (A	Komplement von A
- oder C oder \	A – B oder CAB oder A\B	A ohne B, A vermindert um B, Differenzmenge von A und B, relatives Komplement von B bez. A
Δ	ΑΔΒ	Symmetrische Differenz von A und B
Ø	A ∩ B = Ø	leere Menge A, B sind disjunkt
(,)	⟨x, y⟩	Paar von x und y
{, }	{x, y φ}	Die Relation zwischen x, y mit φ
×	A×B	Kartesisches Produkt von A und B, A Kreuz B
-1	R ⁻¹	Umkehrrelation von R, Inverse Relation zu R
۰	R∘S	Relationenprodukt von R und S, R verkettet mit S
D	D (f)	Definitionsbereich von f
w	W (f)	Wertebereich von f
I	f A	Einschränkung von f auf A
glz	A glz B	A ist gleichzahlig (gleichmächtig, äquivalent) zu B
card	card A	Kardinalzahl (Mächtigkeit, Anzahl) von A
N oder N		Menge der natürlichen Zahlen
ℤ oder Z		Menge der ganzen Zahlen
Q oder Q		Menge der rationalen Zahlen
R oder R		Menge der reellen Zahlen
C oder C		Menge der komplexen Zahlen

2.23 Zahlensysteme in der Datenverarbeitung

Numerische und alphanumerische Daten und Befehle werden in Digitalrechnern als Kombination von Binärzeichen dargestellt, die üblicherweise in Worten fester Länge zusammengefasst werden, wobei Wortlängen von 4. 8. 16. 32. 48 und 64 Bits üblich sind.

Numerische Daten lassen sich in der Stellenschreibweise (Festkommazahl) oder der Gleitkommaschreibweise (Gleitkommazahl) darstellen.

Die alphanumerischen Daten sind meistens zeichenweise in codierter Form in einem Wort aneinander gereiht, die am häufigsten verwendete Codierung erfolgt in 8 Bits = 1 Byte.

Bei der Festkommazahl ist der betragsmäßig größte darstellbare Wert durch die Wortlänge begrenzt. Dies ist z.B. bei einem Rechner im 16-Bit-Format 2¹⁶– 1 = 32 767. Wird ein größerer Zahlenbereich benötigt, so können Doppelwörter gebildet werden.

1	Vorzeichen	2 ⁿ⁻¹	2 ⁿ⁻²	 	2 ²	21	2 ⁰		Vorzeichen	Exponent	Mantisse
			_	 	_	_	_	l			

Festkommadarstellung

Gleitkommadarstellung

Bei der Gleitkommazahl bestimmen die Anzahl der Bits der Mantisse die Genauigkeit der Zahl und die des Exponenten die Größe des Zahlenbereiches.

Die Eigenschaften eines Zahlensystems sind durch den Ziffernvorrat und die Stellenschreibweise gekennzeichnet, wobei der Wert der Ziffer Z von der Stellung innerhalb der Ziffernreihe abhängt (Stellenwertsystem). Positive ganze Zahlen N_B lassen sich bei der Wahl einer Basis B (Grundzahl) in folgender allgemeiner Form darstellen:

$$N_B = \sum_{i=0}^{n-1} Z_i \cdot B^i = Z_{n-1} \cdot B^{n-1} + ... + Z_1 \cdot B^1 + Z_0 \cdot B^0$$

mit $Z_i = 0, 1, 2, ..., (B-1)$ als Ziffernvorrat zur Basis B.

Damit ergeben sich z. B. für das Dezimalsystem (Ziffernvorrat $Z_i = 0, 1, 2, ..., 9$) oder für das Dualbzw. Binärsystem (Ziffernvorrat $Z_i = 0,1$) folgende Darstellungsformen:

Dezimalsystem: (Stellenzahl n = 3) $N_{10} = 257 = 2 \cdot 10^2 + 5 \cdot 10^1 + 7 \cdot 10^0$

Dualsystem: (Stellenzahl n = 5) $N_2 = 10101 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$

Beispiele für Zahlensysteme verschiedener Basen sind in der nachstehenden Tabelle dargestellt.

Dezimal- system	Hexa- dezimal- system	Oktal- system	Dual- system	Tetraden- dar- stellung	BCD- Darstellung	Excess-3 oder Stibitz- Code	Aiken- Code	1 aus 10-Code
0	0	0	0	0000	0000	0011	0000	000000001
1	1	1	1	0001	0001	0100	0001	000000010
2	2	2	10	0010	0010	0101	0010	000000100
3	3	3	11	0011	0011	0110	0011	0000001000
4	4	4	100	0100	0100	0111	0100	0000010000
5	5	5	101	0101	0101	1000	1011	0000100000
6	6	6	110	0110	0110	1001	1100	0001000000
7	7	7	111	0111	0111	1010	1101	0010000000
8	8	10	1000	1000	1000	1011	1110	010000000
9	9	11	1001	1001	1001	1100	1111	1000000000
10	A	12	1010	1010	00010000	01000011	00010000	00000000100000000001
11	В	13	1011	1011	00010001	01000100	00010001	00000000100000000010
12	C	14	1100	1100	00010010	01000101	00010010	0000000100000000100
13	D	15	1101	1101	00010011	01000110	00010011	0000000100000001000
14	E	16	1110	1110	00010100	01000111	00010100	0000000100000010000
15	F	17	1111	1111	00010101	01001000	00011011	0000000100000100000

Da im Hexadezimalsystem die Dezimalziffern von 0...9 nicht ausreichen, werden die fehlenden Ziffern 10 bis 15 durch die großen Buchstaben A bis F ersetzt.

Die allgemeine Form gebrochener Zahlen ist

$$\mathsf{R}_{\mathsf{B}} = \sum_{i=0}^{m} \mathsf{Z}_{i} \cdot \mathsf{B}^{-i} = \mathsf{Z}_{1} \cdot \mathsf{B}^{-1} + \mathsf{Z}_{2} \cdot \mathsf{B}^{-2} + \ldots + \mathsf{Z}_{m} \cdot \mathsf{B}^{-m}.$$

Zahlen lassen sich von einem Zahlensystem (Quellensystem) in ein anderes Zahlensystem (Zielsystem) umwandeln, wobei immer gilt:

$$N_{Quellensystem} = N_{Zielsystem}$$

Folgende Methoden sind anwendbar:

a) Divisionsmethode

Bei der Divisionsmethode wird ausschließlich mit Zahlen der Quellendarstellung gearbeitet. Sie basiert auf der Division der Zahl des Quellensystems N_0 durch die größtmöglichen Potenzen B_Z^{n-1} der Zielbasis bei gleichzeitiger Abspaltung des jeweiligen ganzzahligen Quotienten, der im Divisionsschritt erzeugt wird. Der verbleibende Rest wird durch die nächstniedrigere Potenz B_Z^{n-2} dividiert – usw. – bis die nullte Potenz abgearbeitet ist.

$$N_{Ouelle} = N_{Ziel}$$

$$N_0 = Z_{n-1} \cdot B_7^{n-1} + Z_{n-2} \cdot B_7^{n-2} + ... + Z_1 \cdot B_7^{-1} + Z_0 \cdot B_7^{-1}$$

1. Schritt:
$$N_0/B_z^{n-1} = Z_{n-1} + Rest_1$$
; $(Z_{n-1} = 1. Ziffer von N_z)$

2. Schritt: Rest₁/B₇ⁿ⁻²= Z_{n-2} + Rest₂;
$$(Z_{n-2} = 2. \text{ Ziffer von N}_7)$$

usw.

Beispiel: Die Dezimalzahl 6345₁₀ soll in eine Oktalzahl umgewandelt werden.

b) Summandenmethode

Eine weitere Umrechnungsmethode basiert darauf, dass eine Quellenzahl

$$\begin{split} &N_{Quelle} = N_{Ziel} \\ &N_{Q} = \sum_{i=0}^{n-1} Z_{i} \cdot B_{Z}^{i} = \sum_{i=1}^{n-1} Z_{1} \cdot B_{Z}^{i} + Z_{0} \cdot B_{Z}^{0}; \\ &B_{Z}^{0} = 1 \end{split}$$

 $\text{Summanden von der Form } \sum_{i=1}^{n-1} Z_i \cdot B_Z^i \text{ aufweist, von denen jeder } B_Z \text{ als Faktor enthält.}$

Es lässt sich also schreiben: $N_Q = B_Z \cdot \sum_{i=1}^{n-1} Z_1 \cdot B_Z^{i-1} + Z_0$

Dividiert man N_O durch B_Z , so erhält man den ganzzahligen Anteil

$$N_i = \sum_{i=1}^{n-1} Z_i \cdot B_Z^{i-1} + \text{Rest } Z_0 \quad (Z_0 = \text{letzte Ziffer von } N_Z)$$

Den ganzzahligen Anteil kann man wieder darstellen als:

$$N_1 = \sum_{i=0}^{n-1} Z_i \cdot B_Z^{i-1} + Z_1 \cdot B_Z^{0};$$
 $B_Z^{0} = 1$

Dividiert man wiederum durch B_2 , so erhält man wieder einen ganzzahligen Anteil N_2 und den Rest Z_1 (vorletzte Ziffer der Zahl des Zielsystems) usw.

Beispiel: Die Dezimalzahl 6345₁₀ soll in eine Oktalzahl umgewandelt werden.

Die gesuchte Oktalzahl ist 143118 (634510 = 143118).

Diese Umwandlungsmethode eignet sich besonders für ein Rechenprogramm.

Für Zahlensysteme zur Basis 2ⁿ, zum Beispiel Zahlendarstellungen der Basis 2, 8, 16, bestehen untereinander einfachere Umrechnungsmethoden. Sie basieren darauf, dass die Quell- und Zielbasis in einem Zweierpotenzverhältnis zueinander stehen. Mit einer dreistelligen Dualzahl wird der Ziffernvorrat des Oktalsystems, mit einer vierstelligen Dualzahl der des Hexadezimalsystems erfasst. Die Umwandlung einer Dualzahl in eine Oktalzahl oder eine Hexadezimalzahl wird einfach durch das Zusammenfassen von Dreier- oder Vierergruppen der Dualzahl erreicht.

Beispiel: Wandlung einer Dualzahl 11010111112 in eine Oktal- bzw. Hexadezimalzahl:

Grundrechenarten im Dualsystem

Für die arithmetischen Operationen Addieren, Subtrahieren und Multiplizieren gelten die in der nachstehenden Tabelle aufgeführten Rechenregeln.

Addition	Ergebnis	Übertrag (Bit)	Subtraktion	Ergebnis	Übertrag (Bit)	Multiplikation	Ergebnis	Übertrag (Bit)
0 + 0	0	0	0 - 0	0	0	0 · 0	0	0
0 + 1	1	0	0 – 1	1	-1 ¹⁾	0 · 1	0	0
1 + 0	1	0	1 – 0	1	0	1 · 0	0	0
1 + 1	0	+11)	1 – 1	0	0	1 · 1	1	0

Bezieht man bei der Anwendung der Operationen bei mehrstelligen Zahlen den Übertrag (das "Borgen") mit in die Rechnung ein, so gelten die gleichen Regeln wie beim Dezimalsystem.

Quelle: Koch, G.; Reinhold, U.: Einführung in die Informatik für Ingenieure und Naturwissenschaftler, Teil 1, München: Hanser-Verlag 1977.

3 Technische Statistik

Die Aufgabe der Statistik besteht in der Beschreibung von Mengen gleichartiger Elemente mit bestimmten unterschiedlichen Merkmalswerten durch statistische Kennwerte, die objektive Vergleiche und Bewertungen ermöglichen. Des Weiteren sollen Aussagen über statistische Kennwerte größerer Mengen (Grundgesamtheit) aufgrund der Auswertung von relativ wenigen Einzeldaten (Stichprobe) gemacht werden.

Die wichtigsten Anwendungsgebiete sind die statistische Qualitätskontrolle, die Versuchsergebnis-Auswertung und die Fehlerrechnung.

3.1 Begriffe und Größen der Statistik

Grundgesamtheit: Menge aller einer statistischen Betrachtung (Messung, Beobachtung)
zugrunde liegenden Einheiten oder Ereignisse, deren interessierender

Merkmalswert durch statistische Kennwerte beschrieben werden soll.

Stichprobe: Die aus der Grundgesamtheit zur Ermittlung von bestimmten Merkmalswerten entnommene Menge. Sie soll Aussagen über statistische Kennwerte

der Grundgesamtheit aufgrund der Auswertung der Stichprobe ermöglichen.

Urliste: Liste der ursprünglichen Merkmalswerte (z.B. Messwerte) einer Stichprobe.

	T	
Größe	Definition	Erläuterungen, Beziehungen
N	Umfang der Grundgesamtheit	Die Grundgesamtheit wird auch als Population bezeichnet
n	Anzahl der Merkmalswerte in der Stichprobe	Die Merkmalswerte sind in der Urliste erfasst
x _i	Einzelner Merkmalswert, z.B. Messwert	Ordnungszahl der Merkmalswerte i = 1, 2, 3,, n
x	Mittelwert der Merkmalswerte in der Stichprobe	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
R	Spannweite der Merkmalswerte	$R = x_{max} - x_{min}$
k	Anzahl der Klassen, in die R aufgeteilt wird	Anhaltswert $k = \sqrt{n}$ $k \ge 10$ für $n \le 100$ $k \ge 20$ für $n \le 10^5$
Δx	Klassenbreite	$\Delta x = R/k$
x _j	Werte der Klassenmitten, arithmetischer Mittelwert der Klassengrenzen	Ordnungszahl der Klassen j = 1, 2, 3,, k
n _j	Besetzungszahlen der einzelnen Klassen, absolute Häufigkeit	Die Besetzungszahl n, gibt an, wie viel Werte der Urliste in die j-te Klasse fallen $\sum_{j=1}^k n_j = n$
h _j	Relative Häufigkeit in der j-ten Klasse	$h_j = n_j / n;$ $\sum_{j=1}^k h_j = 1$

3.1 Begriffe und Größen der Statistik

Größe	Definition	Erläuterung, Beziehungen
Gj	kumulierte Besetzungszahl	G _j ist die bis zu der j-ten Klasse aufsummierte Besetzungszahl
		$G_j = \sum_{i=1}^{J} n_i$
H _j	Häufigkeitssumme	$H_j = \frac{G_j}{n} = \sum_{i=1}^j h_i$
x ₀	Bezugswert der Grundgesamtheit	Meistens angenäherter gerundeter Mittelwert oder Mitte der Klasse mit größter Häufigkeit $x_0 \approx \overline{x}$ $d_i = x_i - x_0$ $\overline{x} = x_0 + \frac{1}{n} \sum_{i=1}^{n} (x_i - x_0)$
		$\bar{x} = x_0 + \bar{d}$
s	Standardabweichung der Stichprobe (Streuung) Wurzel aus der Varianz	$s = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - x_0 \sum_{i=1}^{n} x_i \right)}$ s nähert sich σ für große Werte von n
s ²	Varianz der Stichprobe (Streuungsquadrat)	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - x_{0})^{2}$
		$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} d_i^2$
		$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - x_{0} \cdot \sum_{i=1}^{n} x_{i} \right)$
μ	Mittelwert der Grundgesamtheit, Erwartungswert	Der arithmetische Mittelwert x̄ der Stichprobe ist ein erwartungstreuer Schätzwert für den Erwartungswert μ der Grundgesamtheit.
σ	Standardabweichung der Grundgesamtheit	Maß für die Schwankung der Einzelwerte um den Mittelwert.
u	Streufaktor	Es lassen sich bestimmte Bereiche $\mu \pm u \cdot \sigma$ abgrenzen, in denen P % der Meßwerte liegen.
F(x)	Verteilungsfunktion, Summenfunktion	Die Verteilungsfunktion beschreibt den Zusammenhang zwischen der Zufallsvariablen x und der Häufigkeitssumme oder Wahrscheinlichkeit für Werte ≤ x. Bei empirischen Verteilungen entspricht sie der Summenkurve.
f(x)	Häufigkeitsdichtefunktion	$f(x) = \frac{dF(x)}{dx}$
		richt als stetige Funktion der Darstellung der nprobe durch eine Treppenkurve (Histogramm).

3.2 Beispiel für eine statistische Auswertung

Eine gefertigte Charge von Lagerkugeln, die 8 mm Durchmesser aufweisen sollen (Grundgesamtheit), war darauf zu prüfen, ob die Kugeln den verlangten Durchmesser aufweisen und welche Abweichungen davon vorlagen.

Es wurden der Charge 200 Kugeln als **Stichprobe** entnommen – unter der Annahme, dass diese Stichprobe ein hinreichend genaues Bild der Grundgesamtheit bietet – und deren Durchmesser x (**Merkmalswert**) auf 0,001 mm gemessen.

Aus der Urliste der 200 Messwerte ergab sich innerhalb der Messgenauigkeit tatsächlich als Mittelwert

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{200} \sum_{i=1}^{200} x_i = 8,000 \text{ mm}$$

der gewünschte Sollwert.

Um das Vorliegen kleinerer und größerer Durchmesser beurteilen zu können, müssen die 200 gemessenen Werte übersichtlich in Erscheinung treten. Als größter Durchmesser wurde $x_{\max} = 8,013$ mm und als kleinster $x_{\min} = 7,987$ mm gefunden.

Damit betrug die Spannweite der Merkmalswerte

$$R = x_{max} - x_{min} = 0.026 \text{ mm},$$

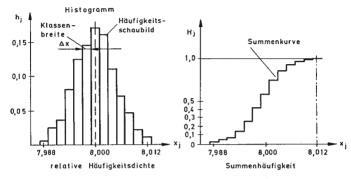
die in k = 13 Klassen mit einer Klassenbreite von Δx = 0,002 mm eingeteilt wurde.

Damit ließ sich aus der Urliste von 200 Durchmessermessungen folgende Klasseneinteilung vornehmen und es wurde die relative Häufigkeitsdichte h_i und die Summenhäufigkeit H_i ermittelt.

Klasseneinteilung und Häufigkeit aus der Urliste von 200 Messungen.

j	Klasseneinteilung	xi	n _i	h _i	Hi
	X _{unten} X _{oben}	mm			
1	7,987 bis unter 7,989	7,988	1	0,005	0,005
2	7,989 bis unter 7,991	7,990	5	0,025	0,030
3	7,991 bis unter 7,993	7,992	7	0,035	0,065
4	7,993 bis unter 7,995	7,994	16	0,080	0,145
5	7,995 bis unter 7,997	7,996	25	0,125	0,270
6	7,997 bis unter 7,999	7,998	29	0,145	0,415
7	7,999 bis unter 8,001	8,000	34	0,170	0,585
8	8,001 bis unter 8,003	8,002	32	0,160	0,745
9	8,003 bis unter 8,005	8,004	22	0,110	0,855
10	8,005 bis unter 8,007	8,006	14	0,070	0,925
11	8,007 bis unter 8,009	8,008	9	0,045	0,970
12	8,009 bis unter 8,011	8,010	4	0,020	0,990
13	8,011 bis unter 8,013	8,012	2	0,010	1,000

 Σ 200 Σ 1.000


Zur Bestätigung des Mittelwertes werden bei gleich breiten Klassen die Klassenmitten x_j mit ihren Häufigkeiten h_i als Gewichtungsfaktoren multipliziert

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} n_j \cdot x_j = \sum_{j=1}^{k} h_j \cdot x_j$$

 $\bar{x} = 8.000 \text{ mm}$

Die Darstellung der relativen Häufigkeit als Funktion der Klassenmitten durch eine Treppenkurve der Häufigkeitsdichte der Stichprobe wird auch als Histogramm bezeichnet. Sie gibt ein Bild der Häufigkeitsverteilung als Näherung für die Verteilungsfunktion.

Die Summenkurve hat gegenüber dem Häufigkeitsschaubild den Vorteil, dass für jedes beliebige Intervall leicht abgelesen werden kann, wie viel Prozent der Meßwerte in ihm liegen.

Varianz der Stichprobe:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \sum_{j=1}^{k} n_j \cdot (x_j - \bar{x})^2$$

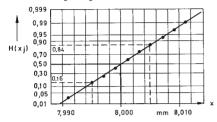
 $\textbf{Standardabweichung der Stichprobe:} \quad \textbf{S} \quad = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \; (x_i - \bar{x})^2} \quad = \sqrt{\frac{1}{n-1} \sum_{i=1}^{k} \; n_j \cdot (x_j - \bar{x})^2}$

Es ist in diesem Fall $x_0 = \bar{x}$ gesetzt worden.

Rechenschema für die Standardabweichung

j	x _j	n _j	$x_j - \bar{x}$	$n_j(x_j - \bar{x})^2$
1	7,988	1	-0,012	0,000144
2	7,990	5	-0,010	0,000500
3	7,992	7	-0,008	0,000448
4	7,994	16	-0,006	0,000576
5	7,996	25	-0,004	0,000400
6	7,998	29	-0,002	0,000116
7	8,000	34	0,000	0,0
8	8,002	32	+0,002	0,000128
9	8,004	22	+0,004	0,000352
10	8,006	14	+0,006	0,000504
11	8,008	9	+0,008	0,000576
12	8,010	4	+0,010	0,000400
13	8,012	2	+0,012	0,000288
		Σ 200		Σ 0,004432

Varianz:


$$s^{2} = \frac{1}{n-1} \sum_{j=1}^{k} n_{j} (x_{j} - \bar{x})^{2}$$
$$= \frac{1}{199} \cdot 0,004432$$

Standardabweichung:

s = 0,0047 mm

Darstellung im Wahrscheinlichkeitsnetz:

Die Werte der Summenhäufigkeit H_j trägt man in das Wahrscheinlichkeitsnetz als Ordinaten über den oberen Klassengrenzen ein. Im Wahrscheinlichkeitsnetz werden die Ordinaten der Summenhäufigkeit so verzerrt, dass die S-förmige Summenkurve in eine Gerade übergeht, sofern eine Normalverteilung vorliegt.

Man kann dieser Darstellung den Mittelwert bei 50% Häufigkeitssumme

$$\bar{x} = 8.000 \text{ mm}$$

und die doppelte **Standardabweichung** aus den Abszissenwerten bei 16 % und 84 % Häufigkeitssumme entnehmen

$$2 s = x_{(H=0,84)} - x_{(H=0,16)}$$

 $2 s = 8,005 - 7,995 = 0,010$

$$s = 0.005$$
.

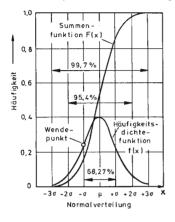
Im Rahmen der Ablesegenauigkeit stimmt dieser Wert gut mit dem rechnerisch ermittelten Wert überein. Der Variationskoeffizient gibt die auf den Mittelwert bezogene Standardabweichung an.

$$V_x = \frac{s}{\bar{x}} = \frac{0,005}{8,000} = 0,00063$$

Hinweis für die Auswertung von Messreihen

Entnimmt man aus ein und derselben Grundgesamtheit mit dem Mittelwert μ und der Standardabweichung σ viele Stichproben von je n Werten, so streuen die Mittelwerte $\tilde{x}_1; \ \tilde{x}_2 \ldots$ der Stichproben um den wahren Wert von μ

$$\bar{x} \; = \; \mu \pm u \cdot \frac{\sigma}{\sqrt{n}} \; ; \qquad \text{u siehe Tabelle auf Seite 54} \label{eq:xi}$$


Wenn nur die Werte \bar{x} und s einer Stichprobe bekannt sind und eine Aussage über den wahren Mittelwert μ der Grundgesamtheit gemacht werden soll, so kann ein sogenannter Vertrauensbereich angegeben werden, in dem μ mit P % Wahrscheinlichkeit liegt

$$\mu \; = \; \overline{x} \pm t \cdot \frac{s}{\sqrt{n}} \; \; .$$

n	t-Werte für P =				
	90%	95%	99%		
2	6,31	12,7	63,7		
3	2,92	4,30	9,92		
5	2,13	2,78	4,60		
10	1,83	2,26	3,25		
20	1,73	2,09	2,86		
50	1,68	2,01	2,68		
	1,65	1,96	2,58		

3.3 Normal- oder Gauß-Verteilung

Wenn viele voneinander unabhängige Zufallseinflüsse auf den Merkmalswert eines Kollektivs (Grundgesamtheit) einwirken und nicht einer dominiert, stellt sich in der Regel eine Gauß'sche Normalverteilung ein, die – wie im vorstehend dargestellten Diagramm für die Stichprobe zu sehen ist – im Wahrscheinlichkeitsnetz für die Summenhäufigkeit eine Gerade ergibt. Die im Beispiel dargestellten Treppenkurven für die relative Häufigkeitsdichte und die Summenhäufigkeit gehen dann in die stetigen Verläufe der Häufigkeitsdichtefunktion f(x) und der Summenfunktion F(x) mit dem Mittelwert u und der Standardabweichung σ über.

Die Normalverteilung ist symmetrisch um μ und weist für $x=\mu\pm\sigma$ je einen Wendepunkt auf. Je größer σ ist, umso weiter sind diese beiden Punkte voneinander entfernt. Sie beginnt bei $x=-\infty$ und endet bei $x=+\infty.$ Die gesamte Fläche unter der "Glockenkurve" entspricht $1=100\,\%.$ Durch vielfache Werte der Standardabweichung lassen sich Bereiche $x=\mu\pm u\cdot \sigma$ abgrenzen, in denen P % der x-Werte liegen.

Wie der nachfolgenden Tabelle zu entnehmen ist, liegen in dem Bereich von $\pm 3 \cdot \sigma$ schon 99,7% aller Werte.

Sowohl die Dichtefunktion f(x) als auch die Summenfunktion F(x) sind durch den Mittelwert μ und die Standardabweichung σ der Verteilung eindeutig festgelegt.

Wertehäufigkeit innerhalb ± u · σ

u	1,00	1,28	1,64	1,96	2,00	2,33	2,58	3,00	3,29
P %	68,27	80	90	95	95,4	98	99	99,7	99,9

Die Dichtefunktion f(x) kann mathematisch beschrieben werden durch

$$f(x;\,\mu,\sigma) = \frac{1}{\sqrt{2\cdot\pi}\cdot\sigma}\cdot e^{-\frac{(x-\mu)^2}{2\cdot\sigma^2}}\;;\quad \text{Generalisierte Koordinate}\quad t = \frac{x-\mu}{\sigma}$$

die Summenfunktion ergibt sich aus

$$F(x;\,\mu,\,\sigma)\,=\,\int\limits_{-\infty}^{x}f(x;\,\mu,\,\sigma)dx\;.$$

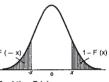
Da dieses Integral nicht elementar auswertbar ist, ist es notwendig, die Funktion $F(x; \mu, \sigma)$ zu tabellieren.

Für die **Standard**-Normalverteilung mit dem Mittelwert μ = 0 und der Standardabweichung σ = 1 F(x; 0, 1) = F(x)

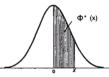
$$\Phi^*(x) = F(x) - \frac{1}{2}$$

erfolgt. Das ist deshalb sinnvoll, weil bei vielen Auswertungen als Merkmalswert lediglich die Abweichungen von einem gegebenen bzw. bekannten Mittelwert interessant sind.

Tabelle der Funktion Φ^* (x)


$x \rightarrow \Phi^*(x)$

$$\Phi^{\star}(x) \rightarrow x$$


X	$\Phi^*(x)$	Φ* (x)	х	Φ* (x)	Х
0,1 0,2 0,3 0,4 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,4 1,5 1,7 1,8 1,9 2,0 2,1 2,2 2,3 2,4 2,5 2,9	0,000 0,040 0,079 0,118 0,191 0,226 0,258 0,341 0,364 0,341 0,364 0,403 0,419 0,455 0,465 0,465 0,463 0,477 0,482 0,486 0,492 0,494 0,496 0,497 0,498 0,499	0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,07 0,11 0,12 0,14 0,17 0,18 0,19 0,21 0,22 0,23 0,24	0,00 0,03 0,08 0,10 0,15 0,18 0,15 0,22 0,28 0,31 0,36 0,31 0,47 0,52 0,55 0,55 0,64	0.25 0.26 0.27 0.28 0.29 0.31 0.33 0.34 0.35 0.36 0.37 0.42 0.42 0.44 0.45 0.44 0.45 0.49	0,67 0,71 0,74 0,81 0,84 0,92 0,95 1,04 1,08 1,13 1,18 1,23 1,28 1,34 1,41 1,45 1,64 1,75 2,33

Gesamte Fläche unter der Glockenkurve

 $F(x = +\infty) = 1$

Funktion F (x)

Funktion Φ^* (x)

Da die **Standard**-Normalverteilung zu dem Mittelwert $\mu = 0$ symmetrisch ist, genügt es, die Funktion Φ^* (x) nur für positive Werte von x zu tabellieren. Die Summenhäufigkeit zwischen den Werten + x ist dann:

$$\int_{0}^{+x} f(x; 0,1) dx = 2 \cdot \Phi^{*}(x)$$

Anmerkung: Ist die aus einer Grundgesamtheit entnommene Stichprobe n im Verhältnis zur Grundgesamtheit N sehr groß, so können die Schätzwerte für den Mittelwert \bar{x} und die Standardabweichung s der Stichprobe in erster Näherung mit den echten Parametern für den Mittelwert μ und die Standardabweichung σ der Grundgesamtheit gleich gesetzt werden. Die Kenntnis von σ kann man auch benutzen, um die natürlichen Toleranzen eines Prozesses zu bestimmen, d. h. ein Intervall abzugrenzen, das (fast) die gesamte Verteilung enthält. Man wählt hierfür in der Praxis häufig $\mu \pm 3$ σ (99,7%).

3.4 Weibull-Verteilung

Für die Auswertung von Lebensdauern technischer Produkte hat sich in der Praxis die Weibull-Verteilung bewährt. In der Wälzlagertechnik ist sie als Standard eingeführt.

Die Weibull-Summenfunktion hat mathematisch die Form:

$$F(t) = 1 - e^{-(t/T)^k}$$

Darin bedeuten:

- F(t) Summenhäufigkeit bzw. Wahrscheinlichkeit für Lebensdauern ≤t. Wahrscheinlichkeit dafür, dass ein Prüfling einer Stichprobe oder eines Kollektivs bis zum Zeitpunkt t ausgefallen ist.
- R(t) Überlebenswahrscheinlichkeit: Zuverlässigkeitsfunktion R(t) = 1 F(t)
- t Merkmalswert, Ausfallzeitpunkt
- Maß für die Streuung der Ausfallzeiten. Ausfallsteilheit
- T Charakteristische Lebensdauer; Zeitpunkt bis zu dem 63,2 % der Pr
 üflinge eines Versuchsansatzes ausgefallen sind. Dies l
 ässt sich zeigen, wenn man in der Weibull-Summenfunktion t = T setzt.

$$F(t) = 1 - e^{-1^k} = 1 - \frac{1}{e}$$

 $F(t) = 0.632 \triangleq 63.2 \%$

Für die Versuchsauswertung ist die oben angegebene lineare Darstellung der Summenfunktion unzweckmäßig. Durch zweifaches Logarithmieren erhält man:

$$(t/T)^k$$
 = In 1/(1 - F(t))
k(Ig t-Ig T) = Ig In 1/(1 - F(t))

Diese Beziehung wird im Weibull-Papier mit der Abszissenteilung $\lg t$ und der Ordinatenteilung $\lg \ln 1/(1 - F(t))$ eine Gerade für F(t).

Zur Auswertung eines Lebensdauerversuches mit n Prüfungen wird über den – der Größe nach geordneten – Lebensdauern t als Summenhäufigkeit nach Weibull und Gumbel

$$H_i = \frac{1}{n+1}$$
 i = Ordnungszahl der Ausfallzeiten der Prüflinge

aufgetragen

Im Hinblick auf eine statistische Aussagesicherheit der Versuchsergebnisse und eine vertretbare Versuchsdauer ist es notwendig, einen Lebensdauerversuch mit einer größeren Stichprobe n bis zu einer Summenausfallhäufigkeit von mindestens H_1 = 0,5 durchzuführen.

T und k sind – wie \bar{x} und s bei der Normal-Verteilung – Zufallsgrößen. Vertrauensbereiche für die "wahren Werte" liefern für n \geq 50 die Beziehungen

$$T \pm \left(\frac{u}{\sqrt{n}}\right) \cdot 1,052 \cdot \left(\frac{T}{k}\right)$$
$$k \pm \left(\frac{u}{\sqrt{n}}\right) \cdot 0,78 \cdot k$$

mit u nach der Tabelle auf Seite 54

In der Wälzlagertechnik dürfen laut Definition bis zum Erreichen der nominellen Lebensdauer 10 % der Lager eines größeren Kollektivs ausgefallen sein. Man erhält eine Beziehung zwischen T und L_{10} , wenn man in der Weibull-Summenfunktion $t = L_{10}$ und F(t) = 0,10 setzt.

Dann wird

$$L_{10} = T \cdot ln \left(\frac{1}{0.9}\right)^{1/k} = T \cdot 0,10536^{1/k}$$
.

3.5 Regression und Korrelation

Regression

Aufgabe der Regressionsrechnung ist es, aus den Wertepaaren (x_i, y_i) mit i = 1, 2, ..., n einer Stichprobe vom Umfang n einer funktionalen Zusammenhang zwischen einer unabhängigen (X) und einer abhängigen Zufallsvariablen (Y) zu ermitteln. Vorausgesetzt wird dabei, dass die Messwerte (x_i, y_i) jeweils am gleichen i-ten Element der analysierten Elemente bestimmt wurden und die Zufallsvariable Y einer Normalverteilung folgt.

Für die theoretische Regressionsfunktion wird als Ansatz meistens ein Polynom k-ten Grades gewählt

$$f(x) = \alpha_k \cdot x^k + \alpha_{k-1} \cdot x^{k-1} + ... + \alpha_i \cdot x^j + ... + \alpha_1 \cdot x^1 + \alpha_0 \cdot x^0$$

dessen Koeffizienten a_i , j=0,1,...,k zu bestimmen sind. Bei einem linearen Zusammenhang zwischen x und f(x) gibt häufig die nach "Augenmaß" gezeichnet Ausgleichsgerade durch die im kartesischen Koordinatensystem dargestellten Punkte der (x_i, y_i) -Werte eine gute Näherung.

Die Ermittlung der Koeffizienten ai erfolgt nach der Gauß'schen Methode der kleinsten Quadrate

$$\sum_{i=1}^n (y_i - f(x_j))^2 = \sum_{i=1}^n \left(y_i - \sum_{j=0}^k \ \alpha_j \cdot x_i^{\ j}\right)^2 = g \qquad (\alpha_0, \, \alpha_1, \, \ldots, \, \alpha_n) = \text{Minimum} \, .$$

Aus den partiellen Ableitungen $\delta g/\delta \alpha_j = 0$ ergeben sich (k+1) lineare Gleichungen für die (k+1) unbekannten Koeffizienten des Polynoms, die mit den Methoden für lineare Gleichungssysteme gelöst werden können.

Für den linearen Fall: $y = \alpha_0 + \alpha_1 \cdot x$

folgt mit den Mittelwerten:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
; $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$; $\alpha_0 = \bar{y} - \alpha_1 \cdot \bar{x}$

$$\text{oder:} \qquad \qquad y - \overline{y} = \alpha_1(x - \overline{x}) \, ; \; \alpha_1 = \left(\sum x_i \, y_i - n \cdot \overline{x} \cdot \overline{y}\right) \bigg/ \left(\sum x_i^2 - n \overline{x}^2\right)$$

Die Varianzen betragen:
$$s_x^2 = \frac{1}{n-1} \left[\sum x_i^2 - \left(\left(\sum x_j \right)^2 \cdot \frac{1}{n} \right) \right] : s_y^2 = \frac{1}{n-1} \sum y_i^2 - \left[\left(\sum y_j \right)^2 \cdot \frac{1}{n} \right]$$

Für die Kovarianz gilt:
$$s_{xy} = \frac{1}{n-1} \sum_i (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n-1} \sum_i (x_i \cdot y_i - n \cdot \bar{x} \cdot \bar{y})$$

Damit wird dann:
$$\alpha_1 = s_{xy}/s_x^2$$

Wenn alle Messpunkte auf der Geraden liegen, gilt: $s_{xy}^2 = s_x^2 \cdot s_y^2$

Korrelation

Gibt es keine erkennbaren Gründe für eine funktionale Abhängigkeit der Zufallsvariablen Y von der als unabhängig angenommenen Variablen X, so dient die Korrelationsrechnung (Korrelations-Wechselbeziehung) zur Prüfung der Güte eines unterstellten funktionalen Zusammenhangs.

Als Maß für eine lineare Abhängigkeit dient der Korrelationskoeffizient r_{xy} mit den vorstehend ermittelten Größen: $r_{xy}^2 = s_{xy}/s_x \cdot s_y; \quad -1 \le r_{xy} \le 1$

 r_{xy} <0: negative Korrelation; zu großen Werten von X gehören kleine Werte von Y und umgekehrt. $B = r_{xy}^2$ heißt Bestimmtheitsmaß.

4

Physik Grundbausteine der Materie 4.1

Bezeichnung	Erläuterung				
Atom	Kleinstes, chemisch einheitliches Teilchen eines Elements, besteht aus Kern und Elektronenhülle. Größenordnung des Durchmessers 10 ⁻¹⁰ m; Atomkerne 10 ⁴ bis 10 ⁵ mal kleiner. Hauptmasse des Atoms im Kern (Dichte etwa 10 ¹⁴ g/cm³). Alle chemischen Vorgänge (auch viele elektrische, magnetische und oplische) spielen sich in der Atomhülle ab. Atome bestehen aus Elementarteilchen. Ca. 300 sind bekannt.				
Elementarteilchen	Photonen Leptonen Baryonen Mesonen Lichtquant Neutrino Antineutrino Elektron Positron Proton Antiproton Neutron Antiproton Neutron Antineutron Antineutron Antineutron				
Photonen	Quanten des elektromagnetischen Strahlungsfeldes.				
Lichtquant	Ladung 0, Masse 0, Halbwertzeit ∞.				
Leptonen	Kernfremde Teilchen mit halbzahligem Spin (I = 1/2).				
Neutrino Elektron Positron	Masse theoretisch 0 (<0,2 keV), Ladung 0, Halbwertzeit ∞. Kleinstes Elementarteilchen mit negativer Ladung Ladung –e, Ruhemasse m = 9,109534 · 10 ⁻²⁸ g, Halbwertzeit ∞. Kleinstes Elementartelichen mit positiver Ladung Ladung +e, Masse m = 9,109534 · 10 ⁻²⁸ g.				
Hadronen	Gesamtheit der kernaktiven Teilchen.				
Baryonen	Kernaktive Teilchen mit halbzahligem Spin (I = 1/2, 3/2).				
Nukleonen	Sammelbezeichnung für Protonen und Neutronen. Sie wandeln sich im Atomkern dauernd ineinander um. Dabei bewirkt das π-Mesonenfeld den Ladungsaustausch.				
Proton Neutron	Positiv geladener Kernbaustein Ladung +e, Masse m = 1,6726485 \cdot 10 ⁻²⁴ g \approx 1840 Elektronenmassen, Halbwertzeit ∞ . Ungeladener Kernbaustein Ladung 0, Ruhemasse m = 1,6749543 \cdot 10 ⁻²⁴ g.				
Hyperonen	Instabile überschwere Elementarteilchen mit Ladung \pm e oder 0, 2000 bis 3300 Elektronenmassen, Halbwertzeiten um 10^{-10} s.				
Mesonen	Kernaktive Teilchen mit ganzzahligem Spin (I = 0, 1, 2,) . Hierzu gehören: π- und ν-Mesonen.				
Pion	Instabile, entweder elektrisch positiv oder negativ geladene oder in elektrisch neutraler Form vorkommende Elementarteilchen. Die Ruhemassen betragen:				
Molekül	Kleinstes, chemisch einheitliches Teilchen einer Verbindung, aufgebaut aus Atomen. Zusammenhalt durch chemische Bindung.				

4.2 Atomphysikalische und andere Größen

Bezeichnung	Einheit	Beziehung	Definition
Atomare Masse	u = 1,6606·10 ⁻²⁷ kg	$u = m_{c12}/M_{c12} = 1/N_A$	als Einheit gilt die relative Masse des Nuklids ¹² C.
	Atomzahl	$N = \frac{m}{M} N_A$	M = Molmasse.
Halbwertzeit	s, min, d, a	$T_{1/2} = \text{In } 2/\lambda$ $\lambda = \text{Zerfallskonstante}$	Zeit für den Zerfall der Hälfte der ursprünglich vorhandenen Atome.
Atomare Energie	Elektronenvolt 1 eV = 1,60219·10 ⁻¹⁹ J 1 MeV = 10 ⁶ eV	W = eU	als Einheit gilt die Energie, die ein Elektron beim Durchlaufen der Spannung 1 V aufnimmt.
Elektronen- masse	1 MeV = 1,782.10 ⁻³³ g	$m = \frac{E}{c_0^2}$	aus der Äquivalenz von Energie und Masse nach Einstein.
		$m = \frac{m_0}{\sqrt{1 - (c/c_0)^2}}$	
Energiedosis	Gray 1 Gy = 1 J/kg	D = W/m	pro Masseneinheit des durchstrahlten Stoffes absorbierte Energie. 1 rem (Rem) = 10 ⁻² J/kg.
Aktivität einer radioaktiven Substanz	Becquerel 1 Bq = 1/s	А	Maß der Intensität einer radioaktiven Strahlung. Ci (Curie) = 3,7·10 ¹⁰ s ⁻¹ .
Äquivalent- dosis	Sievert 1 Sv = 1 J/kg	H = DQ _F	Maß der biologischen Strahleinwirkung, die von einer γ -Strahlung von 10 $^{-2}$ Sv im menschlichen Körper absorbierte Energie.
Energie- dosisrate	W/kg	D	-
Ionendosis	C/kg	J	1 R (Röntgen) = 258·10 ⁻⁶ C/kg.
lonen- dosisrate	A/kg	J	-
Wirkungs- querschnitt	m ²	σ	Maß für die Ausbeute bei Kernreaktionen. Gedachter Querschnitt der bestrahlten Atome.
Stoffmenge	mol	n	Die Stoffmenge ist der Anzahl der Teilchen proportional.

4.3 Wichtige physikalische Konstanten

Bezeichnung	Größe	Erläuterung
Gravitationskonstante	G = 6,6720·10 ⁻¹¹ N·m ² /kg ²	Kraft in N, mit der sich 2 Körper von je 1 kg anziehen, die 1 m voneinander entfernt sind.
Normalfall- beschleunigung	g _n = 9,80665 m/s ²	Von der 3. Generalkonferenz für Maß und Gewicht im Jahr 1901 festgelegter Normwert.
Gaskonstante	R = 8314,41 J/(kmol·K)	Die von einem kmol eines idealen Gases bei dessen Erwärmung um 1 K unter konstantem Druck geleistete Arbeit; gleicher Wert für alle Gase.
Molares Normvolumen	$V_{\rm m} = 22,414 \text{ m}^3/\text{kmol}$	Volumen, das 1 kmol eines idealen Gases im Normzustand einnimmt.
Avogadro-Konstante	$N_A = 6,0221 \cdot 10^{26} \text{kmol}^{-1}$	Anzahl der Atome oder Moleküle in 1 kmol eines Stoffes.
Loschmidt-Konstante	$N_L = 2,6868 \cdot 10^{25} \text{ m}^{-3}$	Anzahl der Atome oder Moleküle in 1 m³ eines Gases im Normzustand (0 °C und 1013,25 hPa).
Boltzmann-Konstante	$k = \frac{R}{N_A} = 1,380662 \cdot 10^{-23} \text{J/K}$	Mittlere Energiezunahme eines Moleküls oder Atoms bei Erwärmung um 1 K.
Faraday-Konstante	F = N _A .e = 9,6485·10 ⁷ C/kmol	Die von 1 kmol transportierte Ladungsmenge.
Elementarladung	$e = F/N_A = 1,6022 \cdot 10^{-19} C$	Die kleinstmögliche Ladungsgröße (Ladung eines Elektrons).
Elektrische Feld- konstante (Influenzkonstante)	$\varepsilon_0 = 8,8542 \cdot 10^{-12} \text{ F/m}$	Proportionalitätsfaktor zwischen der Ladungsdichte und der elektr. Feldstärke.
Magnetische Feld- konstante (Induktionskonstante)	$\mu_0 = 1,2566 \cdot 10^{-6} \text{ H/m} \\ \mu_0 = 4 \cdot \pi \cdot 10^{-7} \text{ H/m}$	Proportionalitätsfaktor zwischen der Induktion und der magnet. Feldstärke.
Lichtgeschwindigkeit im Vakuum	c ₀ = 2,9979·10 ⁸ m/s	Ausbreitungsgeschwindigkeit elektromagnetischer Wellen.
Planck'sche Konstante (Wirkungsquantum)	h = 6,626·10 ⁻³⁴ J·s	Verknüpft als Proportionalitätsfaktor Energie und Frequenz eines Lichtquants.

4.3 Wichtige physikalische Konstanten (Fortsetzung)

Bezeichnung	Größe	Erläuterung
Wellenwiderstand des Vakuums	Γ= 376,731 Ω	Ausbreitungswiderstand für elektro- magnetische Wellen im Vakuum.
Stefan-Blotzmann'sche Strahlungskonstante	$\sigma = 5,6703 \cdot 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$	Verknüpft Strahlungsenergie und Temperatur eines strahlenden Körpers.
Planck'sche Strahlungskonstanten	$c_1 = 3,741 \cdot 10^{-16} \text{W} \cdot \text{m}^2$ $c_2 = 1,438 \cdot 10^{-2} \text{m} \cdot \text{K}$	Konstanten des Planck'schen Strahlungsgesetzes in der ursprünglichen, wellenlängen- abhängigen Formulierung.
Wien-Konstante	K = 2,8978·10 ⁻³ m · K	Verbindet die Wellenlänge des Strahlungsmaximums mit der absoluten Temperatur eines strahlenden Körpers.
Rydberg-Konstante	R = 1,09737·10 ⁷ m ⁻¹	Grundlegende, in den Serien- formeln für die Spektrallinien auftre- tende atomphysikalische Konstante.
Ruhemasse des Elektrons	$m_e = 9,109 \cdot 10^{-31} \text{ kg}$	Bewegungsunabhängige Masse eines Elektrons.
Elektronenradius	$r_e = 2,8178 \cdot 10^{-15} \text{ m}$	Radius eines Elektrons (kugelförmige Ausbildung).
Bohr'scher Radius	r ₁ = 5,2917706·10 ⁻¹¹ m	Radius der innersten Elektronen- bahn im Bohr'schen Atommodell.
Atomare Masseneinheit	$u = 1,6606 \cdot 10^{-27} \text{ kg}$	Vereinheitlichte atomare Massen- einheit (12. Teil der Masse eines Atoms des Nuklids ¹² C).
Masseneinheit	1 ME = 1000 TME = 931,44 MeV 1 eV ¹⁾ = 1,6021892 · 10 ⁻¹⁹ Ws	Verwendung für Energie- umrechnungen.
Solarkonstante	S = 1390 J/m ² s = 1390 W/m ²	Strahlungsenergie der Sonne, die an der oberen Grenze der Erdatmosphäre senkrecht auftrifft. Am Erdboden sind es nur noch 340 W/m².

¹⁾ Elektronvolt: (eV) und Mega-Elektronvolt (MeV) sind Energiemaße der Atomphysik. 1 eV ist die Energie, die ein Elektron erhält, wenn es im elektrischen Feld von 1 Volt beschleunigt wird (1 eV = 1,6021892.10⁻¹⁹ J)

4.4 Elektromagnetische Strahlung

	ahlenart Ilenlänge λ	entsteht bei Ener- gieänderungen in	wird erzeugt durch	wird absorbiert durch (Beispiele)	
	a- oder Höhenstrahlen 0020,02 pm	Nukleonen (Kernbausteinen)	hochenergetische Kernreaktionen	etwa 10 cm Blei	
Gammastrahlen 0,527 pm		Atomkernen	Atomkernreaktio- nen und radioakti- ver Zerfall	etwa 1 cm Blei	
□ hart 5, 780 pm (0,0570,8 Å)			Hochvakuum und	etwa 3 0,04 cm Al	
Röntgenstrahlen	weich 0,08 2 nm (0,8 20 Å)	inneren Elektronen- schalen	Gasentladungs- röhren bei hohen	etwa 4001 μm Al, Knochen, Glas	
Rönt	ultraweich 2 37,5 nm (20 375 Å)		Betriebsspannungen	weniger als 1 μm Al, Luft	
	ultraviolett (kurzwellig) 0,014 0,18 μm		Funken-, Bogen-, Glimmentladung	Luft	
rahlen	ultraviolett (langwellig) 0,18 0,36 μm		in Luftleere, Quarzlampe usw.	$\begin{array}{cc} \text{Quarz} & (\lambda < 0,15 \; \mu\text{m}) \\ \text{Glas} & (\lambda < 0,31 \; \mu\text{m}) \end{array}$	
Lichtstrahlen	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	äußeren Elektronen- schalen	Sonne, glühende Stoffe usw.	undurchsichtige Stoffe	
	Infrarot (Wärmestrahlen) 0,81 400 μm		erhitzte Körper ¹⁾	Glas	
	tz'sche Wellen 1 30 cm	Atomen oder Molekülen	Funkensender Laufzeitröhre	Metalle	
u	ultrakurz 0,3 10 m		Röhrensender, Funkensender	Metalle	
welle	kurz 10 100 m	Schwingkreis	Ausbreitung dieser Wellen nicht mehr		
funk	mittel 200 600 m	mit Kapazität und Induktivität	strahlenförmig, deshalb keine "Wellen- schatten" in Tälern und hinter Bergen.		
Rundfunkwellen	lang 600 3000 m	unu muuklivilal	Wellen werden an He gebeugt und zur Erde		
ш	Telegrafiewellen 3 30 km		zunehmender Wellenlänge tritt Raumv hinter Bodenwelle zurück.		

Ausbreitung mit Lichtgeschwindigkeit. Wellennatur. Keine Ablenkung durch elektrische oder magnetische Felder.

Wellenlänge $\lambda = c/f = c \cdot T$ c = Lichtgeschwindigkeit = 300 000 km/s

f = Frequenz Hz T = Schwingungsdauer s

¹⁾ Für die Strahlung des "schwarzen Körpers" gilt: mittl. Wellenlänge λ . (in μ m) = 2880/absol. Temp. in K. Bei 15 °C (= 288 K) ist z. B. λ = 2880/288 = 10 μ m, d. h. bei 15 °C (legt das Maximum der Wärmestrahlungsintensität bei λ = 10 μ m. Quelle: SKF-Taschenbuch

4.5 Unser Sonnensystem

Planet	Äquator- durchmesser in km	Masse (Erde = 1) ¹⁾	Dichte in kg/m ³	Siderische Rotations- periode	Abstand v. d. Sonne in 10 ⁶ km	Siderische Umlaufzeit in Jahren
Sonne Erde Mond	1 392 000 12 757 3 476	333 000 1,000 0,012	1 410 5 517 3 340	25,23 d 23,94 h 27 d, 7,1 h	- 149,6 0,3844 (- 1,00 v. d. Erde)
Merkur Venus Mars Jupiter Saturn Uranus Neptun Pluto	4 840 12 228 6 770 140 720 116 820 47 100 44 600 (7 000)	0,056 0,815 0,108 317,8 95,11 14,51 17,21 (0,18)	5 620 5 090 3 970 1 300 680 1 580 2 220	88 d 243 d 24,62 h 9,84 h 10,1 h 10,8 h 15,8 h 6.4 d	58 108 228 778 1 428 2 872 4 498 5 910	0,24 0,62 1,88 11,86 29,46 84,02 164,79 249,17

¹⁾ Erdmasse 5,977 · 10²⁴ kg Mittlere Erddichte 5517 kg/m³

Volumen der Erdkugel 1083 319,8 Mill. km³ Umfang der Erdbahn 939 120 000 km

4.6 Größenzahlen der Erde

Erdoberfläche davon Landfläche insgesamt davon Wasserfläche	510,1 Mill. km ² 29 v. H.	Länge eines Längengrades (Bogenabstand zweier um 1° auseinander liegender Meridiane):	km
insgesamt	71 v. H.	am Äquator	111,324
Länge des Äquators	40 076,592 km	in 50° Breite	71,699
Halbmesser des Äquators a	6378,388 km		
Länge eines Meridians	40 009,153 km	Länge eines Breitengrades	
Halbe Erdachse b	6 356,912 km	(Bogenabstand zweier um 1°	
Länge des Wendekreises	36 778,000 km	auseinander liegender	
Länge eines Polarkreises	15 996,280 km	Parallelkreise)	
Abplattung (a-b)/a	1:297	in 89° – 90° Breite	111,700
		in 45° – 46° Breite	111,135
		in 0°- 1° Breite	110,575

4.7 Wissenswerte Geschwindigkeiten (gerundete Werte)

	m/s	km/h
Golfstrom	1,1	4
Windstärke 6 (starker Wind)	11–14	39-49
Windstärke 12 (Orkan)	>32	> 118
Schall in Luft (bei 20 °C)	340	1 200
Punkt am Äquator	464	1 670
Erdbebenwellen	3 600	13 000
Satelliten-Bahngeschwindigkeit	≈ 7800	28 400
Geschwindigkeit zum Verlassen des Erd-Schwerefeldes	≈ 11 200	40 300
Geschwindigkeit zum Verlassen des Sonnensystems	15 800	57 000
Erde auf der Bahn um die Sonne	29 800	107 000
Blitz	50 000 000	180 000 000
Kathodenstrahlen (Elektronen, 50 kV)	100 000 000	360 000 000
Licht im Vakuum	299 790 000	1079000000

4.8 Astronomische Einheiten

Bezeichnung	Größe	Erläuterung			
Lichtgeschwindigkeit im Vakuum	$c_0 = 2,9979 \cdot 10^8 \text{ m/s}$	Ausbreitungsgeschwindigkeit magnetischer Wellen.			
Lichtjahr	L _j = 9,46053·10 ¹⁵ m	Von elektromagnetischen Wellen in 1 Jahr im Weltraum zurückgelegte Wegstrecke.			
Siderisches Jahr (Sternenjahr)	S _j = 365,2565 mittlere Sonnentage = 365 d 6 h 9 min 9,54 s	Das siderische Jahr wird auf die Stellung der Sterne bezogen ¹⁾ .			
Tropisches Jahr (Sonnenjahr)	T _j = 365,2422 mittlere Sonnentage = 365 d 5 h 48 min 46,98 s	Als Bezugspunkt gilt der mittlere Frühlingspunkt.			
Siderischer Monat (Sternmonat)	S _m = 27,32166 d mittlere Sonnenzeit = 27 d 7 h 43 min 11,5 s	-			
Tropischer Monat (Sonnenmonat)	T _m = 27,32158 d mittlere Sonnenzeit = 27 d 7 h 43 min 4,7 s	_			
Synodischer Monat (Mondmonat)	S _{ym} = 29,53059 d mittlere Sonnenzeit = 29 d 12 h 44 min 2,9 s	Zeit zwischen zwei gleichen Mond- phasen Neumond – Neumond.			
Umlaufzeit des Mondes um die Erde	t _M = 27,32166 d = 27,32158 d	Siderisches Jahr, Tropisches Jahr.			
Sterntag	d _{Sj} = 0,9972696 mittlerer Sonnentag = 23 h 56 min 4,091 s	_			
Mittlerer Sonnentag	d _{Tj} = 1,0027379 Sterntag	-			
Tag	d = 24 h = 1440 min = 86 400 s	Der Tag ist um 3 min 56,6 s länger als der Sterntag.			
Astronomische Einheit	AE = 1,496·10 ¹¹ m	Mittlere Entfernung zwischen Sonne und Erde.			

Zeitintervall zwischen zwei einander folgenden Durchgängen der Sonne durch denselben Punkt der scheinbaren Sonnenbahn (Ekliptik). Der Punkt der Ekliptik wird in Bezug auf einen Fixstern gemessen. Mittlere Schiefe der Ekliptik z. Z. = 23° 27′ 15".

4.9 Temperatureinheiten-Umrechnungstabelle

T _K	t _c	t _F	T _R	
K	°C	°F	°R	
Kelvin	Grad Celsius	Grad Fahrenheit	Grad Rankin	
$T_{K} = 273,15 + t_{c}$	$t_c = T_K - 273,15$		$T_R = \frac{9}{5} \cdot T_K$	
$T_K = 255,38 + \frac{5}{9} \cdot t_F$	$T_{K} = 255,38 + \frac{5}{9} \cdot t_{F}$ $t_{c} = \frac{5}{9}(t_{F} - 32)$		$T_{R} = \frac{9}{5}(t_{c} + 273,15)$	
$T_K = \frac{5}{9} \cdot T_R$	$T_{K} = \frac{5}{9} \cdot T_{R}$ $t_{c} = \frac{5}{9} T_{R} - 273,15$		$T_{R} = 459,67 + t_{F}$	
	Umrechnung eini	ger Temperaturen		
0.00 + 255,37 + 273,15 + 273,16 ¹⁾ + 300,00 + 310,94 + 373,15 + 400,00 + 500,00	0,00		0,00 +459,67 +491,67 +491,69 +540,00 +559,67 +671,67 +720,00 +900,00	

Der Tripelpunkt des Wassers liegt bei +0,01 °C. Das ist der Temperaturpunkt des reinen Wassers, bei dem gleichzeitig Eis, Wasser und Dampf miteinander im Gleichgewicht auftreten (bei 1013,25 hPa).

Temperaturdifferenz: 1 Kelvin = 1 Grad Celsius = 1,8 Grad Fahrenheit = 1,8 Grad Rankin

4.10 Wichtige Temperaturpunkte

Tripelpunkt des Wassers Siedepunkt des Wassers Siedepunkt des Sauerstoffs	−182,97 °C	Siedepunkt der Luft Siedepunkt des Schwefels Erstarrungspunkt des Silbers	- 191,0 °C + 444,6 °C + 960,8 °C
Siedepunkt des Stickstoffs	−182,97 °C −196,00 °C	Erstarrungspunkt des Goldes	+1063,0 °C

¹ Kelvin ist der 273,16te Teil der thermodynamischen Temperatur des Tripelpunktes des Wassers

^{(13.} Generalkonferenz für Maß und Gewicht 1967).

4.11 Wärmeausdehnung von Körpern und Gasen

Fast alle Körper dehnen sich bei Erhöhung ihrer Temperatur aus und schrumpfen bei Temperaturabnahme. Abweichend davon verhält sich Wasser, es hat bei +4 °C seine größte Dichte und dehnt sich sowohl bei Über- als auch bei Unterschreitung dieser Temperatur aus

Homogene Körper dehnen sich gleichmäßig in alle Richtungen (Volumendehnung). In vielen Fällen interessiert nur die Dehnung in bestimmter Richtung (Flächendehnung, Längendehnung). Wird die Längendehnung bzw. Volumenänderung eines Körpers bei Temperaturänderung behindert, so treten Spannungen im Körper auf.

Linearer thermischer Ausdehnungskoeffizient

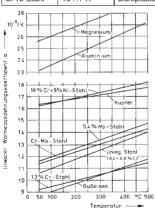
Der lineare thermische Ausdehnungskoeffizient α ist bei festen Körpern die relative Längenänderung je Grad Temperaturerhöhung. Damit ist die Längenänderung eines Körpers:

$$\Delta I = I_0 \cdot \alpha \cdot \Delta T$$
 $I_0 = Ausgangslänge$

$$\alpha$$
 = Thermischer Längenausdehnungskoeffizient

$$\Delta T = Temperaturerhöhung$$

Durch eine Temperaturerhöhung ΔT ergibt sich am Körper:


Bei freier Ausdehnung $\epsilon_{AT} = \Delta I/I_0 = \alpha \cdot \Delta T$

Bei Dehnungsbehinderung

$$\sigma_{AT} = E \cdot \epsilon_{AT} = E \cdot \alpha \cdot \Delta T$$

Längenausdehnungskoeffizienten bei 20 °C

Stoff	α in 10 ⁻⁶ /K	Stoff	α in 10 ⁻⁶ /K	Stoff	α in 10 ⁻⁶ /K
Gusseisen Unleg. Stahl Cr-Mo-Stahl	910 1112 1213	Kupfer Aluminium Magnesium		Thermoplaste Mauerwerk Bruchsteine	70 250 5 8 3
Cr-Ni-Stahl	16 17	Duroplaste	10 80	Glas	8 10

Temperaturabhängigkeit von α bei Stählen und Nichteisenmetallen.

Der Längenausdehnungskoeffizient ist temperaturabhängig (siehe nebenstehendes Diagramm).

Raumausdehnungskoeffizient

Der Raumausdehnungskoeffizient eines festen, flüssigen oder gasförmigen Körpers ist die relative Volumenänderung je Grad Temperaturerhöhung. Damit ist die Volumenänderung:

$$\Delta V = V_0 \cdot \beta \cdot \Delta T$$

Bei homogenen, festen Körpern ist

$$\beta = 3 \cdot \alpha$$

Bei Gasen hat der Raumausdehnungskoeffizient bei konstantem Druck und bezogen auf das Volumen V₀ bei 0 °C für alle Gase und Temperaturen denselben Wert

$$\beta = \frac{1}{V_0} \cdot \frac{\Delta V}{\Delta T} = \frac{1}{273,15} \frac{1}{K}.$$

Flächenausdehnungskoeffizient

Die Flächenausdehnung kann durch den Volumenausdehnungskoeffizienten beschrieben werden

$$\Delta A = A_0 \cdot \frac{2}{3} \cdot \beta \cdot \Delta T \ .$$

Art der Ähnlichkeit	Maßstabsfakto- ren (Invariante)	Name der Kennzahl	Definition	Ähnlichkeit des physikalischen Sachverhalts		
Geometrisch (Länge)	$\varphi_L = \frac{L_1}{L_0}$	-	-	Alle Längen sind bei gleichem Maßstab ähnlich (Storchenschnabel)		
Kinematisch (Länge) (Zeit)	ϕ_L , ϕ_t	Mach	$Ma = \frac{v}{c_s}$	Ähnlichkeit der kinemati- schen Bewegungsgrößen c _s = Schallgeschwindigkeit		
Statisch (Länge) (Kraft)	$\phi_F = \frac{\rho_1}{\rho_0} \cdot \phi_L^3$	_	-	Ähnlichkeit der Gewichts- kräfte (konstante Erdbeschleunigung)		
	φ _L , φ _F	Hooke	$Ho = \frac{F}{E \cdot L^2}$	Alleinige Wirkung von elastischen Kräften (Gleichheit der Dehnungen)		
Dynamisch (Länge) (Zeit)	ϕ_L , ϕ_t , ϕ_F	Newton	$Ne = \frac{F}{\rho \cdot v^2 \cdot L^2}$	Ähnlichkeit bei alleiniger Wirkung von Trägheits- kräften		
(Kraft)		Cauchy	$Ca = \frac{v}{\sqrt{E/\rho}}$	Ähnlichkeit bei Vorliegen von Trägheits- und Elastizitätskräften		
		Froude	$Fr = \frac{v^2}{g \cdot L}$	Ähnlichkeit bei Vorliegen von Trägheitskräften und Schwerkräften		
		Reynolds	$Re = \frac{v \cdot L}{v}$	Trägheitskräfte und Reibungskräfte von New- ton'schen Flüssigkeiten		
		Weber	$We = \frac{\rho \cdot v^2 \cdot L}{\sigma}$	Trägheitskräfte und Oberflächenkräfte (σ = Oberflächenspannung)		
		Euler	$Eu = \frac{\Delta p}{\rho \cdot v^2}$	Strömungsprobleme, bei denen Druck- und Träg- heitskräfte überwiegen		
Thermisch (Länge) (Zeit)	$\phi_L,\phi_t,\phi_\vartheta$	Péclet	$Pe = v \cdot L\left(\frac{p \cdot c}{\lambda}\right)$	Ähnliche Strömungs- vorgänge hinsichtlich Wärmeleitung		
(Temperatur)		Prandtl	$Pr = \frac{P_e}{R_e} = \nu \cdot \left(\frac{\rho \cdot c}{\lambda}\right)$	Strömungsvorgänge mit Wärmeleitung und Konvektion		
		Nußelt	$Nu = \frac{\alpha \cdot L}{\lambda}$	Wärmeübergang zwischen zwei Stollen		
		Fourier	$Fo = \left(\frac{\lambda}{\rho \cdot c}\right) \cdot \frac{t}{L^2}$	Ähnliche instationäre Wärmeleitungsvorgänge		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

5 Chemie

5.1 Das Periodensystem der Elemente

[] Atommasse des stabilsten Isotops

H und N: Haupt- und Nebengruppe

Peri-	1. Gru	ірре	2. Gr	uppe	3. G	ruppe	4. Gruppe		
ode	Н	N	Н	N	Н	N	Н	N	
1.	1 H Wasser- stoff 1.008								
2.	3 Li Lithium 6.941		4 Be Beryllium 9.012		5 B Bor 10.81		6 C Kohlen- stoff 12.01		
3.	11 Na Natrium 22.99		12 Mg Magne- sium 24.31		13 Al Alu- minium 26.98		14 Si Silizium 28.09		
4.	19 K Kalium 39.10	29 Cu Kupfer 63.55	20 Ca Kalzium 40.08	30 Zn Zink 65.38	31 Ga Gallium 69.72	21 Sc Skandium 44.96	32 Ge Ger- manium 72.59	22 Ti Titan 47.90	
5.	37 Rb Rubidium 85.47	47 Ag Silber 107.9	38 Sr Strontium 87.62	48 Cd Kadmium 112.4	49 In Indium 114.8	39 Y Yttrium 88.91	50 Sn Zinn 118.7	40 Zr Zirkonium 91.22	
6.	55 Cs Cäsium 132.9	79 Au Gold 197.0	56 Ba Barium 137.3	80 Hg Queck- silber 200.6	81 Ti Thallium 204.4	57 La Lanthan 138.9	* 82 Pb Blei 207.2	72 Hf Hafnium 178.5	
7.	87 Fr Francium [223]		88 Ra Radium [226]			89 Ac Aktinium [227]	*	104 Ku Kurtscha- tovium [260]	

* Lanthaniden

58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd
Cer	Praseodym	Neodym	Prome-	Samarium	Europium	Gadolinium
140.1	140.9	144.2	thium [145]	150.4	152.0	

* Aktiniden

232.0 [231] 238.0 [237] [244] [243] [247]

5.1 Das Periodensystem der Elemente (Fortsetzung)

[] Atommasse des stabilsten Isotops

H und N: Haupt- und Nebengruppe

5. Gruppe		6. Gruppe		7. Gruppe		8. Gruppe			
Н	N	Н	N	Н	N	Н	N		
						2 He Helium	Ordnung Name	szahl, Sy	mbol,
						4.003	relative A	tommas	se
7 N Stickstoff		8 O Sauer- stoff		9 F Fluor		10 Ne Neon			
14.01		16.00		19.00		20.18			
15 P Phosphor		16 S Schwefel		17 CI Chlor		18 Ar Argon			
30.97		32.06		35.45		39.95			
33 As Arsen	23 V Vanadium 50.94	34 Se Selen	24 Cr Chrom 52.00	35 Br Brom	25 Mn Mangan 54.94	36 Kr Krypton	26 Fe Eisen 55.85	27 Co Kobalt 58.93	28 NI Nickel 58.70
74.92		78.96		79.90		83.80			
51 Sb Antimon 121.8	41 Nb Niob 92.91	52 Te Tellur 127.6	42 Mo Molyb- dän 95.94	53 J Jod 126.9	43 Tc Techne- tium [97]	54 Xe Xenon 131.3	44 Ru Ruthe- nium 101.1	45 Rh Rho- dium 102.9	46 Pd Palla- dium 106.4
83 Bi Wismut 209.0	73 Ta Tantal 180.9	84 Po Polo- nium [209]	74 W Wolf- ram 183.9	85 At Astat [210]	75 Re Rhenium 186.2	86 Rn Radon [222]	76 Os Osmium 190.2	77 Ir Iridium 192.2	78 Pt Platin 195.1
	105		106						
	[261]		[263]						

I	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	158.9	162.5	164.9	167.3	168.9	173.0	175.0
-							

97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
Berkelium	Kalifornium	Einsteinium	Fermium	Mendelevium		Lawrencium
[247]	[251]	[254]	[257]	[258]	[259]	[260]
						r 3

5.2 Chemische Elemente

Element	Sym- bol	Ord- nungs- zahl	relative Atom- masse	Dichte	Schmelz- tempe- ratur	Siede- tempe- ratur	Wärme- leitfähig- keit	Wärme- kapazität
				$\frac{\rho}{g/cm^3}$	°C	°C	λ W/m K	$\frac{c_p}{kJ/kg~K}$
Actinium	Ac	89	(227)	_	1 050	3 200	_	0,12
Aluminium	Al	13	26,98	2,70	660	2 450	238	0,88
Americum	Am	95	(243)	11,7	>850	2 600	_	0,14
Antimon	Sb	51	121,75	6,68	631	1 380	19	0,21
Argon	Ar	18	39,95	1,40 (I)	-189	-186	0,02	0,52
Arsen	As	33	74,92	5,72	817*	613	_	0,33
Astat	At	85	(210)	_	302	335	_	0,14
Barium	Ba	56	137,34	3,50	714	1 640	-	0,29
Berkelium	Bk	97	(247)	_	_	_	-	_
Beryllium	Be	4	9,01	1,85	1 280	2 480	168	1,02
Bismut	Bi	83	208,98	9,8	271	1 560	8,1	0,12
Blei	Pb	82	207,2	11,4	327	1 740	35	0,13
Bor	В	5	10,81	2,34	(2 030)	3 900	-	1,04
Brom	Br	35	79,90	3,12	-7 201	58	96	0,45
Cadmium	Cd Cs	48 55	112,40	8,65	321 29	765 690	96	0,23
Calcium	Ca	20	132,91 40.08	1,87 1,55	838	1 490	130	0,22 0,66
Californium	Cf	98	(251)	1,55	030	1 490	130	0,66
Cer	Ce	58	140,12	6,78	795	3 470	10.9	0,18
Chlor	CI	17	35,45	1,56 (I)	-101	-35	0.008	0,10
Chrom	Cr	24	52,00	7,19	1 900	2 642	69	0,44
Cobalt	Co	27	58,93	8,90	1 490	2 900	96	0,43
Curium	Cm	96	(247)	7	_	_	_	_
Dysprosium	Dy	66	162,50	8,54	1 410	2 600	10	0,17
Einsteinium	És	99	(254)	_	_	_	_	_
Eisen	Fe	26	55,85	7,86	1 540	3 000	72	0,44
Erbium	Er	68	167,26	9,05	1 500	2 900	9,6	0,17
Europium	Eu	63	151,96	5,26	826	1 440	_	0,17
Fermium	Fm	100	(253)	_	_	_	_	_
Fluor	F	9	19,00	1,51 (I)	-220	-188	0,02	0,83
Francium	Fr	87	(223)	-	(27)	(680)	-	0,14
Gadolinium	Gd	64	157,25	7,89	1 310	3 000	8,8	0,23
Gallium	Ga	31	69,72	5,91	30	2 400	40	0,37
Germanium	Ge	32	72,59	5,32	937	2 830	62	0,31
Gold	Au	79	196,97	19,3	1 063	2 970	314	0,13
Hafnium	Hf	72	178,49	13,1	2 000	5 400	93	0,14
Helium	He	2	4,003	0,15 (I)	-270	-269	0,16	5,23
Holmium	Но	67	164,93	8,80	1 460	2 600		0,16
Indium	In	49	114,82	7,31	156	2 000	24	0,23
lod	I	53	126,90	4,94	114	183	0,43	0,22
Iridium	lr	77	192,22	22,5	2 450	4 500	58	0,13

5.2 Chemische Elemente (Fortsetzung)

Element	Sym- bol	Ord- nungs- zahl	relative Atom- masse	Dichte	Schmelz- tempe- ratur	Siede- tempe- ratur	Wärme- leitfähig- keit	Wärme- kapazität
				$\frac{\rho}{g/cm^3}$	°C	°C	$\frac{\lambda}{W/m K}$	$\frac{c_p}{kJ/kg~K}$
Kalium	K	19	39,10	0,86	64	760	97	0,76
Kohlenstoff	С	6	12,01	2,26	3 730	4 830	168	0,65
Krypton	Kr	36	83,80	2,16 (I)	-157	-152	0,01	0,25
Kupfer	Cu	29	63,55	8,96	1 083	2 600	398	0,38
Lanthan	La	57	138,91	6,17	920	3 470	13,8	0,20
Lawrencium	Lr	103	(256)	_	_	_	_	_
Lithium	Li	3	6,94	0,53	180	1 330	71	3,6
Lutetium	Lu	71	174,97	9,84	1 650	3 330	_	_
Magnesium	Mg	12	24,31	1,74	650	1 110	171	1,01
Mangan	Mn	25	54,94	7,43	1 250	2 100	30	0,47
Mendelevium	Md	101	(258)	_	_	_	_	_
Molybdän	Мо	42	95,94	10,2	2 6 1 0	5 560	142	0,24
Natrium	Na	11	22,99	0,97	98	892	138	1,22
Neodym	Nd	60	144,24	7,00	1 020	3 030	16	0,19
Neon	Ne	10	20,18	1,20 (I)	-249	-246	0,05	1,03
Neptunium	Np	93	237,05	20,4	640	_	57	_
Nickel	Ni	28	58,71	8,90	1 450	2 730	61	0,43
Niob	Nb	41	92,91	8,55	2 420	4 900	52	0,27
Nobelium	No	102	(256)	_	_	_	_	_
Osmium	Os	76	190,2	22,4	3 000	5 500	87	0,13
Palladium	Pd	46	106,4	12,0	1 550	3 125	69	0,25
Phosphor	Р	15	30,97	1,82	44	280	_	0,67
Platin	Pt	78	195.09	21,4	1 770	3 825	71	0.13
Plutonium	Pu	94	(244)	19.8	640	3 230	9	_
Polonium	Po	84	(209)	9,4	254	962	_	0.13
Praseodym	Pr	59	140.91	6.77	935	3 130	12	0.19
Promethium	Pm	61	(145)	_	(1030)	(2 730)	_	0,19
Protactinium	Pa	91	231.04	15.4	(1230)	_	_	0.12
Quecksilber	Hq	80	200,59	13,53	_39 [′]	357	8.1	0,14
Radium	Ra	88	226,03	5	700	1 530		0,12
Radon	Rn	86	(222)	4,4 (I)	-71	-62	_	0,09
Rhenium	Re	75	186,2	21,0	3 180	5 630	48	0,14
Rhodium	Rh	45	102,91	12.4	1 970	3 730	88	0,24
Rubidium	Rb	37	85,47	1,53	39	688	58	0,33
Ruthenium	Ru	44	101,07	12,2	2 300	3 900	106	0,25
Samarium	Sm	62	150,4	7,54	1 070	1 900	_	0,20
Sauerstoff	0	8	16,00	1,15 (I)	-219	-183	0.03	0,92
Scandium	Sc	21	44,96	3,0	1 540	2 730	63	0,56
Schwefel	S	16	32,06	2,07	113	_	0,26	0,68
Selen	Se	34	78,96	4,80	217	685	0,20	0,33
Silber	Aq	47	107,87	10,5	961	2 210	418	0,23
Sb01	, ng	7,	107,07	10,0	301	2210	710	0,20

5.2 Chemische Elemente (Fortsetzung)

Element	Sym- bol	Ord- nungs- zahl	relative Atom- masse	Dichte	Schmelz- tempe- ratur	Siede- tempe- ratur	Wärme- leitfähig- keit	Wärme- kapazität
				$\frac{\rho}{g/cm^3}$	°C	°C	$\frac{\lambda}{W/m~K}$	$\frac{c_p}{kJ/kg\;K}$
Silicium	Si	14	28,09	2,33	1 410	2 680	80	0,68
Stickstoff	N	7	14,01	0,81 (I)	-210	-196	0,02	1,04
Strontium	Sr	38	87,62	2,6	770	1 380	_	0,29
Tantal	Ta	73	180,95	16,6	3 000	5 430	55	0,12
Technetium	Tc	43	98,91	11,5	2 140	(4600)	_	0,25
Tellur	Te	52	127,60	6,24	450	1 390	1,2	0,21
Terbium	Tb	65	158,93	8,27	1 360	2 800	_	0,18
Thallium	TI	81	204,37	11,85	303	1 460	50	0,13
Thorium	Th	90	232,04	11,7	1 700	4 200	38	0,14
Thulium	Tm	69	168,93	9,33	1 550	1 730	_	0,16
Titan	Ti	22	47,90	4,50	1 670	3 260	16	0,24
Uran	U	92	238,03	18,90	1 130	3 820	24	0,12
Vanadium	V	23	50,94	5,8	1 900	3 450	32	0,51
Wasserstoff	Н	1	1,008	0,07 (I)	-259	-253	0,17	14,14
Wolfram	W	74	183,85	19,3	3 410	5 930	130	0,14
Xenon	Xe	54	131,30	3,5 (I)	-112	-108	0,005	0,16
Ytterbium	Yb	70	173,04	6,98	824	1 430	_	0,14
Yttrium	Υ	39	88,91	4,5	1 500	2 930	14	0,29
Zink	Zn	30	65,37	7,14	419	906	113	0,39
Zinn	Sn	50	118,69	7,30	232	2 270	63	0,22
Zirconium	Zr	40	91,22	6,49	1 850	3 580	21	0,28

⁽I) Dichte, 25 °C, bei gasförmigen Substanzen 1013 hPa

Quelle: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH

5.3 Schmelztemperaturen von Salzen für Salzbäder

Salz	Schmelz- temperatur in °C	Salz	Schmelz- temperatur in °C
Aluminiumchlorid	192	Kaliumchlorid	770
Eisen(III)-chlorid	304	Calciumchlorid	772
Kaliumnitrat	308	Natriumchlorid (Kochsalz)	800
Natriumnitrat	310	Lithiumfluorid	848
Zinkchlorid	313	Natriumcarbonat (Soda)	852
Kupfer(I)-chlorid	432	Kaliumfluorid	857
Lithiumcarbonat	461	Kaliumcarbonat	897
Bleichlorid	498	Bariumchlorid	955
Lithiumchlorid	614	Natriumfluorid	992
Kupfer(II)-chlorid	630	Calciumfluorid	1392

5.4 Bezeichnungen und Formeln technisch wichtiger chemischer Stoffe

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Gewerbliche Bezeichnung	Chemische Benennung	Formel
Alaun Alaun Ammoniak Ammoniak Ather Athyläther (C ₂ H ₃) ₂ O Ätzkali Kaliumhydroxid Atzkali Kaliumhydroxid Atzkalk Calciumhydroxid Alzantron Natriumhydroxid NaOH Bauxit Fonerdehydrat Benzin Bilitiaugensalz, gelbes Kaliumferrocyanid Kafe(CN) ₆ · 3H ₂ O Safe(CN) ₆	Aceton	Aceton	CH ₂ · CO · CH ₃
Ammoniak Åther Athyläther (C ₂ H ₃) ₂ O Kaliumhydroxid KOH KAliumhydroxid KOH KAliumhydroxid Ca(OH) ₂ Natriumhydroxid NaOH NaUH NaOH NaOH NaUH NaOH NaOH NaOH NaOH NaUH NaOH NaOH NaOH NaOH NaOH NaOH NaOH NaO	Acetylen	Acetylen	C ₂ H ₂
Ammoniak Åther Athyläther (C ₂ H ₃) ₂ O Kaliumhydroxid KOH KAliumhydroxid KOH KAliumhydroxid Ca(OH) ₂ Natriumhydroxid NaOH NaUH NaOH NaOH NaUH NaOH NaOH NaOH NaOH NaUH NaOH NaOH NaOH NaOH NaOH NaOH NaOH NaO	Alaun	Kaliumaluminiumsulfat	KAI(SO ₄) ₂ · 12H ₂ O
Ātzkali Kalīumhydroxid KOH Ātzkalk Calciumhydroxid Ca(OH)2 Ātznatron Natriumhydroxid NaOH Bauxit Tonerdehydrat Al ₂ O ₃ · 2H ₂ O Benzin (C,H _{2n+2}) Benzol Benzin (C,H _{2n+2}) Benzol Benzol C ₆ H ₆ Bittersalz Magnesiumsulfat MgSO ₄ · 7H ₂ O Bleiglätte Bleioxid PbO Bleimennige Pb ₃ O ₄ PbO Bleimennige Pb ₃ O ₄ Pb(OH) ₂ · 2PbCO ₃ Blutlaugensalz, gelbes Kaliumferrocyanid K ₄ Fe(CN) ₆ · 3H ₂ O Blutlaugensalz, rotes Kaliumferrocyanid K ₃ Fe(CN) ₈ Borax Natriumtetraborat Na ₂ B ₄ O ₇ · 10H ₂ O Borsäure Borsäure H ₂ BO ₂ Bromsilber Silberbromid AgBr Calciumcarbid Calciumcarbid CaC ₂ Chlorealeium Chlorealeium CaC ₂ Chlorkalk Chlorealeium CaC ₁ · 6H ₂ O Chlorkalk CaCl(OCI) CaMg(CO ₃) ₂ Eisenoxid Fesonoxid	Ammoniak	Ammoniak	
Ātzkalk Calciumhydroxid Ca(OH)2 Ātznatron Natriumhydroxid NaOH Bauxit Tonerdehydrat Al ₂ O ₃ · 2H ₂ O Benzin (C _n H _{2n+2}) Benzin Benzol C ₆ H ₆ Benzol Bittersalz Magnesiumsulfat MgSO ₄ · 7H ₂ O Bleigidāte Bleioxid PbO Bleimennige Pb ₃ O ₄ Pbleleiweiß Bleiweiß basisches Bleicarbonat Pb(OH) ₂ · 2PbCO ₃ Blutlaugensalz, gelbes Kaliumferrocyanid K ₄ Fe(CN) ₆ · 3H ₂ O Blutlaugensalz, rotes Kaliumferricyanid K ₃ Fe(CN) ₆ Borsa Natriumteraborat Na ₂ B ₄ O ₇ · 10H ₂ O Borsaure Borsäure H ₂ BO ₂ Borsaure Borsäure H ₂ BO ₂ Bromsilber Silberbromid AgBr Calciumcarbid Calciumcarbid CaC ₂ Chlorcalcium CaC ₂ Chlorkalk Chlorkalk Chlorkalk CaCliumcarbid CaCl ₂ · 6H ₂ O Chlorkalk Chlorkalk CaCl(OCl) CaMg(CO ₃) ₂ Eisenoxid Eisenoxid <td< td=""><td>Äther</td><td>Athyläther</td><td>(C₂H₃)₂O</td></td<>	Äther	Athyläther	(C ₂ H ₃) ₂ O
Ātznatron Natriumhydroxid NaOH Bauxit Tonerdehydrat Al ₂ O ₃ · 2H ₂ O Benzin (C _n H _{2n+2}) Benzin Benzol C ₆ H ₆ Benzol Bittersalz Magnesiumsulfat MgSO ₄ · 7H ₂ O Bleigdätte Bleioxid PbO Bleiwennige Bleioxid PbO Bleiweiß Bleimennige Pb ₉ O ₄ Bleiweiß basisches Bleicarbonat Pb(OH) ₂ · 2PbCO ₃ Blutlaugensalz, gelbes Kaliumferrovanid K ₄ Fe(CN) ₆ · 3H ₂ O Blutlaugensalz, rotes Kaliumferricyanid K ₃ Fe(CN) ₆ Borsa Natriumtetraborat Na ₂ B ₄ O ₇ · 10H ₂ O Borsäure Borsäure H ₂ BO ₂ Braunstein Mangandioxid MnO ₂ Bromsilber Silberbromid AgBr Calciumcarbid Calc CaC ₂ Chliesalpeter Natriumtirat NaNO ₃ Chlorkalk Chlorkalk CaCl ₂ · 6H ₂ O Chlorkalk Chlorkalk CaC(COI) Dolomit	Ätzkali	Kaliumhydroxid	КОН
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ätzkalk	Calciumhydroxid	Ca(OH) ₂
Benzin Benzol Belizerovanid Beleimennige Beleimennige Beleimennige PboO Belowol Benzol Beloxid Beloxid Benzol Beloxid Beloxid Benzol Beloxid Beloxid Benzol Beloxid Beloxid Benzol Beloxid	Ätznatron	Natriumhydroxid	NaOH
Benzol Benzol Ceft Canal Comments of Carbon Canal Cana	Bauxit	Tonerdehydrat	Al ₂ O ₃ · 2H ₂ O
Benzol Bittersalz Magnesiumsulfat MgSO₄ · 7H₂O Bleiglätte Bleioxid PbO Bleimennige Bleimennige Bleimennige Bleimennige Bleimennige Bleimennige Pb₃O₄ Blutlaugensalz, gelbes Kaliumferrocyanid K₄Fe(CN)₆ · 3H₂O K₃Fe(CN)₆ Borax Natriumtetraborat Na₂B₄Oγ · 10H₂O Borsäure Borsäure Borsäure H₂BO₂ Braunstein Mangandioxid MnO₂ Bromsilber Silberbromid AgBr Calciumcarbid FesO₄ · 7H₂O Calciumcarbid Fesoa · 7H₂O Calciumcarbid Calci	Benzin	Benzin	(C _n H _{2n+2})
Bleiglätte Bleimennige Breimenige Bleimennige Bleimennige Bleimennige Breimenige Bleimennige Bleimennie Bleimennige Bleimennie Bleimennie Bleimennie Bleimennie Bleidenenshe AgBr CaCl AgBr CaCl CaCl CaCl CaCl CaCl CaCl CaCl CaMg(Co3)₂ Eisenoxid Eisenoxid Eisenoxid Eisenoxid Eisenoxid Eisenoxid Essig Essigsäure CaH ₄ O SaB ₄ O ₃ SH ₂ O GaSO ₄ · 2H ₂ O Glaubersalz Blutauge Bleimennie Ble	Benzol	Benzol	
Bleimennige Brooksale Blutlaugensalz, gelbes Blutlaugensalz, rotes Blutlaugensalz, rotes Blutlaugensalz, rotes Blutlaugensalz, rotes Blutlaugensalz, rotes Blutlaugensalz, rotes Kaliumferricyanid KajFe(CN) ₆ Borax Natriumtetraborat NagBqO ₂ Borsäure Braunstein Borsäure Braunstein Mangandioxid MnO ₂ Bromsiiber Galciumcarbid Calciumcarbid Calciumcarbid Calciumcarbid Calciumcarbid Calciumcarbid Calciumcarbid Calciumcarbid Chloralcium Chloralcium Chloralcium Chloralcium Chloralcium Chloralcium CaCl ₂ 6H ₂ O CaCl(OCI) CaMg(CO ₃) ₂ Eisenoxid	Bittersalz	Magnesiumsulfat	MgSO₄ · 7H₂O
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bleiglätte	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bleimennige	Bleimennige	Pb ₃ O ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bleiweiß	basisches Bleicarbonat	Pb(OH) ₂ · 2PbCO ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Blutlaugensalz, gelbes	Kaliumferrocyanid	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Blutlaugensalz, rotes	Kaliumferricyanid	
Borsäure Braunstein Mangandioxid MnO2 Bromsilber Silberbromid AgBr Calciumcarbid Calciumcarbid CaC2 Chilesalpeter Natriumnitrat NaNO3 Chlorcalcium Chlorcalcium CaCI2 6H2O Chlorkalk Chlorkalk Calciummagnesiumcarbonat Eisenoxid Eisenoxid Eisenoxid Ferosulfat FesO4 7H2O Essig Essigsäure C3H4O2 Fixiersalz Natriumthiosulfat Na252O3 5H2O Gips schwefelsaures Calcium CaSO4 2H2O Glaubersalz Natriumsulfat Na2504 Glycerin Glycerin C3H6O3 Grubengas Methan CH4 Kalliauge Ätzkall in wäßriger Lösung Kalk, gebrannter Kalk, gelöschter Kalk, splosphorsaurer Calciumposphat Cas(PO4)2 CaCO3		Natriumtetraborat	0 , ,0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Borsäure	Borsäure	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Braunstein	Mangandioxid	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bromsilber	Silberbromid	AgBr
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Calciumcarbid	Calciumcarbid	~
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chilesalpeter	Natriumnitrat	NaNO ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorcalcium	Chlorcalcium	CaCl ₂ · 6H ₂ O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorkalk	Chlorkalk	CaCl(OCI)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dolomit	Calciummagnesiumcarbonat	, ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eisenoxid	Eisenoxid	Fe ₂ O ₂
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eisenvitriol	Ferrosulfat	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Essig	Essigsäure	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fixiersalz	Natriumthiosulfat	Na ₂ S ₂ O ₃ · 5H ₂ O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gips	schwefelsaures Calcium	2 2 0 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Glaubersalz	Natriumsulfat	
Grubengas Methan CH ₄ Kalilauge Ātzkali in wäßriger Lösung KOH Kalk, gebrannter Calciumoxid CaO Kalk, gelöschter s. Ātzkalk Kalk, phosphorsaurer Calciumphosphat Ca ₃ (PO ₄) ₂ Kalkstein Calciumcarbonat CaCO ₃	Glycerin	Glycerin	
Kalilauge Ätzkali in wäßriger Lösung KOH Kalk, gebrannter Calciumoxid CaO Kalk, gelöschter s. Ätzkalk Kalk, phosphorsaurer Calciumphosphat Ca ₃ (PO ₄) ₂ Kalkstein Calciumcarbonat CaCO ₃	,	•	0 0 0
Kalk, gebrannter Calciumoxid s. Ätzkalk Kalk, phosphorsaurer Kalkstein Calciumphosphat Ca3(PO ₄) ₂ CaCO ₃	-	Ätzkali in wäßriger Lösung	7
Kalk, gelöschter Kalk, phosphorsaurer Kalkstein S. Ätzkalk Calciumphosphat Ca ₃ (PO ₄) ₂ CaCO ₃	•		CaO
$ \begin{array}{ccc} \text{Kalk, phosphorsaurer} & \text{Calciumphosphat} & \text{Ca}_3(\text{PO}_4)_2 \\ \text{Kalkstein} & \text{Calciumcarbonat} & \text{CaCO}_3 \\ \end{array} $		s. Ätzkalk	
Kalkstein Calciumcarbonat CaCO ₃	, 0	Calciumphosphat	Ca ₃ (PO ₄) ₂
			0. 4.2
	calzinierte Soda	Natriumcarbonat, wasserfrei	Na ₂ CO ₃

5.4 Bezeichnungen u. Formeln technisch wichtiger chemischer Stoffe (Forts.)

Gewerbliche Bezeichnung	Chemische Benennung	Formel
Karborund	Siliciumcarbid	SiC
kaustische Soda	s. Ätznatron	
Kochsalz	Chlornatrium	NaCl
Kohlenoxid	Kohlenoxid	CO
Kohlensäure	Kohlendioxid	CO ₂
Korund (Schmirgel)	Aluminiumoxid	Al ₂ O ₃
Kreide	Calciumcarbonat	CaCO ₃
Kupfervitriol	Kupfersulfat	CuSO ₄ · 5H ₂ O
Lithopone	Gemisch von Zinksulfid	ZnS und BaSO ₄
	und Bariumsulfat	
Lötwasser	wässrige Zinkchlorid-Lösung	ZnCl ₂
Magnesia	Magnesiumoxid	MgO
Marmor	s. Kalkstein	
Mennige	s. Bleimennige	
Natron, doppelkohlensaures	Natriumbicarbonat	NaHCO ₃
Natronlauge	Ätznatron in wässriger Lösung	NaOH
Phosphorsaurer Kalk	Calciumorthophosphat	Ca ₃ (PO ₄) ₂
Polierrot	Ferrioxid	Fe ₂ O ₃
Porzellanton	Kaolin	Al ₂ O ₃ · 2SiO ₂ · 2H ₂ O
Pottasche	kohlensaures Kalium	K ₂ CO ₃
Rost	Eisenoxidhydrat	Fe(OH) ₂
Salmiak	Chlorammonium	NH ₄ CI
Salmiakgeist	Ammoniak	NH ₃
Salpetersäure	Salpetersäure	HNO ₃
Salzsäure	Chlorwasserstoffsäure	HCI
Scheidewasser	s. Salpetersäure	
Schmirgel	s. Korund	
Schwefelsäure	Schwefelsäure	H ₂ SO ₄
Schwefelwasserstoff	Schwefelwasserstoff	H ₂ S
Schweflige Säure	Schwefeldioxid	SO ₂
Soda, kristallines	kohlensaures Natrium	Na ₂ CO ₃
Tetra	Tetrachlorkohlenstoff	CCI ₄
Tonerde	Aluminiumoxid	Al_2O_3
Tri	Trichloräthylen	C ₂ HCl ₃
Vitriolöl	konzentrierte Schwefelsäure	H ₂ SO ₄
Wasserglas	kieselsaures Natrium	Na ₄ SiO ₄ o. Na ₂ SiO ₂
	oder Kalium	K ₄ SiO ₄ o. K ₂ SiO ₃
Zink, salzsaures	Zinkchlorid, Chlorzink	ZnCl ₂
Zinnchlorid, Chlorzinn	Zinnchlorid	SnCl ₄
Zinnober	Mercurisulfid	HgS

5.5 Stoffwerte einiger Flüssigkeiten (rein und wasserfrei)

Stoff	Dichte		Schmelz- temperatur	Siede- temperatur	Wärmeleit- fähigkeit	Wärme- kapazität
	$\frac{\rho}{\text{g/cm}^3}$	bei °C	°C	°C	$\frac{\lambda}{W/m\;K}$	$\frac{c_p}{kJ/kg\;K}$
Aceton	0,791	20	-95,35	56,35	0,16	1,21
Anthrazenöl	1,05	15	-20	270400	0,47	1,33
Benzin	0,720,73	15	-2050	40200	0,13	2,1
Benzol	0,83	15	5,4	80	0,14	1,7
Dieselkraftstoff	0,83	15	-30	210380	0,15	2,05
Diethylether (Äther)	0,72	20	-116	35	0,14	2,3
Essigsäure	1,05	20	16,7	118	_	2,03
Ethylacetat	0,975	20	-83,6	77,1	_	2,0
Ethylalkohol ~98%	0,80	15	-114	78,5	0,1723	2,33
Ethylchlorid	0,92	15	-139	12,5	0,16	1,79
Ethylenglykol	1,114	20	-17,4	197,2	0,25	2,4
Glycerin	1,26	20	19	290	0,29	2,43
Harzöl	0,96	20	-20	150300	0,15	_
Heizöl EL	<0,86	20	-10	>175	0,14	2,07
Kochsalzlösung						
20%ig	1,15	15	-18	108,8	0,59	3,43
Leinöl	0,93	20	-15	316	0,17	1,88
Maschinenöl	0,91	15	-5	380400	0,125	1,80
Methylalkohol	0,80	15	-98	65	0,211	2,55
Methylenchlorid	1,335	20	-97	40,1	_	_
Petrolether	0,66	20	-160	4070	0,138	1,76
Petroleum	0,81	15	-70	150300	0,13	2,1
2-Propanol (Iso)	0,79	20	-88	83	0,26	2,49
Quecksilber	13,55	15	-38,9	357,25	10	0,14
Rüböl	0,91	20	0	300	0,17	1,97
Salpetersäure	1,51	15	-41,3	86	0,26	1,72
Salzsäure (10%)	1,05	15	-14	102	0,50	3,14
Schwefelsäure	1,84	15	10,5	338	0,47	1,42
Siliconöl	0,94	20	_	_	0,22	1,09
Spiritus 95 Vol%1)	0,811	20	-90	78	0,16	2,43
Teer	1,2	20	-15	300	0,19	1,58
Terpentinöl	0,87	15	-10	160	0,10	1,80
Tetrachlorkohlenstoff	1,598	18	-22,8	46,3	_	0,845
Trichlorethylen	1,47	18	-83	86,8	_	0,95
Toluol	0,87	15	-97	110	0,14	1,48
Transformatorenöl	0,87	15	- 5	170	0,13	1,88
Wasser (dest.)	1,00	4	0	100	0,60	4,19
,	,				,	^ -

¹⁾ Ethylalkohol vergällt.

Quelle: Christiani Datenbank, Dr. Ing. P. Christiani GmbH

5.6 Stoffwerte einiger fester Stoffe

Stoff	Dichte ϱ	Schmelz- temperatur	Siede- tempe- ratur	Wärmeleit- fähigkeit	Wärme- kapazität
	kg/dm ³	°C	°C	W/m K	kJ/kg K
Achat Asphalt Bariumchlorid (BaCl2) Basalt Beton Bleiglätte, Blei(II)-oxid Borax (wasserfrei) Bronze (94 Cu, 6 Sn) Chrom(III)-oxid (Cr2O3) Diamant Eis Eisenoxidhydrat (Rost) Fette Gips (CaSO4) Gias, Fenster Giasfasermatten Gimmer Granit Graphit, rein Grauguss Hartmetall K20 Heizleiterleg. 80 Ni, 20 Cr Holz Holzkohle Kalkstein (CaCO ₂) Kesselstein Kochsalz (NaCI) Koks Korund (Al2O ₃) Leder (trocken) Mg-Legierungen Marmor (CaCO ₃) Messing (63 Cu, 37 Zn) Monelmetall		°C -1600 80100 956 - 888 741 910 2330 - 1565 30175 1200 -700 -700 -13003830 11501250 -2000 1400 zerfällt in CaO (-1200) 802 - 2050	°C -2590 -300 1830 - 1580 - 2300 - 100 - 300	Name Name	C _p kJ/kg K 0.79 0.92 0.37 0.86 0.87 0.75 0.52 2.1 0.67 0.620,79 1.1 0.84 0.84 0.82 0.71 -0.5 0.80 0.50 2.12.9 1.0 0.91 0.79 0.92 0.84 0.96 -1.5 - 0.88 0.38 0.38 0.43
Porzellan Quarz Rotguss (CuSn5 ZnPb) Ruß Sand, trocken Sandstein Stahl niedr. leg.	2,32,5 2,52,8 8,8 1,71,8 1,21,6 2,22,5 7,87,86	~1600 ~1400 950 - 1480 ~1500 14501530	2230 2300 - 2230 - 2500	0,81,0 9,9 38 0,07 0,6 2,3 4658	0,80 0,80 0,67 0,84 0,80 0,71 0,49
Stahl (18 Cr, 8 Ni) Stahl (18 W)	7,9 8,7	1450 1450	_	14 26	0,51 0,42

Quelle: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH

5.7 Stoffwerte einiger Gase und Dämpfe

Stoff	Dichte		Siede- temperatur	Wärme- leit- fähigkeit	Wärme- kapazität	
	$\frac{Q}{kg/m^3}$	$\frac{\eta_{rel}}{(Luft=1)}$	°C	$\frac{\lambda}{W/m\ K}$	$\frac{c_p}{kJ/kg~K}$	$ \kappa = \frac{c_p}{c_x} $
Acetylen (Ethin)	1,17	0,91	-81	0,019	1,68	1,26
Ammoniak	0,77	0,60	-33,4	0,024	2,22	1,32
n-Butan	2,703	2,09	1	_	_	-
iso-Butan	2,67	2,06	-10	_	_	1,11
Chlorwasserstoff	1,939	1,27	-85	0,014	0,79	1,41
Cyan, (CN)2	2,33	1,80	-21,2	_	1,72	1,27
Erdgas (Methan)	0,718	0,64	-162	_	_	-
Ethan	1,356	1,049	-88	0,021	_	1,13
Ethylalkohol-Dampf	2,07	1,60	78,5	0,032	_	1,13
Ethylen, Ethen	1,26	0,98	-102	0,037	1,55	1,25
Fluorwasserstoff	0,893	0,713	19,5	-	_	-
Frigen 12 (Cl2F2)	5,08	3,93	-30	-	_	1,14
Generatorgas	1,22	0,94	-170	0,023	1,05	1,40
Gichtgas	1,28	0,99	-170	0,023	1,05	1,40
Kohlenmonoxid	1,25	0,97	-191	0,024	1,05	1,40
Kohlendioxid	1,98	1,52	-78,5	0,0153	0,88	1,30
Stadtgas (Leuchtgas)	0,560,61	0,47	-210	0,064	2,13	1,40
Luft	1,29	1	-192	0,026	1,00	1,40
Methylchlorid	1,545	1,2	-24,0	_	0,74	1,20
Ozon	2,14	1,65	-112	-	_	1,29
Propan	2,019	1,562	-45	_	_	1,14
Propylen (Propen)	1,915	1,481	-47	_	_	-
Schwefeldioxid	2,93	2,26	-10	0,010	0,63	1,40
Schwefelkohlenstoff	3,41	2,64	46	0,0072	0,67	1,19
Schwefelwasserstoff	1,539	1,191	-60,2	-	1,34	-
Wasserdampf bei 100 °C	0,598	0,62	100	0,0191	2,00	1,32

Quelle: Christiani Datenbank, Dr.-Ing. P. Christiani GmbH

5.8 Metallsalze im Wasser

Mindestmengen, die tödlich sind für Lebewesen

Art der Metalle	in 1 Liter Wasser	Art der Metalle	in 1 Liter Wasser
Kupfer	0,0033 g	Magnesium	1,5 g
Zink	0,0084 g	Calcium	2,4 g
Eisen(-oxidul)	0,0140 g	Kalium	0,1 g
Kadmium	0,0170 g	Natrium	24,17 g
Nickel	0,1250 g	Quecksilber	0,00029 g
Mangan	0,3 g		

Quelle: SKF-Taschenbuch

5.9 Elektrolytische Spannungsreihe

Angaben in Volt gegenüber einer Wasserstoffelektrode

Gold	+1,50	Indium, Thallium -0,34
Chlor	+1,36	Kadmium -0,40
Brom	+1,09	Eisen -0,40
Platin	+0,87	Chrom -0,56
Quecksilber	+0,86	Zink -0,76
Silber	+0,80	Aluminium, oxydiert -0,701,3
Jod	+0,58	Mangan −1,1
Kupfer	+0,51	Aluminium, blank -1,45
Arsen	+0,30	Magnesium -1,55
Wismut	+0,23	Beryllium -1,96
Antimon	+0,20	Calcium -2,50
Wasserstoff	0,00	Natrium –2,72
Blei	-0,13	Barium –2,80
Zinn	-0,15	Kalium –2,95
Nickel	-0,22	Lithium -3,02
Kobalt	-0,29	

Berühren sich zwei Metalle in Gegenwart von Wasser, Säuren usw., so findet eine elektrolytische Zersetzung desjenigen Metalles statt, das in der elektrolytischen Spannungsreihe den niedrigsten Platz hat. Das unedlere Element korrodiert, das edlere wird geschützt.

5.10 Thermoelektrische Spannungsreihe

Bezugsmetall: Kupfer 0 °C Angaben in mV für 100 °C Temperaturdifferenz

Chromnickel	+1,44	Manganin	-0,04	
Eisen	+1,04	Aluminium	-0,36	
Wolfram	+0,05	Platin	-0,76	
Kupfer	0,00	Nickel	-2,26	
Silber	-0,04	Konstantan	-4,16	

6 Mechanik (Dynamik)

Die Mechanik setzt sich mit der ebenen und räumlichen Bewegung von Körpern auseinander und will Bewegungsvorgänge in Natur und Technik beschreiben. Für die Kinematik sind die Begriffe Weg, Geschwindigkeit und Beschleunigung kennzeichnend, für die Dynamik die Hinzunahme der Begriffe Kraft und Masse.

Alle dynamischen Bewegungsvorgänge basieren auf dem physikalischen Grundgesetz von NEWTON:

Kraft = Masse × Beschleunigung (translatorische Bewegung)

bzw. Moment = Trägheitsmoment × Winkelbeschleunigung (rotatorische Bewegung)

Es ist die Grundlage für alle beschleunigten Bewegungen von Körpern.

6.1 Größen und Einheiten in der Mechanik

Größe	Einheit	Größenbezeichnung	Bemerkungen
x, y, z	m	Kartesische Koordinaten	Rechtssystem
s	m _,	Weglänge, Kurvenlänge	s; (x, y, z)
V	m/s	Geschwindigkeit	$v = ds/dt; (\dot{x}, \dot{y}, \dot{z})$
а	m/s ²	Beschleunigung	$a = dv/dt$; $(\ddot{x}, \ddot{y}, \ddot{z})$
Α	m ²	Fläche	$1 \text{ m}^2 = 10^6 \text{ mm}^2$
E _p E _k	J = Nm	Potentielle Energie	$E_p = m \cdot g \cdot h$ (Lage)
	J = Nm	Kinetische Energie	$E_k^p = (m/2) \cdot v^2$
f	1/s	Frequenz (ω Kreisfrequenz)	$f = \omega/(2 \cdot \pi)$
F	N	Kraft	F = m · a (Newton)
F _G	N	Gewichtskraft	$F_G = m \cdot g$
g	m/s ²	Erdbeschleunigung	g = 9,80665 m/s ²
Ĥ	Nms	Drehstoß	H = ∫ M · dt
1	Ns	Kraftstoß	I = ∫F · dt
J	kg m ²	Trägheitsmoment	Massenmoment 2. Grades
L	kg m ² /s	Drall, Drehimpuls	$L = \int \omega dJ; L = J \cdot \omega$
m	kg	Masse	SI-Basiseinheit
M	Nm	Kraftmoment, Drehmoment	$M = Kraft \times Hebelarm$
n	min ⁻¹	Drehzahl	$n = 30 \cdot \omega/\pi$
p	kg m/s	Bewegungsgröße, Impuls	$p = \int v \cdot dm; p = m \cdot v$
p	$Pa = N/m^2$	Druck	p = F/A
P	W	Leistung	P = W/t
t	S	Zeit, Zeitspanne, Dauer	SI-Basiseinheit
V	m ³	Volumen	1 m ³ = 10 ⁹ mm ³
W	Nm	Arbeit	$W = \int \mathbf{F} \cdot d\mathbf{s}; W = \int M \cdot d\phi$
W _R	Nm	Reibungsarbeit, Energieverlust	$W_R = \int F_R \cdot ds$
η	1	Wirkungsgrad	$\eta = P_{eff}/P_{theor.}$
ή	Pas	Dynamische Viskosität	$\tau = \eta \cdot dv/dh$ (Newton)
μ̈́	1	Reibungszahl	$\mu = \dot{F}_R/F_N$ (Coulomb)
v	m ² /s	Kinematische Viskosität	$v = \eta/\rho$
ρ	kg/m ³	Dichte, Massendichte	$\rho = m/V$
φ	rad ¹⁾	Winkel, Drehwinkel	1 rad = 1 m/1 m
ω, φ	rad/s	Winkelgeschwindigkeit	$\omega = d\phi/dt = \dot{\phi}$
ώ, ΰ	rad/s ²	Winkelbeschleunigung	$\dot{\omega} = d\omega/dt = \ddot{\phi}$

1) Die Einheit kann durch "1" ersetzt werden.

6.2 Die Bewegungsgleichungen

Das NEWTON'sche Grundgesetz für die beschleunigte Bewegung eines Körpers lautet

$$\begin{array}{ll} \text{Translation:} & \Sigma \vec{\textbf{F}}_S = m \cdot \vec{\textbf{a}} \\ \text{Rotation:} & \Sigma \vec{\textbf{M}}_S = J_S \cdot \vec{\boldsymbol{\omega}} \\ \end{array} \right\} \quad \text{für den Schwerpunkt "S"} \\ \text{Rotation um} \\ \text{den Momentanpol:} & \Sigma \vec{\textbf{M}}_{MP} = J_{MP} \cdot \vec{\boldsymbol{\omega}} \\ \text{für den Momentanpol "MP"} \\ \end{array} \right\} \quad \text{für den Momentanpol "MP"}$$

Die Summe aller **äußeren** an einem Körper angreifenden Kräfte bzw. Momente ist gleich **Masse** × **Beschleunigung** bzw. **Trägheitsmoment** × **Winkelbeschleunigung** des Körpers.

Ansatz nach d'Alembert:

oder

Fasst man bei der beschleunigten Bewegung eines Körpers die Trägheitskräfte m \cdot \vec{a} und die Momente infolge der Trägheitswirkung J \cdot $\vec{\omega}$ als äußere eingeprägte Kräfte bzw. Momente (**kinetische Reaktionen**) auf und schreibt

$$\Sigma \overrightarrow{F_s} \stackrel{\wedge}{+} (-m\overrightarrow{a}) = 0; \quad \Sigma \overrightarrow{F_s} \stackrel{\wedge}{+} \overrightarrow{F_K} = 0 \qquad \qquad \Sigma \overrightarrow{M_S} \stackrel{\wedge}{+} - (J_S \cdot \overrightarrow{\omega}) = 0; \quad \Sigma \overrightarrow{M_S} \stackrel{\wedge}{+} \overrightarrow{M_K} = 0$$

so führt man das kinetische Problem auf ein statisches Gleichgewichtsproblem zurück, und es gelten die Grundgleichungen der Statik:

$$\Sigma \overrightarrow{F}^* = 0$$
 $\Sigma \overrightarrow{M}^* = 0$

wobei in der Kräftesumme $\Sigma \overrightarrow{F^*}$ bzw. Momentensumme $\Sigma \overrightarrow{M^*}$ jeweils die kinetischen Reaktionen enthalten sind. Es ist dabei zu beachten, dass die kinetischen Reaktionen immer entgegen der positiv festgesetzten Richtung der Beschleunigung anzusetzen sind.

Richtlinien für das Aufstellen der Gleichgewichtsbeziehungen und das Lösen der Bewegungsgleichungen

- Festlegung der Koordinaten im Schwerpunkt des K\u00f6rpers und in zu erwartender Bewegungsrichtung. (Koordinaten f\u00fcr die Translationsbewegung des Schwerpunktes und die Rotationsbewegung um den Schwerpunkt).
- 2) Antragen der kinetischen Reaktionen entgegen den positiv festgesetzten Richtungen der Beschleunigung
 - a) Trägheitskräfte
 - b) Momente infolge Trägheitswirkung (soweit vorhanden)
- Antragen aller weiteren eingeprägten Kräfte (äußere Kräfte, Gewichtskräfte) und Reaktionskräfte (Reibungskräfte, Auflagereaktionen)
- Bildung des Kräftegleichgewichtes für alle Kräfte in Bewegungsrichtung einschließlich der kinetischen Reaktionen

$$\Sigma F_{x}^{*} = 0$$
 $\Sigma F_{v}^{*} = 0$ (Ebene Bewegung)

und Bildung des Momentengleichgewichtes um den Schwerpunkt, sofern der Körper neben der Translationsbewegung auch eine Rotationsbewegung um seinen Schwerpunkt vollführt

$$\Sigma M_{z(S)} = 0$$

unter Berücksichtigung der Vorzeichen.

- 5) Angabe geometrischer Beziehungen zwischen der Translations- und der Rotationsbewegung.
- 6) Gleichungen nach der gesuchten Beschleunigung auflösen.
- a) Beschleunigung = const oder f(t): elementar integrierbar unter Berücksichtigung der Randbedingungen
 - b) Beschleunigung = f(Weg): einmal integrierbar $\ddot{x} = \frac{\dot{x} \cdot d\dot{x}}{dx}; \quad \ddot{\phi} = \frac{\dot{\phi} \cdot d\dot{\phi}}{d\phi}$
 - c) Beschleunigung = f(Weg): es kann ein Schwingungsvorgang vorliegen.

6.3 Einfache Bewegungsvorgänge

Bewegungsvorgang	Beziehungen	Weg-Zeit-Diagramme
Gleichförmige, geradlinige Bewegung. Beschleunigung x = 0 Anfangsbedingungen: s ₀ , v ₀	$\begin{split} \ddot{x} &= 0 \\ \dot{x} &= v_0 = const. \\ x &= s(t) = v_0 \cdot t + s_0 \end{split}$	$s(t)$ s_{o} $s(t) = v_{o} \cdot t + s_{o}$ t
Beschleunigte, geradlinige Bewegung. Beschleunigung x̄ = a Anfangsbedingungen: s₀, v₀	$\begin{split} \ddot{x} &= a &= const.\\ \dot{x} &= v(t) = a \cdot t + v_0\\ x &= s(t) = \frac{a \cdot t^2}{2} + v_0 \cdot t + s_0 \end{split}$	S_0 $S(t) = \frac{a^{1/2}}{2} + v_0 + s_0$
Freier Fall unter der Erdbeschleunigung. Beschleunigung $\bar{x}=g$ Anfangsbedingung: Höhe h_0 $v_0=s_0=0$	$\begin{split} \ddot{x} &= g\\ \dot{x} &= v(t) = g \cdot t\\ x &= s(t) = \frac{g \cdot t^2}{2}\\ t(h_0) &= \sqrt{2 \cdot h_0/g} \text{ Fallzeit}\\ v(h_0) &= \sqrt{2 \cdot g \cdot h_0} \text{ Geschwindigkeit} \end{split}$	$s(t) = \frac{g \cdot t^2}{2}$
Wurf senkrecht nach oben. Beschleunigung $s - g$ Anfangsbedingung: v_0 , $s_0 = 0$	$ \begin{split} \ddot{x} &= -g \\ \dot{x} &= v(t) = -g \cdot t + v_0 \\ x &= s(t) = -\frac{g \cdot t^2}{2} + v_0 \cdot t \\ h &= v_0^2/(2 \cdot g) \text{ Steighöhe} \\ t(h) &= v_0/g \qquad \text{ Steigzeit} \end{split} $	$s(t) = -\frac{g \cdot t^2}{2} \cdot v_0 \cdot t$ $t(h)$
Schiefer Wurf unter dem Winkel α y, y, y m x, x, x	$\begin{split} \ddot{x} &= 0 \\ \dot{x} &= v_0 \cdot \cos \alpha \\ x &= v_0 \cdot \cos \alpha \cdot t \\ \ddot{y} &= -g \\ \dot{y} &= -g \cdot t + v_0 \cdot \sin \alpha \\ y &= -g \cdot t^2 / 2 + v_0 \cdot \sin \alpha \cdot t \end{split}$	t t
Bewegung auf schiefer Ebene, ohne Reibung (μ = 0).	$\begin{split} \ddot{x} &= g \cdot \sin \alpha = a \\ \dot{x} &= v(t) = g \cdot \sin \alpha \cdot t \\ x &= s(t) = g \cdot \sin \alpha \cdot t^2/2 \\ t &= 0 \colon s_0 = 0 \colon v_0 = 0 \end{split}$	$s(t)$ $s(t)=g.sina. t^{2}/2$
Bewegung auf schiefer Ebene, mit Reibung, Reibungswert μ.	$\begin{split} \ddot{x} &= g \cdot (\sin\alpha - \mu \cdot \cos\alpha) = a \\ \dot{x} &= v(t) = a \cdot t \\ x &= s(t) = a \cdot t^0/2 \\ t &= 0 \cdot s_0 = 0; v_0 = 0 \end{split}$	$s(t) = \frac{0 \cdot t^2}{2}$

6.4 Zusammenstellung der wichtigsten Kräfte der Kinetik

Kraft	Größe	Ве	merkungen			
Eingeprägte Kräfte	einwirken. Sie könne	n so in ih	nd primäre Kräfte, die von außen auf einen Körper sowohl bewegungsfördernd als auch -hemmend sein. n ihren Bestimmungsstücken (Betrag, Richtung, tt oder vorgegeben.			
Kraft, allgemein	F	Mι	Muskelkraft, Windkraft, Treibkräfte von Maschinen etc.			
Massen- anziehungskraft	$F_M = G \cdot \frac{m_1 \cdot m_2}{r^2}$		Die Massenanziehungskraft zwischen zwei Massen ist proportional dem Produkt der Massen und umgekehrt proportional dem Quadrat ihres Schwerpunktabstandes. Der Proportionalitätsfaktor ist die universelle Gravitationskonstante, die ermittelt wurde zu G = 6,672·10 ⁻¹¹ Nm²/kg².			
Schwerkraft Gewichtskraft	$F_G = m \cdot g$	konservativ	Aufgrund des Massenanziehungsgesetzes und unter Berücksichtigung der auf der Erdoberfläche durch die Rotation der Erde auftretenden Zusatzkraft (Zentrifugalkraft) ergibt sich in Erdnähe die Schwerkraft (Gewicht), der alle Körper unterliegen.			
Schwerkraft bei größerer Entfer- nung h von der Erdoberfläche	$F_G = mg_0 \left(\frac{R_0}{R_0 + h}\right)^2$	kons	Bei größerer Entfernung vom Erdmittelpunkt $(h\gg R_0)$ verringert sich die Schwerkraft mit dem Quadrat des Abstandes. $g_0=9.81~\text{m/s}^2; R_0=6370\cdot10^3~\text{m}.$			
Schwerkraft im Erdinneren	$F_G = m \cdot g_0 \cdot \frac{r}{R_0}$		Unter Voraussetzung konstanter Erddichte verringert sich die Schwerkraft zum Erdzentrum hin linear mit dem Abstand vom Erdmittelpunkt.			
Federkraft	F _F = c · w		Die Federkraft ergibt sich aus dem Produkt der Federkonstanten c und der Federauslenkung w. Sie wirkt entgegen der positiven Federauslenkung.			
Gleitreibungs- kraft	$F_R = \mu \cdot F_N$	nicht konservativ	Die Gleitreibungskraft zwischen zwei Flächen (Coulombsche Reibung) ist proportional der wirkenden Normalkraft. Der Proportionalitätsfaktor ist der Gleitreibungskoeffizient µ. Die Gleitreibungskraft wirkt entgegen der relativen Geschwindigkeit der sich berührenden Flächen.			
Dämpfungskraft	$F_D = b \cdot v$	nicht k	Die Dämpfungskraft (Newton'sche Reibung) ist proportional der Geschwindigkeit und wirkt entgegen der positiven Geschwindigkeitsrichtung. Die Größe b [K·T/L] wird als Dämpfungskonstante bezeichnet.			
Zwangs- oder Führungskräfte (Reaktions- kräfte)	Bewegungsmöglichke bedingt. Der Einfluss	hrungskräfte werden durch die Einschränkung der eit eines bewegten Körpers oder Systems von Körpern von reibungsfreien Führungen oder Leitkurven auf den ßere Führungskräfte berücksichtigt, die normal auf den				
Zentripetalkraft gekrümmte Bahn Kreisbahn	$F_{ZP} = m \cdot \frac{v^2}{\rho}$ $F_{ZP} = m \cdot r \cdot \omega^2$	ter tal ge	i der Bewegung eines Körpers auf einer gekrümm- Bahn erfährt er eine Beschleunigung, die Zentripe- beschleunigung, die auf den Krümmungsmittelpunkt richtet ist. Die sie erzeugende Kraft bezeichnet man i Zentripetalkraft.			

6.4 Zusammenstellung der wichtigsten Kräfte der Kinetik (Fortsetzung)

Kraft	Größe	Bemerkungen
Kinetische Reaktionen:	infolge von beschleunige wirken immer den positiv netische Reaktion des Kö Kraft (fingierte Kraft) auf,	en stellen die Rückwirkung eines bewegten Körpers nden oder verzögernden äußeren Krätten dar. Sie en Beschleunigungen entgegen. Fasst man die ki- örpers auch als eine am Körper angreifende äußere so lässt sich das kinetische Problem auf ein stati- mit Hilfe der Gleichgewichtsbedingungen shes Prinzip).
tangential zur Bahnkurve normal zur Bahnkurve Zentrifugalkraft:	$\begin{aligned} F_{Kt} &= -m \cdot \tilde{s}_t \\ F_{Kn} &= -m \cdot \tilde{s}_n \\ F_{Kn} &= -m \cdot \frac{v^2}{\rho} \end{aligned}$	Die kinetische Reaktion eines Körpers bei der be- schleunigten Bewegung wirkt entgegen der positi- ven Richtung der Beschleunigung, die durch die eingeprägten Kräfte und Führungskräfte bewirkt wird. Bei der geführten Bewegung auf einer Bahnkurve ist es zweckmäßig, sie in Komponen-
gekrümmte Bahn Kreisbahn	$F_{Kn} = -m \cdot r \cdot \omega^2$	ten tangential und normal zur Bahnkurve zu zer- legen. Zu den kinetischen Reaktionen, die normal zur Bahnkurve wirken, gehört die Zentrifugalkraft.
Zusatzkräfte im beschleunigten Bezugssystem	so ist es zweckmåßig, die System vom Standpunkt untersuchen. Im beschler zusätzlichen Trägheitskrå	nge in einem beschleunigten Bezugssystem statt, ses als Relativbewegungen gegenüber dem eines mitbeschleunigten Beobachters aus zu unigten Bezugssystem unterliegen alle Körper itten (Scheinkräften), die vom Standpunkt des achters als äußere am Körper angreifende Kräfte n.
Trägheitskraft im translatorisch beschleunigten Bezugssystem	$F_{Syst.} = -m \cdot a_{Syst.}$	Im translatorisch beschleunigten Bezugssystem (Systembeschleunigung a _{Syst.}) unterliegen alle Körper einer Trägheitskraft. Sie wirkt der positiven Richtung der Systembeschleunigung entgegen.
Trägheitskräfte im rotierenden Bezugssystem Zentrifugalkraft	$F_Z = m \cdot r \cdot \Omega^2$	Im rotierenden Bezugssystem (Winkelgeschwindigkeit Ω) unterliegen alle Körper einer zusätzlichen Trägheitskraft, der Zentrifugalkraft. Dem mitrotierenden Beobachter erscheint diese als eine vom Drehzentrum fortweisende, dem System eigentümliche Feldkraft entsprechend der Schwerkraft (Gewicht). Sie hat für ihn den Charakter einer konservativen eingeprägten Kraft, die allen freien Körpern eine Zentrifugalbeschleunigung in gleicher Richtung erteilt.
Corioliskraft	$F_{C} = 2 \cdot m \cdot v_{\text{rel}} \cdot \Omega \sin \alpha$	Die Corioliskraft tritt bei Relativbewegungen im rotierenden Bezugssystem auf. Sie steht senkrecht auf der von den Vektoren $v_{\rm rel}$ und Ω aufgespannten Ebene und weist in die Richtung, die sich im Sinne einer Rechtsschraube ergibt, wenn man den Vektor $v_{\rm rel}$ auf dem kürzesten Weg in die Richtung von Ω überführt. α ist der von den beiden Vektoren eingeschlössene Winkel. Bei geführter Bewegung eines Körpers im rotierenden Bezugssystem erfährt dieser eine Coriolisbeschleunigung in Richtung der Corioliskraft.

6.5 Der Energiesatz

Der Energiesatz der Mechanik besagt: In einem abgeschlossenen mechanischen System bleibt die Summe der Energien, bestehend aus potentieller Energie En, kinetischer Energie Ek und der Wärmemenge Q, konstant, wobei unter einem abgeschlossenen mechanischen System ein System zu verstehen ist, auf das von außen keine Kräfte wirken oder wenn Kräfte wirken, diese gegenüber den Kräften innerhalb des Systems vernachlässigbar klein sind. Außerdem wird dem System weder Wärme zu- noch abgeführt. Demnach lautet der Energiesatz:

$$E_p + E_k + Q = const.$$

Bei einem mechanischen System kann nur eine Zunahme der Wärmemenge auftreten und diese nur auf das Auftreten von Reibungsverlusten im System zurückzuführen sein. Für die Betrachtung zweier spezieller Zeitpunkte 1 und 2 eines Bewegungsablaufes gilt dann

$$E_{n1} + E_{k1} + Q_1 = E_{n2} + E_{k2} + Q_2$$

$$Q_2 - Q_1 = W_{R1, 2}$$

so dass seine endgültige Formulierung lautet:

 $Q_2 - Q_1 = W_{R1, 2}$ Reibungsverluste auf dem Weg von 1 nach 2

$$E_{p1} + E_{k1} = E_{p2} + E_{k2} + W_{R1, 2}$$

Für ein konservatives System, in dem keine Reibungsverluste auftreten, ist:

$$E_{p1} + E_{k1} = E_{p2} + E_{k2}$$

Der Energiesatz lässt sich auch in folgender Form schreiben:

$$E_{k2} - E_{k1} = W_{1,2} - W_{B1,2}$$

d. h., die Änderung der kinetischen Energie zwischen zwei Punkten eines Bewegungsablaufes ist gleich der Arbeit, die längs des Weges von 1 nach 2 von den eingeprägten Kräften geleistet wird abzüglich der auf dem Wege von 1 nach 2 auftretenden Reibungsverluste.

Energieformen (Beispiele):

Kinetische Energie:

 $E_{k(S)} = \frac{1}{2} \cdot m \cdot v_S^2$

Translationsenergie des Schwerpunktes

Für den Schwerpunkt

 $E_{k(S)} = \frac{1}{2} \cdot J_s \cdot \omega^2$

Rotationsenergie um den Schwerpunkt

 $E_{k(MP)} = \frac{1}{2} \cdot J_{MP} \cdot \omega^2$ oder für den Momentanpol

Reine Rotationsenergie für den Momentanpol

Potentielle Energie:

Potentielle Energie der Lage gegenüber einem Bezugsniveau im Erdschwerefeld

$$E_p = m \cdot g \cdot h$$

(h = Höhe über dem Bezugsniveau)

Potentielle elastische Energie einer verformten Feder

Translationsfeder

$$E_p \,=\, \frac{1}{2} \cdot c \cdot w^2$$

Torsionsfeder

$$\mathsf{E}_\mathsf{p} = \frac{1}{2} \cdot c' \cdot \phi^2 \qquad \qquad c' \left[\mathsf{K} \cdot \mathsf{L} \right]$$

Arbeit:

Arbeit im veränderlichen Potentialfeld (Erdschwerefeld bei größeren Höhen)

$$g(h) = g_0 \cdot R_0^2 / (R_0 + h)^2$$

$$W_{res} = \int_{-\infty}^{2} m_{res} g(h) \cdot dh$$

$$W_{1,2} = \int_{1}^{2} m \cdot g(h) \cdot dh$$

Verluste:

Äußere Reibungsverluste: $W_{R1} = F_N \cdot \mu \cdot S_1$

Innere Reibungsverluste: siehe Stoßgesetze (Energieverluste), Seite 91

6.6 Zusammenstellung der wichtigsten Energieformen der Kinetik

Energieart	Größe	Bemerkungen		
	Kinetische E	Energien		
Translationsenergie des Massenschwerpunktes Rotationsenergie um den Massenschwerpunkt	$E_{k} = \frac{m}{2} \cdot v_{s}^{2}$ $E_{k} = \frac{1}{2} \cdot J_{s} \cdot \omega^{2}$	Die kinetische Gesamtenergie einer sich bewegenden Masse setzt sich aus der Trans- lationsenergie bezogen auf die Schwer- punktsgeschwindigkeit und der Rotations- energie um den Schwerpunkt zusammen.		
Rotationsenergie um den Dreh- oder Momentanpol	$\begin{aligned} E_k &= \frac{1}{2} \cdot J_{DP} \cdot \omega^2 \\ E_k &= \frac{1}{2} \cdot J_{MP} \cdot \omega^2 \end{aligned}$	Bei geführter Drehbewegung der Masse oder dann, wenn man den Momentanpol der Bewe- gung angeben kann, lässt sich die kinetische Gesamtenergie allein durch die Rotations- energie um den Dreh- oder Momentanpol angeben.		
	Potentielle E	nergien		
Energie der Lage im Erdschwerefeld	$E_p = m \cdot g \cdot h$	Die Energie der Lage einer Masse im konstan- ten Schwerefeld (Erdnähe) ist das Produkt aus Gewichtskraft und der Schwerpunktshöhe h über einem gewählten Bezugsniveau.		
Elastische Verformungs- energie einer Feder Translationsfeder	$E_{p} = \frac{1}{2} \cdot c \cdot w^{2}$ $E_{p} = \frac{1}{2} \cdot c' \cdot \phi^{2}$	Die bei der Verformung einer Feder geleistete Arbeit wird in Form von elastischer Energie in der Feder gespeichert. Die Energie ist von der Feder konstanten und der Auslenkung w bzw. Verdrehung ϕ der Feder abhängig.		
Elastische Energie von Trägern und Stäben bei Verformung durch: Normalkräfte Biegemomente	$E_p = \frac{1}{2} \int \frac{N^2}{E \cdot A} dx$ $E_p = \frac{1}{2} \int \frac{M_b^2}{E \cdot I_a} dx$ $E_p = \frac{1}{2} \int \frac{M_t^2}{G \cdot I_p} dx$	Wird ein Träger oder ein Stab durch äußere Kräfte elastisch verformt, so ist die von den inneren Spannungen längs der von diesen erzeugten Verschiebungen geleistete Arbeit gleich der im Stab oder Träger gespeicherten elastischen Energie. Im allgemeinen lässt sich die elastische Verformungsenergie durch die Federkonstante und die Auslenkung bzw. Verdrehung an der Stelle der Verformung angeben		
Energie der Lage im Zentrifugalfeld	$E_p = -\frac{1}{2} \!\cdot\! m \cdot\! \Omega^2 \!\cdot\! r^2$	Im rotierenden System existiert für den beschleunigten Beobachter ein Kraftfeld (Zentrifugalfeld), dessen Stärke vom Dreh- zentrum nach außen zunimmt. Die Energie der Lage wird auf die Drehachse bezogen.		
	Energieve	rluste		
Energieverlust durch Gleitreibungskräfte	$W_{R1, 2} = F_N \cdot \mu \cdot s_{1, 2}$	Beim Vorhandensein von Gleitreibungskräften (Widerstandskräften) wird von diesen längs des wirkenden Weges s _{1,2} Reibungsarbeit geleistet, die als Wärme in Erscheinung tritt und für den mechanischen Bewegungsablauf verloren ist.		
Energieverlust beim unvollkommenen elastischen Stoß	$\begin{aligned} W_{\text{R1, 2}} &= \\ &= \frac{1}{2} (1 - e^2) (V_1 - V_2)^2 \cdot \\ &\cdot \frac{m_1 \cdot m_2}{m_1 + m_2} \end{aligned}$	Beim unvollkommen elastischen Stoß von Körpern treten Energieverluste durch innere Werkstoffreibung auf. Siehe hierzu Abschnitt: Stoß fester Körper.		

6.7 Massenmomente 2. Grades von homogenen Körpern

Kreiszylinder	$m = \rho \pi r^2 h$	Quader	m = ρabc
z y y x	$J_{x} = \frac{mr^{2}}{2}$ $J_{y} = J_{z} = \frac{m(3r^{2} + h^{2})}{12}$	c S x	$J_x = \frac{m(b^2 + c^2)}{12}$ $J_y = \frac{m(a^2 + c^2)}{12}$ $J_z = \frac{m(a^2 + b^2)}{12}$
Hohlzylinder	$m = \rho \pi (R^2 - r^2) h$	Dünner Stab	
RIT S X	$J_x = \frac{m(R^2 + r^2)}{2}$ $J_y = J_z = \frac{m(R^2 + r^2 + h^2/3)}{4}$	Z Y A	$m = \rho AI$ $J_y = J_z = \frac{mI^2}{12}$
Dünne Scheibe	$m=\rho\;\pi\;r^2\;h$	Kugel	
y h	$h \ll r$ $J_x = \frac{m r^2}{2}$ $J_y = J_z = \frac{m r^2}{4}$	y y x	$m = \rho \frac{4}{3} \pi r^{3}$ $J_{x} = J_{y} = J_{z} = \frac{2}{5} m r^{2}$
Kreiskegelstumpf		Hohlkugel	
Kreiskegelstumpf	$m = \rho \frac{1}{3} \pi h (R^2 + Rr + r^2)$ $J_x = \frac{3}{10} m \frac{R^5 - r^5}{R^3 - r^3}$	Hohlkugel	$m = \rho \frac{4}{3} \pi (R^3 - r^3)$ $J_x = J_y = J_z = \frac{2}{3} mr^2$
Kreiskegel		Z I	$J_x = J_y = J_z = $ $= \frac{2}{3} mr^2$
Z Y R R	$J_{x} = \frac{3}{10} \text{ m } \frac{R^{5} - r^{5}}{R^{3} - r^{3}}$	R r x	$J_x = J_y = J_z =$
Z Y R R	$J_{x} = \frac{3}{10} \text{ m } \frac{R^{5} - r^{5}}{R^{3} - r^{3}}$ $m = \rho \pi r^{2} h/3$ $J_{x} = \frac{3}{10} mr^{2}$	R r x	$J_x = J_y = J_z =$ $= \frac{2}{3} mr^2$ $m = \rho \frac{2}{3} \pi$ $J_x = J_y = \frac{83}{320} mr^2$

6.8 Der Impulssatz

Durch Integration der dynamischen Grundgleichung für die Bewegung einer Masse m, die unter der Wirkung einer äußeren resultierenden konstanten Kraft \vec{F} steht:

$$\vec{F} = m \cdot \vec{a} = m \cdot \frac{\vec{dv}}{dt} = \frac{d(m \cdot \vec{v})}{dt} = \frac{d\vec{p}}{dt}$$
 $m = const.$

über die Wirkungsdauer dieser Kraft ergibt sich:

$$\int\limits_{t_{-}}^{t_{1}} \overrightarrow{F} \cdot dt = \overrightarrow{F} \cdot (t_{1} - t_{0}) = m \cdot (\overrightarrow{v_{1}} - \overrightarrow{v_{0}}) = \overrightarrow{p_{1}} - \overrightarrow{p_{0}} \; .$$

Man bezeichnet diese Beziehung als Impulssatz und die Größe $\vec{p} = m \cdot \vec{v}$ als **Bewegungsgröße** oder **Impuls** der Masse m. Aufgrund dieses Impulssatzes lassen sich folgende zwei Aussagen machen:

- a) Das bestimmte Zeitintegral über die an einer Masse m angreifende äußere resultierende Kraft F ist gleich der Änderung des absoluten Impulses m · v – oder der Bewegungsgröße p – der Masse in Richtung dieser Kraft.
- b) Wirkt **keine äußere resultierende Kraft** auf die Masse m ein, so bleibt ihre Bewegungsgröße $\vec{p} = m \cdot \vec{v}$ nach Größe und Richtung konstant, denn für $\vec{F} = 0$ folgt $d\vec{p}/dt = 0$ und damit $\vec{p} = \text{const.}$ Diese Aussage lässt sich auch auf ein System von mehreren Massen erweitern:

Wirkt keine äußere resultierende Kraft auf ein System von Körpern ein, so bleibt der Gesamtimpuls des Systems nach Größe und Richtung konstant, d.h. der Gesamtschwerpunkt des Systems bleibt entweder in Ruhe oder beweat sich gleichförmig und geradlinig.

6.9 Der Drehimpulssatz

Analoge Aussagen lassen sich über die Wirkung eines äußeren resultierenden Momentes auf die Bewegung einer Drehmasse mit dem Trägheitsmoment J_0 bezüglich ihres Drehpunktes "0" machen. Aus der dynamischen Grundgleichung für die Bewegung einer Masse m folgt für die Bewegung einer Drehmasse J_0 um einen Bezugspunkt 0 unter der Wirkung eines äußeren resultierenden Momentes

 $\vec{M}_0 = \vec{r} \times \vec{F}$ $\vec{r} = Vektor vom Bezugspunkt 0 zum Angriffspunkt der äußeren resultierenden Kraft)$

$$\overrightarrow{M}_0 = J_0 \cdot \dot{\overrightarrow{\omega}} = J_0 \cdot \frac{d\overrightarrow{\omega}}{dt} = \frac{d(J_0 \cdot \overrightarrow{\omega})}{dt} = \frac{d\overrightarrow{L}}{dt}$$

$$J_0 = const.$$

Das Zeitintegral über die Wirkungsdauer dieses Momentes ist dann:

$$\int_{t_0}^{t_1} \overrightarrow{M}_0 \cdot dt = \overrightarrow{M}_0(t_1 - t_0) = J_0 \cdot (\overrightarrow{\omega}_1 - \overrightarrow{\omega}_0) = \overrightarrow{L}_1 - \overrightarrow{L}_0$$

Diese Beziehung bezeichnet man als Impulsmomentensatz und die Größe $\vec{L}=J_0\cdot\vec{\omega}$ als Impulsmoment, Moment der Bewegungsgröße, Drehimpuls oder Drall der Drehmasse J_0 um den Bezugspunkt 0.

Aufgrund des Impulsmomentensatzes lassen sich wiederum folgende zwei Aussagen machen:

a) Das Zeitintegral über das an der Drehmasse J_0 hinsichtlich eines Bezugspunktes 0 angreifenden resultierenden Momentes \overline{M}_0 der äußeren Kräfte ist gleich der Änderung des Drehimpulses $J_0 \cdot \overrightarrow{\omega}$ – oder des Dralles \overrightarrow{L} – der Drehmasse in Richtung des wirkenden Momentes. Weist der resultierende Momentenvektor in die Richtung des Drehvektors $\overrightarrow{\omega}$ der Drehmasse, so bewirkt dieser eine Änderung des Dralles in seiner Größe, also eine reine **Drallgrößenänderung**.

Steht der Momentenvektor senkrecht zum Drehvektor $\vec{\omega}$ der Drehmasse, so bewirkt dieser eine Änderung des Dralles in seiner Richtung, also eine reine **Drallrichtungsänderung**. In diesem Fall verwendet man die Aussage des Impulsmomentensatzes in der Differentialform:

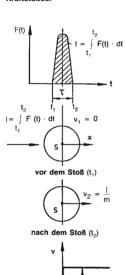
$$\vec{M}_{\ddot{a}} = \frac{\vec{dL}}{dt}$$

Die zeitliche Änderung des Dralles ist gleich dem Moment der **äußeren** Kräfte in Bezug auf einen beliebigen Bezugspunkt 0.

b) Greift **kein äußeres resultierendes Moment** an der Drehmasse J_0 an, so bleibt der Drehimpuls oder Drall $\vec{L} = J_0 \cdot \vec{\omega}$ nach **Größe und Richtung** im Raume konstant, denn für $\vec{M}_{\bar{a}} = 0$ folgt $d\vec{L} = 0$ und damit $\vec{L} = \text{const.}$

Diese Aussage lässt sich ebenfalls wieder auf ein System von einzelnen Drehmassen erweitern.

Bei der Untersuchung der Bewegung eines Körpers unter der Wirkung äußerer Kräfte und Momente ist es zweckmäßig, entweder den Schwerpunkt als Bezugspunkt für die Impulsmomente zu wählen und zusätzlich die Impulsänderung des Schwerpunktes anzugeben oder aber den Drehoder Momentanpol der Bewegung zu wählen, wobei bei geführter Bewegung eine Angabe der Dralländerung des Körpers um den Drehpol genügt. Da es sich sowohl beim Impuls als auch beim Drall um gerichtete Größen handelt, sind bei der Untersuchung der Bewegung eines Körpers nach Festlegung der positiven Bewegungsrichtungen (Koordinaten) ihre Vorzeichen und die Vorzeichen der wirkenden resultierenden äußeren Kräfte und Momente in der Rechnung zu beachten.


Da sich der Impulssatz und auch der Drehimpulssatz aus dem Zeitintegral über die Grundgleichung der Bewegung ergab und damit nichts anderes darstellt als die erste Integration der Bewegungsgleichung, ist es verständlich, dass sämtliche Bewegungsvorgänge, die sich mit Hilfe der Bewegungsgleichung erfassen lassen, auch mit Hilfe des Impuls- und Drehimpulssatzes untersucht werden können.

Besondere Bedeutung jedoch gewinnt der Impuls- und Drehimpulssatz für die sogenannten Stoßvorgänge, die sich mit Hilfe der einfachen dynamischen Grundgleichung der Bewegung nicht erfassen lassen, da hierbei im allgemeinen keine Aussage über die Größe der wirkenden Stoßkraft und über die Stoßdauer gemacht werden kann.

6.10 Stoßgesetze

6.10.1 Der zentrale Kraftstoß

Von einem Stoß spricht man dann, wenn auf einen Körper der Masse m während eines sehr kleinen Zeitraums τ eine große Kraft F(t) ausgeübt wird, und zwar derart, dass das Zeitintegral über die wirkende Kraft einen endlichen Wert annimmt. Dieses Zeitintegral bezeichnet man als Betrag des Kraftshoßes

Geschwindigkeitsverlauf

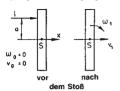
Eine Trennung von Kraft und Zeitdauer der Kraftwirkung ist im allgemeinen nicht möglich, d. h. der zeitliche Verlauf der wirkenden Kraft F(t) sowie die Stoßdauer r lassen sich nicht getrennt ermitteln. Der Kraftstoß besitzt jedoch eine physikalische Realität insofern, als durch seine Wirkung eine endliche Änderung der Geschwindigkeit des Körpers und damit seiner Bewegungsgröße in Richtung der angreifenden Stoßkraft hervorgerufen wird. Aus der dynamischen Grunddleichung der Bewegung

$$F(t) = \frac{d(m \cdot v)}{dt}$$

folgt für das Zeitintegral über die wirkende Stoßkraft

$$I = \int_{t_*}^{t_2} F(t) \cdot dt = m \cdot v_2 - m \cdot v_1 = m \cdot \Delta v$$

 (Δv = Geschwindigkeitsänderung des K\u00f6rperschwerpunktes durch den Sto\u00e4).


Durch derartige Kraftstöße werden demnach "plötzliche" Geschwindigkeitsänderungen und damit Impulsänderungen hervorgerufen. Die Geschwindigkeitsänderung des Körpers durch den Kraftstoß erfolgt in so kurzer Zeit, dass während dieser der vom Körper zurückgelegte Weg sehr klein, und zwar praktisch Null ist.

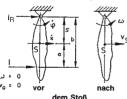
Der Einfluss der anderen äußeren Kräfte (Gewichte, Reibungskräfte etc.) kann während des Stoßvorganges gegenüber der Größe der Stoßkraft meistens vernachlässigt werden.

Wirkt der Kraftstoß "normal" am Körper und in Richtung des Schwerpunktes S und greifen keine weiteren äußeren Stöße (auch Reaktionsstöße) an ihm in Stoßrichtung an, so erfolgt in Stoßrichtung eine plötzliche Änderung der Translationsgeschwindigkeit in der vorstehend angegebenen Weise.

6.10.2 Der Drehstoß

a) Ungeführte Bewegung

Wirkt der Kraftstoß nicht in Richtung des Schwerpunktes S des Körpers, sondern hat die Wirkungslinie des Kraftstoßes einen Abstand a vom Schwerpunkt, so bewirkt der Stoß neben der plötzlichen Änderung der Translationsgeschwindigkeit eine plötzliche Änderung der Winkelgeschwindigkeit und damit des Dralles oder Drehimpulses des Körpers durch den **Drehstoß** $H_{\rm S}=a\cdot I.$ Es gelten in diesem Fall die beiden Beziehungen für den Schwerpunkt des Körpers:


$$\begin{split} I &= \int\limits_{t_0}^{t_1} F(t) \cdot dt = m \cdot (v_1 - v_0) = m \cdot v_1 \\ H_S &= a \cdot \int\limits_{t_0}^{t_1} F(t) \cdot dt = a \cdot I = J_S \cdot (\omega_1 - \omega_0) = J_S \cdot \omega_1 \\ H_{MP} &= b \cdot \int\limits_{t_0}^{t_1} F(t) \cdot dt = b \cdot I = J_{MP} \cdot (\omega_1 - \omega_0) = J_{MP} \cdot \omega_1 \end{split}$$

für die Dralländerung des Körpers um den **Momentanpol** durch den Drehstoß $H_{MP} = I \cdot b$ (b = Abstand der Wirkungslinie des Kraftstoßes I vom Momentanpol, **sofern sich dieser ermitteln** lässt).

b) Geführte Bewegung

oder:

Bei geführten Bewegungen lässt sich eine Beziehung zwischen der Schwerpunktsgeschwindigkeit und der Winkelgeschwindigkeit des Körpers angeben.

Wirken mehrere Kraftstöße – auch Reaktionsstöße – an einem Körper, so muss die Summe aller Kraftstöße gleich der Änderung des Impulses oder der Bewegungsgröße und das Gesamtmoment der Stöße, d.h. die Summe aller Drehstöße um den Schwerpunkt, muss gleich der Änderung des Dralles oder Drehimpulses um den Schwerpunkt des Körpers sein. Oder es muss das Gesamtmoment der Stöße um den Momentan- oder Drehpol gleich der Änderung des Dralles um diesen sein.

Es gilt zum Beispiel für den Schwerpunkt:

$$\begin{split} I + I_R &= m \cdot v_S \\ I \cdot a - I_R \cdot (b - a) &= J_S \cdot \omega; \quad v_S = (b - a) \cdot \omega = s \cdot \omega \\ I \cdot b &= J_{MD} \cdot \omega; \quad v_S = s \cdot \omega \end{split}$$

oder für den Momentanpol:

In der Rechnung sind nach Festlegung der positiven Geschwindigkeitsrichtungen die Vorzeichen der Kraftstöße und Drehstöße zu beachten.

6.11 Stoßgesetze für den Stoß fester Körper

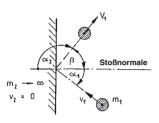
6.11.1 Gerader, zentraler Stoß

Stoßhypothese:

Ablauf des Stoßvorganges I. Vor dem Stoß Positive Richtung $\frac{V_1 > V_2}{m_1}$ $\frac{V_1}{m_2}$ III. Augenblick größter Verformung der Körper $\frac{V_1 < V_2}{m_1}$ $\frac{V_1}{m_2}$ III. Nach dem Stoß $\frac{V_1 < V_2}{m_1}$ $\frac{V_1}{m_2}$ Impulssatz: $\frac{V_1}{m_1}$ $\frac{V_2}{m_2}$ $\frac{V_1}{m_2}$ Impulssatz: $\frac{V_1}{m_1}$ $\frac{V_2}{m_2}$ Impulssatz: $\frac{V_1}{m_1}$ Impulssatz: $\frac{V_1}{m_2}$ III. Nach dem Stoß $\frac{V_1}{v_2}$ Impulssatz: $\frac{V_1}{m_2}$ III. Nach dem Stoß $\frac{V_1}{v_2}$ Impulssatz: $\frac{V_1}{m_2}$ Impulssatz: $\frac{V_1}{m_2}$

In der ersten Stoßperiode I→II erfolgt eine Verformung der beiden Körper solange, bis ihre Schwerpunkte den geringsten Abstand voneinander haben. In diesem Augenblick bestelt Gleichheit ihrer Schwerpunktsgeschwindigkeiten. Sind die Körper vollkommen elastisch (e = 1), so wird die in Form von elastischer Verformungsenergie in den Körpern gespeicherte Energie in der zweiten Stoßperiode II —III wieder frei und in kinetische Energie umgewandelt. Bei vollkommen plastischem Stoß (e = 0) wird die Verformung nicht wieder rückgängig gemacht, und es entfällt die Stoßperiode II →III. Die Verformungsenergie tritt in diesem Fall in den Körpern als Wärme auf und ist für den weiteren Bewegungsablauf verloren. Der unvollkommen elastische Stoß (o <= 1) liegt zwischen diesen beiden Grenzfällen.

 $e(v_1 - v_2) = V_2 - V_1$


Mit dem Erhaltungssatz des Impulses, dem Energiesatz und der Newtonschen Stoßhypothese lassen sich die Geschwindigkeiten der Körper nach dem Stoß und die auftretenden Verluste ermitteln.

erritten.						
Stoßart	Geschwindigkeiten der Körper nach dem Stoß	Potentielle elastische Energie im Augenblick der größten Verformung II	Energieverlust beim Stoß I →III bzw. I →II			
	$V_1 = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $V_2 = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$	$E_{p max} = \frac{1}{2}(v_1 - v_2)^2 \cdot \frac{m_1 m_2}{m_1 + m_2}$	W _{R 1,2} = 0			
Unvollkommen elastischer Stoß $0 < e < 1$ $V_2 - V_1 = e (v_1 - v_2)$	$\begin{split} V_1 &= \frac{m_1 v_1 + m_2 v_2 - m_2 (v_1 - v_2) e}{m_1 + m_2} \\ V_2 &= \frac{m_1 v_1 + m_2 v_2 + m_1 (v_1 - v_2) e}{m_1 + m_2} \end{split}$	$E_{p max} = \frac{1}{2}e^{2}(v_{1} - v_{2})^{2} \cdot \frac{m_{1}m_{2}}{m_{1} + m_{2}}$	$\begin{split} W_{R1,2} &= \\ &= \frac{1}{2}(1-e^2)(v_1-v_2)^2. \\ &\cdot \frac{m_1 m_2}{m_1+m_2} \end{split}$			
Vollkommen plastischer Stoß $\underline{e=0}$ $V_1=V_2=V$	$V_1 = V_2 = V = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	E _{p max} = 0	$W_{R 1,2} = \frac{1}{2}(v_1 - v_2)^2 \frac{m_1 m_2}{m_1 + m_2}$			
Beim Auswerte	n der Beziehungen sind die Vorz	eichen von v und V zu l	peachten!			

6.11.2 Schiefer, zentraler Stoß

Beim schiefen, zentralen Stoß liegt wohl die Stoßnormale in der Verbindungslinie der beiden Körperschwerpunkte, die Geschwindiakeitsvektoren iedoch liegen nicht in ihr.

Treten in der Berührungsfläche der beiden Körper keine Reibungskräfte auf, so lassen sich die Beziehungen für den geraden, zentralen Stoß anwenden, wenn man die Komponenten der Geschwindigkeiten der Körper in Richtung der Stoßnormalen in die Beziehungen einsetzt. Tangential zur Berührungsfläche treten dann wegen fehlender Reibungskräfte keine Geschwindigkeitsänderungen der Körper auf. Für das nachstehende Beispiel gilt:

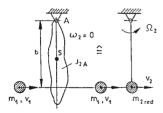
Tangential zur Stoßnormalen:

$$v_1 \cdot \sin \alpha_1 = V_1 \cdot \sin \alpha_2 = V_1 \cdot \sin \beta$$

In Richtung der Stoßnormalen:

$$V_1 \cdot \cos \alpha_2 = -e \cdot V_1 \cdot \cos \alpha_1 = e \cdot V_1 \cdot \cos \beta$$

Daraus folgt:


$$\tan \alpha_2 = -\frac{\tan \alpha_1}{\alpha} = -\tan \beta$$

$$V_1 = -e \frac{V_1 \cdot \cos \alpha_1}{\cos \alpha_2}$$

6.11.3 Gerader, exzentrischer Stoß

a) Geführte Bewegung

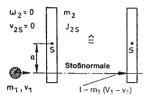
In diesem Fall fallen die Geschwindigkeitsvektoren zwar in Richtung der Stoßnormalen, jedoch liegt diese nicht in der Verbindungslinie der Schwerpunkte der beiden Körper. Ist einer der beiden Körper (oder beide) drehbar geführt, so lassen sich ebenfalls die Stoßgesetze für den geraden, zentalen Stoß anwenden, wenn man die Drehmasse der geführten Körper auf die Stoßstelle reduziert. So gilt z. B. für das nachstehende System:

Stoßnormale

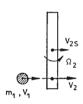
$$m_{2red} = \frac{J_{2A}}{h^2}$$

bei einem Stoßfaktor der Größe e:

$$V_1 \; = \; \frac{m_1 v_1 - m_{2 \, \text{red}} \cdot v_1 \cdot e}{m_1 + m_{2 \, \text{red}}}$$


$$V_2 = \frac{m_1 v_1 - m_1 v_1 \cdot e}{m_1 + m_{2red}}$$

und damit:


$$\Omega_2 = \frac{V_2}{h}$$

b) Ungeführte Bewegung

Ist keiner der beiden zusammenstoßenden Körper geführt, so erhält man mit Hilfe der Stoßgesetze für den Kraftstoß bzw. den Drehstoß und der Newtonschen Stoßhypothese für die Stoßstelle die notwendige Anzahl Gleichungen zur Bestimmung der Geschwindigkeiten der Körper (Translationsund Winkelgeschwindigkeit) nach dem Stoß.

vor dem Stoß positive Richtung

nach dem Stoß

Betrachtet man die Wirkung des zwischen beiden Körpern auftretenden Kraftstoßes

$$I = \int F(t)dt$$

auf jeden Körper getrennt, so erhält man z. B. für das nebenstehend dargestellte System:

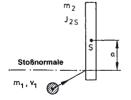
Kraftstoß von Stab 2 auf die Masse m.

$$\int F(t) \cdot dt = m_1(V_1 - V_1)$$

Aus Reaktionsgründen wirkt ein Kraftstoß gleichen Betrages auf den Stab der Masse m₂:

$$\int F(t) \cdot dt = m_2(V_{2S} - v_{2S}); \qquad v_{2S} = 0$$

und damit auch ein Drehstoß um den Schwerpunkt des Stabes


$$a\cdot\int F(t)\cdot dt=J_{2S}(\Omega_2-\omega_2); \hspace{1cm} \omega_2=0$$

Mit der Newtonschen Stoßhypothese für die Stoßstelle:

$$e = \frac{V_2 - V_1}{v_1 - v_2} = \frac{(V_{2S} + \Omega_2 \cdot a) - V_1}{v_1}$$
; $v_2 = 0$

ergeben sich die notwendigen Gleichungen zur Bestimmung der Geschwindigkeiten ${\rm V_1},\,{\rm V_{2S}}$ und Ω_2 nach dem Stoß.

6.11.4 Schiefer, exzentrischer Stoß



Hierbei fallen weder die Stoßnormale, noch die Geschwindigkeitsvektoren und die Verbindungslinie der Körperschwerpunkte zusammen. Treten in der Berührungsfläche der beiden Körper keine Reibungskräfte auf, so erfolgt quer zur Stoßnormalen keine Änderung der Geschwindigkeiten der Körper. Bestimmt man in Richtung der Stoßnormalen die Komponenten der Geschwindigkeiten der Körper, so gelten die für den geraden, exzentrischen Stoß angegebenen Beziehungen.

7 Mechanische Schwingungen

Ein mechanischer Schwingungsvorgang besteht darin, dass sich in einem Translations- oder Drehschwingungssystem – bestehend aus einer Masse und einem potentiellen Energiespeicher – die vorhandene Energie in bestimmten Zeitabschnitten von einer Energieform – kinetische oder potentielle Energie – in die andere umwandelt und sich periodisch ganz oder teilweise in die erste Form zurückverwandelt.

Eine freie, ungedämpfte Schwingung liegt dann vor, wenn während der Schwingung dem Schwinger weder Energie zugeführt noch entzogen wird, so dass der einmal erteilte Energiebetrag erhalten bleibt und eine periodische Energieumwandlung erfolgt. Das System führt in diesem Fall stationäre Eigenschwingungen aus, deren Frequenz nur von den Eigenschaften des Systems – Masse und potentieller Energiespeicher – abhängt. Der zeitliche Schwingungsverlauf (Augenblickswert) lässt sich durch die konstante Schwingungsamplitude und eine harmonische Funktion (sin, cos) beschreiben, deren Argument die Eigenfrequenz des Systems enthält.

Wird dem Schwinger in jeder Schwingungsperiode ein gewisser Anteil der im System vorhandenen Energie durch energieverzehrende Widerstandskräfte entzogen, so liegt eine gedämpfte Schwingung vor. Die Schwingungsamplituden nehmen beim Vorliegen einer linearen, geschwindigkeitsproportionalen Dämpfung (Newton'sche Reibung) nach einer geometrischen Reihe ab.

Im Falle der Erregung eines Schwingers durch eine äußere periodisch wirkende Kraft F(t) bzw. ein Moment M(t) treten **erzwungene oder erregte Schwingungen** auf. Hierbei kann durch die Erregerkraft dem Schwinger Energie zugeführt bzw. entzogen werden. Nach einer Einschwingphase schwingt das System nicht mehr mit seiner Eigenfrequenz, sondern mit der Frequenz der von außen aufgebrachten Erregerkraft.

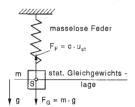
Resonanz tritt dann auf, wenn die Frequenz der von außen auf das System wirkenden Erregung der Eigenfrequenz entspricht. Bei ungedämpften Systemen nehmen die Schwingungsamplituden der Wert Unendlich an. Die Resonanzstelle (Eigenfrequenz = Erregerfrequenz) unterteilt den Bereich der in Abhängigkeit von der Erregerfrequenz sich einstellenden Schwingungsamplituden in das unterkritische und überkritische Schwingungsgebiet.

Werden zwei Schwingungssysteme durch Masse oder Elastizität miteinander gekoppelt, so findet ein periodischer Energieaustausch zwischen den Systemen statt (Mehrmassenschwinger).

In der Regel lassen sich mechanische Schwingungsvorgänge je nach den Anfangsbedingungen durch sin- oder cos-Funktionen bzw. deren Überlagerung beschreiben. Bei der Analyse von Schwingungsvorgängen kann häufig eine FOURIER-Analyse behilflich sein, da sich jede Funktion, die stückweise monoton und stetig ist, als Summe von sinus- und cosinusförmigen Grund- und Oberschwingungen darstellen lässt.

7.1 Begriffe, Formelzeichen und Einheiten

Begriff	Größe	Einheit	Erläuterung
Masse Massenträgheitsmoment	m J	kg kg·m²	Translatorisch schwingende Masse m Drehschwingende Masse mit dem Träg- heitsmoment J
Augenblickswert der Schwingung	x φ	m rad ¹⁾	Momentaner, zeitabhängiger Wert des Schwingungsausschlages
Amplitude	x _{max} , x̂ φ _{max} , φ̂	m rad	Amplitude ist der maximale Augenblicks- wert (Scheitelwert) einer Schwingung
Schwing- geschwindigkeit	× φ	m/s rad/s	Schwinggeschwindigkeit; Schnelle ist der Augenblickswert der Wechsel- geschwindigkeit in Schwingungsrichtung
Trägheitskraft Moment der Trägheitskräfte	m·ẍ J·φ̈	N N·m	Die d'Alembert'sche Trägheitskraft bzw. das Moment der Trägheitskräfte wirkt ent- gegen der positiven Beschleunigung
Federkonstante Drehfederkonstante	C C	N/m N · m/rad	Lineare Federn
Federkraft Federmoment	c · x	N N·m	Bei linearen Federn ist die Federrück- wirkung proportional zur Auslenkung
Dämpfungskonstante (Dämpfungskoeffizient) Dämpfungskonstante für Drehbewegungen	b	N·s/m N·s·m/rad	Bei Newton'scher Reibung ist die Dämp- fungskraft proportional der Geschwindig- keit und der Dämpfungskonstanten (lineare Dämpfung)
Dämpfungsfaktor (Abklingkoeffizient)	$\begin{array}{ll} \delta &= b/(2 \cdot m) \\ \delta &= b/(2 \cdot J) \end{array}$	1/s 1/s	Der Dämpfungsfaktor ist die auf die doppelte Masse bezogene Dämpfungs- konstante
Dämpfungsgrad	$D = \delta/\omega_0$ $D = \delta/\omega_0$	_	Für D <1 liegt eine gedämpfte Schwingung vor, für D ≥ 1 ein aperiodischer Fall
Dämpfungsverhältnis	\hat{x}_n/\hat{x}_{n+1} $\hat{\phi}_n/\hat{\phi}_{n+1}$	_	Das Dämpfungsverhältnis ist das Verhält- nis zweier um eine Periode auseinander liegender Amplituden
Logarithmisches Dämpfungsdekrement	$\Lambda = \frac{2 \cdot \pi \cdot D}{\sqrt{1 - D^2}}$	_	$\begin{split} & \Lambda = \ln(\hat{x}_n/\hat{x}_{n+1}) \\ & \Lambda = \ln(\hat{\phi}_n/\hat{\phi}_{n+1}), \text{ für } D = D' \end{split}$
Zeit	t	S	laufende Zeitkoordinate
Phasenwinkel	α	rad	Bei positivem Wert handelt es sich um einen Voreilwinkel
Phasenverschiebungs- winkel	$\varepsilon = \alpha_1 - \alpha_2$	rad	Differenz der Phasenwinkel zweier Schwingungsvorgänge mit gleicher Kreisfrequenz
Periodendauer	$T = 2 \cdot \pi/\omega_0$	s	Zeit, in der eine einzelne Schwingung abläuft
Kennfrequenz der Eigenschwingung	f ₀ = 1/T	Hz	Frequenz ist der reziproke Wert der Periodendauer
Kennkreisfrequenz der Eigenschwingung	$\omega_0 = 2 \cdot \pi \cdot f_0$	1/s	Kreisfrequenz ist die Zahl der Schwingungen in $2\cdot\pi$ Sekunden
Eigenkreisfrequenz (Eigenfrequenz)	$\omega_0 = \sqrt{c/m}$ $\omega_0' = \sqrt{c'/J}$	1/s 1/s	Schwingfrequenz der Eigenschwingung (ungedämpft) des Systems
Eigenkreisfrequenz bei Dämpfung	$\omega_{\rm d} = \sqrt{\omega_0^2 - \delta^2}$	1/s	Für sehr kleinen Dämpfungsgrad D \ll 1 wird $\omega_d = \omega_0$
Erregerfrequenz	Ω	1/s	Kreisfrequenz der Erregung
Kreisfrequenzverhältnis	$\eta = \Omega/\omega_0$	_	Resonanz liegt bei η = 1 vor


¹⁾ Die Einheit kann durch 1 ersetzt werden.

7.2 Freie, ungedämpfte Schwingungen

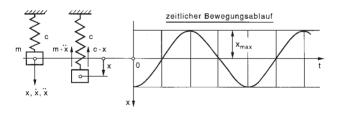
Bei freien, ungedämpften mechanischen Schwingungen erfolgt im allgemeinen ein periodischer Austausch zwischen einer potentiellen und einer kinetischen Energie. Die potentielle Energie wird dabei entweder durch die Energie der Lage der schwingenden Masse in einem Schwerefeld (z. B. Erdschwerefeld, Zentrifugalfeld) oder durch eine elastische Verformungsenergie (z. B. elastische Formänderungsenergie einer Feder, eines Trägers oder eines Stabwerkes usw.) oder beiden, die kinetische Energie durch die Energie der Bewegung der schwingenden Masse verkörpert.

Translationsschwingungen

Der einfachste mechanische Schwinger, auf den sich eine Reihe von Schwingungsgebilden zurückführen lässt, ist nachstehend abgebildet. Er besteht aus einem theoretisch masselosen elastischen

Glied – hier aus einer Feder mit linearer Federkennlinie – und einer Punktmasse. Im Ruhezustand besteht zwischen der Gewichtskraft der Masse m

$$F_{\alpha} = m \cdot g$$


und der Federkraft F_E = c · u_{et}

Gleichgewicht. Die Feder wird gegenüber ihrer ungespannten Länge um den Betrag

$$u_{st} = \frac{m \cdot g}{c}$$

ausgelenkt. Diese Lage der Masse wird als Ruhelage oder statische Gleichgewichtslage bezeichnet.

Wird die Masse aus der statischen Gleichgewichtslage in vertikaler Richtung ausgelenkt und dann plötzlich losgelassen, so führt sie freie, periodische Schwingungen um die statische Gleichqewichtslage aus.

Der Bewegungsablauf wird durch die Bewegungsgleichung beschrieben, für die ein Kräfteansatz nach dem d'Alembert'schen Prinzip gemacht wird.

- In Bewegungsrichtung werden die positiven Koordinatenrichtungen für x, x und x angetragen, und zwar ausgehend vom Schwerpunkt der Masse in der statischen Gleichgewichtslage.
- Alsdann werden die Kr\u00e4fte angetragen, die im Schwerpunkt der Masse in Bewegungsrichtung angreifen, wenn man sie sich bei der Schwingung in positiver Koordinatenrichtung ausgelenkt denkt.

Trägheitskräfte

- b. Findet der Schwingungsvorgang in einem beschleunigten Bezugssystem statt (z. B. beschleunigter Fahrstuhl, beschleunigtes Fahrzeug oder rotierendes System), so ist die zusätzlich auftretende Systemkraft (kinetische Reaktion, Zentrifugalkraft, Corioliskraft), die durch die Systembeschleunigung an der Masse angreift, entgegen der als positiv festgesetzten Richtung der Systembeschleunigung ü anzutragen (u, ü, ü = Bewegungskoordinaten des beschleunigten Bezugssystems). Dadurch kann einerseits eine Änderung der statischen Gleichgewichtslage gegenüber der im unbeschleunigten Bezugssystem auftreten, andererseits kann aber auch eine Änderung der Frequenz der Schwingung bewirkt werden.

Rückstellkräfte

- Federkraft infolge der Auslenkung der Masse aus der statischen Gleichgewichtslage entgegen der positiven Auslenkungsrichtung antragen.
- d. Gewicht und statische Federkraft

Bei Schwingungssystemen, in denen nur ein periodischer Austausch zwischen einer potentielen elastischen und einer kinetischen Energie unter der Wirkung eines konstanten Schwerefeldes erfolgt, heben sich die Gewichtskraft der Masse $F_{\rm G}=m\cdot g$ und die Federkraft $F_{\rm F}=c\cdot u_{\rm st}$ infolge der statischen Auslenkung in jedem Augenblick der Bewegung auf, wenn die Bewegungsgleichung für die Schwingung um die statische Gleichgewichtslage aufgestellt wird. Sie werden daher gar nicht erst in Ansatz gebracht.

Erfolgt während der Schwingung ein Austausch zwischen einer potenziellen Energie der Lage und einer kinetischen Energie, so ist die **Gewichtskraft** der Masse in Ansatz zu bringen.

3. Für das Kräftegleichgewicht in Bewegungsrichtung ergibt sich dann für den dargestellten Schwinger, wobei die hier auftretenden Kräfte in der Reihenfolge der Ableitungen von x – bei der Kraft mit der höchsten Ableitung beginnend – unter Beachtung ihrer Richtung geschrieben werden, folgende Gleichgewichtsbeziehung:

$$\sum F_x = -m \cdot \ddot{x} - c \cdot x = 0$$

Dividiert man diese Gleichung durch den Faktor der höchsten Ableitung, so ergibt sich

$$\ddot{x} + \frac{c}{m} \cdot x = 0$$

die homogene Differenzialgleichung für die freie, ungedämpfte Schwingung der Masse m. Diese Form der Gleichung soll im weiteren als **Normalform** bezeichnet werden. Sie ist in ihrem mathematischen Aufbau typisch für alle freien, ungedämpften und linearen Schwingungen.

Man erkennt, dass die **Beschleunigung** des Bewegungsvorganges eine **Funktion des Weges** ist und damit eine Lösung dieser Gleichung durch zweifache zeitliche Integration nicht ohne weiteres möglich ist.

Damit wäre zunächst das rein mechanische Problem – die Aufstellung der Bewegungsgleichung – gelöst. Die Lösung dieser Bewegungsgleichung ist eine mathematische Aufgabe. Für die vorliegende Form der d'Alembert'schen Differenzialgleichung mit konstanten Koeffizienten lautet der allgemeine Lösungsansatz

$$x = C \cdot e^{s \cdot t}$$
.

Geht man mit diesem Lösungsansatz in die Normalform der Differenzialgleichung ein, so erhält man

$$C \cdot s^2 \cdot e^{s \cdot t} + \frac{c}{m} \cdot C \cdot e^{s \cdot t} = 0$$

 $s^2 + \frac{c}{m} = 0$
 $s_{t, 0} = +\sqrt{-c/m} = +i\sqrt{c/m}$

und damit die allgemeine Lösung

$$x = C_1 e^{+i \cdot \sqrt{c/m} \cdot t} + C_2 e^{-i \cdot \sqrt{c/m} \cdot t}$$

Aufgrund der Euler'schen Formel $e^{\pm i\phi} = \cos\phi \pm i \cdot \sin\phi$ lässt sich hierfür auch schreiben

$$\begin{split} x &= C_1 (\cos \sqrt{c/m} \ t + i \cdot \sin \sqrt{c/m} \ t) + C_2 (\cos \sqrt{c/m} \ t - i \cdot \sin \sqrt{c/m} \ t) \\ x &= (C_1 + C_2) \cos \sqrt{c/m} \ t + i \ (C_1 - C_2) \sin \sqrt{c/m} \ t \ . \end{split}$$

Diese Beziehung ergibt nur dann einen reellen Wert für die Bewegungskoordinate x, wenn die Konstanten C₁ und C₂ konjugiert komplex sind, und zwar von der Form

$$C_{1,2} = K_1 \pm i \cdot K_2$$
.

Damit stellt die allgemeine Lösung

$$x = 2K_1 \cos \sqrt{c/m} t - 2K_2 \sin \sqrt{c/m} t$$

eine harmonische Schwingung dar mit

$$\omega_0 = \sqrt{c/m} \ ; \ \omega_0^{\ 2} = c/m$$

die man als Eigenkreisfrequenz des Schwingungsvorgangs bezeichnet. Das Quadrat der Eigenkreisfrequenz wird in der Normalform der Differenzialgleichung immer durch den Faktor der linearen Bewegungskoordinate x dargestellt.

Diese Überlegungen zeigen, dass bei der freien, ungedämpften Schwingung immer folgende allgemeine Lösung der Differenzialgleichung zu erwarten ist:

$$x = A \sin \omega_0 t + B \cos \omega_0 t$$

mit

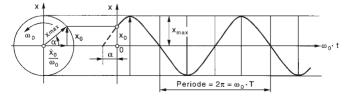
$$\omega_0 = \sqrt{c/m}$$
.

 Die beiden freien Konstanten A und B der allgemeinen Lösung werden durch die Anfangsbedingungen des Schwingungsvorganges festgelegt, die normalerweise vorgegeben werden.

Für die verschiedenen Möglichkeiten der beiden Anfangsbedingungen ergeben sich folgende Lösungen, die sich leicht durch Einsetzen der Bedingungen in die allgemeine Lösung ermitteln lassen.

$$\begin{array}{lll} \textbf{Anfangsbedingungen} & \textbf{L\"osungen} \\ t=0, & x=0 & x=\frac{\dot{x}_{max}}{\omega_0} \cdot \sin \omega_0 t \\ & \dot{x}=\dot{x}_{max} & x=x_{max} \cdot \cos \omega_0 t \\ & \dot{x}=0 & x=x_{max} \cdot \cos \omega_0 t \\ & \dot{x}=0 & x=\frac{|\ddot{x}_{max}|}{\omega_0^2} \cdot \cos \omega_0 t \\ & \dot{x}=|\ddot{x}_{max}| & x=\frac{\dot{x}_0}{\omega_0} \cdot \sin \omega_0 t + x_0 \cdot \cos \omega_0 t. \end{array}$$

Aus dem Vergleich der maximalen Schwingungsausschläge x_{max} (Amplituden) ergeben sich zwei wichtige Beziehungen zwischen der Eigenkreisfrequenz des Schwingungsgebildes, der Schwingungsamplitude, der maximalen Geschwindigkeit und der maximalen Beschleunigung


$$\dot{\mathbf{x}}_{\text{max}} = \omega_0 \cdot \mathbf{x}_{\text{max}}$$
$$|\ddot{\mathbf{x}}_{\text{max}}| = \omega_0^2 \cdot |\mathbf{x}_{\text{max}}|.$$

Eine weitere Möglichkeit der Darstellung der allgemeinen Lösung ist auch in folgender Form gegeben:

$$x = x_{max} \cdot sin (\omega_0 t + \alpha),$$

wobei α der Phasenwinkel (Voreilwinkel) gegenüber einer Schwingung $x=x_{max}\cdot\sin\omega_0 t$ ist und x_{max} die Amplitude des Schwingungsvorganges darstellt. Sie sind durch die Anfangsbedingungen bestimmt.

Für die Anfangsbedingungen
$$t=0, \ x=x_0 \ \text{ist } x_{max}=\sqrt{x_0^2+\frac{\dot{x}_0^2}{\omega_0^2}} \ \text{und} \ \tan\alpha=\frac{x_0}{\dot{x}_0/\omega_0}$$

Diese Darstellungsweise erlangt ihre Bedeutung bei der Untersuchung und Überlagerung mehrerer gleichzeitiger Schwingungen mit gleicher Eigenkreisfrequenz ω₀, aber verschiedenen Phasenwinkeln. Zwei Schwingungen mit den Phasenwinkeln α_1 und α_2 weisen einen Phasenverschiebungswinkel ε gegeneinander auf

$$\varepsilon = \alpha_1 - \alpha_2$$

Zwischen der Eigenkreisfrequenz, der Frequenz und der Periodendauer einer Schwingung bestehen folgende Beziehungen:

$$\omega_0 = 2 \cdot \pi \cdot f_0 = \frac{2 \cdot \pi}{T}$$

$$T = \frac{2 \cdot \pi}{\omega_0} = \frac{1}{f_0}$$

 ω_0 = Eigenkreisfrequenz (Schwingungen in 2 π Sekunden)

f₀ = Frequenz (Schwingungen in 1 Sekunde)

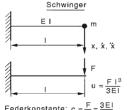
T = Schwingungsdauer für eine Periode.

Die Frequenz steht bei einer Umlaufbewegung mit der Drehzahl n in folgendem Zusammenhang

$$f = \frac{n}{60}$$

Hz mit n in min-1

$$\omega \ = \frac{2 \cdot \pi \cdot n}{60} = \frac{\pi \cdot n}{30} \qquad \qquad s^{-1} \quad \text{mit n in min}^{-1}.$$


Eine Reihe von freien, ungedämpften Schwingungsgebilden, bei denen ein Austausch zwischen einer elastischen und einer kinetischen Energie erfolgt, lässt sich auf die Grundform des freien. ungedämpften Schwingers zurückführen. Die Federkonstante c der Elastizität an der Stelle und in Schwingungsrichtung der Masse lässt sich dabei aus der Bedingung ermitteln

$$c = \frac{F}{II}$$

F = Kraft an der Elastizität in Schwingungsrichtung der Masse

u = Auslenkung der Kraftangriffsstelle in Richtung der Kraft F.

Beispiel:

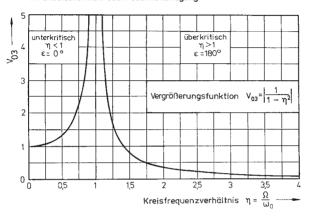
Federkonstante: $c = \frac{F}{11} = \frac{3EI}{13}$

Schwingerersatzsystem

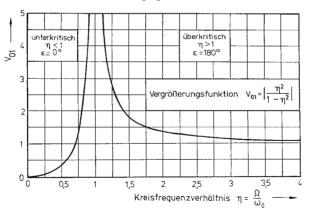
Bewegungsgleichungen für den freien, ungedämpften und gedämpften Schwinger 7.3

7.3

			, , , , , , , , , , , , , , , , , , ,
Schwingerschema	Differenzialgleichung	Lösung	Zeitlicher Schwingungsverlauf
c & GL = Statische Gleichgewichtslage	Ansatz $-m \cdot \ddot{x} - c \cdot x = 0$ $Dgl. \qquad \ddot{x} = \frac{c}{m} \cdot x = 0$ $\ddot{x} = \frac{c}{m} \cdot x = 0$ Normalform der homogenen Dgl. zweiter Ordnung	Für die Anfangsbedingungen: $t=0; \ x=0; \ x=x_{max}$ $x=x_{max} \cdot \sin \omega_0 \cdot t$ Eigenkreisfrequenz: $\omega_0=\sqrt{m}$	$\begin{array}{c} x \\ x \\ \hline \frac{\lambda}{2} \pi \\ \frac{\lambda}{2\pi} \frac{\lambda}{m_0 \cdot t} \\ \\ \frac{\lambda}{2\pi} \frac{\lambda}{m_0 \cdot$
S S X X, X, X, X	Ansatz $-m \cdot \ddot{x} - b \cdot \dot{x} - c \cdot x = 0$ $Dgi.$ $\ddot{x} + \frac{b}{m} \cdot \dot{x} + \frac{c}{m} \cdot x = 0$	Für die Anfangsbedingungen: $t=0; x=x_0; \; \dot{x}=0$ $x=e^{-\delta t}, \; x_{max} \cdot \cos \omega_d \cdot t$ Dämpfungsfaktor: $\delta=b/(2m)$	Gedämpfte Schwingung: $b < 2 \sqrt{c \cdot m}$ \times 0 $\frac{\pi}{2} \pi \frac{\sqrt[3]{\pi}}{2\pi} \frac{1}{\omega_0 \cdot t}$ $\omega_0 \cdot t = 2\pi$
GL = Statische Gleichgewichtslage b = Dämpfungskonstante	Normalform der homogenen Dgl. zweiter Ordnung	Eigenkreisfrequenz der gedämpften Schwingung: $\omega_{\rm d} = \sqrt{\omega_0^2 - \delta^2}$	Dauer einer Schwingung: $T=2~\pi/~\omega_d$ Amplitudenverhältnis für T / 2: $x_n/~x_{n+1}=-e^{\delta~(T^{\prime}/2)}$


Bewegungsgleichungen für den fremderregten, ungedämpften Schwinger

Die Lösungen gelten für den eingeschwungenen Zustand


	Phasenwinkel	Unterkritisch	- 0 = 3 - 0 = 3 - 0 = 3	Überkritisch $\eta = \frac{\Omega}{\omega} > 1$ $\alpha = -\epsilon$	s = 180°
Lösungsfunktion: $x = x_{max} \cdot \sin (\Omega t + \alpha)$	Lösung und Amplitude (inhom.)	$x = \frac{F_0}{c - m\Omega^2} \sin(\Omega t + \alpha)$ $x_{max} = \frac{F_0}{c} \cdot \left \frac{1}{1 - \eta^2} \right = \frac{F_0}{c} \cdot V_{\Omega S}$	$x = \frac{c \cdot U_0}{c - m\Omega^2} \sin(\Omega t + \alpha)$ $x_{max} = U_0 \cdot \left \frac{1}{1 - \eta^2} \right = U_0 \cdot V_{03}$	$ \begin{aligned} x &= \frac{c_2 \cdot U_0}{c_1 + c_2 - m\Omega^2} \sin(\Omega t + \alpha) \\ x_{max} &= \frac{c_2 \cdot U_0}{(c_1 + c_2)} \cdot \frac{1}{ 1 - \eta^2 } = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot V_{03} \end{aligned} $	$ \begin{array}{lll} \text{Ansatz} & & & & & & & & & & & & & & & & & & &$
	Differenzialgleichung	Ansatz $ -m \cdot \ddot{x} - c \cdot x + F(t) = 0$ $ Dgl.$ $m \cdot \ddot{x} + c \cdot x = F_0 \cdot \sin \Omega t$	Ansatz $ -m \cdot \ddot{x} - c \cdot x + c \cdot u = 0 $ $ Dgl. $ $ m \cdot \ddot{x} + c \cdot x = c \cdot U_0 \cdot \sin \Omega t $	Ansatz $ -m \cdot \ddot{X} - c_1 \cdot x - c_2 \cdot x + c_2 \cdot u = 0$ Dgl. $ m \cdot \ddot{X} + (c_1 + c_2) \cdot x = c_2 \cdot U_0 \cdot \sin \Omega t$	$\begin{aligned} & \textbf{Ansatz} \\ & - (m_1 + m_2) \cdot \ddot{x} - c \cdot x - m_2 \cdot \ddot{u} = 0 \\ & \textbf{Dgl.} \\ & (m_1 + m_2) \cdot \ddot{x} + c \cdot x = m_2 \cdot r \cdot \Omega^2 \cdot \sin \Omega t \end{aligned}$
Erregerfunktion: $a = a_0 \cdot \sin \Omega t$	Schwingerschema	c S F = F ₀ · sin Ωt x, x, x + y	$G = \bigcup_{i=1}^{c} G_i = \bigcup_{i=1$	x, \dot{x}, \ddot{x} $c_2 $ $c_3 $ $c_4 $ $c_5 $ $c_5 $ $c_5 $	$\begin{array}{c c} \mathcal{R} & \mathcal{R} \\ \mathcal{R} & \mathcal{R} \\ \mathcal{R}, \dot{x}, \ddot{x} & m_2/2 & u = r \cdot \sin \Omega t \end{array}$

7.5 Vergrößerungsfunktion für die erzwungene, ungedämpfte Schwingung

1. Periodische Kraft- oder Federkrafterregung

2. Periodische Massenkrafterregung

Bewegungsgleichungen für den fremderregten, gedämpften Schwinger

7.6

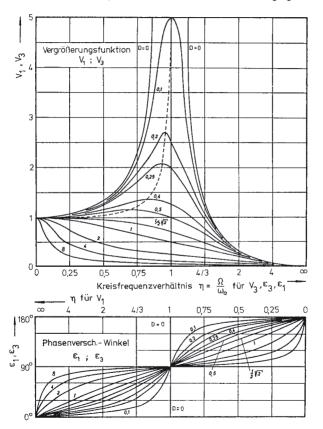
104

Die Lösungen gelten für den eingeschwungenen Zustand

	Phasenwinkel	ε ₃ ν	$\tan \varepsilon_3 = \frac{2D\eta}{1-\eta^2}$	ε3- = χ	$\tan \varepsilon_3 = \frac{2D\eta}{1-\eta^2}$	$\alpha=\gamma_2=\frac{\pi}{2}-\varepsilon_3$	$\tan \gamma_2 = \frac{1 - \eta^2}{2D \eta}$	α = -ε,	$\tan \varepsilon_1 = \frac{2D\eta}{1-\eta^2}$
Lösungsfunktion: $x = x_{-\dots}$ sin $(\Omega t + \alpha)$	Amplitude x _{max}	$x_{max} = \frac{F_0}{c} \cdot \frac{1}{\sqrt{(1-\eta^2)^2 + 4D^2\eta^2}}$	$X_{max} = \frac{F_0}{c} \cdot V_3$	$x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot \frac{1}{\sqrt{(1 - \eta^2)^2 + 4D^2 \eta^2}}$	$x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot V_3$	$x_{max} = \frac{b_2 \cdot U_0}{b_1 + b_2} \cdot \frac{2D\eta}{\sqrt{(1 - \eta^2)^2 + 4D^2\eta^2}}$	$x_{max} = \frac{b_2 \cdot U_0}{b_1 + b_2} \cdot V_2$	$x_{max} = \frac{m_2 \cdot r}{m_1 + m_2} \cdot \frac{\eta^2}{\sqrt{(1 - \eta^2)^2 + 4 D^2 \eta^2}}$	$x_{max} = \frac{m_2 \cdot r}{m_1 + m_2} \cdot V_1$
•	leichung	Ansatz $-m\cdot \ddot{x}-b\cdot \dot{x}-c\cdot \dot{x}+F\left(t\right) =0$	Dgl. m · X + b · X + c · x = F ₀ · sin Ωt	Ansatz $-m\cdot\ddot{x}-b\cdot\dot{x}-c_1\cdot x-c_2\cdot x+c_2\cdot u=0$	Dgi. $m\cdot \ddot x+b\cdot \ddot x+(c_1+c_2)\cdot x=c_2\cdot U_0\cdot \sin\Omega t$	Ansatz $-m\cdot \ddot{x}-b_1\cdot \dot{x}-b_2\cdot \dot{x}-c\cdot x+b_2\cdot \dot{u}=0$	$\begin{array}{ll} \textbf{Dg1.} \\ \hline \text{T} \ u = U_0.\sin\Omega t \\ \hline \end{array} \ \text{m} \cdot \ddot{\textbf{x}} + (b_1 + b_2) \cdot \dot{\textbf{x}} + c \cdot \textbf{x} = b_2 \cdot U_0 \cdot \Omega \cdot \cos\Omega t \\ \hline \end{array} \ \begin{array}{ll} x_{max} = \frac{b_2 \cdot U_0}{b_1 + b_2} \cdot V_2 \\ \hline \end{array}$	Ansatz $-\left(m_{1}+m_{2}\right)\cdot\ddot{x}-b\cdot\ddot{x}-c\cdot x-m_{2}\cdot\ddot{u}=0$	Dgl. $(m_1+m_2)\cdot\ddot X+b\cdot\ddot X+c\cdot X=m_2\cdot r\cdot\Omega^2\sin\Omega t$
Erregerfunktion: $\alpha = \alpha_{\circ} \cdot \sin \Omega_{\uparrow}$	Schwingerschema	4 🖺 📚	x, \dot{x}, \ddot{x} $F = E \cdot \sin \Omega t$	WF4	$x, \dot{x}, \dot{x} \in C_2 $ $u = U_0 \cdot \sin \Omega t$	19 30	x,×,×	Marining Mar	x, x, x m ₂ /2 u = r·sinΩt

Bewegungsgleichungen für den fremderregten, gedämpften Schwinger (Fortsetzung)

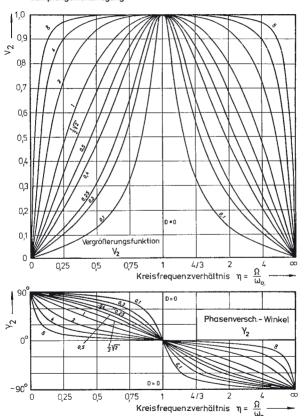
Die Lösungen gelten für den eingeschwungenen Zustand


		Phasenwinkel	α = -ε3	$\tan \varepsilon_3 = \frac{2D\Pi}{1 - \eta^2}$	$\alpha = \gamma_2 = \frac{\pi}{2} - \varepsilon_3$	$\tan \gamma_2 = \frac{1 - \eta^2}{2D\eta}$	$\alpha = -\epsilon_{2,3}$	$\tan \epsilon_{2,3} = \frac{2D\eta^3}{1 + \eta^2(4D^2 - 1)}$	$\alpha = -c_{2,3}$	$\tan \varepsilon_{2,3} = \frac{2D\eta^3}{1 + \eta^2(4D^2 - 1)}$
	Lösungsfunktion: $x = x_{max} \cdot \sin (\Omega t + \alpha)$	Amplitude x _{max}	$x_{max} = U_0 \cdot \frac{1}{\sqrt{(1 - \eta^2)^2 + 4D^2\eta^2}}$	$x_{max} = U_0 \cdot V_3$	$x_{max} = U_0 \cdot \frac{2D\eta}{\sqrt{(1-\eta^2)^2 + 4D^2\eta^2}}$	$x_{max} = U_0 \cdot V_2$	$x_{max} = U_0 \cdot \sqrt{\frac{1 + 4D^2\eta^2}{(1 - \eta^2)^2 + 4D^2\eta^2}}$	$x_{max} = U_0 \cdot V_{2,3}$	$x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot \sqrt{\frac{1 + 4D^2 \eta^2}{(1 - \eta^2)^2 + 4D^2 \eta^2}}$	$x_{max} = \frac{c_2 \cdot U_0}{c_1 + c_2} \cdot V_{2,3}$
Die Losungen gelien iuf den eingeschwungenen zustand		Differenzialgleichung	atz $\cdot \ddot{\mathbf{x}} - \mathbf{b} \cdot \dot{\mathbf{x}} - \mathbf{c} \cdot \mathbf{x} + \mathbf{c} \cdot \mathbf{u} = 0$	Dgl. m·X+b·×+c·x=c·U ₀ ·sinΩt	Ansatz $-m\cdot\ddot{x}-b\cdot\dot{x}-c\cdot x+b\cdot\dot{u}=0$	Dgl. $m\cdot\vec{x}+b\cdot\dot{x}+c\cdot x=b\cdot U_0\cdot\Omega\cdot\cos\Omega t$	Ansatz $-m\cdot\vec{x}-b\cdot\hat{x}-c\cdot x+b\cdot \dot{u}+c\cdot u=0$	$\begin{array}{ll} \textbf{Dgi.} \\ \text{m} \cdot \lambda + b \cdot \dot{x} + c \cdot x = b \cdot U_0 \cdot \Omega \cdot \\ \cdot \cos \Omega t + c \cdot U_0 \cdot \sin \Omega t \end{array}$	Ansatz $ -m\cdot\ddot{x}-(b_1+b_2)\cdot\ddot{x}-(c_1+c_2)\cdot x+\\ +b_2\cdot\dot{u}+c_2\cdot u=0$	$\begin{array}{ccc} & \textbf{Dg.} \\ & & & \\ & & \\ \textbf{Tu}_{\bullet} \cdot \textbf{Sin} \Omega \textbf{1} & = \textbf{D}_{2} \cdot \textbf{U}_{0} \cdot \textbf{Sin} \Omega \textbf{2} \textbf{1} + \textbf{C}_{2} \cdot \textbf{U}_{0} \cdot \textbf{Sin} \Omega \textbf{2} \textbf{1} \\ & & \\ \textbf{U}_{\bullet} \cdot \textbf{Sin} \Omega \textbf{2} \textbf{1} & = \textbf{D}_{2} \cdot \textbf{U}_{0} \cdot \textbf{Sin} \Omega \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2}$
Die Lösungen gelien	Erregerfunktion: $a = a_0 \cdot \sin \Omega \tau$	Schwingerschema	u=U _o sinΩt c	E :X,X,X	c & b	m os usingt	:x's S	c { Hb b lussinΩt	, 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5	x,x,x,c2 ξ

7.6

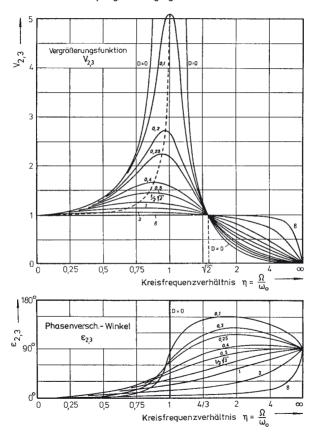
7.7 Vergrößerungsfunktionen für die erzwungene, gedämpfte Schwingung

Vergrößerungsfunktionen V_1 , V_3 und Phasenverschiebungswinkel ε_1 , ε_3


Unmittelbare Kraft-, mittelbare Federkraft- und Massenkrafterregung

7.7 Vergrößerungsfunktion für die erzwungene, gedämpfte Schwingung (Fortsetzung)

Vergrößerungsfunktion V2 und Phasenverschiebungswinkel Y2


Dämpfungskrafterregung

7.7 Vergrößerungsfunktion für die erzwungene, gedämpfte Schwingung (Fortsetzung)

Vergrößerungsfunktion $V_{2,\,3}$ und Phasenverschiebungswinkel $\epsilon_{2,\,3}$

Feder- und Dämpfungskrafterregung

8 Festigkeitsberechnung

Die Festigkeitslehre liefert die Grundlagen für die Berechnung der Beanspruchung und die Bemessung technischer Konstruktionen. Es werden die Fragen nach der Verteilung der inneren Kräfte auf der Schnittfläche eines beanspruchten Maschinenteiles und die durch diese Schnittgrößen hervorgerufenen Formänderungen beantwortet. Die Lösung der ersten Aufgabe gestattet die Beantwortung der technisch bedeutsamen Frage nach der zulässigen Beanspruchung der Konstruktion, während die Beantwortung der zweiten Frage eine Aussage über die mit der Beanspruchung verbundenen elastischen Verformungen, wie z.B. Längenänderungen oder Durchbiegungen eines Maschinenteiles. macht.

Den äußeren Kräften und Momenten an einem Körper halten im Inneren des Körpers entsprechende Reaktionskräfte das Gleichgewicht. Bei homogen angenommener Massenverteilung treten die inneren Reaktionskräfte flächenhaft verteilt auf. Die in jedem Flächenelement herrschende Kraftdichte – Quotient aus innerer Kraft und Wirkungsfläche – ist die **Spannung**. Sie wechselt meistens von Punkt zu Punkt ihre Größe und Richtung. Zur Beschreibung des Spannungszustandes in einem Querschnitt werden die Spannungen jeweils in eine Komponente senkrecht zur Schnittebene – **Normalspannung** σ – und zwei Komponenten in der Schnittebene – **Schubspannungen** τ – zerlegt. Wird eine Schnittebene so gelegt, dass beide Schubspannungen Null werden, so erlangt die Normalspannung einen Extremwert, der als **Hauptspannung** bezeichnet wird. Spannungen sind stets mit Formänderungen verbunden. Man unterscheidet zwei Arten von Formänderungen:

a) Elastische Formänderungen

Dies sind Formänderungen, die nach dem Entfernen der eingeprägten äußeren Belastung wieder verschwinden. Sie folgen den Hooke'schen Gesetzen.

Normalspannungen bewirken Längenänderungen, die, auf die Ausgangslänge bezogen, als Dehnungen bezeichnet werden. Die Dehnungen sind nach dem Hooke'schen Gesetz den sie begleitenden Spannungen proportional

$$\sigma = E \cdot \epsilon$$
.

wobei die Proportionalitätskonstante die Werkstoffkenngröße Elastizitätsmodul E ist.

$$t = G \cdot \gamma$$

Die Proportionalitätskonstante ist die Werkstoffkenngröße Gleit-(Schub-)modul G. Zwischen den beiden Werkstoffkenngrößen besteht die Beziehung

$$G = \frac{E}{2(1+y)}$$
 v = Querzahl Poissonzahl

b) Plastische Formänderungen

Überschreiten die äußeren Kräfte an einem Bauteil und damit die inneren Spannungen einen bestimmten, dem Werkstoff eigenen Grenzwert, so treten entweder plastische Formänderungen, die nach dem Entfernen der äußeren Belastung erhalten bleiben, oder Bruch des Bauteiles auf. Es gilt die Theorie des Fließens, der Verfestigung und des Bruches.

Streng genommen gibt es keine rein elastischen Formänderungen. Es ist nur eine Frage der Messgenauigkeit, dies nachzuweisen. Man definiert jedoch in der Festigkeitslehre Bereiche, in denen das Verhalten eines Körpers als rein elastisch anzusehen ist. Es soll hier nur das elastische Verhalten der Werkstoffe betrachtet und der Bereich der plastischen Verformung ausgeschlossen werden.

8.1 Größen und Einheiten in der Festigkeitsberechnung

Größe	Einheit	Größenbezeichnung	Bemerkungen
x, y, z	mm	Kartesische Koordinaten	Rechtssystem
u, v, w	mm	Verformungen in x, y, z-Richtung	•
a	mm	Abstand, Hebelarm, gr. Ellipsenhalbachse	Abweichend vom SI-System
b	mm	Breite, kl. Ellipsenhalbachse	wird im Maschinenbau nicht
d. D	mm	Durchmesser	die Basiseinheit "m", sondern
r, R	mm	Radius, Halbmesser	die abgeleitete Einheit "mm"
f	mm	Durchbiegung, Durchhang	verwendet
h	mm	Höhe	· or in or idea
li l	mm	Länge	1 mm = 10 ⁻³ m
A	mm ²	Fläche, Querschnittsfläche	1 mm ² = 10 ⁻⁶ m ²
Ē	N/mm ²	Elastizitätsmodul	$E = \sigma/\epsilon$
F	N	Kraft	$N = kq m/s^2$
F _G	N	Gewichtskraft	
	mm/s ²	Erdbeschleunigung	F _G = m · g g = 9806,65 mm/s ²
g G	N/mm ²		$G = \tau/\gamma$
Н	mm ³	Schubmodul	
		Flächenmoment 1. Grades	$H_y = \oint z dA$
l _a	mm ⁴	Axiales Flächenmoment 2. Grades	$I_v = \sqrt{c^2 dA}$
l _p	mm ⁴	Polares Flächenmoment 2. Grades	
I _t	mm ⁴	Torsionsflächenmoment	$I_p = \oint r^2 dA$
m	kg	Masse	-
M _b	N mm	Biegemoment	SI-Basiseinheit
M _t	N mm	Torsionsmoment	Schnittgröße
N	N	Normalkraft	Schnittgröße
р	N/mm ²	Druck, Hertz'sche Pressung	Schnittgröße
Q	N	Querkraft	_
R _e	N/mm ²	Streckgrenze, Fließgrenze	Schnittgröße
R _m	N/mm ²	Zugfestigkeit, Bruchfestigkeit)
R _{p 0,2}	N/mm ²	0,2-Dehngrenze	Siehe Werkstofftabellen
Τ ,	K	Temperatur)
W _a	mm ³	Axiales Widerstandsmoment	SI-Basiseinheit
W _p	mm ³	Polares Widerstandsmoment	W_x , W_y , W_z
W,	mm ³	Torsionswiderstandsmoment	$W_p = I_p/R$ (Kreis)
W,	N mm	Innere Formänderungsarbeit	· · · ·
Wa	N mm	Äußere Formänderungsarbeit	der inneren Spannungen
а			der Kräfte, Momente
α	1/K	Therm. Längenausdehnungskoeffizient	$\Delta I = \alpha \cdot I \cdot \Delta T$
α_k	1	Formziffer, Formzahl	a w . a.
β ^k	1/K	Therm. Raumausdehnungskoeffizient	$\beta = 3\alpha$
β_k	1	Kerbwirkungszahl	la = 20
	1	Gleitung, Schiebung	$\gamma = \tau/G$
γ	1	Dehnung	$\varepsilon = \Delta I/I$
	1	Querdehnung	$\varepsilon = \Delta I/I$ $\varepsilon_{\rm q} = \Delta d/d = -v \varepsilon$
ε_{q}	1		oq = 20/0 = - v c
ε _m		Bruchdehnung	$\Theta = \Phi/I$
Θ	rad/mm	Drillung	
ν	1	Poissonzahl	v = 0.3 (Stahl)
ρ	kg/mm ³	Dichte, Massendichte	- N/A
σ	N/mm ²	Normalspannung (Zug-, Druckspannung)	$\sigma = N/A$
$\sigma_{\rm w}$	N/mm ²	Wechselfestigkeit]
σ_{Sch}	N/mm ²	Schwellfestigkeit	Aus dem SMITH-Diagramm
σ_{A}	N/mm ²	Ausschlagfestigkeit	J
σ_{D}		Daugrtoctiakoit (allagmain)	
	N/mm ²	Dauerfestigkeit (allgemein)	
τ	N/mm ² N/mm ² rad	Schubspannung, Scherspannung Winkel, Torsionswinkel	$\tau = Q/A, \ \tau = M_t/W_p$ 1 rad = 1 m/1 m

8.2 Werkstoffkennwerte

Werkstoff	Elastizitäts- modul ¹⁾ E kN/mm²	Poisson- zahl	Längen- ausdehnungs- koeffizient α 10 ⁻⁶ /K	Dichte ρ kg/dm³	Zugfestigkeit ²⁾ R_{m} N/mm ²
Metalle: Aluminium Al-Legierungen Bronze Blei Eisen Gold Gusseisen Kupfer Magnesium Messing Messing (60 % Cu) Nickel Ni-Legierungen Platin Silber Stahl, unlegiert Stahl, legiert X5 Cr Ni 18 10 100 Cr 6, gehärtet Titlan Zink	72,2 5978 108124 16 206 79 64181 125 44 78123 100 167 158213 170 80 210 210 208 190 208	0,34 0,330,34 0,35 0,44 0,28 0,42 0,240,29 0,35 0,36 0,31 0,31 0,22 0,38 0,38 0,30 0,31 0,22 0,38 0,39 0,39 0,39 0,39 0,39 0,39 0,39 0,39	23,9 18,524,0 16,818,8 29,1 11,7 14,2 912 16,86 26,0 17,519,1 18 13,3 1114 9,0 19,7 12 919 16 12 8,35 29 21,4	2,7 2,62,9 7,28,9 11,34 7,86 19,3 1,7.17,4 8,93 1,74 8,38,7 8,5 8,86 7,89,2 21,5 10,5 7,85 7,87,86 7,9 7,85 4,5	40160 300700 300320 1020 300 130300 140490 200230 140780 200740 370800 5401275 220380 180350 300700 5001500 5001500 300740 100150
Nichtmetallische W Beton Glas, allgemein Bauglas Quarzglas Granit Marmor Porzellan Ziegelstein Nichtmetallische W Araldit Plexidlas (PMMA)	22 39 39 98 62 86 62 76 50 60 60 90 10 40	0,150,22 0,100,28 0,25 0,170,25 0,130,26 0,250,30 - 0,200,35	5,414,2 3,55,5 9.50,6 38 516 36,5 810	2.0 2.8 2.2 6.3 2.4 2.7 2.21 2.6 2.8 1.8 2.7 2.2 2.5 1,7 1,9	1040 3090 3090 3090 1020
Polyamid (Nylon) Polyethylen (HDPE) Polyvinylchlorid	1,31,7 0,151,6 13	- - -	70100 70100 150200 70100	1,011,14 0,910,97 1,21,7	4080 2530 4560

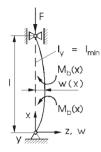
¹⁾ Zwischen dem Elastizitätsmodul E und dem Schubmodul G der Werkstoffe besteht die Beziehung $G = \frac{E}{(1+\omega)}$

Differenzierte Werte f
ür die Zugfestigkeit R_m und die Streckgrenze R_e der Werkstoffe sind den entsprechenden DIN-Normen zu entnehmen.

8.3 Zusammenstellung der wichtigsten Beanspruchungsarten

Beanspruchungsart	Spannung	Verformung
Zugbeanspruchung Tugbeanspruchung Druckbeanspruchung	$\begin{aligned} & \text{Normalspannung} \\ & \sigma_x = \frac{F_x}{A} \\ & \text{Zugbeanspruchung} \\ & F_x \text{ ist positiv} \\ & \sigma_x \text{ ist positiv} \\ & \text{Druckbeanspruchung} \\ & F_x \text{ ist negativ} \\ & \sigma_x \text{ ist negativ} \end{aligned}$	Dehnung (Stauchung)* $\epsilon_{x} = \frac{\Delta I_{x}}{I} = \frac{\sigma_{x}}{E} = \frac{F_{x}}{E \cdot A}$ Verlängerung (Verkürzung)* $\Delta I_{x} = \frac{F_{x} \cdot I}{E \cdot A}$ Querkontraktion (Querstauchung) $\epsilon_{y} = -v \cdot \epsilon_{x} \epsilon_{z} = -v \cdot \epsilon_{x}$ * je nach Vorzeichen F,
Schubbeanspruchung (mittlere)		Gleitung (mittlere) $\gamma_m = \frac{\tau_m}{G} = \frac{Q_z}{G \cdot A}$ $w(I) = \gamma_m \cdot I$ $G = Schubmodul$
Schubbeanspruchung (reale) y	$\begin{split} & \text{Schubspannungsverteilung} \\ & \tau(z) = \frac{Q_z}{I_y b(z)} \\ & \text{mit stat. Moment} \\ & H_y(z) = \int\limits_{z}^{e_2} z \ b \ (z) \ dz \\ & \tau_{max} = \frac{Q_z}{I_y} \frac{H_y(z=0)}{I_y} \ b \ (z=0) \end{split}$	$\begin{split} & \textbf{Durchsenkung des Trägers} \\ & (\text{nur infolge Schubspannung}) \\ & w(x) = k \frac{Q_z}{G \cdot A} \cdot \chi < \frac{\tau_{max}}{G} \cdot \chi \\ & w(1) = k \frac{Q_z}{G \cdot A} \mid \\ & k = \text{Querschnittsformfaktor} \end{split}$
Scherbeanspruchung F _t y T F _t F _t	$\tau_{\text{Scher}} = \frac{F_z}{A}$	Abscheren bei Überschreiten der Scherfestigkeit des Werkstoffes
Querkraftfreie Biegung	$\begin{split} & \text{Biegespannung} \\ & \text{Verteilung:} \\ & \sigma = \frac{M_{by}}{I_y} \text{ Z} \\ & \text{Maximalwert:} \\ & \sigma_{max} = \frac{M_{by}}{I_y} e_{max} = \frac{M_{by}}{W_y} \\ & \text{Im Bild: } e_{max} = e_1 \end{split}$	$\begin{split} & \text{Krümmung} \\ & k = \frac{1}{\rho} = \frac{M_{by}}{E} \frac{1}{I_y} \\ & \rho \text{\leftarrow Krümmungsradius} \\ & \text{Differentialgleichung der Biegelinie} \\ & w''(x) = -\frac{M_{by}}{E} \frac{1}{I_y} \end{split}$

8.3 Zusammenstellung der wichtigsten Beanspruchungsarten


Beanspruchungsart	Spannung	Verformung
Biegung (allgemein)	Biegespannung Verteilung:	Differenzialgleichung der Biegelinie
y x F _z	$\sigma_b(x, z) = \frac{M_{by}(x)}{I_y(x)}z$ Maximalwert:	$w''(x) = -\frac{M_{by}(x)}{E I_{y}(x)}$
z.w.t M _{by} # const. Querkrafteinfluss wird vernachlässigt.	$\sigma_{b_{max}}(x) = \frac{M_{by}(x)}{W_{v}(x)}$	
Torsion kreisförmiger Vollquerschnitte	Torsionsspannung Verteilung:	Drillung φ M _t
T _{max} ϕ	$\tau(r) = \frac{M_t}{I_p} r$ Maximalwert:	$9 = \frac{\Phi}{I} = \frac{M_t}{G I_p}$ Drillwinkel M, I
I_p = polares Flächenträgheitsm.	$\tau_{\text{max}} = \frac{M_t}{I_p} \cdot \frac{D}{2} = \frac{M_t}{W_p}$	$\varphi = \frac{M_t I}{G I_p}$
Torsion kreisringförmiger Querschnitte (Rohre)	Torsionsspannung Maximalwert:	Drillwinkel
M ₁	$\tau_{max} = \frac{M_t}{W_p}$ $W_p = \frac{I_p(D) - I_p(d)}{D/2}$	$\varphi = \frac{M_t I}{G I_p}$ $I_p = I_p(D) - I_p(d)$
Torsion dünnwandiger Hohlquerschnitte	$\begin{split} & \textbf{Schubspannung} \\ & \textbf{Verlauf über Umfang:} \\ & \tau(s) = \frac{M_t}{2A_m\delta(s)} \\ & \textbf{Maximalwert:} \\ & \tau_{max} = \frac{M_t}{W_t} = \frac{M_t}{2A_m \cdot \delta_{min}} \end{split}$	$\begin{split} & \textbf{Drillung} \\ & \vartheta = \frac{M_t}{G \cdot I_t} = \frac{M_t}{G} \frac{\frac{4}{9} ds / \delta(s)}{4 A_m^2} \\ & I_t = \frac{4 A_m^2}{\frac{4}{9} ds / \delta(s)} \end{split}$
Torsion schmaler Rechteckquerschnitte	$\begin{split} & \textbf{Schubspannung} \\ & \textbf{Verlauf:} \\ & \tau = \frac{2M_t}{l_t} y \\ & \textbf{Maximalwert:} \\ & \tau_{\text{max}} = \frac{M_t}{W_t} = \frac{2M_t}{l_t} \frac{b}{2} = \frac{3M_t}{b^2 b} \end{split}$	$\begin{split} & \textbf{Drillung} \\ & \vartheta = \frac{M_t}{G \cdot I_t} = \frac{M_t}{G} \frac{3}{b^3 h} \\ & I_t = \frac{b^3 h}{3} \end{split}$
Erwärmung beidseitig eingespannter Stäbe	Wärmespannung $\sigma_{AT} = -E \cdot \alpha \cdot \Delta T$	Bei freier Dehnung $\varepsilon_{\Delta T} = \frac{\Delta I}{I} = \alpha \ \Delta T$
A	$\sigma_{AT} = -\mathbf{E} \cdot \alpha \cdot \Delta \mathbf{I}$ $\alpha = \text{linearer Wärme-}$ ausdehnungskoeffizient	$\begin{array}{ccc} \Delta T &=& \Pi &=& \Omega & \Omega \\ \Delta I &=& I & \alpha & \Delta T \\ \end{array}$ Diese Verlängerung ist nicht möglich und muss durch eine Stauchun im Stab aufgenommen werden.

8.3 Zusammenstellung der wichtigsten Beanspruchungsarten

_		
Beanspruchungsart	Spannung	Verformung
Dünnwandiges Rohr unter Innendruck p₁ s ≪dm	$\begin{split} & \textbf{Tangentialspannung} \\ & \sigma_t = \frac{p_i \ d_m}{2 \ s} & \textbf{Kessel-} \\ & \textbf{Axialspannung} \\ & \sigma_a = \frac{p_i \cdot d_m}{4 \cdot s} \end{split}$	$\begin{split} & \text{Durchmesser\"{a}nderung} \\ & \Delta d_m = \frac{d_m}{E} \frac{\sigma_t}{E} \\ & \text{L\"{a}ngen\"{a}nderung} \\ & \Delta I = \frac{I}{E} \frac{\sigma_a}{E} \end{split}$
Dickwandiges Rohr	Tangentialspannung	Radiale Verschiebung
$\begin{array}{c} \text{unter Innendruck } p_i \\ \\ \hline \\ Verhältnis } Q = \frac{r_i}{r_a} = \frac{d_i}{d_a} \end{array}$	$\sigma_t = p_i \frac{(r_a/r)^2 + 1}{(r_a/r_i)^2 - 1}$ Radialspannung $\sigma_r = -p_i \frac{(r_a/r_i)^2 - 1}{(r_a/r_i)^2 - 1}$ Axialspannung $\sigma_a = p_i \frac{1}{(r_r/r_i)^2 - 1}$	$u(r) = \frac{p_i}{E} \left[(1 - v) Q^2 r + + (1 + v) r_i^2 / r \right] / (1 - Q^2)$ Durchmesseränderung $\Delta d_i = \frac{p_i}{E} \frac{d_i}{e} \left[\frac{1 + Q^2}{1 - Q^2} + v \right]$ $\Delta d_a = \frac{p_i}{e} \frac{d_a}{1 - Q^2}$
	(a. 1/	E 1-Q-
Dickwandiges Rohr unter Außendruck p_a $r_i \le r \le r_a$ Die Beziehungen für die Spannun	$\begin{split} & \textbf{Tangentialspannung} \\ & \sigma_t = -p_a \frac{\left(r_a/r_i\right)^2 + \left(r_a/r\right)^2}{\left(r_a/r_i\right)^2 - 1} \\ & \textbf{Radialspannung} \\ & \sigma_r = -p_a \frac{\left(r_a/r_i\right)^2 - \left(r_a/r\right)^2}{\left(r_a/r_i\right)^2 - 1} \\ & \textbf{Axialspannung} \\ & \sigma_a = -p_a \frac{\left(r_a/r_i\right)^2}{\left(r_a/r_i\right)^2 - 1} \\ & gen und Verformungen können können bern und Verformungen können kö$	Radiale Verschiebung $u(r) = -\frac{p_a}{E} \left[(1-v)r + \\ + (1-v)r_i^2/r \right] / (1-Q^2)$ Durchmesseränderung $\Delta d_a = -\frac{p_a}{E} \frac{d_a}{E} \left[\frac{1+Q^2}{1-Q^2} - v \right]$ $\Delta d_i = -\frac{p_a}{E} \frac{d_i}{E} \frac{2}{1-Q^2}$ Dei Vorhandensein von p. und p.
superponiert werden.	-	
Vollwelle unter Außendruck p_a $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{aligned} &\textbf{Tangentialspannung}\\ &\sigma_t = -p_a = const.\\ &\textbf{Radialspannung}\\ &\sigma_r = -p_a = const.\\ &\textbf{Axialspannung}\\ &\sigma_a = -p_a = const. \end{aligned}$	$\begin{aligned} & \text{Radiale Verschiebung} \\ & u(r) = -\frac{p_ar}{E}(1-\nu) \\ & \text{Durchmesser \"{a}nderung} \\ & \Delta d_a = -\frac{p_ad_a}{E}(1-\nu) \end{aligned}$
		v = Querzahl

8.4 Knickung schlanker Stäbe

Die Knickbeanspruchung stellt einen Grenzfall der Druckbeanspruchung dar, wie sie z. B. bei langen Spindeln, Pendelstützen von Aufsteckgetrieben, Fachwerkstäben u. a. auftritt. Schlanke "Stäbe" gehen unter Druckbeanspruchung bei Erreichen einer kritischen Druckspannung aus der nicht ausgebogenen (instabilen) Gleichgewichtslage in eine benachbarte gebogene (stabile) Lage über.

Druckspannung

$$\sigma_d = \frac{F}{A}$$

Knickspannung (im EULER-Bereich)

$$\sigma_{K} \, = \, \frac{F_{K}}{A} \, = \, \frac{\pi^{2} \cdot E \cdot I_{y}}{A \cdot I^{2}}, \ I_{y} = I_{min}$$

Knicken im elastischen (EULER) Bereich

Betrachtet man die verformte Gleichgewichtslage des dargestellten Stabes, so lautet die Differenzialgleichung für die Knickung um die Querschnittshauptachse y (mit \mathbf{l}_y als kleinstem Flächenmoment 2. Ordnung) im Fall kleiner Auslenkungen w(x)

$$\mathsf{E}\cdot\mathsf{I}_{\mathsf{y}}\cdot\mathsf{w}''(\mathsf{x})\,=\,-\mathsf{M}_{\mathsf{b}}(\mathsf{x})=\,-\mathsf{F}\cdot\mathsf{w}(\mathsf{x})$$

$$w''(x) + \alpha^2 w(x) = 0 \qquad \text{mit } \alpha = \sqrt{\frac{F}{E \cdot I_y}} \,.$$

Die Lösung dieser Differenzialgleichung ist

$$W(X) = C_1 \cdot \sin(\alpha \cdot X) + C_2 \cdot \cos(\alpha \cdot X).$$

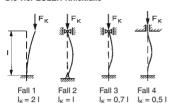
Aus den Randbedingungen für den vorstehend dargestellten Stab

$$w(x = 0) = 0$$
 und

$$w(x = 1) = 0$$

folgen $c_2 = 0$ und $\sin (\alpha \cdot I) = 0$ (Eigenwertgleichung) mit den Eigenwerten

$$\alpha_K = \frac{\mathbf{n} \cdot \boldsymbol{\pi}}{1}$$
, $\mathbf{n} = 1, 2, 3 \dots$


Damit ergibt sich $F_K = \alpha_K^2 \cdot E \cdot I_v = n^2 \cdot \pi^2 \cdot E \cdot I_v / I^2$

und die kleinste Knicklast für n = 1 zu $F_K = \frac{\pi^2 \cdot E \cdot I_y}{I_z^2}$.

Für andere Lagerungsfälle ergeben sich entsprechende Eigenwerte, die sich jedoch alle mit der reduzierten Knicklänge I_k auf die Euler'sche Knicklast zurückführen lassen.

8.4 Knickung schlanker Stäbe

Die vier FUL FR-Knickfälle

Mit dem Trägheitsradius

$$i_v = \sqrt{I_v/A}$$

und dem Schlankheitsgrad

$$\lambda = I_K / I_V = I_K / \sqrt{(I_V / A)}$$

folgt für die Knickspannung

$$\sigma_{\mathsf{K}} = \mathsf{F}_{\mathsf{K}}/\mathsf{A} = \pi^2 \cdot \mathsf{E}/\lambda^2.$$

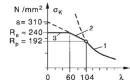
Diese Beziehungen für F_{K} und σ_{K} gelten nur im linearen, elastischen Werkstoffbereich, also solange

$$\sigma_{K} \,=\, \pi^{2} \cdot \text{E}/\lambda^{2} < R_{p} \;\; \text{bzw.} \;\; \lambda > \sqrt{\pi^{2} \cdot \text{E}/R_{p}} \; \text{ist.}$$

Der Übergang aus dem elastischen in den unelastischen (plastischen) Bereich liegt bei der Grenzschlankheit

$$\lambda_0 = \sqrt{\pi^2 \cdot E/R_p}$$
; $R_p = Proportionalitätsgrenze des Werkstoffes.$

Knickspannung im unelastischen (plastischen) Bereich


Für kleinere Schlankheitsgrade als die Grenzschlankheit wird der Verlauf der EULER-Hyperbel durch die TETMAJER-Gerade ersetzt, die folgende Form aufweist

$$\sigma_K = a - b \cdot \lambda$$
.

Die Grenzschlankheit λ_0 sowie Werte für a und b sind der nachfolgenden Tabelle für einige Werkstoffe zu entnehmen.

Werkstoff	Alte Bezeichnung	Е	N/mm ²	λ ₀	а	b
S 235 IR	St 37	2,1	10 ⁵	104	310	1,14
E 295, E 335		2,1 -		89	335	0,62
5% - Ni-Stahl		2,1 ·	10 ⁵	86	470	2,30
Grauguss		1,0 -	10 ⁵	80	$\sigma_{K} = 776 - 12$	$\lambda + 0.053 \cdot \lambda^2$
Nadelholz		1,0 -	10 ⁴	100	29,3	0,194

Die TETMAJER-Gerade gilt vom Schnittpunkt mit der EULER-Hyperbel bis zum Schnittpunkt mit der Streckgrenze R_e des verwendeten Werkstoffes. Damit existieren drei Bereiche in Abhängigkeit vom Schlankheitsorad.

Knickspannungsdiagramm für St 37

- EULER-Hyperbel;
- 2. TETMAJER-Gerade:
- 3. Streckgrenze

$$R_0 = 240 \text{ N/mm}^2$$

$$R_0 = 0.8 \cdot R_e = 192 \text{ N/mm}^2$$

8.5 Mechanismus der Bruchformen für den einachsigen Spannungszustand

	Spröde Werkstoffe		Zähe Werkstoffe		
Äußere Beanspruchung	größte Normal- spannungen	Trennbruch	größte Schub- spannungen	Schub- oder Gleit- verformung	
Zug	$\sigma_{\text{max}} = \frac{F}{A}$		$\tau_{\text{max}} = \frac{\sigma_{\text{max}}}{2}$		
Druck -F	$\sigma_{\text{max}} = -\frac{F}{A}$	Trennbruch nicht möglich	$\tau_{\text{max}} = \frac{\sigma_{\text{max}}}{2}$		
Biegung M _b	$\sigma_{\text{max}} = + \frac{M_b}{W_a}$		$\tau_{\text{max}} = \frac{\sigma_{\text{max}}}{2}$	E23	
Torsion Mt	$\sigma_{max} = 2\tau_{max}$		$\tau_{\text{max}} = \frac{M_t}{W_p}$		
Anwendbare Bruchhypothese	Normalspanni	Normalspannungshypothese		Schubspannungshypothese	

Die wichtigsten Versagensarten bei mechanischer Beanspruchung sind:

Versagensart Maßgebender Festigkeitskennwert

Fließbeginn Streckgrenze, 0,2-Dehngrenze Trennbruch Bruchfestigkeit

Ermüdungsbruch Dauerfestigkeit für den vorliegenden dynamischen Beanspruchungsfall

8.6 Die wichtigsten Festigkeitshypothesen für den mehrachsigen Spannungszustand

	Versagensart						
Versagen durch		Trennbruch	Verformen Gleitzerrüttung	Verformen Gleitzerrüttung			
Festigkeits- hypothese		Normalspannungs- hypothese	Schubspannungs- hypothese	Gestaltänderungs- energiehypothese			
Spannungszu	ustand		Vergleichsspannung	σ_{v}			
$\sigma_1, \sigma_2, \sigma_3$ $\sigma_1 \ge \sigma_2 \ge \sigma_3$	3-achsig	σ_1	$\sigma_1 - \sigma_3 = 2 \tau_{max}$	$\begin{array}{c c} \frac{1}{\sqrt{2}} \cdot \sqrt{(\sigma_1 - \sigma_2)^2 + \\ + (\sigma_2 - \sigma_3)^2 + \\ + (\sigma_3 - \sigma_1)^2} \end{array}$			
σ_1 , σ_2 , $\sigma_3 = 0$		σ_1	$\sigma_1 = 2\tau_{max}$	$\sqrt{{\sigma_1}^2+{\sigma_2}^2-{\sigma_1}{\sigma_2}}$			
$\sigma_1, \sigma_3, \sigma_2 = 0$		σ_1	$\sigma_1 - \sigma_3 = 2 \tau_{max}$	$\sqrt{\sigma_1^2 + \sigma_3^2 - \sigma_1\sigma_3}$			
σ _x , σ _y , τ	2-achsig	$\frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2} \cdot \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau^2}$	$\begin{split} &\sqrt{(\sigma_x - \sigma_y)^2 + 4\tau^2} & \textcircled{1} \\ &\frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2} \cdot \\ &\cdot \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau^2} & \textcircled{2} \end{split}$	$\sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau^2}$			
σ_x , τ \mathfrak{G} $\sigma_y = 0$		$\frac{1}{2}\sigma_x + \frac{1}{2}\sqrt{{\sigma_x}^2 + 4\tau^2}$	$\sqrt{{\sigma_x}^2 + 4\tau^2}$	$\sqrt{{\sigma_x}^2 + 3\tau^2}$			

①
$$\sqrt{(\sigma_x - \sigma_y)^2 + 4 \tau^2} > \sigma_x + \sigma_y$$

Zu 3: Biegung und Torsion

Bei überlagerter Biegung und Torsion hat sich die Anwendung der Gestaltänderungsenergiehypothese (GEH) bewährt. Für dynamische Beanspruchungen (z. B. Wechselbiegebeanspruchung mit überlagerter Torsionsbeanspruchung) ist das Anstrengungsverhältnis α₀ zu berücksichtigen:

$$\sigma_v = \sqrt{\sigma_x^2 + 3 \cdot (\alpha_0 \cdot \tau)^2}$$

Bei Biegung wechselnd und Torsion ruhend: $\alpha_0 = 0.7$ bei Biegung wechselnd und Torsion wechselnd:

 $\alpha_0 = 1.0$ bei Biegung ruhend und Torsion wechselnd:

 $\alpha_0 = 1.5$

 $\alpha_0 = \frac{\sigma_{Grenz}}{(\phi \cdot \tau_{Grenz})}$

8.7 Axiale Flächenmomente 2. Grades und Widerstandsmomente

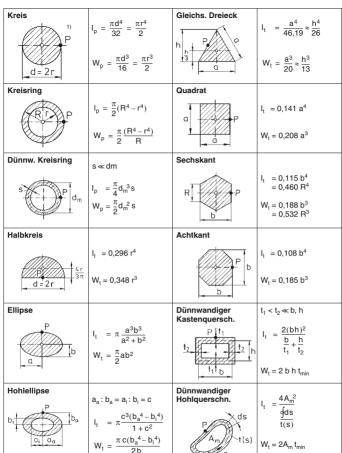
	t	1
Rechteck	$I_y = \frac{b h^3}{12} = A \frac{h^2}{12}$	$W_{y} = \frac{b h^{2}}{6} = A \frac{h}{6}$
h S y	$I_z = \frac{h b^3}{12} = A \frac{b^2}{12}$	$W_z = \frac{h b^2}{6} = A \frac{b}{6}$
Kreis		
z y y d = 2r	$I_y = I_z = \frac{\pi d^4}{64} = \frac{\pi r^4}{4} = \frac{Ar^2}{4}$	$W_y = W_z = \frac{\pi d^3}{32} = \frac{\pi r^3}{4} = \frac{Ar}{4}$
Halbkreis		
z l	$I_y = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^4$	$W_y = 0,1902 r^3$
$\frac{2\Gamma}{3\pi} \qquad \qquad d = 2\Gamma$	$I_z = \frac{\pi r^4}{8} = \frac{Ar^2}{4}$	$W_z = \frac{\pi r^3}{8} = \frac{Ar}{4}$
Kreisausschnitt	$I_y = r^4 \left[\left(\alpha + \frac{1}{8} \sin \alpha \right) - \frac{4(1 - \cos \alpha)}{9\alpha} \right]$	w - I _y
2 1 y 2 a r y	$I_{z} = I \left[(\alpha + \frac{1}{8}\sin\alpha) - \frac{1}{9\alpha} \right]$ $I_{z} = \frac{r^{4}}{8}(a - \sin\alpha)$	$\begin{aligned} W_y &= \frac{I_y}{z_{max}} \\ z_{max} &= Max \begin{cases} r - \frac{2 r sin \alpha}{3 \alpha} \\ \frac{2 r sin \alpha}{3 \alpha} \end{cases} \end{aligned}$
Kreisabschnitt	$I_{y} = r^{4} \left[\frac{4\alpha - \sin 4\alpha}{16} - \frac{8}{9} \cdot \frac{\sin^{6}\alpha}{2\alpha - \sin 2\alpha} \right]$	$W_y = \frac{I_y}{Z_{max}}$
z v v v v v v v v v v v v v v v v v v v	$I_{y} = r \left[\frac{1}{16} - \frac{1}{9} \cdot \frac{2\alpha - \sin 2\alpha}{2\alpha - \sin 2\alpha} \right]$ $I_{z} = r^{4} \left[2\alpha - \frac{4}{3} \sin 2\alpha + \frac{1}{6} \sin 4\alpha \right]$	$z_{\text{max}} = r - \frac{4r \sin^3 \alpha}{3(2 - \sin 2\alpha)}$
Kreisring		
2 1 1 1 1 1 1 1 1 1	$I_y = I_z = \frac{\pi}{4}(R^4 - r^4)$	$W_y = W_z = \frac{\pi}{4} \frac{(R^4 - r^4)}{R}$
Kreisring- ausschnitt	$I_{y} = \frac{R^4 - r^4}{8} \cdot (\alpha + \sin \alpha) - \frac{R^2 - r^2}{2} \cdot e^2 \alpha$	$W_y = \frac{I_y}{R - e}$
S y e R 2 a r	$I_{z} = \frac{R^4 - r^4}{8} \cdot (\alpha + \sin \alpha)$	$e = \frac{2}{3} \cdot \frac{(R^3 - r^3)\sin\alpha}{(R^2 - r^2)\alpha}$

8.7 Axiale Flächenmomente 2. Grades und Widerstandsmomente

Dreieck	$I_y = \frac{ah^3}{36} = \frac{Ah^2}{18}$ $I_z = \frac{ha^3}{48} = \frac{Aa^2}{24}$	$W_y = \frac{ah^2}{24} = \frac{Ah}{12}$ $W_z = \frac{ha^2}{24} = \frac{Aa}{12}$
Sechseck	$I_y = I_z = \frac{5\sqrt{3}}{16}R^4 = \frac{5\sqrt{3}}{256}e^4$	$W_y = \frac{5\sqrt{3}}{16}R^3 = \frac{5\sqrt{3}}{128}e^3$ $W_z = \frac{5}{8}R^3 = \frac{5}{64}e^3$
Ellipse y	$I_{y} = \frac{\pi a b^{3}}{4} = \frac{A b^{2}}{4}$ $I_{z} = \frac{\pi a^{3} b}{4} = \frac{A a^{2}}{4}$	$W_y = \frac{\pi a b^2}{4} = \frac{Ab}{4}$ $W_z = \frac{\pi a^2 b}{4} = \frac{Aa}{4}$
Hohlellipse b_1 b_2 b_3 b_4 b_5 b_6 b_7	$\begin{split} I_y &= \frac{(a_a b_a{}^3 - a_i b_i{}^3)}{4} \\ I_z &= \frac{(a_a{}^3 b_a - a_i{}^3 b_i)}{4} \end{split}$	$W_{y} = \frac{(a_{a}b_{a}^{3} - a_{i}b_{i}^{3})}{4b_{a}}$ $W_{z} = \frac{(a_{a}^{3}b_{a} - a_{i}^{3}b_{i})}{4a_{a}}$
y	y	$\begin{split} I_y &= \frac{BH^3 + bh^3}{12} \\ W_y &= \frac{BH^3 + bh^3}{6H} \\ mit &B = B_1 + B_2 \\ b &= b_1 + b_2 \end{split}$
y	y y z x y y z x	$I_y = \frac{BH^3 - bh^3}{12}$ $W_y = \frac{BH^3 - bh^3}{6H}$ mit b = b ₁ + b ₂
b ₁ B b ₂ y T y T	B b B ₁ b B ₂	$\begin{split} I_y &= \frac{BH^3 + bh^3}{3} - (BH + bh)e_1^2 \\ mit &B = B_1 + B_2, b = b_1 + b_2 \\ W_{y1,2} &= \frac{I_y}{e_{1,2}} \\ e_1 &= \frac{1}{2} \frac{BH^2 + bh^2}{BH + bh}, e_2 = H - e_1 \end{split}$

8.8 Flächenmomente 2. Grades und Widerstandsmomente für Kreisquerschnitte

 $I_a = \frac{\pi \cdot d^4}{64}$ axiales Flächenmoment $I_p = 2 \cdot I_a$ polares Flächenmoment


 $\begin{aligned} W_a &= \frac{\pi \cdot d^3}{32} & \text{axiales} \\ W_p &= 2 \cdot W_a & \text{polares} \\ \text{Widerstandsmoment} \end{aligned}$

d	I _a	W _a	d	I _a	W _a	d	I _a	W _a
mm	mm ⁴	mm ³	mm	mm ⁴	mm ³	mm	mm ⁴	mm ³
1 2 3	0,0491	0,0982	51	332 086	13 023	101	5 108 055	101 150
	0,7854	0,7854	52	358 908	13 804	102	5 313 378	104 184
	3,976	2,651	53	387 323	14 616	103	5 524 830	107 278
4	12,57	6,283	54	417 393	15 459	104	5 742 532	110 433
5	30,68	12,27	55	449 180	16 334	105	5 966 604	113 650
6	63,62	21,21	56	482 750	17 241	106	6 197 171	116 928
7	117,9	33,67	57	518 166	18 181	107	6 434 357	120 268
8	201,1	50,27	58	555 497	19 155	108	6 678 287	123 672
9	322,1	71,57	59	594 810	20 163	109	6 929 087	127 139
10	490,9	98,17	60	636 172	21 206	110	7 186 886	130 671
11	718,7	130,7	61	679 651	22 284	111	7 451 813	134 267
12	1 018	169,6	62	725 332	23 398	112	7 723 997	137 929
13	1 402	215,7	63	773 272	24 548	113	8 003 571	141 656
14	1 886	269,4	64	823 550	25 736	114	8 290 666	145 450
15	2 485	331,3	65	876 240	26 961	115	8 585 417	149 312
16	3 217	402,1	66	931 420	28 225	116	8 887 958	153 241
17	4 100	482,3	67	989 166	29 527	117	9 198 425	157 238
18	5 153	572,6	68	1 049 556	30 869	118	9 516 956	161 304
19	6 397	673,4	69	1 112 660	32 251	119	9 843 689	165 440
20	7 854	785,4	70	1 178 588	33 674	120	10 178 763	169 646
21	9 547	909,2	71	1 247 393	35 138	121	10 522 320	173 923
22	11 499	1 045	72	1 319 167	36 644	122	10 874 501	178 271
23	13 737	1 194	73	1 393 995	38 192	123	11 235 450	182 690
24	16 286	1 357	74	1 471 963	39 783	124	11 605 311	187 182
25	19 175	1 534	75	1 553 156	41 417	125	11 984 229	191 748
26	22 432	1 726	76	1 637 662	43 096	126	12 372 350	196 387
27	26 087	1 932	77	1 725 571	44 820	127	12 769 824	201 100
28	30 172	2 155	78	1 816 972	46 589	128	13 176 799	205 887
29	34 719	2 394	79	1 911 967	48 404	129	13 593 424	210 751
30	39 761	2 651	80	2 010 619	50 265	130	14 019 852	215 690
31	45 333	2 925	81	2 113 051	52 174	131	14 456 235	220 706
32	51 472	3 217	82	2 219 347	54 130	132	14 902 727	225 799
33	58 214	3 528	83	2 329 605	56 135	133	15 359 483	230 970
34	65 597	3 859	84	2 443 920	58 189	134	15 826 658	236 219
35	73 662	4 209	85	2 562 392	60 292	135	16 304 411	241 547
36	82 448	4 580	86	2 685 120	62 445	136	16 792 899	246 954
37	91 998	4 973	87	2 812 205	64 648	137	17 292 282	252 442
38	102 354	5 387	88	2 943 748	66 903	138	17 802 721	258 010
39	113 561	5 824	89	3 079 853	69 210	139	18 324 378	263 660
40	125 664	6 283	90	3 220 623	71 569	140	18 857 416	269 392
41	138 709	6 766	91	3 366 165	73 982	141	19 401 999	275 206
42	152 745	7 274	92	3 516 586	76 448	142	19 958 294	281 103
43	167 820	7 806	93	3 671 992	78 968	143	20 526 466	287 083
44	183 984	8 363	94	3 832 492	81 542	144	21 106 684	293 148
45	201 289	8 946	95	3 998 198	84 173	145	21 699 116	299 298
46	219 787	9 556	96	4 169 220	86 859	146	22 303 933	305 533
47	239 531	10 193	97	4 345 671	89 601	147	22 921 307	311 855
48	260 576	10 857	98	4 527 664	92 401	148	23 551 409	318 262
49	282 979	11 550	99	4 715 315	95 259	149	24 194 414	324 757
50	306 796	12 272	100	4 908 738	98 175	150	24 850 496	331 340

8.9 Flächenmomente 2. Grades für verschiedene Bezugsachsen

Trägheitsmoment für:	axiale TM	Zentrifug.moment	polares TM
Beliebige senkrecht aufeinander stehende Schwerpunktachsen yz	$I_{y} = \int_{A} z^{2} \cdot dA$ $I_{y} = \int_{A} y^{2} \cdot dA$	$I_{yz} = \int_{A} y \cdot z \cdot dA$	$\begin{split} I_{ps} &= \int_{A} r^2 \cdot dA \\ I_{ps} &= \int_{A} (y^2 + z^2) \cdot dA \\ &= I_y + I_z \end{split}$
Achsen, die zu den yz-Achsen parallel verschoben sind	$I_{\eta} = I_{y} + b^{2} \cdot A$ $I_{\xi} = I_{z} + c^{2} \cdot A$	$I_{\eta\zeta} = I_{yz} + b \cdot c \cdot A$	$\begin{split} I_{p} &= I_{ps} + I^{2} \cdot A \\ &= I_{ps} + (b^{2} + c^{2}) \cdot A \\ &= I_{\eta} + I_{\zeta} \end{split}$
Achsen, die gegenüber den yz-Achsen um den Winkel qi im positiven Sinne gedreht sind	$\begin{split} I_{\eta} &= \frac{I_{y} + I_{z}}{2} + \frac{I_{y} - I_{z}}{2} \cdot c \\ I_{\xi} &= \frac{I_{y} + I_{z}}{2} - \frac{I_{y} - I_{z}}{2} \cdot c c \\ I_{\eta \xi} &= \frac{I_{y} - I_{z}}{2} \cdot \sin 2\phi + \end{split}$	os $2\phi - I_{yz} \cdot \sin 2\phi$	$I_{ps} = I_{\eta} + I_{\zeta}$ $= I_{y} + I_{z}$
die Hauptträgheits- achsen, die gegenüber den yz-Achsen um den Winkel φ* im positiven Sinne gedreht liegen	$\begin{aligned} \sin 2\phi^* &= \frac{I_{yz}}{\sqrt{\left(\frac{I_y - I_z}{2}\right)^2 + 1}} \\ \cos 2\phi^* &= \frac{\frac{I_y + I_z}{2}}{\sqrt{\left(\frac{I_y - I_z}{2}\right)^2}} \\ I_{1,2} &= \frac{I_y + I_z}{2} \pm \sqrt{\left(\frac{I_y - I_z}{2}\right)^2} \\ I_{1,2} &= 0 \end{aligned}$: + l _{yz} ²	$I_{ps} = I_1 + I_2$ $= I_y + I_z$
Achsen, die gegenüber den Hauptachsen um den Winkel ig im positiven Sinne gedreht sind	$\begin{split} I_{\eta} &= \frac{I_{1} + I_{2}}{2} + \frac{I_{1} - I_{2}}{2} \cdot c \\ I_{\zeta} &= \frac{I_{1} + I_{2}}{2} - \frac{I_{1} - I_{2}}{2} \cdot c \\ I_{\eta\zeta} &= \frac{I_{1} - I_{2}}{2} \cdot \sin 2\overline{\phi} \end{split}$		$I_{ps} = I_{\eta} + I_{\zeta}$ $= I_1 + I_2$

8.10 Torsionsflächenmomente und -widerstandsmomente

¹⁾ $P = Orte für \tau_{max}$

8.11 Schubmittelpunkte von dünnwandigen Profilen

Bei der Querkraftbiegung von symmetrischen Profilen liegt Torsionsfreiheit im Querschnitt vor, und der Schubmittelpunkt (Querkraftmittelpunkt) liegt auf der Symmetrieebene. Hat der Profilquerschnitt zwei Symmetrieachsen, so fällt der Schubmittelpunkt in den Symmetriepunkt, d.h. in den Schwerpunkt.

Dies ist im Allgemeinen nicht mehr der Fall, wenn die Lastebene nicht mit einer Symmetrieebene des Profils zusammenfällt. Eine Verdrehbeanspruchung des Profils lässt sich dann durch geeignete Verschiebung der Lastebene vermeiden, wobei diese lediglich von der Art des Profils, nicht aber von der Größe der Belastung abhängig ist (Profilkonstante). Nachstehend sind für einige Profile die Lagen d der Schubmittelpunkte M angegeben.

Profil	d	Profil	d
d the state of the	$d = \frac{h}{2}$	M a d	$d = \frac{a\sqrt{3}}{6}$
d h	$d = \frac{hb^3}{a^3 + b^3}$	M	$d = \frac{b}{2} \cdot \frac{3b + 2h}{3b + h}$
d M h	d = h	M d d	$d = \frac{a\sqrt{2}}{4}$
M ts h	$d = \frac{3t b^2}{ht_s + 6bt}$	M Ga	$d = 2R \frac{\sin \alpha - \alpha \cos \alpha}{\alpha - \sin \alpha \cos \alpha}$
d h h	$d = \frac{h}{2}$	M R	d = 2 R

8.12 Ebene Auflagerarten und Zwischenelemente

Mögliche Lagerreaktionen und Zwischenbedingungen

Auflagerarten	Freiheits- grade	Lager- reaktionen	Erläuterungen
Verschiebliches Gelenklager	2	1	Der am verschieblichen Gelenklager angelenkte Stab kann in horizontaler Richtung verschoben und um den Gelenkpunkt gedreht werden. Er besitzt demnach zwei Freiheitsgrade. Das Lager kann nur eine senk- recht zur Gleitrichtung wirkende Reaktionskraft auf- bringen.
Festes Gelenklager	1	2	Bei einem festen Gelenklager kann der Träger in kei- ner Richtung verschoben, sondern nur um das Gelenk gedreht werden. Die Wirkung des festen Gelenklagers auf ihn kann allgemein durch eine beliebig gerichtete Kraft dargestellt werden, die in zwei voneinander unabhängige Komponenten zerlegt werden kann.
Feste Einspannung A _h M _e A _v	0	3	Ein fest eingespannter Träger kann weder verschoben noch gedreht werden. Er hat keinen Freiheitsgrad. Die Lagerung kann durch beliebig gerichtete Kräfte und Momente belastet werden. Die Wirkung der festen Einspannung auf den Träger kann daher durch zwei Kräfte und ein Einspannmoment dargestellt werden.
Pendelstütze	2	1	Die Wirkung einer Pendelstütze auf den angelenkten Träger ist der eines verschieblichen Gelenklagers gleichwertig. Senkrecht zur Pendelstütze kann der Stab verschoben und um das Gelenk gedreht werden. Lediglich in Richtung der Stütze kann eine Reaktions- kraft auf den Träger übertragen werden.
Dreigelenkstütze Ah Av India	1	2	Die Dreigelenkstütze entspricht in ihrer Wirkung dem festen Gelenklager. Sie verhindert in der von den Stützen aufgespannten Ebene jede Translationsbewegung. Es bleibt nur ein Freiheitsgrad für die Drehung um den Gelenkpunkt. Die Wirkung auf den Träger wird durch zwei voneinander unabhängige Kräfte erfasst.
Zwischenelemente	Zwischen- bedingung	Zwischen- reaktionen	Erläuterungen
Gelenk	M _b = 0	Q ≠ 0 N ≠ 0	Ein Gelenk liefert die Zwischenbedingung, dass das Biegemoment am Gelenk verschwinden muss, wenn Reibungsfreiheit der Trägerverbindung vorausgesetzt wird. Bei einem Schnitt durch das Gelenk treten daher als Schnittgrößen oder Zwischenreaktionen nur eine Querkraft und eine Normalkraft auf.
Schiebehülse	N = 0	$\begin{array}{c} Q \neq 0 \\ M_b \neq 0 \end{array}$	Eine Schiebehülse kann keine Normalkraft übertra- gen. Das Verschwinden der Normalkraft an ihr kann als Zwischenbedingung gewertet werden. Als Zwi- schenreaktionen können Querkraft und Biegemoment übertragen werden. Auch hier wird Reibungsfreiheit der Verbindung vorausgesetzt.

8.13 Lagerreaktionen, Momenten- und Querkraftverläufe für einfache, belastete Träger

System	Lager- reaktionen	Biegemomenten- verlauf	Querkraftverlauf
Av I By	$A_{v} = F \cdot \frac{b}{I}$ $B_{v} = F \cdot \frac{a}{I}$	<u>F.a.b</u> ×	<u>F.b</u>
a b F	$A_{v} = F \cdot \frac{b}{a}$ $B_{v} = F \cdot \frac{l}{a}$	F.b.	F.b x
M _e	$A_v = F$ $M_e = F \cdot I$	F-I	F ×
A _v B _v	$A_{v} = \frac{M}{I}$ $B_{v} = \frac{M}{I}$	M.5	× M
A _V B _V	$A_{v} = \frac{M}{a}$ $B_{v} = \frac{M}{a}$	M X	<u>x</u> × ×
A _v M _e	$A_v = 0$ $M_e = M$	M ×	× 0
q q A _v B _v	$A_{v} = \frac{q \cdot I}{2}$ $B_{v} = \frac{q \cdot I}{2}$	9:1° x	x x q 1/2
q A _V B _V a>b	$A_{v} = q \cdot I \left(1 - \frac{I}{2a} \right)$ $B_{v} = \frac{q \cdot I^{2}}{2a}$	$\frac{\frac{q \cdot b^2}{2}}{\frac{q \cdot l^2}{2} \left(1 - \frac{1}{2q}\right)^2}$	$\frac{q \cdot l^2}{2\alpha}$
I q	$A_{v} = q \cdot I$ $M_{e} = \frac{q \cdot I^{2}}{2}$	9.1 ²	q.t.

8.14 Gleichung der elastischen Biegelinie für einfache, belastete Träger

 $w''(x) = -\frac{M_{by}(x)}{E \cdot I_{y}(x)}$ $I_{y}(x) = const.$

System	Gleichung der elastischen Linie w(x)	W _{max}
y 1 11 11 x x E-ly z.w	$\begin{split} w_{I} &= \frac{F_z \cdot I^3}{6E \cdot I_y} \Big(2\frac{a \cdot x}{I^2} - 3\frac{a^2 \cdot x}{I^3} + \frac{a^3 \cdot x}{I^4} + \frac{a \cdot x^3}{I^4} - \frac{x^3}{I^3} \Big) \\ w_{II} &= \frac{F_z \cdot I^3}{6E \cdot I_y} \Big(-\frac{a^3}{I^3} + 2\frac{a \cdot x}{I^2} + \frac{a^3 \cdot x}{I^4} - 3\frac{a \cdot x^2}{I^3} + \frac{a \cdot x^3}{I^4} \Big) \end{split}$	$\begin{split} w(a) &= \frac{F_z \cdot a^2 \cdot b^2}{3E \cdot I_y \cdot I} \\ w_{I max} \text{ bei } x &= \sqrt{\frac{2a}{3I} \cdot \frac{a^2}{3I^2}} \\ a > b \\ w_{II max} \text{ bei } x &= I - I \sqrt{\frac{1}{3} - \frac{a^2}{3I^2}} \end{split}$
y 1 1 11 F ₂	$\begin{split} w_I &= -\frac{F_z \cdot I^3}{6E \cdot I_y} \Big(\frac{a \cdot x}{I^2} - \frac{a^2 \cdot x}{I^3} - \frac{x^3}{a \cdot I^2} + \frac{x^3}{I^3}\Big) \\ w_{II} &= \frac{F_z \cdot I^3}{6E \cdot I_y} \Big(\frac{a^2}{I^2} - 4\frac{a \cdot x}{I^2} + \frac{a^2 \cdot x}{I^3} + 3\frac{x^2}{I^2} - \frac{x^3}{I^3}\Big) \end{split}$	$\begin{aligned} w_{lmax} &= \frac{\sqrt{3} \cdot F_z \cdot a^2 \cdot b}{27E \cdot I_y} \\ w_{llmax} &= \frac{F_z I \cdot b^2}{3E \cdot I_y} \end{aligned}$
y X E·ly	$w = \frac{F_z \cdot I^3}{6E \cdot I_y} (3\frac{x^2}{I^2} - \frac{x^3}{I^3})$	$w_{max} = \frac{F_z \cdot I^3}{3E \cdot I_y}$
y I III	$\begin{split} w_1 &= \frac{M_Y \cdot I^2}{6E \cdot I_y} \Big[6 \frac{a \cdot x}{I^2} - 2 \frac{x}{I} - 3 \frac{a^2 \cdot x}{I^3} - \frac{x^3}{I^3} \Big] \\ w_{11} &= \frac{M_Y \cdot I^2}{6E \cdot I_y} \Big(-3 \frac{a^2}{I^2} + 2 \frac{x}{I} + 3 \frac{a^2 \cdot x}{I^3} - 3 \frac{x^2}{I^2} + \frac{x^3}{I^3} \Big) \\ \dots &= M_Y \cdot I^2 / a \cdot x - x^3 \Big] \end{split}$	$\begin{split} & W_{lmax} = \frac{M_y \cdot l^2}{3E \cdot l_y} \Big(\!\!-\!\!\frac{2}{3} \!+\! \frac{2a}{l} \!\!-\! \frac{a^2}{l^2}\!\Big)^{\!\!\frac{3}{2}} \\ & W_{llmax} = -\!\frac{M_y \cdot l^2}{3E \cdot l_y} \!\Big(\!\!\frac{1}{3} \!-\! \frac{a^2}{l^2}\!\Big)^{\!\!\frac{2}{3}} \end{split}$
1 1 1 1 1 1 W My	$\begin{split} w_I &= \frac{M_y \cdot I^2}{6E \cdot I_y} \!\! \left(\frac{a \cdot x}{I^2} - \frac{x^3}{a \cdot I^2} \right) \\ w_{II} &= -\frac{M_y \cdot I^2}{6E \cdot I_y} \!\! \left(\frac{a^2}{I^2} - 4\frac{a \cdot x}{I^2} + 3\frac{x^2}{I^2} \right) \end{split}$	$\begin{split} w_{lmax} &= \frac{\sqrt{3} \cdot M_{y} \cdot a^{2}}{27E \cdot l_{y}} \\ w_{llmax} &= -\frac{M_{y} \cdot l^{2}}{6E \cdot l_{y}} \Big(3 - \frac{4a}{l} + \frac{a^{2}}{l^{2}} \Big) \end{split}$
y × E-iy My	$w = -\frac{M_y}{2E \cdot I_y} x^2$	$w_{max} = \frac{M_y \cdot 1^2}{2E \cdot 1_y}$
y × E·ly	$w = \frac{q_z \cdot l^4}{24E \cdot l_y} (\frac{x}{l} - 2\frac{x^3}{l^3} + \frac{x^4}{l^4})$	$w_{max} = \frac{5q_z \cdot I^4}{384E \cdot I_y}$
y × E·ly A	$\begin{split} w_{l} &= \frac{q_{z} \cdot l^{4}}{24E \cdot l_{y}} \left(\!\!-2 \frac{a \cdot x}{l^{2}} \!\!+\! 4 \frac{a^{2} \cdot x}{l^{3}} \!\!-\! \frac{a^{3} \cdot x}{l^{4}} \!\!+\! 2 \frac{x^{3}}{a \cdot l^{2}} \!\!-\! 4 \frac{x^{3}}{l^{3}} \!\!+\! \frac{x^{4}}{l^{4}} \right) \\ w_{ll} &= \frac{q_{z} \cdot l^{4}}{24E \cdot l_{y}} \left(\!\!\!-\! \frac{a^{2} \cdot x}{l^{2}} \!\!-\! 8 \frac{a \cdot x}{l^{2}} \!\!+\! 4 \frac{a^{2} \cdot x}{l^{3}} \!\!-\! \frac{a^{3} \cdot x}{l^{4}} \!\!+\! 6 \frac{x^{2}}{l^{2}} \!\!-\! 4 \frac{x^{3}}{l^{3}} \!\!+\! \frac{x^{4}}{l^{4}} \right) \end{split}$	$\begin{split} w_{II\ max} &= \frac{q_z \cdot I^4}{24E \cdot I_y} \cdot \\ &\cdot \left(3 - 8 \frac{a}{I} + 6 \frac{a^2}{I^2} \frac{a^3}{I^3} \right) \end{split}$
y	$w = \frac{q_z \cdot I^4}{24E \cdot I_y} \Big(6\frac{x^2}{I^2} - 4\frac{x^3}{I^3} + \frac{x^4}{I^4} \Big)$	$w_{max} = \frac{q_z \cdot l^4}{8E \cdot l_y}$

8.15 Prinzip der passiven Formänderungsarbeit

Anwendung des Prinzips der passiven Formänderungsarbeit bei der Berechnung von Verformungen (Durchbiegungen, Verdrehungen) an statisch bestimmt gelagerten Systemen und bei der Berechnung der Lagerreaktionen bei äußerlich statisch unbestimmten Systemen sowie von Schnittgrößen bei innerlich statisch unbestimmt aufgebauten Systemen.

Zunächst ist in jedem Fall zu prüfen, ob das System äußerlich statisch bestimmt gelagert und innerlich statisch bestimmt aufgebaut ist.

I) Ist das System sowohl äußerlich als auch innerlich statisch bestimmt:

- 1) An der Stelle des Systems, an der eine Verformung (Durchbiegung oder Verdrehung) gesucht ist, in Richtung der gesuchten Verformung eine Einheitskraft "1" (bei Durchbiegungen) bzw. ein Einheitsmoment "M" (bei Verdrehungen) als äußere Belastung auf das System aufbringen. Bei der Belastungsfolge wird das System zunächst nur mit der Einheitsgröße belastet und erst dann mit den wirkenden äußeren Kräften beaufschlagt.
- 2) Normalkraft-, Querkraft- (meistens vernachlässigbar) und Momentenverläufe (Biegemoment, Torsionsmoment) für jede äußere Belastung einschließlich der Einheitsgrößen getrennt ermitteln. Für die Bestimmung aller Schnittgrößen ist die gleiche laufende Koordinate x beizubehalten. Die Schnittgrößen infolge der Einheitsgrößen werden durch einen Querstrich gekennzeichnet
- 3) Angabe der gesamten im System auftretenden passiven inneren Formänderungsarbeit.

Es gilt dann:

Äußere passive Formänderungsarbeit = innere passive Formänderungsarbeit

$$\label{eq:matter} \begin{array}{ll} "1" \cdot w = \\ "M" \cdot \phi = \end{array} \\ \frac{J_{b} \cdot \overline{M}_{b}}{E \cdot I_{a}} dx + J \\ \frac{M_{t} \cdot \overline{M}_{t}}{G \cdot I_{b}} dx + J \\ \frac{N \cdot \overline{N}}{E \cdot A} \cdot dx + \left(\begin{array}{c} \text{Passive} \\ \text{Federarbeit} \end{array} \right)^{1} \\ \text{Verdrehung} \end{array}$$

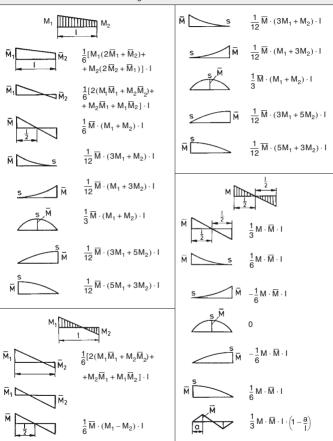
- 1) Querkräfte vernachlässigt
- Auswerten der Integrale mit Hilfe der Integraltafeln oder mathematischer Berechnung (Vorzeichen der Schnittgrößen beachten).
- Division der gewonnenen Beziehung durch die Einheitsgröße und die gesuchte Größe ausrechnen.

II) Ist das System statisch unbestimmt, und zwar:

- a) Statisch unbestimmt gelagert:
- System statisch bestimmt machen, dadurch, dass man überzählige Auflagerverbindungen löst und an diesen Stellen die Lagerreaktionen als äußere eingeprägte Kräfte am System anbringt. Außerdem ist gleichzeitig für diese Stelle eine Randbedingung anzugeben, die den Ausgangszustand kennzeichnet.
- An der Stelle, an der eine Randbedingung vorliegt, eine Einheitskraft "1" (bei Durchsenkungen) bzw. ein Einheitsmoment "M" (bei Verdrehungen) anbringen.
- 3) Siehe I, 2)
- 4) Siehe I, 3)
- 5) Siehe I, 4)
- 6) Einsetzen der Randbedingung, Division der Beziehung durch die Einheitsgröße und unbekannte Lagerreaktion ausrechnen.

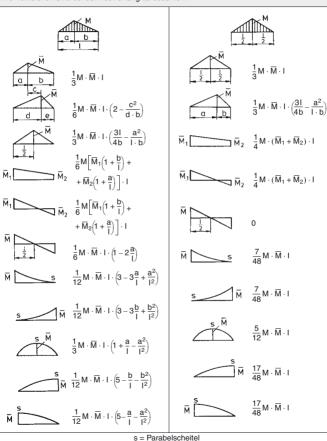
b) Innerlich statisch unbestimmt aufgebaut:

- System statisch bestimmt machen durch den Einbau von Gelenken, Verschiebehülsen, Führung von Schnitten etc. Schnittgrößen als äußere eingeprägte Kräfte anbringen und Randbedingungen festlegen.
- 2) Siehe II, 2) ... 6)

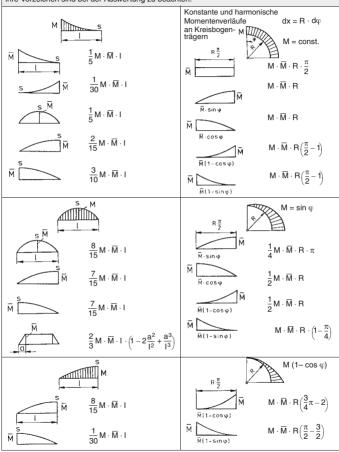

8.16 Tafeln der Integrale $\int M \cdot \overline{M} \cdot dx$

Die Momente M und \overline{M} sind vertauschbar. In der Tabelle sind ihre Beträge angegeben, ihre Vorzeichen sind hei der Auswertung zu beachten

ihre Vorzeichen sind	d bei der Auswertung zu bea	achten.			
М		M			
M	$M \cdot \overline{M} \cdot I$	M	$\frac{1}{3}M\cdot\overline{M}\cdotI$		
M C	$\frac{1}{2}M\cdot\overline{M}\cdotI$		$\frac{1}{6}M\cdot\overline{M}\cdotI$		
M	$\frac{1}{2}M\cdot\overline{M}\cdotI$	M	$\frac{1}{6} M \cdot \overline{M} \cdot I \cdot \left(1 + \frac{b}{I}\right)$		
	$\frac{1}{2}M\cdot\overline{M}\cdotI$	M	$\frac{1}{4} \mathbf{M} \cdot \overline{\mathbf{M}} \cdot \mathbf{I}$		
M 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{1}{2}M\cdot\overline{M}\cdotI$	\bar{M}_1 \bar{M}_2	$\frac{1}{6} M \cdot (2 \overline{M}_1 + \overline{M}_2) \cdot I$		
_	$\frac{1}{2}M\cdot(\overline{M}_1+\overline{M}_2)\cdot I$	$\bar{M}_1 \longrightarrow \bar{M}_2$	$\frac{1}{6} M \cdot (2 \overline{M}_1 + \overline{M}_2) \cdot I$		
	$\frac{1}{2}M\cdot(\overline{M}_1+\overline{M}_2)\cdot I$	M M2	Ŭ		
M 1	0	S M	$\frac{1}{6} \mathbf{M} \cdot \overline{\mathbf{M}} \cdot \mathbf{I}$		
м	$\frac{2}{3}M\cdot\overline{M}\cdotI$		$\frac{5}{12} M \cdot \overline{M} \cdot I$		
Ms	$\frac{1}{3}M\cdot\overline{M}\cdotI$	Ms	$\frac{1}{4} M \cdot \overline{M} \cdot I$		
	$\frac{2}{3}M\cdot\overline{M}\cdotI$	M	$\frac{1}{4} M \cdot \overline{M} \cdot I$		
<u>s</u> <u>M</u>	$\frac{1}{3}M\cdot\overline{M}\cdotI$	<u>s</u> <u>M</u>	$\frac{1}{12} M \cdot \overline{M} \cdot I$		
	$\frac{2}{3} M \cdot \overline{M} \cdot I$	s M	$\frac{1}{3} M \cdot \overline{M} \cdot I$		
	s = Paral	pelscheitel			


8.16 Tafeln der Integrale $\int M \cdot \overline{M} \cdot dx$

Die Momente M und $\overline{\mathrm{M}}$ sind vertauschbar. In der Tabelle sind ihre Beträge angegeben, ihre Vorzeichen sind bei der Auswertung zu beachten.


Tafeln der Integrale $\int M \cdot \overline{M} \cdot dx$ 8.16

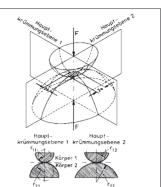
Die Momente M und \overline{M} sind vertauschbar. In der Tabelle sind ihre Beträge angegeben, ihre Vorzeichen sind bei der Auswertung zu beachten.

8.16 Tafeln der Integrale $\int M \cdot \overline{M} \cdot dx$

Die Momente M und \overline{M} sind vertauschbar. In der Tabelle sind ihre Beträge angegeben, ihre Vorzeichen sind bei der Auswertung zu beachten.

8.17 Berechnungsgleichungen für wichtige HERTZ'sche Kontaktpaarungen

HERTZ'sche Pressung (Allgem. Formel)	Körper- kombination Körper 1 / Körper 2	Halbachsen der "elliptischen" Kontaktfläche	maximale HERTZ'sche Pressung	Annäherung beider Körper	HERTZ'sche Pressung p _{max} in N/mm ² für
P _{max}	$\frac{1 - v^2}{E} = \frac{1}{2} \left(\frac{1 - v^2}{E_1} + \frac{1 - v^2}{E_2} \right)$	a, b	Ртах	100	$v_1 = v_2 = 0.3$ $E_1 = E_2 = 2.1 \cdot 10^5 \text{ M/mm}^2$ d, I in mm; F in N
Kontakt gekrümmter Oberflächen: P _{max} = $\frac{3}{2} \cdot \bar{p}$		$a = \xi_3 \sqrt{\frac{3F(1-v^2)}{E \cdot \Sigma k}}$ $b = \eta_3 \sqrt{\frac{3F(1-v^2)}{E \cdot \Sigma k}}$	$\begin{aligned} p_{max} &= \\ &= \frac{1}{\xi \cdot \eta} \sqrt[3]{\frac{3F \cdot E^2(\Sigma k)^2}{3R^3(1 - v^2)^2}} \end{aligned}$	$\delta = \frac{V}{\xi \sqrt{9F^2 \Sigma K (1 - v^2)^2}}$ $\theta = \frac{V}{\xi \sqrt{9F^2 \Sigma K (1 - v^2)^2}}$	$p_{max} = \frac{864}{\xi \cdot \eta} \sqrt[3]{F(\Sigma k)^2}$
$=$ $\frac{2}{2} \cdot \frac{\pi}{\pi \cdot ab}$	<u> </u>	ξ , $\eta = f(\cos \tau)$	ξ , $\eta = f(\cos \tau)$	$\psi/\xi = f(\cos \tau)$	$\xi \cdot \eta = f(\cos \tau)$
0	F d, F Gugel/Kugel	$a = b = \frac{3F(1 - v^2)}{\sqrt[3]{4E\left(\frac{1}{d_1} + \frac{1}{d_2}\right)}}$	$p_{max} = \frac{9 \left(6F \cdot E^2 - \left(\frac{1}{d_1} + \frac{1}{d_2} \right)^2 \right)}{\sqrt{\pi^3 (1 - v^2)^2} \left(\frac{1}{d_1} + \frac{1}{d_2} \right)^2}$	$\delta = \sqrt[3]{\frac{9F^2(1-\sqrt{2})^2}{2E^2}} \left(\frac{1}{d_1} + \frac{1}{d_2}\right)$	$p_{max} = 2176 \sqrt[3]{F(\frac{1}{d_1} + \frac{1}{d_2})^2}$
= 3. = 2. = 2.	Zero de la Compositione de la Co	$a = b = \sqrt[3]{\frac{3F(1 - v^2)d_1}{4E}}$	$P_{max} = \frac{6 F \cdot E^2}{\sqrt{\pi^3 (1 - v^2)^2 \cdot d_1^2}}$	$\delta = \frac{3}{\sqrt{\frac{9F^2(1-v^2)^2}{2E^2 \cdot d_1}}}$	$p_{max} = 2176 \sqrt[3]{\frac{F}{d_1^2}}$
Linien- kontakt: $p_{max} = \frac{4}{\pi} \cdot \vec{p}$	chinaran Frq. 1	$a = 1$ $b = \frac{4F(1 - v^2)}{\sqrt{\pi \cdot E \cdot 1 \left(\frac{1}{d_1} + \frac{1}{d_2}\right)}}$	$p_{max} = \frac{F \cdot E}{\sqrt{\pi \cdot I(1 - v^2)} \left(\frac{1}{d_1} + \frac{1}{d_2}\right)}$	$\begin{split} \delta &= \frac{2F}{\pi L} \left[\frac{1-v_{\perp}^2}{E_{\perp}} \left(\ln \frac{d_{\parallel}}{b} + 0.407 \right) \right. \\ &+ \frac{1-v_{\perp}^2}{E_{\perp}} \left(\ln \frac{d_{\parallel}}{b} + 0.407 \right) \right] \end{split}$	$p_{max} = 271 \sqrt{\frac{F}{d_1 \cdot 1} \left(1 + \frac{d_1}{d_2}\right)}$
$= \frac{1}{\pi} \cdot \frac{\Gamma}{2b \cdot l}$ $= \frac{2}{\pi} \cdot \frac{F}{b \cdot l}$	Zylinder/Ebene	$a = 1$ $b = \sqrt{\frac{4F(1 - v^2)d_1}{\pi \cdot E \cdot 1}}$ (Kontaktfläche: Rechteck)	$p_{max} = \sqrt{\frac{F \cdot E}{\pi \cdot I(1 - v^2)}}$	$\delta = \frac{3.97}{10^5} \cdot \frac{F^{0.9}}{1^{0.8}}$ für St/St	$p_{max} = 271 \sqrt{\frac{F}{d_1 \cdot l}}$


'n

8.17.1 Beiwerte $\xi, \eta, \xi \cdot \eta, \psi/\xi$ nach HERTZ für die Berührung gekrümmter

cos τ	ξ	η	ξ·η	ψ/ξ	cos τ	ξ	η	$\xi \cdot \eta$	ψ/ξ
0,9995	23,95	0,163	3,91	0,171	0,9770	5,63	0,338	1,90	0,476
0,9990	18,53	0,185	3,43	0,207	0,9765	5,58	0,339	1,89	0,478
0,9985	15,77	0,201	3,17	0,230	0,9760	5,53	0,340	1,88	0,481
0,9980	14,25	0,212	3,02	0,249	0,9755	5,49	0,342	1,88	0,483
0,9975	13,15	0,220	2,89	0,266	0,9750	5,44	0,343	1,87	0,486
0,9970	12,26	0,228	2,80	0,279	0,9745	5,39	0,345	1,86	0,489
0,9965	11,58	0,235	2,72	0,291	0,9740	5,35	0,346	1,85	0,491
0,9960	11,02	0,241	2,65	0,302	0,9735	5,32	0,347	1,85	0,493
0,9955	10,53	0,246	2,59	0,311	0,9730	5,28	0,349	1,84	0,495
0,9950	10,15	0,251	2,54	0,320	0,9725	5,24	0,350	1,83	0,498
0,9945	9,77	0,256	2,50	0,328	0,9720	5,20	0,351	1,83	0,500
0,9940	9,46	0,260	2,46	0,336	0,9715	5,16	0,353	1,82	0,502
0,9935	9,17	0,264	2,42	0,343	0,9710	5,13	0,354	1,81	0,505
0,9930	8,92	0,268	2,39	0,350	0,9705	5,09	0,355	1,81	0,507
0,9925	8,68	0,271	2,36	0,356	0,9700	5,05	0,357	1,80	0,509
0,9920	8,47	0,275	2,33	0,362	0,9690	4,98	0,359	1,79	0,513
0,9915	8,27	0,278	2,30	0,368	0,9680	4,92	0,361	1,78	0,518
0,9910	8,10	0,281	2,28	0,373	0,9670	4,86	0,363	1,77	0,522
0,9905	7,93	0,284	2,25	0,379	0,9660	4,81	0,365	1,76	0,526
0,9900	7,76	0,287	2,23	0,384	0,9650	4,76	0,367	1,75	0,530
0,9895	7,62	0,289	2,21	0,388	0,9640	4,70	0,369	1,74	0,533
0,9890	7,49	0,292	2,19	0,393	0,9630	4,65	0,371	1,73	0,536
0,9885	7,37	0,294	2,17	0,398	0,9620	4,61	0,374	1,72	0,540
0,9880	7,25	0,297	2,15	0,402	0,9610	4,56	0,376	1,71	0,543
0,9875	7,13	0,299	2,13	0,407	0,9600	4,51	0,378	1,70	0,546
0,9870	7,02	0,301	2,11	0,411	0,9590	4,47	0,380	1,70	0,550
0,9865	6,93	0,303	2,10	0,416	0,9580	4,42	0,382	1,69	0,553
0,9860	6,84	0,305	2,09	0,420	0,9570	4,38	0,384	1,68	0,556
0,9855	6,74	0,307	2,07	0,423	0,9560	4,34	0,386	1,67	0,559
0,9850	6,64	0,310	2,06	0,427	0,9550	4,30	0,388	1,67	0,562
0,9845	6,55	0,312	2,04	0,430	0,9540	4,26	0,390	1,66	0,565
9,9840	6,47	0,314	2,03	0,433	0,9530	4,22	0,391	1,65	0,568
0,9835	6,40	0,316	2,02	0,437	0,9520	4,19	0,393	1,65	0,571
0,9830	6,33	0,317	2,01	0,440	0,9510	4,15	0,394	1,64	0,574
0,9825	6,26	0,319	2,00	0,444	0,9500	4,12	0,396	1,63	0,577
0,9820	6,19	0,321	1,99	0,447	0,9480	4,05	0,399	1,62	0,583
0,9815	6,12	0,323	1,98	0,450	0,9460	3,99	0,403	1,61	0,588
0,9810	6,06	0,325	1,97	0,453	0,9440	3,94	0,406	1,60	0,593
0,9805	6,00	0,327	1,96	0,456	0,9420	3,88	0,409	1,59	0,598
0,9800	5,94	0,328	1,95	0,459	0,9400	3,83	0,412	1,58	0,603
0,9795	5,89	0,330	1,94	0,462	0,9380	3,78	0,415	1,57	0,608
0,9790	5,83	0,332	1,93	0,465	0,9360	3,73	0,418	1,56	0,613
0,9785	5,78	0,333	1,92	0,468	0,9340	3,68	0,420	1,55	0,618
0,9780	5,72	0,335	1,92	0,470	0,9320	3,63	0,423	1,54	0,622
0,9775	5,67	0,336	1,91	0,473	0,9300	3,59	0,426	1,53	0,626

Oberflächen unter Last

					_
cos τ	ξ	η	ξ·η	ψ/ξ	
0,928	3,55	0,428	1,52	0,630	
0,926	3,51	0,431	1,51	0,634	
0,924	3,47	0,433	1,50	0,638	
0,922	3,43	0,436	1,50	0,642	
0,920	3,40	0,438	1,49	0,646	
0,918	3,36	0,441	1,48	0,650	
0,916	3,33	0,443	1,47	0,653	
0,914	3,30	0,445	1,47	0,657	
0,912	3,27	0,448	1,46	0,660	
0,910	3,23	0,450	1,45	0,664	
0,908	3.20	0,452	1,45	0,667	
0,906	3,17	0,454	1,44	0,671	
0,904	3,15	0,456	1,44	0,674	
0,902	3,12	0,459	1,43	0,677	
0,900	3,09	0,461	1,42	0,680	
0,895	3,03	0,466	1,41	0,688	
0,890	2,97	0,471	1,40	0,695	
0,885	2,92	0,476	1,39	0,702	
0,880	2,86	0,481	1,38	0,709	
0,875	2,82	0,485	1,37	0,715	
0,870	2,77	0,490	1,36	0,721	
0,865	2,72	0,494	1,35	0,727	
0,860	2,68	0,498	1,34	0,733	
0,855	2,64	0,502	1,33	0,739	
0,850	2,60	0,507	1,32	0,745	
0,840	2,53	0,515	1,30	0,755	
0,830	2,46	0,523	1,29	0,765	
0,820	2,40	0,530	1,27	0,774	
0,810	2,35	0,537	1,26	0,783	
0,800	2,30	0,544	1,25	0,792	
0,750	2,07	0,577	1,20	0,829	
0,700	1,91	0,607	1,16	0,859	
0,650	1,77	0,637	1,13	0,884	
0,600	1,66	0,664	1,10	0,904	
0,550	1,57	0,690	1,08	0,922	
0,500	1,48	0,718	1,06	0,938	
0,450	1,41	0,745	1,05	0,951	
0,400	1,35	0,771	1,04	0,962	
0,350	1,29	0,796	1,03	0,971	
0,300	1,24	0,824	1,02	0,979	
0,250	1,19	0,850	1,01	0,986	
0,200	1,15	0,879	1,01	0,991	
0,150	1,11	0,908	1,01	0,994	
0,100	1,07	0,938	1,00	0,997	
0,050	1,03	0,969	1,00	0,999	
0	1	1	1	1	L

Krümmung

$$k = + 1/r$$
 (konvex); $k = - 1/r$ (konkav)

$$\Sigma k = k_{11} + k_{12} + k_{21} + k_{22}$$

Hilfswert

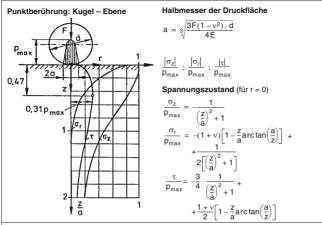
$$cos\tau = \frac{k_{11} - k_{12} + k_{21} - k_{22}}{\Sigma k}$$

Achsen der Druckellipse

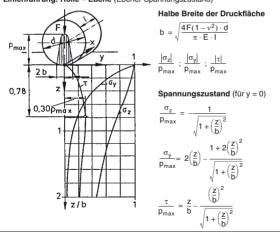
$$a = \xi \sqrt[3]{\frac{3F(1-\nu^2)}{E \cdot \Sigma k}}$$

$$b = \eta \sqrt[3]{\frac{3F(1-\nu^2)}{E \cdot \Sigma k}}$$

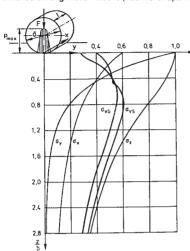

Max. HERTZ'sche Pressung


$$p_{max} = \frac{1}{\xi \cdot \eta} \sqrt[3]{\frac{3F \cdot E^2(\Sigma k)^2}{8\pi^3(1-\nu^2)^2}}$$

Annäherung der Körper


$$\delta \,=\, \frac{\psi}{\xi}\, \sqrt[3]{\frac{9F^2\cdot \Sigma k (1-\nu^2)^2}{8E^2}}$$

8.17.2 Hilfswerte zur Berechnung der HERTZ'schen Pressung in Wälzlagern



Linienführung: Rolle - Ebene (Ebener Spannungszustand)

Linienberührung: Rolle - Ebene (Räumlicher Spannungszustand)

$$\frac{\left|\sigma_{x}\right|}{p_{max}}\,\,;\,\frac{\left|\sigma_{y}\right|}{p_{max}}\,\,;\,\frac{\left|\sigma_{z}\right|}{p_{max}}$$

Spannungszustand (x = y = 0)

$$\frac{\sigma_{_X}}{p_{max}} \, = \, -2\nu \bigg[\sqrt{1 + \bigg(\frac{z}{b}\bigg)^2} \, - \bigg(\frac{z}{b}\bigg) \bigg]$$

$$\frac{\sigma_y}{p_{max}} = - \left[\frac{1 + 2 {\left(\frac{z}{b}\right)}^2}{\sqrt{1 + {\left(\frac{z}{b}\right)}^2}} - 2 {\left(\frac{z}{b}\right)} \right]$$

$$\frac{\sigma_z}{\rho_{max}} = -\frac{1}{\sqrt{1 + \left(\frac{z}{b}\right)^2}}$$

Diese Gleichungen stellen die Maximalspannungen für die Koordinaten x=y=0 dar. Sie basieren auf der Annahme eines ebenen Formänderungszustandes $(\varepsilon_{\nu}=0)$.

Vergleichsspannung

Als Anstrengungshypothesen zur Berechnung einer Vergleichsspannung haben sich heute im allgemeinen die Schubspannungshypothese nach TRESCA – ST. VENANT und die Gestaltänderungsenergiehypothese nach HENCKY – VON MISES durchgesetzt und bewährt.

Nach der Schubspannungshypothese wird angenommen, dass der Werkstoff zu fließen beginnt, wenn die maximale Schubspannung an irgendeiner Stelle einen kritischen Wert erreicht. Die Vergleichsspannung ergibt sich hier zu:

$$\sigma_{VS} = 2\tau_{max} = max \begin{bmatrix} \sigma_z - \sigma_y \\ \sigma_z - \sigma_x \\ \sigma_y - \sigma_x \end{bmatrix}$$

Dagegen setzt nach der Gestaltänderungsenergiehypothese die plastische Verformung ein, wenn die elastisch aufnehmbare Gestaltänderungsenergie in einem Volumenelement überschritten wird:

$$\sigma_{VG} = \sqrt{\frac{1}{2}[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2]}$$

 σ_x , σ_y , s_z = Hauptnormalspannungen

Werkstoff-Festigkeit

Die maximale Vergleichsspannung liegt sowohl nach der Schubspannungshypothese als auch nach der Gestaltänderungsenergiehvoothese unterhalb der Werkstückoberfläche vor:

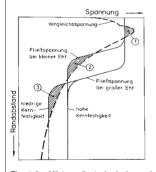
Schubspannungshypothese: $\sigma_{VSmax} = 0.60 \cdot p_{max}$ in der Tiefe $z = 0.78 \cdot b$

Gestaltänderungsenergiehypothese: $\sigma_{VGmax} = 0.56 \cdot p_{max}$ in der Tiefe $z = 0.71 \cdot b$

Geht man von der Vergleichsspannung nach der Schubspannungshypothese aus, so ist die Werkstoffanstrengung

$$\sigma_{VSmax} = 0.60 \cdot p_{max}$$
.

Um plastische Verformungen im Material bei statischer Beanspruchung zu vermeiden (bei konstanter Festigkeit über den gesamten Querschnitt), so muss folgende Bedingung erfüllt sein:


$$\sigma_{VSmax}$$
 < $R_{p0.2}$

Dies führt bei einem gegebenen Werkstoff mit der Fließgrenze $R_{p0,2}$ zu einer zulässigen maximalen HERTZ'schen Pressung von

$$p_{\text{max zul}} < 1,67 \cdot R_{\text{p0,2}}$$

Bei einsatz-, flamm- oder induktionsgehärteten Werkstoffen ist zu beachten, dass eine ausreichend große Härtungstiefe vorliegt. Als Härtungstiefe wird nach DIN 50 190 diejenige Tiefe der gehärteten Randzone bezeichnet, in der noch eine Härte von 550 HV vorliegt. Außerdem muss der Härteverlauf bis zum Kernbereich des Materials so verlaufen, dass die aus der Härte umwertbare Festigkeit bzw. Fließgrenze des Materials an allen Stellen über dem Vergleichsspannungsverlauf liegt.

Im nachstehenden Bild ist schematisch dargestellt, wo sich im Material bei einem Vergleich der Werkstoffanstrengung mit der Fließgrenze des Materials Verformungszonen ausbilden können.

- Die Zone () ist sowohl bei einem Material konstanter Festigkeit bzw. der Durchhärtung als auch bei der Randschichthärtung dadurch gekennzeichnet, dass im Bereich des Spannungsmaximums die Fließgrenze des Werkstoffes überschritten wird. Diese Verformung tritt bei hinreichend hoher HERTZscher Pressung bei allen Werkstoffen und Härteverfahren auf.
- In der Zone ② verformt sich der Werkstoff plastisch, wenn die Härtungstiefe zu klein gewählt wurde.
- In der Zone ③ treten plastische Verformungen auf, wenn die Härte bzw. die Fließspannung des Kernwerkstoffes zu niedrig liegt.

Ein steiler Härtegradient, der insbesondere bei der Flamm- und Induktionshärtung auftreten kann, führt bei gleicher nomineller Härtungstiefe zu einer Ausweitung der Verformungszonen.

Werkstoffwahl für Wälzlagerlaufbahnen

Bei der Werkstoffwahl für Wälzlagerlaufbahnen ist zu berücksichtigen, dass zum Erreichen der vollen Tragfähigkeit der Lagerstelle eine Oberflächenhärte von 670 +170 HV, ausreichende Härtungstiefe und ein den üblichen Edelbaustählen entsprechender Reinheitsgrad vorliegen müssen. Folgende Werkstoffe eignen sich besonders für Wälzlagerkörperlaufbahnen:

Durchhärtende Stähle

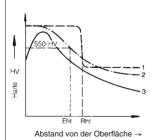
z. B. 100 Cr 6 nach DIN EN ISO 683-17

Bei diesen Wälzlagerstählen ist im speziellen Fall auch eine Randschichthärtung möglich.

Finsatzstähle

z. B. 17 MnCr 5 nach DIN EN ISO 683-17 16 MnCr 5 nach DIN EN 10 084

Bei der Auswahl ist außer der Härtbarkeit auch die Kernfestigkeit zu berücksichtigen. Bei Einsatzhärtung ist ein feinkörniges Härtungsgefüge erforderlich und die Einhärtungstiefe entsprechend zu wählen.


Stähle für Flammoder Induktionshärtung

z. B. C56E2 nach DIN EN ISO 683-17 Cf 53 nach DIN 17 212

Bei Flamm- und Induktionshärtung müssen nur die als Laufbahnen für die Wälzkörper beanspruchten Stellen des Maschinenteils gehärtet werden. Auch hier ist die Härtbarkeit eine wesentliche Voraussetzung für die Auswahl des Werkstoffes. Er sollte zur Härtung im veröüteten Zustand vorliegen.

Härtungstiefe

Bei einsatz-, flamm- oder induktionsgehärteten Laufbahnen muss neben einer Oberflächenhärte von 670 +170 HV auch eine ausreichend große Härtungstiefe Ht (bei Einsatzhärtung: Einsatzhärtungstiefe Eht; bei Flamm- oder Induktionshärtung: Randhärtungstiefe Rht) gewährleistet sein. Die Härteverläufe sind im nachstehenden Bild schematisch dargestellt, wobei sich der erforderliche Härteverlauf aus der Umwertung des Vergleichsspannungsverlaufes in Vickershärte ergibt (siehe 15.1.5).

Die erforderliche Mindesthärtungstiefe hängt im wesentlichen von dem Wälzkörperdurchmesser, der Werkstoffbeanspruchung, der Kernfestigkeit und dem Härtungsverfahren ab.

Für Laufbahnen, die bis zur statischen Tragfähigkeit C_0 beansprucht werden, bei der für Linienberührung eine HERTZ'sche Pressung von

 $p_{max} = 4000 \text{ N/mm}^2$

vorliegt, können die Härtungstiefen aus folgenden Beziehungen ermittelt werden:

Einsatzhärtung:

Eht ≥ 0,078 · D_w Einsatzhärtungstiefe

Flamm- oder Induktionshärtung:

Rht $\ge 140 \cdot D_w / R_{n0.2}$ Randhärtungstiefe

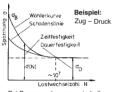
1 Flamm- oder Induktionshärtung

- 2 Einsatzhärtung
- 3 Erforderliche Härte

8.18 Dynamische Beanspruchung – Gestaltfestigkeit

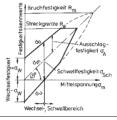
Für die Bauteilbeanspruchung vorliegende Spannungsverläufe:

Belastungsfall

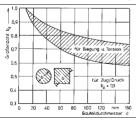

		•	
statisch	schwellend	wechselnd	allg. schwingend
Oberspannung: Mittelspannung: Unterspannung:	$\begin{array}{l} \sigma_0 = \sigma_{sch} \\ \sigma_m = \sigma_{sch}/2 \\ \sigma_u = 0 \end{array}$	$\sigma_{\rm m}=0$	$ \begin{aligned} \sigma_0 &= \sigma_m + \sigma_a \\ \sigma_m &= \sigma_v (\text{Vorspannung}) \\ \sigma_u &= \sigma_m - \sigma_a \end{aligned} $

Für die Bauteilberechnung maßgebender Festigkeitskennwert des Werkstoffes:

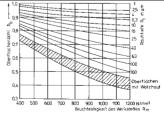
Bruchfestigkeit	Schwellfestigkeit	Wechselfestigkeit	Ausschlagfestigkeit
R _m	σ_{Sch}	σ_{W}	σ_{A}
Streckgrenze	D	auerfestigkeitskenn	werte σ _D


mit:

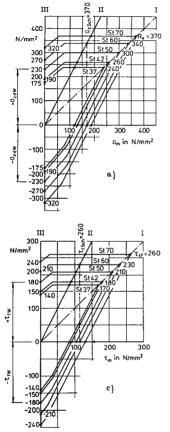
Wöhler-Diagramm

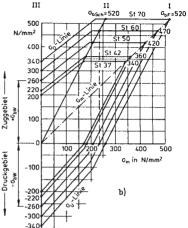

Bei Beanspruchungen unterhalb der Schadenslinie erfolgt noch keine Vorschädigung des Werkstoffes.

Dauerfestigkeits-Schaubild nach SMITH



Vergleichsspannung Zulässige Gestaltfestigkeit am Bauteil Beanspruchung des Bauteils


$$\sigma_{_{V}} \qquad \qquad \geq \qquad \sigma_{zul.} \qquad \qquad = \qquad \frac{\sigma_{D} \cdot b_{0} \cdot b_{d}}{S \cdot \beta_{K}}$$



 $\begin{array}{l} \sigma_D = \text{Ma}\beta \text{beb. Dauerfestigkeitswert des Werkstoffs} \\ b_0 = \text{Oberflächenzahl } (\leq 1) & \beta_K = \text{Kerbwirkungszahl } (\geq 1) \\ b_d = \text{Größenzahl } (\leq 1) & S = \text{Sicherheit } (1,2...2) \end{array}$

8.19 Dauerfestigkeitsschaubilder der allgemeinen Baustähle (DIN 17 100 bzw. DIN EN 10025)

Dauerfestigkeitsschaubilder

- a) Zug- und Druckbeanspruchung:
- b) Biegebeanspruchung;
- c) Torsionsbeanspruchung.

Für kaltgezogenes Material (z. B. St50K) können die Streckgrenzwerte bis zu 50 %, die Schwell- und Wechselfestigkeitswerte dagegen nur um ca. 10 % höher als die Tabellenwerte angesetzt werden. Durch Kaltumformung geht die Dehnungsfähigkeit des Materials zurück, die Empfindlichkeit gegen Trennbruch ist drößer!

Belastungsfall I: stationäre Beanspruchung; Belastungsfall II: reine Schwellbeanspruchung; Belastungsfall III: reine Wechselbeanspruchung.

Quelle: Steinhilper, W.; R. Röper: Maschinen- und Konstruktionselemente. Springer-Verlag, Berlin, Heidelberg, New York (2002)

9 Werkstoffe für die Konstruktion

9.1 Unlegierte Baustähle DIN EN 10025 (März 1994)

Nach dieser Norm werden Lang- und Flacherzeugnisse aus warmgewalzten, unlegierten Grundund Qualitätsstählen bezeichnet, die durch ihre chemische Zusammensetzung und mechanischen Eigenschaften (Tabelle) gekennzeichnet sind. Sie werden z.B. im Hochbau, Tiefbau, Brückenbau, Wasserbau, Behälterbau sowie im Fahrzeug- und Maschinenbau verwendet. Stähle nach dieser Norm sind nicht für eine Wärmebehandlung vorgesehen. Spannungsarmglühen ist zulässig.

Mechanische Eigenschaften der Stähle

Stahlsorte		Zugfestigkeit R _m ¹⁾			Streckgrenze R _{eH} ¹⁾					
Bezeichnung		für Nenndicken in mm			für Nenndicken in mm					
Kurzname	Werkstoff- nummer	<3	≥ 3 ≤100	>100 ≤150	≤16	>16 ≤40	>40 ≤63	>63 ≤80		>100 ≤150
nach EN 10027-1 und ECISS IC10	nach EN 10027-2	in N/mm ²			in N/m min.	nm²,				
S 185 ²⁾	1.0035	310 bis 540	290 bis 510	-	185	175	-	-	-	-
S235JR ²⁾ S235JRG1 ²⁾	1.0037 1.0036	360 bis 510	340 bis 470	-	235	225	-	-	-	-
S235JRG2 S235J2G3	1.0038 1.0116			340 bis 470	235	225	215	215	215	195
S275JR S275J2G3	1.0044 1.0144	430 bis 580	410 bis 560	400 bis 540	275	265	255	245	235	225
S355J2G3	1.0570	510 bis 680	490 bis 630	470 bis 630	355	345	335	325	315	295
E295 ³⁾	1.0050	490 bis 660	470 bis 610	450 bis 610	295	285	275	265	255	245
E335 ³⁾	1.0060	590 bis 770	570 bis 710	550 bis 710	335	325	315	305	295	275
E360 ³⁾	1.0070	690 bis 900	670 bis 830	650 bis 830	360	355	345	335	325	305

Die Werte für den Zugversuch in der Tabelle gelten für Längsproben (I), bei Band, Blech und Breitflachstahl in Breiten ≥ 600 mm für Querproben (f).

Weitere mechanische und technologische Eigenschaften sowie chemische Zusammensetzung der Stähle siehe DIN EN 10025 (1994).

²⁾ Nur für Nenndicken ≤ 25 mm lieferbar.

³⁾ Diese Stahlsorten kommen üblicherweise nicht für Profilerzeugnissse (I-, U-Winkel) in Betracht.

Vergütungsstähle DIN EN 10083-1/2 (Oktober 1996), Auszug Mechanische Eigenschaften^{1, 2)} der Stähle im vergüteten Zustand (+ΩT) 9.2

	über 16 bis 40 mm Durchmesser über 40 bis 100 mm Durchmesser	Bruch- Kerb Streck Zug Bruch Bruch Kerb Streck- Zug Bruch Bruch Kerb- ern schlag genze lestig-deh ein schlag grenze lestig-deh ein schlag schnic arheit (0.2- keit nunn schnic arbeit (0.2- keit nunn schnic arbeit	(Charpy- Grenze) rung (Charpy- Grenze) rung Probe) R.	N/mm² R _m % J N/mm² R _m % % min. min. min. min. min. min. min.	- 470	50 50 290 bis 22 50 50	45 45 320 Nis 21 50 45	45 650 45	550 - 550 - 500 - 500 - 500 - 500	40 40 350 bis 20 45 40 300° bis 21° 30° 40° 40° 40° 40° 40° 40° 40° 40° 40° 4	40 35 380 his 19 45 35 his 20 50 35	35 750 35 700	35 30 400 his 18 40 30 350 his 19 45 30	30 22 22 30 22 30 30 30 30 30 30 30 30 30 30 30 30 30	420 His 46 40 DE 270 His 47 AE	25 430 800 25 370 1780	700 650 45 45 40	30 = 400 018 15 35 = 400 018 16 40 =	750 7700 List 44 25 45 45 45 45 45 45 45 45 45 45 45 45 45	006	25 - 520 bis 13 30 - 450 bis 14 35 -
			(Charpy- Probe)	J E	1	20	1 45	45	1 5	40	1 6	35	1 %	30	100	25		ı		ı	ı
·	esser	Bruch- ein- schnü-	rung	min.		20	S.	3	ţ	0	45	?	ę	₽	40	2	Li C	ç	Li C	3	30
	Durchm	Bruch- deh-	0			82	21	ī	6	Q.	5	2	ā	2	9	2	Ų	<u>ο</u>	Ţ	<u>t</u>	13
	is 40 mm	Zug- festig- keit		R _m N/mm²	470	bis 620	500 his	650	550	700 700	600 his	750	630 hie	780	650 big	800	700	850	750	900	800 bis
	über 16 b	Streck- grenze (0.2-	Grenze) R	N/mm ² min.		290	320	2	i c	320	380		400	2	490	2	008	400	000	000	520
			(Charpy- Probe)	J nin.	1	20	- 45	45	1 5	9 4	1 %	35	۱ %	8 8	- 26	25		ı		ı	ı
		Bruch- ein- schnü-	rung	min.		20	45	2	,	40	40	2	35	3	36	3	S	99 90	S	8	25
	essser	Bruch- deh-	0	min.		20	10	2	9	8	17	:	4	2	1.4	ŧ	ç	5	ç	7	11
	Durchm	Zug- festig- keit		R _m N/mm ²	500	bis 650	550 his	200	009	750	630 his	780	650 hie	800	700	850	750	900 800	800	950	850 bis
i	bis 16 mm Durchmessser	Streck- grenze (0.2-	Grenze)	N/mm ² min.		340	370	9	00,	400	430		460	2	700	200	000	220	0	9	580
			Werk- stoff-		-	1.1151	1.0406			1.178	1.0501		1.0511		1.0503			1.1241	1.0535		1.0601
	Stahl-	bezeichnung		Kurz-	-	C 22E	C 25			C 30E	C 35		C 40		C 45			C 50B	C 55		C 60E

1) bis 3) siehe am Ende von DIN EN 10083

Vergütungsstähle DIN EN 10 083-1 (Oktober 1996), Auszug (Fortsetzung) Mechanische Eigenschaften (+QT) der Stähle im vergüteten Zustand (+QT) 9.2

	Medianische Eigenschalten	1	2		5											
Stahl- bezeichnung		bis 16 mi	bis 16 mm Durchmessser	messser			über 16 bis 40 mm Durchmesser	is 40 mm	Durchme	sser		über 40 b	über 40 bis 100 mm Durchmesser	m Durch	messer	
		Streck- grenze	Zug- festig- keit	Bruch- deh-	Bruch- ein- schnii-	Kerb- schlag- arbeit	Streck- grenze	Zug- festig- keit	Bruch- deh-	Bruch- ein- schnij-	Kerb- schlag- arbeit	Streck- grenze	Zug- festig- keit	Bruch- deh-	Bruch- ein- schnü-	Kerb- schlag- arbeit
	Werk- stoff-	Grenze) R				-yc	Grenze) R			rung	<u> </u>	Grenze) R.		n i		(Charpy- Probe)
Kurz- name	num- mer	N/mm² min.	R _m N/mm²	min.	min.		N/mm² min.	R _m N/mm²	min.	min.		N ^{mm²} min.	R _m N/mm²	min.	min.	uin.
28 Mn 6	1.1170	290	800 bis 950	13	40	35	490	700 bis 850	15	45	40	440	650 bis 800	16	50	40
38 Cr2 38 CrS 2	1.7003	550	800 bis 950	41	35	35	450	700 bis 850	15	40	35	350	600 bis 750	17	45	35
46 Cr 2 46 CrS 2	1.7006	920	900 bis 1100	12	35	08	550	800 bis 950	14	40	35	400	650 bis 800	15	45	35
34 Cr 4 34 CrS 4	1.7033	700	900 bis 1100	12	35	35	290	800 bis 950	41	40	40	460	700 bis 850	15	45	40
37 Cr 4 37 CrS 4	1.7034	750	950 bis 1150	11	35	08	630	850 bis 1000	13	40	35	510	750 bis 900	14	40	35
41 Cr 4 41 CrS 4	1.7035	800	1000 bis 1200	11	30	30	099	900 bis 1100	12	35	35	560	800 bis 950	14	40	35
25 CrMo 4 25 CrMoS 4	1.7218	200	900 bis 1100	12	50	45	009	800 bis 950	14	55	50	450	700 bis 850	15	09	50
34 CrMo 4 34 CrMoS 4	1.7220 1.7226	800	1000 bis 1200	11	45	35	650	900 bis 1100	12	50	40	550	800 bis 950	14	55	45
42 CrMo 4 42 CrMoS 4	1.7225	006	1100 bis 1300	10	40	30	750	1000 bis 1200	11	45	35	650	900 bis 1100	12	50	35
10 11 19	L	i		000												

1) bis 3) siehe am Ende von DIN EN 10 083

Vergütungsstähle DIN EN 10 083-1 (Oktober 1996), Auszug (Fortsetzung) Machanische Eigenschaften^{1), 2)} der Stähle im vergiteten Zustand (±OT) 9.2

146

Mecha	Mechanische Eigenschaften ๛ี der Stanie im verguteten zustand (+นา)	Elgensc	harten	∵∵ der	Stanle	im verg	juteten 4	zustand								
Stahl- bezeichung		bis 16 mi	bis 16 mm Durchmessser	nessser			über 16 bis 40 mm Durchmesser	is 40 mm	Durchme	sser		über 40 bis 100 mm Durchmesser	s 100 mn	n Durchn	nesser	
	Werk-	Streck- grenze (0,2- Grenze)	Zug- festig- keit	Bruch- deh- nung	Bruch- ein- schnü- rung	± 8-	Streck- grenze 0,2- Grenze)	Zug- festig- keit	Bruch- deh- nung	Bruch- ein- schnü- rung	Kerb- Streck- schlag- grenze arbeit (0,2- (Charpy- Grenze)	Streck- grenze (0,2- Grenze)	Zug- festig- keit	Bruch- deh nung	Bruch- ein- schnü- rung	Kerb- schlag- arbeit (Charpy- Probe)
Kurz- name		N/mm ² min.	R Nmm²	min.	min.	min.	V/mm² nin.	R _m N/mm²	min.	min.	min.	N/mm² min.	R _m N/mm²	min.	min.	min.
50 CrMo 4	1.7228	006	1100 bis 1300	6	40	304)	780	1000 bis 1200	10	45	304)	700	900 bis 1100	12	20	304)
36 CrNiMo 4	1.6511	006	1100 bis 1300	10	45	35	800	1000 bis 1200	11	50	40	700	900 bis 1100	12	55	45
34 CrNiMo 6	1.6582	1000	1200 bis 1400	6	40	35	006	1100 bis 1300	10	45	45	800	1000 bis 1200	11	50	45
30 CrNiMo 8	1.6580	1050	1250 bis 1450	6	40	30	1050	1250 bis 1450	6	40	30	006	1100 bis 1300	10	45	35
36 NiCrMo 16	1.6773	1050	1250 bis 1450	6	40	30	1050	1250 bis 1450	6	40	30	006	1100 bis 1300	10	45	35
51 CrV 4	1.8159	006	1100 bis 1300	6	40	304)	800	1000 bis 1200	10	45	304)	700	900 bis 1100	12	50	304)

¹⁾ R_c : obere Streckgrenze oder, falls keine ausgeprägte Streckgrenze auftritt, 0,2 % Dehngrenze R_{p0,2} Bruchdehnung: Anfangslänge L₀ = 5,65

²⁾ Die Festlegung der Maßgrenzen bedeutet nicht, dass bis zur festgelegten Probenentnahmestelle weitgehend martensitisch durchvergütet werden kann. Die Einhärtungstiefe ergibt sich aus dem Verlauf der Stirnabschreckkurven

³⁾ Gültig für Durchmesser bis 63 mm oder für Dicken bis 35 mm

Soung for Durching
 Vorläufige Werte

9.3 Einsatzstähle DIN EN 10 084 (Juni 1998), Auszug

Einsatzstähle sind Baustähle mit verhältnismäßig niedrigem Kohlenstoffgehalt, die für Bauteile verwendet werden, deren Randzone vor der Härtung üblicherweise aufgekohlt oder carbonitriert wird. Die Stähle haben nach dem Härten in der Randzone hohe Härte und guten Verschleißwiderstand, während die Kernzone vor allem hohe Zähigkeit aufweist.

Brinellhärte in verschiedenen Behandlungszuständen

Stahlbezeichnung		Härte im Behan	dlungszustand1)		
	Werkstoff-	+S (behandelt auf Scherbarkeit)	+A (weichgeglüht)	+TH (behandelt auf Festigkeit)	+FP (behandelt auf Ferrit-Perlit- Gefüge)
Kurzname	nummer	max.	max.	НВ	HB
C10E C10R	1.1121 1.1207	-	131 131	-	-
C15E C15R	1.1141 1.1140	_	143 143	-	- -
17Cr 3 17CrS3	1.7016 1.7014	2)	174 174	- -	-
28Cr4 28CrS4	1.7030 1.7036	255 255	217 217	166 bis 217 166 bis 217	156 bis 207 156 bis 207
16MnCr5 16MnCrS5	1.7131 1.7139	2)	207 207	156 bis 207 156 bis 207	140 bis 187 140 bis 187
20MnCr5 20MnCrS5	1.7147 1.7149	255 255	217 217	170 bis 217 170 bis 217	152 bis 201 152 bis 201
20MoCr4 20MoCrS4	1.7321 1.7323	255 255	207 207	156 bis 207 156 bis 207	140 bis 187 140 bis 187
20NiCrMo2-2 20NiCrMoS2-2	1.6523 1.6526	2)	212 212	152 bis 201 152 bis 201	145 bis 192 145 bis 192
17CrNiMo6-4 17CrNiMoS6-4	1.6566 1.6569	255 255	229 229	179 bis 229 179 bis 229	149 bis 201 149 bis 201
20CrNiMoS6-4	1.6571	255	229	179 bis 229	154 bis 207

¹⁾ Anforderungen an die Härte für die in den nachfolgenden Zuständen gelieferten Erzeugnisse

DIN EN 10084 gilt für:

Halbzeug, z. B. Vorblöcke, Vorbrammen, Knüppel, warmgewalzten Draht, warmgewalzten oder geschmiedeten Stabstahl (Rund-, Vierkant-, Sechskant-, Achtkant- und Flachstahl), warmgewalzten Breitflachstahl, warm- oder kaltgewalztes Blech und Band, Freiform- und Gesenkschmiedestücke.

²⁾ Die Stahlsorten sind, unter geeigneten Bedingungen, im unbehandelten Zustand scherbar

9.4 Wälzlagerstähle DIN EN ISO 683-17 (April 2000), Auszug

Wälzlagerstähle sind Stähle für Teile von Wälzlagern, die im Betrieb vor allem hohen örtlichen Wechselbeanspruchungen und Verschleißwirkungen unterliegen. Sie weisen im Gebrauchszustand – zumindest in der Randzone – ein Härtungsgefüge auf.

Härte in den üblichen Lieferzuständen

Stahlbezeichnung		Härte	im Liefe	rzustand				Frühere
		+S	+A	+HR	+AC ¹	+AC1)	+ FP	Bezeichnung
	Werk-					+C		
	stoff-	HB			HB			
.,	num-	max.	HB	HB	max.	HB	HB	
Kurzname	mer		max.			max.		
		D	urchhä	rtende Wä	Izlager			
_	1.3501	2)	_	-	207	2413), 4)	_	100 Cr 2
100CR 6	1.3505	2)	-	-	207	241 ^{3), 4)}	-	100 Cr 6
100CrMnSi6-6	1.3520	2)	-	-	217	251 ⁴⁾	_	100 CrMn 6
100CrMo 7	1.3537	2)	-	-	217	251 ⁴⁾	-	100 CrMo 7
100CrMo 7-3	1.3536	2)	-	-	230	-	-	100 CrMo 7 3
100CrMoSi8-4-6	1.3539	2)	_	-	230	-	-	100 CrMnMo 8
		Ei	nsatzhä	irtende Wa	ilzlage	rstähle		
17MnCr5	1.3521	5)	207	156-207	170	6)		
19MnCr5	1.3523	255	217	170-217	180	6)	152201	19 MnCr 5
-	1.3531	255	-	179-227	180	6)	_	16 CrNiMo 6
18NiCrMo14-6	1.3533	255	-	-	241	6)	-	17 NiCrMo 14
		Indu	ıktionsl	närtende V	Välzlag	erstähle	•	
C56E2	1.1219	255 ⁷⁾	229	-	_	-	_	Cf 54
-	1.3561	255	-	-	-	-	-	44 Cr 2
43CrMo4	1.3563	255	241	-	-	-	-	43 CrMo 4
-	1.3565	255	-	-	-	-	-	48 CrMo 4
	•	N	lichtros	tende Wäl	zlager	stähle		
X47Cr14	1.3541	8)	_	_	248	6)	_	X 45 Cr 13
X108CrMo17	1.3543	8)	_	-	255	6)	_	X 102 CrMo 17
X89 CrMoV18-1	1.3549	8)	-	-	255	6)	-	X 89 CrMoV 18 1
			Warmh	arte Wälzl	agerst	ähle		
80 MoCrV42-16	1.3551	8)	_	-	248	6)	_	80 MoCrV 42 16
X82WMoCrV6-5-4	1.3553	8)	_	-	248	6)	_	X 82 WMoCrV 6 5 4
X75 WCrV18-4-1	1.3558	8)	-	-	269	6)	-	X 75 WCrV 18 4 1
		1		l		l	l	

¹⁾ Für Einsatzstähle wird dieser Zustand verwendet, wenn Kaltumformen vorgesehen ist. Bei durchhärtenden, nichtrostenden und warmharten Wälzlagerstählen wird dieser Zustand auch verwendet, wenn der Stahl durch spanendes Bearbeiten weiterverarbeitet wird.

- 3) Die Härte von Draht für Nadellager darf bis zu 321 HB betragen.
- 4) Die Härte von kaltgefertigten Rohren darf bis zu 321 HB betragen.
- 5) Unter geeigneten Bedingungen ist diese Sorte im unbehandelten Zustand scherbar.
- 6) Je nach Kaltumformgrad dürfen die Werte bis zu etwa 50 HB über den für den Zustand +AC liegen.
- 7) Je nach chemischer Zusammensetzung der Schmelze und den Maßen kann Zustand +A erforderlich sein.
- 8) Scherbarkeit wird im allgemeinen nur im Zustand +AC möglich.

²⁾ Wenn dieser Zustand nötig wird, sind der Höchstwert der Härte und die Anforderungen an das Gefüge bei der Anfrage und Bestellung zu vereinbaren.

9.5 Automatenstähle DIN EN 10 087 (Januar 1999), Auszug

Automatenstähle sind durch gute Zerspanbarkeit und gute Spanbrüchigkeit gekennzeichnet, die im Wesentlichen durch höhere Schwefelgehalte, gegebenenfalls gemeinsam mit weiteren Zusätzen, wie z. B. Blei, erzielt werden. Blanke Automatenstähle unterscheiden sich von den warmgeformten Automatenstählen dadurch, dass sie durch spanlose Kaltformung (Ziehen) oder durch spanende Bearbeitung (Schälen, Schruppschleifen) eine glatte, blanke Oberfläche und eine wesentlich höhere Maßgenauigkeit erhalten haben.

Mechanische Eigenschaften

Stahlbezeichnung			messer	Unbehandelt		Vergütet		
			d nm	Härte ^{1), 2)}	Zug- festigkeit R _m	Streck- grenze R _a	Zug- festigkeit R _m	Dehnung A
Kurz-	Werkstoff-		1	нв	N/mm ²	N/mm ²	N/mm ²	%
name	nummer	über	bis			min.	1	min.
				1				
		Nicht fü	ir eine V	Värmebehandlui	ng bestimmte Auto	matenstäh	le	
11SMn30	1.0715	5	10	-	380 bis 570	-	-	-
11SMn30 11SMnPb30	1.0715	10	16	-	380 bis 570	_	-	-
		16	40	112 bis 169	380 bis 570	_	_	_
11SMn37	1.0736	40	63	112 bis 169	380 bis 570	_	_	_
11SMnPb37	1.0737	63	100	107 bis 154	360 bis 520	-	-	-
			•	Einsatz	stähle			
		5	10	-	360 bis 530	-	-	I-
		10	16	_	360 bis 530	_	_	_
10S20	1.0721	16	40	107 bis 156	360 bis 530	_	_	_
10SPb20	1.0722	40	63	107 bis 156	360 bis 530	_	_	_
		63	100	105 bis 146	350 bis 490	-	-	-
		5	10	-	430 bis 610	-	-	-
		10	16	_	430 bis 610	_	_	_
15 SMn13	1.0725	16	40	128 bis 178	430 bis 600	_	_	_
10 0		40	63	128 bis 172	430 bis 580	_	_	_
		63	100	125 bis 160	420 bis 540	-	-	-
				Vergütun	gsstähle	-		
	T .	5	10	I-	550 bis 720	430	630 bis 780	15
05000	4 07004	10	16	-	550 bis 700	430	630 bis 780	15
35S20	1.07261	16	40	154 bis 201	520 bis 680	380	600 bis 750	16
35SPb20	1.0756	40	63	154 bis 201	520 bis 670	320	550 bis 700	17
		63	100	149 bis 193	500 bis 650	320	550 bis 700	17
	1	5	10	-	580 bis 770	480	700 bis 850	14
		10	16	I-	580 bis 770	460	700 bis 850	14
36SMn14	1.0726	16	40	166 bis 222	560 bis 750	420	670 bis 820	15
36SMnPb14	1.0765	40	63	166 bis 219	560 bis 740	400	640 bis 700	16
		63	100	163 bis 219	550 bis 740	360	570 bis 720	17
		5	10	-	580 bis 780	480	700 bis 850	15
	4 0700	10	16	-	580 bis 750	460	700 bis 850	15
38SMn28	1.0760	16	40	166 bis 216	530 bis 730	420	700 bis 850	15
38SMnPb28	1.0761	40	63	166 bis 216	560 bis 730	400	700 bis 850	16

¹⁾ In Schadensfällen sind die Zugfestigkeitswerte maßgebend.

Die Härtewerte dienen nur als Anhalt.

9.6 Gusseisen mit Lamellengraphit DIN EN 1561 (August 1997), Auszug

Gusseisen mit Lamellengraphit ist eine Gusslegierung auf der Basis Eisen-Kohlenstoff, wobei letzteres Element weitgehend in Form von lamellarem Graphit vorliegt. Die Eigenschaften von Gusseisen mit Lamellengraphit hängen von der Form und der Verteilung des Graphits und von der metallischen Grundmasse ab.

Zugfestigkeit von Gusseisen mit Lamellengraphit

Werkstoff- bezeichnung		Maßgel Wanddi		Zugfestigkeit F Einzuhaltende	R _m 1) Werte	Erwartungswerte im Gussstück	Frühere Bezeichnung
		m	m	im getrennt gegossenen Probestück ²⁾ N/mm ²	im angegos- senen Probestück ³⁾ N/mm ²	Zugfestigkeit ⁴⁾ R _m N/mm ²	
Kurzzeichen	Nummer	über	bis		min.	min.	
EN-GJL-100	EN-JL 1010	5 ⁵⁾	40	min. 100	-	-	GG-10
EN-GJL-150	EN-JL 1020	2,5 ⁵⁾ 5 10 20 40 80 150	5 10 20 40 80 150 300	150 bis 250	- - - 120 110 100 90 ⁶⁾	180 155 130 110 95 80	GG-15
EN-GJL-200	EN-JL 1030	2,5 ⁵⁾ 5 10 20 40 80 150	5 10 20 40 80 150 300	200 bis 300	- - 170 150 140 130 ⁶⁾	230 205 180 155 130 115	GG-20
EN-GJL- 250	EN-JL 1040	5 ⁵⁾ 10 20 40 80 150	10 20 40 80 150 300	250 bis 350	- 210 190 170 160 ⁶⁾	250 225 195 170 155	GG-25
EN-GJL-300	EN-JL 1050	10 ⁵⁾ 20 40 80 150	20 40 80 150 300	300 bis 400	- 250 220 210 190 ⁶⁾	270 240 210 195	GG-30
EN-GJL-350	EN-JL 1060	10 ⁵⁾ 20 40 80 150	20 40 80 150 300	350 bis 400	- 290 260 230 210 ⁶⁾	315 280 250 225 -	GG-35

Falls bei Bestellung der Nachweis der Zugfestigkeit vereinbart wurde, ist die Art des Probestückes bei Bestellung anzugeben.

Die Werte beziehen sich auf Probestücke mit 30 mm Rohgussdurchmesser entsprechend einer Wanddicke von 15 mm.

Wenn für einen bestimmten Wanddickenbereich keine Festlegungen getroffen werden k\u00f6nnen, ist dies durch einen Strich gekennzeichnet.

⁴⁾ Die Werte dienen zur Information.

⁵⁾ Dieses Maß ist als untere Grenze des Wanddickenbereiches eingeschlossen.

Diese Werte sind Anhaltswerte.

9.7 Gusseisen mit Kugelgraphit DIN EN 1563 (August 1997), Auszug

Gusseisen mit Kugelgraphit ist ein Gusswerkstoff auf der Basis Eisen-Kohlenstoff, wobei der Kohlenstoff überwiegend in Form von kugeligen Graphitpartikeln vorliegt. Gusseisen mit Kugelgraphit ist auch als duktlies Gusseisen bekannt.

Mechanische Eigenschaften

Werkstoffbezeichnun	g		Eigenschaften an getr n bearbeiteten Probes		
Kurzzeichen	Nummer	Zugfestigkeit R _m N/mm ² min.	Dehngrenze ²⁾ R _{p0,2} N/mm ² min.	Dehnung A % min.	Frühere Bezeichnung
EN-GJS- 350-22-LT	EN-JS1015	350	220	22	GGG-35.3
EN-GJS-400-18-LT	EN-JS1025	400	250	18	GGG-40.3
EN-GJS-400-15	EN-JS1030	400	250	15	GGG-40
EN-GJS-500-7	EN-JS1050	500	320	7	GGG-50
EN-GJS-600-3	EN-JS1060	600	370	3	GGG-60
EN-GJS-700-2	EN-JS1070	700	420	2	GGG-70
EN-GJS-800-2	EN-JS1080	800	480	2	GGG-80

Besonders bei Wanddicken >50 mm und kompakten Gussstücken empfehlen sich Vereinbarungen zwischen Hersteller und Verbraucher.

Eigenschaften in angegossenen Probestücken

Werkstoffbezeichnu	ing	Wand des	ebende ldicke stückes	Dicke des angegos- senen Probe- stückes	Zug- festigkeit R _m	0,2%- Dehn- grenze R _p 0,2	Bruch- deh- nung A	Kerbschlag (DVM-Prob bei –20 °C Mittel aus 3 Proben	en)
Kurzzeichen	Nummer	mm		mm	N/mm ² min.	N/mm ² min.	% min.	Jou mir	
EN-GJS-400-18U	EN-JS1062	von über	30 bis 60 60 bis 200	40 70	390 370	250 240	15 12	14 12	11 9
EN-GJS-400-15U	EN-JS1072	von über	30 bis 60 60 bis 200	40 70	390 370	250 240	14 11	-	
EN-GJS- 500-7U	EN-JS1082	von über	30 bis 60 60 bis 200	40 70	450 420	300 290	7 5	-	
EN-GJS-600-3U	EN-JS1092	von über	30 bis 60 60 bis 200	40 70	600 550	360 340	2	-	
EN-GJS- 700-2U	EN-JS1102	von über	30 bis 60 60 bis 200	40 70	700 660	400 380	2	-	
EN-GJS- 800-2U	EN-JS1112	von über	30 bis 60 60 bis 200	40 70	800 zwischen	480 Hersteller	2 undKäuf	er zu verein	baren

ANMERKUNG 1: Die Eigenschaften einer angegossenen Probe können die Eigenschaften des eigentlichen Gussstückes nicht genau wiedergeben, es können sich hier jedoch bessere Näherungswerte ergeben als mit einem getrennt gegossenen Probestück.

²⁾ Bei den ferritischen Sorten ist es zulässig, anstelle der 0,2 %-Dehngrenze die aus dem Maschinendiagramm zu ermittelnde Streckgrenze anzugeben.

Stahlguss für allgemeine Verwendungszwecke DIN 1681 (Juni 1985), Auszug

Mechanische und magnetische Eigenschaften der Stahlgusssorten

Stahlgu	sssorte	Streck- grenze ¹⁾	Zug- festig- keit	Bruch- dehnung (L ₀ = 5d ₀)	Bruch- ein- schnü- rung ²⁾				eldstärke v	
Kurz- name	Werkstoff- nummer	N/mm² min.	N/mm² min.	% min.	% min.	m	J in.	T min.	T min.	T min.
GS-38	1.0420	200	380	25	40	35	35	1.45	1.60	1.75
GS-45	1.0446	230	450	22	31	27	27	1.40	1.55	1.70
GS-52	1.0552	260	520	18	25	27	22	1.35	1.55	1.70
GS-60	1.0558	300	600	15	21	27	20	1.30	1.50	1.65

¹⁾ Falls keine ausgeprägte Streckgrenze auftritt, gilt die 0,2 %-Dehngrenze.

9.9 Warmfester Stahlguss DIN EN 10213-2 (Januar 1996), Auszug

Mechanische Eigenschaften der warmfesten Stahlgusssorten

Stahlgusssorte		gunlpu	Zug- festigkeit		-Dehn ner Tei			ı			Deh- nung	Kerb- schlag- arbeit
Kurzname	Werk- stoff- nummer	Wärmebehandlung Symbol ¹⁾	R _m N/mm²	20 °C N/mm	200 °C	300 °C	350 °C	400 °C	450 °C	500 °C	A %	KV J
GP 240Gr	1.0621	+N	420 bis 600	240	_	_	_	_	_	_	22	27
GP 240GH	1.0619	+N	420 bis 600	240	175	145	135	130	125	_	22	27
		+QT	420 bis 600	240	175	145	135	130	125	_	22	40
GP280GH	1.0625	+N	480 bis 640	280	220	190	170	160	150	-	22	27
		+QT	440 bis 590	280	220	190	170	160	150	-	22	35
G20Mo5	1.5419	+QT	440 bis 590	245	190	165	155	150	145	135	22	27
G17CrMo5-5	1.7357	+QT	490 bis 690	315	250	230	215	200	190	175	20	27
G17CrMo9-10	1.7379	+QT	590 bis 740	400	355	345	330	315	305	280	18	40
G12MoCrV5-2	1.7720	+QT	510 bis 660	295	244	230	-	214	-	194	17	27
G17CrMoV5-10	1.7706	+QT	590 bis 780	440	385	365	350	335	320	300	15	27
GX15CrMo5	1.7365	+QT	630 bis 760	420	390	380	-	370	-	305	16	27
GX8CrNi12	1.4107	+QT1	540 bis 690	355	275	265	-	255	-	-	18	45
		+QT2	600 bis 800	500	410	390	-	370	-	-	16	40
GX4CrNi13-4	1.4317	+QT	760 bis 960	550	485	455	440	-	-	-	15	50
GX23CrMoV12-1	1.4931	+QT	740 bis 880	540	450	430	410	390	370	340	15	27
GX4CrNiMo16-5-1	1.4408	+QT	760 bis 960	540	485	455	-	-	-	-	15	60

 ⁺N bedeutet: Normalglühen, +Q bedeutet: Abschrecken in Luft oder Flüssigkeit.
 Wenn es alternative Wärmebehandlungen gibt, ist die gewünschte Alternative in der Bestellung anzugeben, z. B. GXBC/NI/12 + OT oder 1.4107 + OT1.

²⁾ Die Werte sind für die Abnahme nicht maßgebend.

³⁾ Aus jeweils drei Einzelwerten bestimmt.

⁴⁾ Diese Werte gelten nur nach Vereinbarung.

9.10 Temperauss DIN EN 1562 (August 1997), Auszug

Temperguss ist ein Eisen-Kohlenstoff-Gusswerkstoff, dessen Gussstücke bei werkstoffgerechter Konstruktion weitgehend graphitfrei erstarren. Nach der Art der Wärmebehandlung des Rohgussstückes unterscheidet man zwischen schwarzem Temperguss (nicht entkohlend geglüht) und weißem Temperguss (entkohlend geglüht) und

Nach einer Glühbehandlung zerfällt das im Gefüge vorliegende Eisenkarbid (Zementit) restlos. Beide Gruppen, mit Ausnahme von vollständig entkohltem weißen Temperguss, enthalten freien Kohlenstoff in Form von Graphit, genannt Temperkohle. Beide Gruppen haben Werkstoffsorten mit Gefügen, die von Ferrit bis Perlit und/oder anderen Umwandlungsgefügen von Austenit reichen können. Dle chemische Zusammensetzung des Temperrohgusses sowie die Art des temperaturund zeitabhängigen Glühverfahrens bestimmen den Gefügeaufbau und damit auch die Eigenschaften des Werkstoffs

Die Werkstoffe werden je nach der Zugfestigkeit und der Dehnung bezeichnet, für entkohlend geglühten Temperguss für eine Probe von 12 mm Durchmesser und für nichtentkohlend geglühten Temperguss für eine Probe von 12 oder 15 mm Durchmesser. Vergleichswerte für die Zugfestigkeit und die Bruchdehnung sind aber auch für andere Probendurchmesser angegeben.

Schweißarbeiten im Verlauf der Herstellung oder bei der Verwendung von Tempergussstücken bedürfen der Vereinbarung zwischen dem Besteller und dem Hersteller des Gussstückes. Reparaturschweißungen müssen nachträglich wärmebehandelt werden.

Verzug infolge Wärmebehandlung lässt sich durch Richten beseitigen. Warmrichten oder Spannungsarmglühen kann in Sonderfällen vereinbart werden.

Temperguss ist gut spanend zu bearbeiten; die Eignung der einzelnen Sorten hängt jeweils vom Gefügeaufbau ab.

Schwindmaße für Modellanfertigung: 1 bis 2 % für weißen Temperguss, 0 bis 1,5 % für schwarzen Temperguss. Die mittlere Dichte des Werkstoffes ist 7,4 kg/dm³.

Mechnische Eigenschaften von Temperguss

Werkstoffbezeichnur Kurzzeichen	ng Nummer	Durch- messer der Probe d mm	Zug- festigkeit R _m N/mm ² min.	0,2-Dehn- grenze N/mm ² min.	Deh- nung A _{3, 4} % min.	Brinell- härte HB max.	Frühere Bezeich- nung
Entkohlend geglüh			111111.	111111.	111111.	max.	
			T		_		
EN-GJMW-350-4	EN-JM1010	9	340	_	5	230	GTW-35-04
		12	350	-	4	230	
		15	360	_	3	230	
EN-GJMW-360-12	EN-JM1020	9	320	170	15	200	GTW-S 38-12
		12	380	200	12	200	
		15	400	210	8	200	
EN-GJMW-400-5	EN-JM1030	9	360	200	8	220	GTW-40-05
		12	400	220	5	220	
		15	420	230	4	220	
EN-GJMW-450-7	EN-JM1040	9	400	230	10	220	GTW-45-07
		12	450	260	7	220	
		15	480	280	4	220	
Nicht entkohlend g	eglühter (schw	arzer) Tempe	erguss	•			
EN-GIMB-350-10	EN-JM1130	12 oder 15	350	200	10	150	GTS-35-10
EN-GIMB- 450-6	EN-JM1140	12 oder 15	450	270	6	200	GTS-45-06
EN-GIMB- 550-4	EN-JM1160	12 oder 15	550	340	4	230	GTS-55-04
EN-GIMB- 650-2	EN-JM1180	12 oder 15	650	430	2	260	GTS-65-02
EN-GIMB- 700-2	EN-JM1190	12 oder 15	700	530	2	290	GTS-70-02

9.11 Kunststoffe

9.11.1 Aufbau und Eigenschaften

Kunststoffe sind makromolekulare, organische Stoffe, die auf chemischem Weg künstlich erzeugt werden, d.h. in der Natur nicht vorkommen. Je nach Syntheseverfahren kann man die Kunststoffe einteilen in Polykondensate, Polymerisate und Polyaddukte. Aufgrund ihrer unterschiedlichen chemischen Struktur kann man polymere Werkstoffe auch in Thermoolaste. Elastomere und Duroplaste aufdliedern.

Thermoplastische Kunststoffe

Thermoplaste kommen als amorphe und teilkristalline Polymere vor. Sie bestehen aus linearen oder verzweigten Makromolekülen, enweichen beim Erwärmen wiederholbar bis zur Schmelze und verfestigen sich durch Abkühlen. Beim Urformen durchlaufen sie reversible Zustandsänderungen. Thermoplaste sind schweißbar. Halbzeug aus harten Thermoplasten kann weitigehend warm umgeformt werden. Thermoplastische Polymere sind in der Regel in spezifischen, organischen Lösungsmitteln physikalisch fölslich. Thermoplaste können im fließfähigen Zustand über verschiedene Verarbeitungstechnologien, wie z. B. Spritzgießen, Extrudieren und Kalandrieren, zu komplexen Bauteilen oder Halbzeugen eleformt werden.

Elastomere Kunststoffe

Sie verhalten sich im Gebrauchstemperaturbereich oberhalb der Glastemperatur gummielastisch, d. h. geringe Spannungen bewirken beträchtliche Verformungen, die sich nach Aufhebung der Spannung nahezu vollständig zurückbilden. Sie sind aus weitmaschig vernetzten Makromolekülen aufgebaut. Man erhält sie durch Polymerisation von Dienen (z. B. NBR) oder Polykondensations- bzw. Polyadditionsreaktionen der Ausgangsstoffe (z. B. PUR). Die Verarbeitung der Elastomere erfolgt im allgemeinen vor der Vernetzung im plastischen Zustand unter Zugabe von Vulkanisationsmittel oder Vernetzungsbeschleuniger. Bei Tempe-raturerhöhung verhalten sie sich gummielastisch bis zur Grenztemperatur des irreversiblen thermochemischen Abbaus der Netz-Moleküle.

Thermoplastische Elastomere (TPE)

Thermoplastische Elastomere sind thermoplastisch verarbeitbare Polymere mit elastomerartigen Eigenschaften. Sie sind chemisch nicht vernetzt. TPE sind meist Block-Copolymerisate mit "harten" und "weichen" Bereichen. Dabei bilden die harten Segmente aggregierte Bereiche und bewirken in der amorphen Matrix aufgrund von Sekundärbindungen physikalische Vernetzungspunkte, welche sich bei einer durch den chemischen Aufbau bestimmten Temperatur reversibel lösen. Oberhalb dieser Temperatur werden diese Polymere thermoplastisch fließfähig.

Duroplastische Kunststoffe

Duroplaste entstehen beim Urformen dadurch, dass fließfähige, niedermolekulare Vorprodukte unter Bildung chemisch eng vernetzter Makromolekküle miteinander reagieren. Die physikalischen Eigenschaften der irreversibel "ausgehärteten" Duroplaste sind bis zu der Grenztemperatur des thermochemischen Abbaus wenig temperaturabhängig. Duroplastes sind nicht schweißbar, ausgehärtet in organischen Lösungsmitteln nicht löslich, manche quellbar. Duroplast-Vorprodukte sind einerseits als "Formmassen" zur Verarbeitung über die Schmelze und anschließender thermischer Aushärtung erhältlich, andererseits gibt es sie als flüssige "Reaktionsharze", die bei Raumtemperatur verarbeitet und katalytisch ausgehärtet werden können.

Recycling

Entsprechend ihres chemischen Aufbaus sind polymere Werkstoffe unterschiedlichen Wiederverwertungsmöglichkeiten bzw. Entsorgungskonzepten zugänglich. Thermoplaste eignen sich neben kostenintensiver, chemischer Verwertung wie Hydrolyse, Hydrierung etc. auch für die meistens wirtschaftliche, physikalische Verwertung. Vernetzte Polymere können nur chemisch wiederverwertet oder eingemahlen als Füllstoff verwendet werden.

Anwendung

Je nach Anwendungsgebiet unterteilt man die Thermoplaste in sog. Massenkunststoffe wie z. B. PE, PS, PVC, PP, in technische Kunststoffe wie PA, PBT, PC, POM und in Hochleistungspolymere PES, PPS, PAEK. Einsatzgebiete der technischen und Hochleistungskunststoffe sind die KFZ-Technik, der Maschinenbau, die Elektroindustrie sowie der Chemie- und Anlagenbau. Zur Verbesserung des physikalisch-mechanischen Eigenschaftsniveaus werden den Basispolymeren oft Glas- oder Kohlefasern als Verstärkungsstoffe und Glaskugeln bzw. Mineralien (Talkum, Glimmer, Quarzsand etc.) als Füllstoffe zugesetzt. Auch Duroplaste finden häufig in den zuvor genannten technischen Bereichen Einsatz.

Modifizierte Naturstoffe	Hochmolekulare Naturstoffe	Härtbare Kunststoffe	Kaseinharze	dlung	Die ältesten Kunststoffe sind modifizierte Naturstoffe wie Kursthorn, Vulkanfiber, Cellu- old, Cellophan, Kunstseide. Galafilh ist Z. B. ein Kunsthorn, das durch Einwirkung von Formaldehyd auf Labkasein einen Werkstoff mit ähnlichen Eigenschaften wie Naturchm ergibt. Die Härtung erfolgt nach dem plastischen Verformen durch Einlegen der Formteile in eine 5% Formaldehydiösung. Härtesztein je nach Dicke bis zu einigen Monaten. Hohe Wasseraufnahme und dadurch bedringen mößliche Änderungen bebindem den Einsatz für behindem den Einsatz für
Modifizierte	Hochmolekuk	Thermoplast. Kunststoffe	Cellulose- Ester Cellulose- Áther	Chem. Umwandlung	Die ältesten Kunststoffe sind modifiziert Naturssofte wie Kunsthorn, Vulkanffer, Celluoid, Cellopfran, Kunstseider, Galalith ist. S. en Kunsthom das durch Einwirkung von Formaldehyd auf Labkasein einen Werkstoff mit afmichen Eigenschaften wie Naturhom ergibt. Die Härtung erfolgt nac dem platischen Verformen durch Einlegen der Formteile eine 5% Formaldehydiösung, Härtzeklen for nach Diede bis einigen Monaten. Hohe Wasseraufnahme und dadurch bedingte maßliche Änderungebeinindem den Einsatz für technische Teile.
	Polyadditionsprodukte	Härtbare Kunststoffe	vernetzte Polyurethane Åthoxylin- oder Epoxyharze		Verschiedenartige monomere Grundbausteine mit reaktiven Grundbausteine mit reaktiven Grundbausteine mit seaktiven Grundbausteine mit seaktiven Admen Les Wasserstoff war Admen Les Wasserstoff was das sehr Admich, nur entrasten hier keine nieder molekularen Spatiprodukte. Je molekularen Jesten Bezielt eingesteilt werden.
	Polyadditio	Thermoplast. Kunststoffe	Lineare Polyurethane	Polyaddition	Verschiedenartige monomere Grundbausteine mit reakthen Grundbausteine mit reakthen Grundbausteine mit eakthen intermolekulare Umlagerung von Adomen E. B. Wasserstoff von Adomen E. B. Wasserstoff von Adomen Hollich, nur entsten seiten einer heider molekularen Spattprodukte. Je molekularen Spattprodukte. Je mach Auswahl der Vorprodukte können auch hier unvernetzte und vernetzte Polymere synthe titsert verden. Die Eigenschaften der Produkte können, je nach Ausgangsstoff, in weiten Grenzen gezielt eingestellt werden.
Vollsynthetische Kunststoffe	Polymerisate	Härtbare Kunststoffe	Alkylnarze ungesättigte Polyesterharze	Polymerisation	Die flüssigen bzw. gasförmi- meist gleichen monomren Ausgangsprodukte lagem sich unter Aufspalturg von Doppel- unter Aufspalturg von Doppel- anelmungen zu Fadermolektilen anelmungen. Es entstehen keine Spaltprodukte. Der Prozess wirt durch Initiatoren (Radikal- oder lonenbildnet) gestartet und fäult dann exotherm weiter ab, wobei das Polymeriata mit stei- gendem Molekulargewicht zäh und schließlich fest wird. Durch Poymerisation werden die mei- sten Irhermojastischen Kunst- sten ir der versienen.
Vollsynthetisc	Polym	Thermoplast. Kunststoffe	Polyethylene Polywinyl- chloride Polysryrole Poly- isobutylene Poly- isobutylene Poly- methacrylak Polyacrylaki Polyacrylaki Polydiuor- ethylene		Die flüssigen bzw. gasförmi- gen, meist gleichen monomerer Ausgangsprodukte lagem sich unter Aufspaltung von Doppel- haldungen zu Fadermonlekülen aneinander. Es entsehen keine Spaltprodukte. Der Prozess wird durch Instaroen (Hadikal- oder lonenbildner) gestantet unt fäult dann exothern weiter ab, wobel das Polymensta mit stel- gendem Molekulargewicht zäh und schließlich fest wird. Durch gendem Molekulargewicht zäh und schließlich fest wird. Durch gendymerstant mit stel- gendem Molekulargewicht zäh und schließlich fest wird. Durch gendymerstant mytel- stell gewonnen.
	Polykondensate	Härtbare Kunststoffe	Phenoplaste Carbamidpi. Melaminplaste Silikone Polyesterharze Alkydharze	uc	Bei der Polykondensation ver- monomere Grundbausteine unter Abspaltung von Wasser unter Abspaltung von Wasser en flüchtigen Stoffen [z. B. Ammoniak] zu linearen Makro- meklein, wein Monomere mit eizue verei reaktionsfähigen Grup- pen vorliegen oder zu räumlich vernetzen Makronnekklien, wern der oder mehr reaktions- fähige Gruppen vorhanden ister in mehr reaktions- fähige Gruppen vorhanden inerfür sind die meisten Duro- plaste, bei denen dieser Vor- gang oft bei erhöhter Tempe- ratur und unter Druck abläuft.
	Polykor	Thermoplast. Kunststoffe	Lineare Polyesterharze Polyamide Misch- polyamide	Polykondensation	Bei der Polykondensation verbinden sich verschiedennartige monomene Grundbaustein unter Abspattung von Wasser oder anderen niedermolekula-ten flüchtigen Stoffen (z. B. Armmoniak) zu linearen Makromoniakiah, aum Monomen melkelian, wenn der zu räumlich vernetzten Makromolekülen, wen reaktionsfähigen Gruppen vortiegen oder zu räumlich vernetzten Makromolekülen, wenn drei oder mehr reaktionsfähige Gruppen vorhanden sind. Ein wichfiges Beispiel hierfür sind die meisten Durchpatte, bei denen dieser Vorgang oft bei erhöhter Temperratur und unter Druck abläuft.

9.11.3 Festigkeitskennwerte und Formbeständigkeit thermoplastischer Kunststoffe, unverstärkt

Kunststoff	Kurz- zeichen	Zug- festigkeit	Zug E-Modul	Kugel- druckhärte	Biege- festig- keit	Schlag- zähig- keit	Kerb- schlag- zähigkeit	Form- beständig- keit
		N/mm ²	N/mm²	30 s N/mm²	N/mm²	kJ/m²	kJ/m²	Vicat B °C
Niederdruckpolyethylen Hochdruckpolyethylen Polypropylen	LDPE HDPE PP	1835 823 2137	7001400 200 500 11001300	40 65 13 20 36 70	36 - 43	o. Br. o. Br. o. Br.	o. Br. o. Br. 317	6070 < 40 85100
Polyvinylchlorid hart Polyvinylchlorid weich	PVC hart PVC weich	5075 1025	25003500 <100	75155 A90 ¹⁾	110	o. Br. o. Br.	250 o. Br.	75110 40
Polystyrol Styrol/Acrilnitril-Copolym.	PS SAN	4565 75	32003250 3600	140150	90	1520	22,5	78 99 100115
Styrolpfropfpyolym.	ABS	3260	19002700	80 120	75	70/o. Br.	720	95110
Polymethylmethacrylat Polyacetat	PMMA POM	5077 6280	27003200 28003200	180200	105 110	18 o. Br.	8 2	70100 160173
Polytetrafluorethylen	PTFE	2536	410	27 35	18	o. Br.	1315	ı
Polyamid 6 ²⁾ Polyamid 66 ²⁾ Polyamid 11 ²⁾ Polyamid 12 ²⁾	PA 6 PA 66 PA 11 PA 12	7085 7784 40	1400 2000 1000 1200	75 100 75 75	50 50 -	o. Br. o. Br. o. Br.	o. Br. 1520 3040 1020	180 200 175 165
Polycarbonat	PC	5667	21002400	110	100	o. Br.	2030	160170
Celluloseacetat (432) Celluloseacetobutyrat (413)	CA CAB	40 35	1600 1600	50	50 38	o. Br. o. Br.	15 20	5063 6075

¹⁾ Shore-Härte Skala A. 2) Konditioniert 23 ° C/50% rel. Feuchte.

9.11.4 Festigkeitskennwerte und Formbeständigkeit thermoplastischer Kunststoffe, verstärkt

Kunststoff	Kurz- zeichen	Zug- festig- keit	Zug E-Modul	Reiß- dehnung	Biege- festig- keit	Schlag- zähig- keit	Kerb- schlag- zähigkeit	Form- bestän- digkeit
		N/mm ²	N/mm ²	%	N/mm ²	kJ/m²	kJ/m²	°C
Polypropylen	PP Gf 30 ¹⁾	50	5 500	5	65	16 ⁶⁾	(99	110
Polybutylenterephthalat Polyethylenterephthalat	PBT Gf 30 PET Gf 35 ²⁾	145 190	10 500 13 500	2,5	210 270	50 ⁷⁾ 54 ⁷⁾	8,5 ⁷⁾	205 230
Polyamid 6 ³⁾ Polyamid 66 ³⁾	PA 6 Gf 30 PA 66 Gf 30	180	8 500 10 000	e e	250 270	60 ⁷⁾ 45 ⁷⁾	12 ⁷⁾ 8,5 ⁷⁾	210 250
Polyoxymethylen	POM Gf 30	130	10 000	က	170	327)	5,57)	160
Polyphenylenoxid modifiziert	PPO Gf 30	105	8 500	2,5	135	20 ⁶⁾	(99	145
Polyphenylensulfid Polysulfon Polyethersulfon	PPS Gf 40 ⁴⁾ PSU Gf 30 PES Gf 30	180 125 150	14 000 10 000 10 500	1,6 1,8 2,1	240 160 200	357) 207) 307)	6,5 ⁷⁾ 7 ⁷⁾ 8 ⁷⁾	255 190 215
Polyetherimid	PEI Gf 30	160	0006	3	220	356)	86)	220
Polyaryletherketon ⁵⁾	PAEK Gf 30	190	12 000	3,5	250	426)	116)	> 300
Flüssigkristallines Polymer (Liquid Crystal Polymer)	LCP Gf 30	200	23 000	1	-	20 ⁶⁾	12 ⁶⁾	170

2) nicht handelsüblich3) Werte spezifisch trocken4) 30 % nicht handelsüblich Quelle: KIB, Dr. Greiner, Baiersdorf

1) Gf 30 = 30 % Glasfaser gefüllt

5) PEKEKK6) Charpy7) Izod

9.11.5 Festigkeitskennwerte und Formbeständigkeit duroplastischer Kunststoffe

Harzart	Gruppe Typ	Тур	Füllstoff	Biege- festigkeit	Schlag- zähigkeit	Kerb- schlagzähigkeit	Form- beständigkeit
				N/mm² mind.	kJ/m² mind.	kJ/m² mind.	(Martens) °C
Phenol	ı	31	Holzmehl	02	9	1,5	125
	=	85	Holzmehl	02	5	2,5	125
		51	Zellstoff	09	2	3,5	125
		83	Baumwollfasern	09	5	3,5	125
		71	Baumwollfasern	09	9	9	125
		84	Baumwollgewebeschnitzel	09	9	9	125
		74	Baumwollgewebeschnitzel	09	12	12	125
		75	Kunstseidenstränge	09	14	14	125
	=	12	Asbestfasern				
		15	Asbestfasern	Asbestprodukt	e werden kaum	Asbestprodukte werden kaum noch auf dem Markt	¥
		16	Asbestschnur	angeboten.			
	≥	11,5	Gesteinsmehl	20	3,5	1,3	150
		13	Glimmer	50	က	2	150
		13,5	Glimmer	50	က	2	150
		30,5	Holzmehl	09	2	1,5	100
		31,5	Holzmehl	70	9	1,5	125
		51,5	Zellstoff	09	2	3,5	125
Aminoplast	ı	131	Zellstoff	08	6,5	1,5	100
pun		150	Holzmehl	70	9	1,5	120
Aminopiast- Phenol		180	Holzmehl	80	9	1,5	120
	Ш	153	Baumwollfasern	09	5	3,5	125
		154	Baumwollgewebeschnitzel	09	9	9	125

9.11.5 Festigkeitskennwerte und Formbeständigkeit duroplastischer Kunststoffe (Fortsetzung)

	פיייויים	T,	Filletoff	Biogo-	Schlag-	Korb.	TO'LB'
5	Β _			festigkeit	zähigkeit	gzähigkeit	beständigkeit
				N/mm² mind.	kJ/m² mind.	kJ/m² mind.	(Martens) °C
=		155	Gesteinsmehl	40	2,5	-	130
		156 157	Asbestfasern Asbestfasern + Holzmehl	Asbestprodukt	e werden kaum	Asbestprodukte werden kaum noch auf dem Markt	¥
	_	158	Asbestfasern	angeboten.			
≥		131,5	Zellstoff	80	6,5	1,5	100
		152	Zellstoff	80	7	1,5	120
	_	181	Zellstoff	80	7	1,5	120
	_	181,5	Zellstoff	80	7	1,5	120
		182	Holz- und Gesteinsmehl	70	4	1,2	120
	_	183	Zellstoff + Gesteinsmehl	70	2	1,5	120
		801	Glasfasern	09	22	22	125
		802	Glasfasern	55	4,5	က	140
	_	830	Glasmatten	120	50	40	1
	_	832	Glasmatten	160	70	09	1
		870	Gesteinsmehl	90	5	1,5	110
		871	Glasfaser	80	80	က	120
	_	872	Glasfaser	06	15	15	125
		HP 2061	Papierbahnen	150	20	15	1
		Hgw 2081	Baumwollgewebe grob	100	18	15	1
	_	Hgw 2082	Baumwollgewebe fein	130	30	15	ı
	_	Hgw 2083	Baumwollgewebe feinst	150	35	15	1
ypen	für a mit e	Typen für allgemeine Verwendung Typen mit erhöhter Kerbschlagzäh	Typen für algemeine Verwendung Typen mit erhöhter Kerbschlagzähigkeit				
:			•				

Gruppe III: .

Typen mit erhöhter Formbeständigkeit in der Wärme Typen mit erhöhten elektrischen Eigenschaften

9.11.6 Verarbeitungsverfahren und besondere Verwendungsformen der wichtigsten Kunststoffe

Zeichenerklärung: – nicht möglich, oder nicht üblich; (+) Spezialfall; +, ++, +++ entsprechend wachsender Bedeutung.

ue	Fasern und Fäden	+ + + + + + + + + + + + + + + + + + + +	1 1 1	(<u>+</u>
Besondere Verwendungsformen	Lacke und Anstrichmittel	+ + + + + + +	+ + +	‡ + 🛈 +	+
vendun	Klebstoffe	1 1 🛈 1 1 + 🛈 + 1 🛈	‡‡+	‡‡++	+
re Verv	Schaumkunststoffe	+ ‡ + ‡ + ‡ + + + + + + + + + + + + + +	+ ‡ £	£ 1 1 ‡	+
esonde	Verpackungs- und Isolierfolien	‡‡‡+€ ‡‡‡	1 1 1	1 1 1 1	+
В	Folien- und Gewebe- Kunstleder	‡ €	1 1 1	1 1 1 ‡	1
Verkstücke Formändern	Schweißen	‡+‡‡++++	1 1 1	1 1 1 1	÷
Urform, Umform- und Fügeverhalten für Werkstücke Formschaffen durch	(Warm)-Umformen	+ ‡ ‡ 🛈 ‡ 🛈 + 🛈	÷ · ÷	1 1 1 1	I
lten für	Extrudieren	‡‡‡‡±+‡+	ŦŦ!	<u>+</u> ++ 1 1	ı
everha	Pressen	(+ + + + + + + + + + + + + + + +	‡ + ‡	‡ + + 1	+
mform- und Fügeve Formschaffen durch	Hohlkörperblasen	‡+‡±111	1 1 1	1 1 1 1	1
rm- ur mscha	Spritzgießen	‡ ‡ + + + ‡ ‡ ‡ + +	‡ + +	+ + + +	(±
i, Umfo For	Niederdruckverfahren für verstärkte Kunststoffe	(+) (+)	<u>+</u> 1 1	‡‡€ :	+
Urform	Aufschmelz-, Gieß- und Sprühverfahren	‡ + + + + + + 1	+ 1 1	‡‡+‡	+
	Beschreibung ber Ferrigungsverfahren bzw. der beschderen Verwendungsgebiete	Thermoplastische Kunststoffe Polyoleifne Stynol-Polymerisate Stynol-Polymerisate (hart) Vinchlorid-Polymerisate (hart) Polywinyloriorid-Polymerie Polyorinyl-Bory-Kunststoffe Heteropolymere Heteropolymere Hydratelluose -Ester u. Ether Hydratelluose Vi. Zealiglas) Kunsthorn u.a. Zasein-Pord. Duroplastische Kunststoffe	Phenol-, Kresol- und Furanharze Harnstoffharze Melaminharze	Reaktionsharze Ungesättigte Polyester Epoxidharze Spezielle Reaktionsharze Isocyanatharze (PUR)	HT-Kunststoffe Polyarylene, Polyarylamide, -ester, -oxide, Polyimide

Quelle: Saechtling, H. Kunststoff-Taschenbuch, Hanser Verlag

10 Technische Zeichnungen

10.1 Normzahlen und Normzahlreihen DIN 323 (August 1974)

Der Aufbau der Normzahlreihen basiert auf geometrischen Zahlenfolgen mit 5, 10, 20 oder 40 Gliedern je Zehnerstufe

$$a \times q^{0}$$
, $a \times q^{1}$, $a \times q^{2}$, ..., $a \times q^{n-1}$

Grundreihen mit $q = \sqrt[5]{10} = 1,6$ bei R 5

 $q = \sqrt[9]{10} = 1,6$ bel H 5 $q = \frac{10}{10} = 1.25$ bel R 10

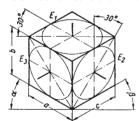
 $q = \frac{20}{10} = 1,12 \text{ bei R } 20$

 $q = \sqrt[40]{10} = 1,06 \text{ bei R } 40$

Grundreihen. Hauptwerte und Genauwerte

	Haup	twerte		Ordnungs- nummern	Mantissen	Genauwerte	Abweichung der Hauptwerte	
	Grund	dreihen		nummem			von den Genauwerten	
R 5	R 10	R 20	R 40	N			%	
		1,00	1,00	0	000	1,0000	0	
	1.00	1,00	1,06	1	025	1,0593	+0,07	
	1,00	1,12	1,12	2	050	1,1220	-0,18	
1,00		1,12	1,18	3	075	1,1885	-0,71	
1,00		1.25	1,25	4	100	1,2589	-0,71	
	1.25	1,20	1,32	5	125	1,3353	-1,01	
	1,20	1,40	1,40	6	150	1,4125	-0,88	
		1,40	1,50	7	175	1,4962	+0,25	
		1.60	1,60	8	200	1,5849	+0,95	
	1.60	1,00	1,70	9	225	1,6788	+1,26	
	1,00	1.80	1,80	10	250	1,7783	+1,22	
1,60		1,00	1,90	11	275	1,8836	+0,87	
1,00		2,00	2,00	12	300	1,9953	+0,24	
	2,00	2,00	2,12	13	325	2,1135	+0,31	
	2,00	2,24	2,24	14	350	2,2387	+0,06	
		2,24	2,36	15	375	2,3714	-0,48	
		2,50	2,50	16	400	2,5119	-0,47	
2,50	2,50	2,50	2,65	17	425	2,6607	-0,40	
	2,50	2,80	2,80	18	450	2,8184	-0,65	
		2,80	3,00	19	475	2,9854	+0,49	
		3,15	3,15	20	500	3,1623	-0.39	
	3,15	3,15	3,35	21	525	3,3497	+0,01	
	3,15	3,15	0.55	3,55	22	550	3,5481	+0,05
		3,55	3,75	23	575	3,7584	-0,22	
		4.00	4,00	24	600	3,9811	+0,47	
	4,00	4,00	4,25	25	625	4,2170	+0,78	
	4,00	4.50	4,50	26	650	4,4668	+0,74	
4,00		4,50	4,75	27	675	4,7315	+ 0,39	
4,00		5.00	5,00	28	700	5,0119	-0,24	
	- 00	5,00	5,30	29	725	5,3088	-0,17	
	5,00	F 00	5,60	30	750	5,6234	-0,42	
		5,60	6,00	31	775	5,9566	+0,73	
		0.00	6,30	32	800	6,3096	-0,15	
1	0.00	6,30	6,70	33	825	6,6834	+0,25	
	6,30	7.10	7,10	34	850	7,0795	+0,29	
0.00	1	7,10	7,50	35	875	7,4989	+0,01	
6,30		0.00	8.00	36	900	7.9433	+0.71	
1	0.00	8,00	8,50	37	925	8,4140	+1,02	
	8,00	0.00	9,00	38	950	8,9125	+0,98	
1	1	9,00	9,50	39	975	9,4406	+0,63	
10,00	10,00	10,00	10,00	40	000	10,0000	0	

Die Schreibweise der Normzahlen ohne Endnullen ist international ebenfalls gebräuchlich.


Blattgrößen nach DIN EN ISO 5457 (Juli 1999)

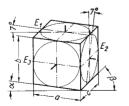
Blattgrößen

Blattgrößen nach DIN EN ISO 216 Reihe A	Beschnittene Zeich- nung und beschnit- tene Lichtpause (Fertigblatt) mm	Zeichen- fläche	Unbeschnittenes Blatt (Rohblatt für den Einzeldruck) mm	Verwendb Rolle	are gün nbreite	stige	Rohblatt aus 660×900
A0	841×1189	821×1159	880×1230		900		
A1	594× 841	574× 811	625× 880		900	660	660×900
A2	420× 594	400× 564	450× 625	(2×450)	900	660	450×660
А3	297× 420	277× 390	330× 450	(2×330) (2×450)	660	900	330×450
A4	210× 297	180× 277	240× 330	250	660		225×330

10.3 Isometrische und dimetrische Projektion nach DIN ISO 5456

Isometrische Proiektion

Darstellung eines Würfels und der Kreise in 3 Ansichten:


Seitenverhältnis a : b : c = 1 : 1 : 1

 $\alpha = \beta = 30^{\circ}$

Ellipse E1: große Achse waagerecht

Ellipse E2 und E3: große Achsen rechtwinklig zu 30°

Achsenverhältnis der drei Ellipsen 1:1.7

Dimetrische Proiektion

Darstellung eines Würfels und der Kreise in 3 Ansichten:

Seitenverhältnis a : b : c = 1 : 1 : 0.5

 $\alpha = 7^{\circ}$ $\beta = 42^{\circ}$

Ellipse E1: große Achse waagerecht

Ellipse E₂: große Achse rechtwinklig zu 7°; beide haben das Achsenverhältnis 1 : 3

Ellipse E₃ wird der Einfachheit halber zum Kreis

10.4 Linienarten und Liniengruppen nach DIN ISO 128-20 (Dez. 1997)

Linienarten (Auszug)

DIN	Linienart	Anwendungen (Aufzähl	ung)
ISO 128-20		entsprechend ISO 128	zusätzliche Anwendung
01.2	Volllinie, breit	sichtbare Kanten sichtbare Umrisse	Gewindespitzen Gerenze der nutzbaren Gewindelänge Hauptdarstellungen in Diagrammen, Karten, Fließbildern Systemlinien (Stahlbau)
01.1	Volllinie, schmal	Lichtkanten Maßlinien Maßlinien Maßlinien Hinweislinien Schraffuren Chriftse am Orteingeklappter Schnitte Kurze Mittellinien	8. Gewindegrund 9. Maßlinienbegrenzungen 10. Diagonalkreuz zur Kennzeichnung ebener Flächen 11. Biegelinien 12. Umrahmungen von Einzelheiten 13. Kennzeichnung sich wiederholender Einzelheiten, z. B. Fußkreise bei Verzahnungen 14. Umrahmungen von Prüfmaßen
01.1 01.1			ebrochenen oder unterbrochen dargestellten ten, wenn die Begrenzung keine Mittellinie ist. 1)
02.2	Strichlinie, breit	verdeckte Kanten ²⁾ verdeckte Umrisse ²⁾	mögliche Kennzeichnung zulässiger Oberflächenbehandlung
02.1	Strichlinie, schmal	verdeckte Kanten verdeckte Umrisse	
04.1	Strichpunkt-Linie, schmal	Mittellinien Symmetrielinien Trajektorien	Teilkreise bei Verzahnungen Lochkreise Teilungsebenen (Formteilung)
04.2	Strichpunkt- Linie, breit	Kennzeichnung der Schnittebene	

¹⁾ In einer Zeichnung soll vorzugsweise nur eine dieser Linienarten angewendet werden.

Linienbreiten und Liniengruppen

	3 111		
Liniengruppe	zugehörende Linienbre	eiten (Nennmaße in mm) fü	ìr
	Lin	ienart	Maß- und Textangaben; graphische Symbole
	01.2, 04.2, 02.2	01.1, 04.1, 02.1, 04.2	DIN EN ISO 81714-1
0,25	0,25	0,13	0,18
0,35	0,35	0,18	0,25
0,5	0,5	0,25	0,35
0,7	0,7	0,35	0,5
1	1	0,5	0,7
1,4	1,4	0,7	1
2	2	1	1,4

Fettgedruckte Liniengruppen sind zu bevorzugen

²⁾ Für die Darstellung von verdeckten Kanten und Umrissen ist anstelle von Linienart 02.2 Linienart 02.1 anzuwenden.

10.5 Maßstäbe nach DIN ISO 5455 (Dezember 1979)

Im Schriftfeld sind der Hauptmaßstab der Zeichnung in großer und die übrigen Maßstäbe in kleiner Schrift anzugeben; diese werden außerdem an die zugehörigen Darstellungen geschrieben. Alle Geoenstände sind (außer in Normen) mödlichst maßstäblich zu zeichnen.

Sind Teile vergrößert gezeichnet, so ist es zweckmäßig, eine Darstellung im Maßstab 1:1 hinzuzufügen, um die natürliche Größe zu zeigen; auf die Wiedergabe von Einzelheiten kann dabei verzichtet werden.

Vergrößerungsmaßstäbe	50 : 1 5 : 1	20:1 2:1	10 : 1
Natürlicher Maßstab			1:1
Verkleinerungsmaßstäbe	1:2 1:20 1:200 1:2000	1:5 1:50 1:500 1:5000	1:10 1:100 1:1000 1:1000

10.6 ISO-Normschrift nach DIN EN ISO 3098 (April 1998)

ABCDEFGHUKLMNOPQRSTUVWXYZ aqbcdefghijklmnopgrstuvwxyz

1) In Deutschland sind die Zeichen a und 7 zu bevorzugen.

Schriftform A (d = h/14)

Beschriftungsmerkr	mal	Verhältnis			Ma	aße in mi	m		
Schriftgröße Höhe der Großbuchstaben	h	(14/14) h	2,5	3,5	5	7	10	14	20
Höhe der Kleinbuchstaben (ohne Ober- oder Unterlängen)	С	(10/14) h	1,8	2,5	3,5	5	7	10	14
Mindestabstand zwischen:									
Schriftzeichen	а	(2/14) h	0,36	0,5	0,7	1	1,4	2	2,8
Grundlinien	b	(21/14) h	3,78	5,25	7,35	10,5	14,7	21	29,4
Wörtern	е	(6/14) h	1,08	1,5	2,1	3	4,2	6	8,4
Linienbreite	d	(1/14) h	0,18	0,25	0,35	0,5	0,7	1	1,4

10.7 Angabe der Oberflächenbeschaffenheit in Zeichnungen DIN ISO 1302 (Dez. 1993)

1. Anwendung

Oberflächen an Werkstücken, die roh (unbearbeitet) bleiben sollen, d. h. so, wie sie sich durch die Herstellungsverfahren beim Walzen, Schmieden, Gießen, autogenen Trennen usw. ergeben, erhalten kein Oberflächenzeichen.

Oberflächen, an deren Glätte und Gleichförmigkeit keine hohen Ansprüche gestellt werden, sind folgendermaßen zu kennzeichnen:

geputzt	Oberfläche frei von groben Unebenheiten, gegebenenfalls geglättet (z. B. durch Überschleifen, Überfeilen)
roh	spanende Nachbearbeitung nur zulässig, wenn das Maß nicht eingehalten wurde
♦⁄	Oberfläche darf nicht materialabtrennend bearbeitet werden oder muss im Anlieferungszustand verbleiben
6,3/	saubere, rohe Oberfläche mit höheren Anforderungen ($R_a=6.3\ \mu m)$

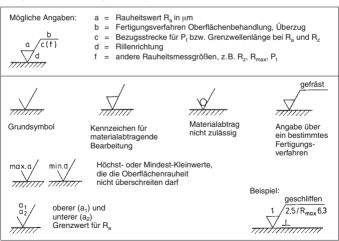
Solche Oberflächengüten können im Allgemeinen durch sorgfältige spanlose Herstellungsverfahren erreicht werden, z.B. im Gesenk glätten, sauber gießen, sauber schmieden oder sauber autogen trennen.

Ist eine höhere Oberflächengüte vorgesehen, als sie durch die gerade genannten Verfahren zu erzielen ist, wird eine spanende Bearbeitung nötig.

\forall	Wenn eine materialabtrennende Bearbeitung erforderlich ist, so ist dem Grundsymbol ein Querstrich hinzuzufügen. Die einzelnen Angaben der Oberflächenbeschaffenheit sind dem Symbol zuzuordnen (siehe Punkt 2 bzw. 3).			
gefräst	Wenn gefordert wird, dass der Endzustand der Oberfläche durch ein bestimmtes Fertigungsverfahren hergestellt wird, so muß dieses Verfahren in ungekürzter Wortangabe auf die Verlängerung des längeren Schenkels des Symbols geschrieben werden.			

Verschiedene Bearbeitungsverfahren und dabei erzielbare Oberflächenrauhigkeiten (angegeben als Mittenrauhwert R_n in um) sind in Abschnitt 10.9 dargestellt.

Bei der Angabe von Rauheitsmaßen in der Zeichnung ist zu beachten, dass nur die genormten Vorzugskenngrößen für Mittenrauwerte Verwendung finden.


Vorzugskenngrößen für R_a, R_v, R_z

R _a	0,025 - 0,05 - 0,1 - 0,2 - 0,4 - 0,8 - 1,6 - 3,2 - 6,3 - 12,5 - 25 - 50
R_z , R_y	0.2 - 0.4 - 0.8 - 1.6 - 3.2 - 6.3 - 12.5 - 25 - 50 - 100 - 200

2. Symbole für die Angabe der Oberflächenbeschaffenheit

 -	Symbol ohne Zusatzangaben Grundsymbol. Die Bedeutung muss durch zusätzliche Angaben erklärt sein. Symbol mit Zusatzangaben Beliebig hergestellt mit vorgeschriebener Rauheit.	3,2
 	Symbol ohne Zusatzangaben Materialabtrennend bearbeitet ohne vorgeschriebene Rauheit. Symbol mit Zusatzangaben Materialabtrennend bearbeitet mit vorgeschriebener Rauheit.	3,2/
 	Symbol ohne Zusatzangaben Darf nicht bearbeitet werden (Oberfläche verbleibt im Anlieferzustand). Symbol mit Zusatzangaben Ohne materialabtrennende Bearbeitung (spanlos) hergestellt mit vorgeschriebener Rauheit.	\$\sqrt{3,2}

3. Lage der Oberflächenangaben am Symbol

4. Symbole für die Rillenrichtung

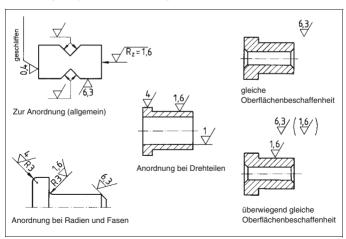
Parallel zur Projektionsebene der Ansicht, in der das Symbol angewendet wird

Senkrecht zur Projektionsebene der Ansicht, in der das Symbol angewendet wird

Gekreuzt in 2 schrägen Richtungen zur Projektionsebene in der Ansicht, in der das Symbol angewendet wird

Viele Richtungen

Annähernd zentrisch zum Mittelpunkt der Oberfläche, zu der das Symbol gehört

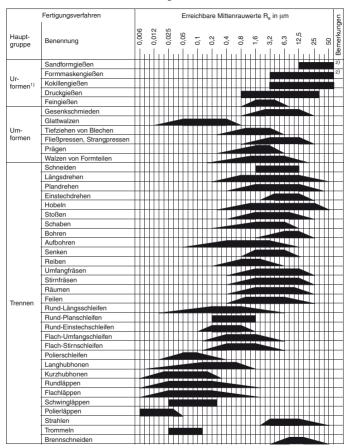

Annähernd radial zum Mittelpunkt der Oberfläche, zu der das Symbol gehört

Nichtrillige Oberfläche ungerichtet oder muldig

DIN ISO 1302

5. Anordnung der Symbole in der Zeichnung

10.8 Oberflächen-Rauheitskenngrößen


Begriffe		Norm	Definition			
Tastschnitt Einzelmessstrecke Ir Messstrecke In Oberflächenprofil Gesamtprofil Primärprofil		DIN EN ISO 3274 DIN EN ISO 4287	Messen der Oberfläche nach dem Tastverfahren Länge in Richtung der x-Achse (Mittellinie), die für Profils verwendet iwrid Länge in Richtung der x-Achse, die für die Auswermehrere Einzelmessstrecken umfassen Profil, das sich durch den Schnitt einer Werkstück- Digitale Form des ertasteten Profils aus vertikalen Gesamtprofil nach der Anwendung des Filters für Berechnung der Kenngrößen des Primärprofils			
Kennwert		Norm	Definition			
Rp	Höhe der größten Profilspitze	DIN EN ISO 4287	Höhe der größten Profilspitze Zp innerhalb der Einzelmessstrecke			
Rv	Tiefe des größten Profiltales	DIN EN ISO 4287	Tiefe des größten Profiltales Zv innerhalb der Einzelmessstrecke			
Rz	Größte Höhe des Profils	DIN EN ISO 4287	Summe aus der Höhe der größten Profilspitze Zp und der Tiefe des größten Profiltales Zv innerhalb einer Einzelmessstrecke			
Rc	Mittlere Höhe der Profilelemente	DIN EN ISO 4287	Mittelwert dere Höhe der Profilelemente Zt innerhalb einer Einzelmessstrecke			
Rt	Gesamthöhe des Profils	DIN EN ISO 4287	Summe aus der Höhe der größten Profilspitze Zp und der Tiefe des größten Profiltales Zv innerhalb der Messstrecke			
R _{z DIN}	gemittelte Rautiefe	DIN 4768 (1990) zurückgezogen	Arithmetisches Mittel aus den Einzelrautiefen Zifünf aneinandergrenzender Einzelmessstrecken			
R _{z ISO}	Zehnpunktehöhe	DIN 4762 (1989) zurückgezogen	Mittelwert der Absolutwerte der Höhen der fünf höch- sten Profilkuppen und der Absolutwerte der Tiefen der fünf tiefsten Profiltäler innerhalb der Bezugsstrecke			
Ra	Arithm. Mittelwert der Profilordinaten	DIN EN ISO 4287	Arithmetischer Mittelwert der Beträge der Ordinatenwerte Z(x) innerhalb einer Einzelmessstrecke			
Rq	Quadrat. Mittelwert der Profilordiaten	DIN EN ISO 4287	Quadratischer Mittelwert der Ordinatenwerte Z(x) innerhalb der Einzelmessstrecke			
Rmr (c)	Materialanteil des Profils	DIN EN ISO 4287	Quotient aus der Summe der Materiallängen der Profilelemente MI(c) in der vorgegebenen Schnitthöhe c und der Messstrecke			
Rmr	Materialanteilkurve des Profils	DIN EN ISO 4287	Kurve, die den Materialanteil des Profils als Funktion der Schnitthöhe darstellt			
Rsk	Schiefe des Profils	DIN EN ISO 4287	Quotient aus der gemittelten dritten Potenz der Ordinatenwerte Z(x) und der dritten Potenz von Rq innerhalb einer Einzelmessstrecke			
AKF	Autokorrelations- funktion		Der arithmetische Mittellwert der Produkte aus den Ordinatenwerten Z(x) und Z(x + λ) als Funktion der Abszissenverschiebung λ			

Geometrische Darstellung die Erkennung der Gestaltabweichungen des auszuwertenden Höhe der größ-Größte Höhe ten Profilspitze des Profils tung des Profils verwendet wird. Die Messstrecke kann eine oder oberfläche mit einer vorgegebenen Ebene ergibt und horizontalen Koordinaten relativ zum Referenzprofil kurze Wellenlängen. Das Primärprofil ist die Grundlage für die mathematische Definition Aussage durch Ausreißer bestimmt - keine Aussage über Profilform Einzelmessstrecke Ir Tiefe des größten Profiltales $R_c = \frac{1}{m} \sum_{i=1}^{m} Zt_i$ da Rt über die Messstrecke de-Rt > Rz finiert ist, die größer als die Einzelmessstrecke ist, ailt RT ≥ Rz weniger von Ausreißern $R_{zDIN} = \frac{1}{5} \cdot \sum_{i=1}^{5} Z_{i}$ bestimmt als Bz und Bmax - erfasst nicht die Profilform $R_{zISO} = \frac{1}{5} \cdot \left[\sum_{i=1}^{5} Z_{pi} + \sum_{i=1}^{5} Z_{vi} \right]$ - es lassen sich Oberflächen $R_a = \frac{1}{I} \cdot \int_{I}^{Ir} |Z(x)| dx$ gleichen Charakters vergleichen reagiert "gutmütig" keine Aussage über Profilform Kennwert mit größerer $R_q = \sqrt{\frac{1}{L}} \int_{0}^{L} |Z^2(x)| dx$ statistischer Sicherheit als R. - keine Aussage über Profilform da integraler Wert, gute $Rmr(c) = \frac{MI(c)}{ln}$ Beschreibung der Profilform möglich - gute Beschreib. der Profilform $Rsk = \frac{1}{R_0^3} \cdot \left[\frac{1}{lr} \int_{0}^{lr} |Z^3(x)| dx \right]$ - negat. Sk-Wert kennzeichnet plateauartige Oberfläche Beschreibung des Profils in $R_{ZZ}(\lambda) = \frac{1}{I} \cdot \int_{0}^{1} Z(x) \cdot Z(x+\lambda) dx$ Richtung des Profilverlaufes

normiert: $r_{ZZ}(\lambda) = R_{7Z}(\lambda)/\sigma^2$

ermittelt periodische bzw. deterministische Profilanteile

10.9 Erreichbare Mittenrauwerte Ra nach DIN 4766-2

Näheres siehe VDG-Merkblatt K 100, zu beziehen beim Verein Deutscher Gießereifachleute /VDG), Sohnstraße 70, 40237 Düsseldorf

²⁾ Bei diesem Gießverfahren muss bei Gussstücken bis 250 kg Stückgewicht mit R_a -Werten bis 125 μ m gerechnet werden.

11 Toleranzen

11.1 Allgemeintoleranzen

Längen- und Winkelmaße DIN ISO 2768, Teil 1 (Juni 1991)

Tabelle 1 Grenzabmaße für Längenmaße außer für gebrochene Kanten

(Rundungshalbmesser und Fasenhöhen siehe Tabelle 2)

Werte in mm

Toleranzklasse		Grenzabn	Grenzabmaße für Nennmaßbereiche							
		von 0,5 ¹⁾ bis 3	über 3 bis 6	über 6 bis 30	über 30 bis 120	über 120 bis 400	über 400 bis 1000	über 1000 bis 2000	über 2000 bis 4000	
f	fein	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	-	
m	mittel	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	±2	
С	grob	±0,2	±0,3	±0,5	±0,8	±1,2	±2	±3	±4	
V	sehr grob	-	±0,5	±1	±1,5	±2,5	±4	±6	±8	

¹⁾ Für Nennmaße unter 0,5 mm sind die Grenzabmaße direkt an dem entsprechenden Nennmaß anzugeben.

Tabelle 2 Grenzabmaße für gebrochene Kanten (Rundungshalbmesser und Fasenhöhen)

Tabelle 3 Grenzabmaße für Winkelmaße

Toleranz- klasse	Grenzabmaße für Nennmaßbereiche in mm			
	von 0,5 ¹⁾ bis 3	über 3 bis 6	über 6	
f (fein)	±0,2	±0,5	+1	
m (mittel)	±0,2	±0,5	1 1	
c (grob)	±0.4	±1	±2	
v (sehr grob)	10,4	Ξ1		

Toleranz- klasse	Grenzabmaße für Winkelmaße für Nennmaßbereiche des kürzeren Schenkels in mm					
	bis 10					
f (fein)	+1°	±30′	+20'	+10'	± 5'	
m (mittel)	1 1	±30	120	110	Ξ 3	
c (grob)	±1°30′	±1°	±30′	±15′	±10′	
v (sehr grob)	±3°	±2°	±1°	±30′	±20′	
1 (1)			0/ \			

¹⁾ Für Nennmaße unter 0,5 mm sind die Grenzabmaße direkt an dem (den) entsprechenden Nennmaß(en) anzugeben.

Form und Lage DIN ISO 2768, Teil 2 (April 1991)

Tabelle 1 Allgemeintoleranzen für Geradheit und Ebenheit

Tabelle 2	Allgemeintoleranzen
	für Rechtwinkeligkeit

Werte in mm

	ranz-	und Ebenheit für Nennmaßbereiche in mm							1
	klasse	bis 10	über 10 bis 30	über 30 bis 100	über 100 bis 300	über 300 bis 1000	über 1000 bis 3000		•
	Н	0,02	0,05	0,1	0,2	0,3	0,4		ı
ſ	K	0,05	0,1	0,2	0,4	0,6	0,8		ł
	L	0,1	0,2	0,4	0,8	1,2	1,6		ı

Tole- ranz- klasse	Rechtwinkeligkeitstoleranzen für Nennmaßbereiche für den kürzeren Winkelschenkel					
	bis über 100 über 300 ü 100 bis 300 bis 1000 b					
Н	0,2	0,3	0,4	0,5		
K	0,4	0,6	0,8	1		
L	0,6	1	1,5	2		

Tabelle 3 Allgemeintoleranzen für Symmetrie

Tole- ranz-	Symmetrietoleranzen für Nennmaßbereiche in mm				
klasse	bis				
Н	0,5				
K	(),6	0,8	1	
L	0,6	1	1,5	2	

Tabelle 4 Allgemeintoleranzen für Lauf

Werte in mm

Toleranzklasse	Lauftoleranzen
Н	0,1
K	0,2
L	0,5

11.2 Angabe der Form- und Lagetoleranzen in Zeichnungen DIN ISO 1101

Symbole für tolerierte Eigenschaften

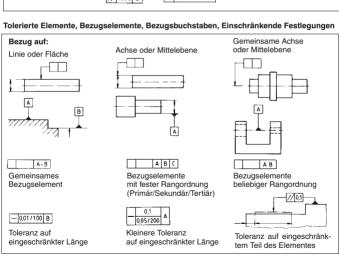
Arten von Elementen und Toleranzen		Tolerierte E	Eigenschaft	Symbol	bisher
Einzelne Elemente	Formtoleranzen	Geradheit			zulässige Ungeradheit
		Ebenheit			zulässige Unebenheit
		Rundheit (I	Kreisform)	0	zulässige Unrundheit
		Zylinderfor	m	Ħ	zulässige Abweichung vom Kreiszylinder
Einzelne		Profil einer	beliebigen Linie	\cap	
oder bezogene Elemente		Profil einer beliel	bigen Fläche	۵	
	Richtungs- toleranzen	Parallelität		//	zulässige Unparallelität
		Rechtwinkl	igkeit (mm)	1	zulässige Ungleichwinkligkeit
		Neigung (V	Vinkligkeit) (mm)	_	zulässige Ungleichwinkligkeit
	Ortstoleranzen	Position		+	
Bezogene Elemente		Konzentriz		0	zulässige Mittigkeitsabweichung
		Dickengleid	chheit	I	zulässige Dickenschwankung
		Symmetrie		=	
	Lauftoleranzen	Lauf	Rundlauf Planlauf	1	zulässiger Rund-, Planlauf zulässiger Radialschlag
		Summen- lauf	Summenrundlauf Summenplanlauf	21	

Zusätzliche Symbole

Beschreibung		Symbole	
	direkt	·	''''
Kennzeichnung des tolerierten Elements	mit Buchstabe	<u></u>	,,,,
	direkt	····.	A
Kennzeichnung des Bezuges	mit Buchstabe	<u> </u>	A
Bezugsstelle		- (1	2
Theoretisch genaues Maß		50	
Projizierte (vorgelagerte) Toleranzzone		P)
Maximum-Material-Bedingung		M)

Toleranzrahmen

Die Toleranzanforderungen werden in einem rechteckigen Rahmen angegeben, der in zwei oder mehr Kästchen unterteilt ist. Von links nach rechts steht in diesen Kästchen:


- dar Symbol für die zu tolerierende Eigenschaft:
- der Toleranzwert in der Einheit der Bemaßung. Diesem Wert wird das Zeichen Ø vorangesetzt, wenn die Toleranzzone Kreisförmig oder zylinderförmig ist, oder die Angabe "Kugel-O" wenn die Toleranzzone kugelförmig ist:
- falls notwendig, der oder die Buchstaben, die das Bezugselement oder die Bezugselemente hezeichnen

Wortangaben zur Toleranz sollen über dem Toleranzrahmen eingetragen werden, Angaben zur Beschreibung weiterer Eigenschaften des Elementes innerhalb der Toleranzzone sollen in die Nähe des Toleranzrahmens geschrieben werden. Sie können mit einer Bezugslinie mit dem Toleranzrahmen verbunden werden.

6 Löcher 6 x Profil alle \varnothing zueinander $\bigoplus \phi 0,1$ $\bigoplus \phi 0,1$ $\bigoplus \phi 0,1$ $\bigoplus 0.05$ B $\bigoplus 0.2$ A $\bigoplus 0.01$ nicht $\bigoplus 0.1$

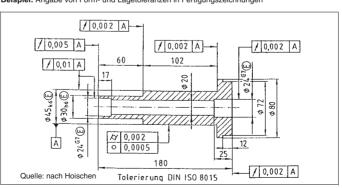
Falls es nötig ist, mehr als eine Toleranzeigenschaft für ein Element festzulegen, sollten die Toleranzangaben in Toleranzrahmen untereinander gesetzt werden.

0,011 0,0015 ballig 0,001 hohl

Zeichnungseintragung und Erklärung

Symbo	Symbol Toleranzzone Anwendungs-Beispiele und tolerierte			
Eigens			Zeichnungsangabe	Erklärung
_	Gerad- heit	5	[- Ø0,03]	Die Achse des zylindrischen Teiles des Bolzens muss innerhalb eines Zylinders vom Durchmesser t = 0,03 liegen.
	Eben- heit		Ø 0,05	Die tolerierte Fläche muss zwischen zwei parallelen Ebenen vom Abstand t = 0,05 liegen.
0	Rund- heit	0	0 0,02	Die Umfangslinie jedes Querschnittesmuss in einem Kreisring von der Breite t = 0,02 enthalten sein.
<i>[</i> 2/	Zylin- der- form		Ø 0,05	Die tolerierte Fläche muss zwischen zwei koaxialen Zylindern liegen, die einen radialen Abstand von t = 0,05 haben
\sim	Linien- form		70.08	Das tolerierte Profil muss zwischen zwei Hüll-Linien liegen, deren Abstand durch Kreise vom Durchmesser t = 0,08 begrenzt wird. Die Mittelpunkte dieser Kreise liegen auf der geo- metrisch idealen Linie.
۵	Flä- chen- form	Kugel Ø t		Die tolerierte Fläche muss zwischen zwei Hüll-Flächen liegen, deren Abstand durch Kugeln vom Durchmesser t = 0,03 begrenzt wird. Die Mittelpunkte dieser Kugeln liegen auf der geo- metrisch idealen Fläche.
//	Paral- lelität	5	# # # # # # # # # # # # # # # # # # #	Die tolerierte Achse muss innerhalb eines zur Bezugs- achse parallel liegenden Zylinders vom Durchmesser t = 0,1 liegen.
			1 /2 (0.01)	Die tolerierte Fläche muss zwischen zwei zur Bezugs- fläche parallelen Ebenen vom Abstand t = 0,01 liegen.

Die Tabelle ist eine Kurzfassung der in DIN ISO 1101 festgelegten detaillierten Definition der Formund Lagetoleranzen und ihrer Symbolik. Diese Tabelle enthält nur für jede tolerierte Eigenschaft jeweils ein Beispiel (Ausnahme Parallelität), aus denen sich jedoch alle anderen Kombinationsmöglichkeiten ableiten lassen. Quelle: Klein, Einführung in die DIN-Normen, 11. Auflage


Zeichnungseintragung und Erklärung (Fortsetzung)

Symbo und tol Eigens	erierte	Toleranzzone	Anwendungs-Beispiele Zeichnungsangabe	Erklärung
	Recht- winklig- keit		A 10,05A	Die tolerierte Achse muss zwischen zwei Parallelen zur Bezugsfläche und zur Pfeil- richtung senkrechten Ebenen vom Abstand t = 0,05 mm liegen.
_	Nei- gung (Wink- ligkeit)	609	A 201A	Die Achse der Bohrung muss zwischen zwei zur Bezugs- fläche im Winkel von 60° geneigten und zueinander parallelen Ebenen vom Abstand t = 0,1 mm liegen.
Ф	Position	91 90 90	(M)	Die Achse der Bohrung muss innerhalb eines Zylinders vom Durchmesser t = 0,05 mm liegen, dessen Achse sich am geometrisch idealen Ort (mit eingerahm- ten Maßen) befindet.
	Sym- metrie		A # 0.08 A	Die Mittelebene der Nut muss zwischen zwei parallelen Ebenen liegen, die einen Abstand von t = 0,08 mm haben und symmetrisch zur Mittelebene des Bezugs- elementes liegen.
0	Koaxia- lität, Konzen- trizität	1	A	Die Achse des tolerierten Teiles der Welle muss inner- halb eines Zylinders vom Durchmesser t = 0,03 mm liegen, dessen Achse mit der Achse des Bezugselementes fluchtet.
×	Rund- lauf	Messebene	A B	Bei einer Umdrehung um die Bezugsachse A – B darf die Rundlaufabweichung in jeder Messebene 0,1 mm nicht überschreiten.
	Plan- lauf	Messzylinder	7010	Bei einer Umdrehung um die Bezugsachse D darf die Planlaufabweichung an jeder beliebigen Mess- position nicht größer als 0,1 mm sein.

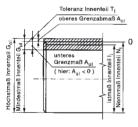
Zeichnungseintragung und Erklärung (Fortsetzung)

Symbol Toleranzzone An		Anwendungs-Beispiele		
Eigens			Zeichnungsangabe	Erklärung
Gesamt- Rund- lauf		F (2/0.1 A-B) A B	Bei mehrmaliger Drehung um die Bezugsachse A – B und bei axialer Verschiebung zwischen Werkstück und Messgerät müssen alle Punkte der Oberfläche des tolerierten Elementes innerhalb der Gesamtrundlauftoleranz von t = 0,1 mm liegen. Bei der Verschiebung muss entweder das Messgerät oder das Werkstück entlang einer Linie geführt werden, die die theoretisch genaue Form hat und in richtiger Lage zur Bezugsachse ist.	
	Gesamt- Plan- lauf	D	-2010	Bei mehrmaliger Drehung um die Bezugsachse D und bei radialer Verschiebung zwischen Werkstück und Messgerät müssen alle Punkte der Oberfläche des tolerierten Elementes innerhalb der Gesamt-Planlauftoleranz von t = 0,1 mm liegen. Bei der Verschiebung muss entweder das Messgerät oder das Werkstück entlang einer Linie geführt werden, die die theoretisch genaue Form hat und in richtiger Lage zur Bezugsachse ist.

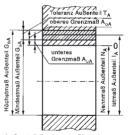
Beispiel: Angabe von Form- und Lagetoleranzen in Fertigungszeichnungen

12 ISO-Toleranzen und ISO-Passungen

Die Grundlage des Austauschbaues und die Voraussetzung für eine wirtschaftliche Reihen- und Massenfertigung in der gesamten Technik ist das genaue Fertigen und das genaue Messeen von Maschinenteillen. Nur wenn sich die Maße von untereinander austauschbaren Maschinenteillen in gewissen Grenzen bewegen und diese Teile beliebig, ohne besondere Ein- oder Anpassarbeit, zusammengebaut oder ersetzt werden können, ist eine rationelle Fertigung und problemlose Reparatur von technischen Geräten möglich.


Des Weiteren ist es zur Erzielung einer bestimmten Verbindungscharakteristik – eines bestimmten Passtoleranzfeldes – zweier Maschinenteile (Presssitz, Übergangssitz oder Spielsitz) erforderlich, dass die Abmessungen und Abmaße der Bauteile an der Verbindungsstelle mit einer ganz bestimmten Toleranz eingehalten werden und durch entsprechende Messmittel überprüft werden können

12.1 Das ISO-Toleranzsystem


Um weitgehend allen Bedürfnissen der Technik gerecht zu werden, wurde das ISO-Toleranzsystem für Nennmaße bis 3 150 mm aufgebaut und soweit wie technisch sinnvoll gestuft. Es umfasst

- ein ISO-Grundtoleranzsystem, das die Maßtoleranzen, die durch ISO-Toleranzgrade angegeben werden, festlegt (Tabelle 3, Seite 180);
- ein ISO-Grundabmaßsystem, das die durch Buchstaben angegebene Lage der Toleranzen festlegt (Tabelle 1 und 2, Seite 180 und 181);
- ein System von ISO-Toleranzfeldern, die durch die ISO-Kurzbezeichnung, bestehend aus einem kleinen Buchstaben (für Außenmaße) oder einem großen Buchstaben (für Innenmaße) und dem Toleranzgrad, gekennzeichnet werden (Abschnitt 12.2).

Begriffe für Maße, Abmaße und Toleranzen

Außenteil (Innenpassfläche)

Das **Nennmaß** N dient zur Größenangabe eines Teiles in der Zeichnung. Es ist das Maß, auf das sich eventuell angegebene Abmaße beziehen.

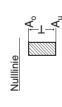
Das Istmaß I ist das durch Messen eines Werkstückes zahlenmäßig ermittelte Maß.

Die **Grenzmaße G** sind die beiden noch zulässigen Maße Höchstmaß und Mindestmaß, zwischen denen (die Grenzmaße selbst eingeschlossen) das Istmaß des Werkstückes liegen darf.

Das **Höchstmaß G**o ist das größere der beiden Grenzmaße.

Das Mindestmaß G,, ist das kleinere der beiden Grenzmaße.

Das Obere Grenzabmaß A, ist gleich Höchstmaß minus Nennmaß.


Das Untere Grenzabmaß A, ist gleich Mindestmaß minus Nennmaß.

Die Maßtoleranz T ist gleich Höchstmaß minus Mindestmaß.

12.2 Bildung von ISO-Toleranzfeldern aus den ISO-Grundabmaßen und ISO-Grundtoleranzen

Aus Tabelle 1 und 2 (Seite 180 und 181) sind die Grundabmaße, d. h. die der Nulllinie nächstliegenden Grenzabmaße Kleinstabstände) unter Berücksichtigung der Vorzeichen zu entnehmen. Das andere Grenzabmaß ergibt sich durch Addition bzw. Subtraktion der Grundtoleranz (T) nach Tabelle 3 (Seite 180).

Grenzabmaße für Außenmaße (Wellen)

Toleranzlage a bis h unterhalb der Nullinie

Grenzabmaße für Innenmaße (Bohrungen)

Toleranzlage A bis H oberhalb der Nulllinie

= + 440 um 250 um II Grundtoleranz Toleranzgrad 10 aus Tab. Grundabmaß (A,) + Grundtoleranz (T) Grundabmaß (A,,) aus Tab. 2 z. B. für Passmaß 420 C 10: Oberes Grenzabmaß =

also 420 C10 = 420^{+0,690}

oberes Grenzabmaß = + 440 mm + 250 mm

= + 690 um

Toleranzlage JS

Nulllinie

z. B. für Passmaß 200 JS9:

Grundtoleranz Toleranzgrad 9 aus Tab. 3 unteres Grenzabmaß oberes Grenzabmaß

57,5 um 57,5 um

115 um +

II

also $200 \text{ JS9} = 200 \pm 0,0575$

symmetrisch zu beiden Seiten der Nullinie

= + 16,5 um =- 16,5 um 33 um II

also 25 js8 = $25 \pm 0,0165$

z. B. für Passmaß 25 is8: oberes Grenzabmaß unteres Grenzabmaß Seiten der Nullinie

Grundtoleranz Toleranzgrad 8 aus Tab. 3

Jnteres Grenzabmaß =

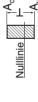
Grundabmaß (A_c) – Grundtoleranz (T) B. für Passmaß 25 d 15:

= - 905 µm interes Grenzabmaß = - 65 µm - 840 µm Grundtoleranz Toleranzgrad 15 aus Tab. 3 Grundabmaß (As) aus Tab.

65 um 840 um

I

also 25 d 15 = $25^{-0.065}_{-0.905}$


symmetrisch zu beiden

Toleranzlage is

Bildung von ISO-Toleranzfeldern aus den ISO-Grundabmaßen und ISO-Grundtoleranzen (Fortsetzung) 12.2

dem Toleranzgrad. Es ist deshalb bei der Bestimmung des Ab Toleranzlage J ändern sich die Grundabmaße auch mit Grundabmaßes neben der Toleranzfeldlage auch der Toleranzgrad zu beachten (siehe Tab. 2). nung des Grundabmaßes neben der Toleranzfeldlage 4b Toleranzlage i können sich die Grundabmaße auch mit dem Toleranzgrad ändern. Es ist deshalb bei der Bestimauch der Toleranzgrad zu beachten (siehe Tab. 1).

annähernd symmetrisch zu Foleranzlage j

annähe	beiden	
ه <u>ک</u> ا	L—'	٦

	Nulli	
Toleranzlage J	annähernd symmetrisch zu beiden Seiten der Nullinie	

Jnteres Grenzabmaß =

mn 6

+ |

=- 4 um

= 13 µm

3ei Toleranzlage J ist in der Grundabmaßtabelle generell das obere Grenzabmaß (A_o) angegeben.

nie

interes Grenzabmaß = - 122 µm - 160 µm Grundtoleranz Toleranzgrad 10 aus Tab. 3 Grundabmaß (A_o) aus Tab. 2 z. B. für Passmaß 125 T10:

> = + 22 um = 13 µm = + 35 µm

=- 122 um 160 um =-282 um ш

also 125 T10 = 125_282

oberes Grenzabmaß = -4 mm + 13 mm 3rundtoleranz Toleranzgrad 6 aus Tab. 3rundabmaß (A,) + Grundtoleranz (T) Grundabmaß (A,,) aus Tab. 1 beiden Seiten der Nullinie Oberes Grenzabmaß = z. B. für Passmaß 25 j6:

also 25 $j6 = 25^{+0,009}_{-0.004}$

Bei Toleranzlage i ist in der Grundabmaßtabelle generell das untere Grenzabmaß (A_u) angegeben.

Toleranzlage k bis zc

Grundabmaß (A,) + Grundtoleranz (T) Grundabmaß (A_u) aus Tab. 1 z. B. für Passmaß 25 p6: Oberes Grenzabmaß = oberhalb der Nullinie

3rundtoleranz Toleranzgrad 6 aus Tab. oberes Grenzabmaß = 22 mm + 13 mm

also 25 p6 = $25_{+0.035}^{+0.035}$

Tabelle 1 ISO-Grundabmaße (Kleinstabstände) für Außenmaße (Wellen)

									•					,													
													Ner		Bbere												
ge	ad	über	1	3	6	10	14	18	24	30	40		65		100				180		225			315			450
elz	zgr	bis	3	6	10	14	18	24	30	40	50	65	80	100	120	140	160	180	200	225	250	280	315	255	400	450	500
Toleranzlage	Toleranzgrad	Vor- zeichen						l	80-G	runda	abma	ße A _g	(Klei	nstab	ständ	de) in	mm (nach	DIN	ISO 2	86 T1	1)					
a		-	270	270	280	2	90	3	00	310	320	340	360	380	410	460	520	580	660	740	820	920	1050	1200	1350	1500	1650
b	9	-	140	140	150	1	50	1	60	170	180	190	200	220	240	260	280	310	340	380	420	480	540	600	680	760	840
С	Toleranzgrade	-	60	70	80		95	- 1	10	120	130	140	150	170	180	200	210	230	240	260	280	300	330	360	400	440	460
d	3UZ	-	20	30	40		50		65	8	10	10	00	13	20		145			170		19	90	21	0	23	30
е	dera	-	14	20	25		32		40	5	i0	- (60		72		85			100		- 11	10	12	25	13	35
f		-	6	10	13		16		20	2	:5	- ;	30	- ;	36		43			50		5	56	6	32	- 6	86
g	alle	-	2	4	5		6		7		9		10		12		14			15		- 1	17	1	8	- 2	20
h		-	0	0	0		0		0		0		0		0		0			0			0		0		0
j1)	5u6	-	2	2	2		3		4		5		7		9		- 11			13		- 1	16	1	18	_ 2	20
j1)	7	-	4	4	5		6		8	1	0		12		15		18			21		2	26	2	28	. 3	32
js a	lle Grac	le .	Die	Grenz	zabma	ße be	tragen	±1/2	T in d	em jev	veilige	n Tole	ranzg	rad													
k	4 bis7	+	0	- 1	1		1		2		2		2		3		3			4			4		4		5
k	ab 8		0	0	0		0		0		0		0		0		0			0			0		0		0
m		+	2	4	6		7		8		9		11		13		15			17		- 2	20	2	21	2	23
n		+	4	8	10		12		15		7		20		23		27			31			34		37		10
р		+	6	12	15		18		22		16		32		37		43			50			56		32		8
r]	+	10	15	19		23		28		14	41	43	51	54	63	65	68	77	80	84	94	98	108		126	132
s	ge	+	14	19	23		28		35		13	53	59	71	79	92	100	108	122	130	140	158	170	190	208	232	252
t	ğ	+	-	-	-	-	-	-	41	48		66	75	91	104	122	134	146	166		196	218	240	268	294	330	360
u	au	+	18	23	28	- 3	33	41	48	60	70	87	102	124	144	170	190	210	236	258	284	315	350	390	435	490	540
V	Ser	+	-	-	-	-	39	47	55	68	81	102	120	146	172	202	228	252	284	310	340	385	425	475	530	595	660
х	alle Toleranzgrade	+	20	28	34	40	45	54	64	80	97	122	146	178	210	248	280	310	350		425	475	525	590	660	740	820
У	alle	+	-	-	-	-	-	63	75	94	114	144	174	214	254	300	340	380	425	470	520	580	650	730	820	920	1000
z	1	+	26	35	42	50	60	73	88	112	136	172	210	258	310	365	415	465	520	575	640	710	790	900		1100	1250
za.		+	32	42	52	64	77	98	118	148	180	226	274	335	400	470	535	600	670	740	820		1000	1150			1600
zb	1	+	40	50	67	90	108	136	160	200	242	300	360	445	525	620	700	780	880	960	1050		1300	1500			2100
ZC		+	60	80	97	130	150	188	218	274	325	405	480	585	690	800	900	1000	1150	1250	1350	1550	1700	1900	2100	2400	2600

¹⁾ Bei Toleranzlage j ist in der Tabelle generell das untere Grenzabmaß angegeben.

Tabelle 3 ISO-Grundtoleranzen (T)

-zu							Nennn	naßberei	ch in mn	1				
Toleranz- grad	über bis	1	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500
IT	K ¹⁾				ISO-0	rundtol	eranzen	Tg in μm	(nach E	IN ISO 2	286 T1)			
1		0.8	1	1	1.2	1.5	1.5	2	2.5	3.5	4.5	6	7	8
2		1.2	1.5	1.5	2	2.5	2.5	3	4	5	7	8	9	10
3		2	2.5	2.5	3	4	4	5	6	8	10	12	13	15
4		3	4	4	5	6	7	8	10	12	14	16	18	20
5	7	4	5	6	8	9	11	13	15	18	20	23	25	27
6	10	6	8	9	11	13	16	19	22	25	29	32	36	40
7	16	10	12	15	18	21	25	30	35	40	46	52	57	63
8	25	14	18	22	27	33	39	46	54	63	72	81	89	97
9	40	25	30	36	43	52	62	74	87	100	115	130	140	155
10	64	40	48	58	70	84	100	120	140	160	185	210	230	250
11	100	60	75	90	110	130	160	190	220	250	290	320	360	400
12	160	100	120	150	180	210	250	300	350	400	460	520	570	630
13	250	140	180	220	270	330	390	460	540	630	720	810	890	970
14	400	250	300	360	430	520	620	740	870	1000	1150	1300	1400	1550
15	640	400	480	580	700	840	1000	1200	1400	1600	1850	2100	2300	2500
16	1000	600	750	900	1100	1300	1600	1900	2200	2500	2900	3200	3600	4000

¹⁾ Klassenfaktor K

Tabelle 2 ISO-Grundabmaße (Kleinstabstände) für Innenmaße (Bohrungen)

																		n mm										
rlage	grad		über bis	1	3 6	6 10	10 14	14 18	18 24	24 30	30 40	40 50	50 65	65 80	80 100	100 120	120 140			180 200		225 250		280 315			400 450	450 500
> Toleranziage	Toleranzgrad		Vor- zeichen						ı	SO-G	irund	abma	Ве А		•	•			(nacl	n DIN	ISO	286 T	1)					
			+	270	270	280		90		00	310	320	340	360	380	410	460	520	580	660	740	820	920 480	1050 540	1200	1350 680	1500 760	165
ВС	rad	.	+	140	140 70	150 80		50 95		60 10	170 120	180	190 140	200 150	220 170	240 180	260 200	280 210	310 230	340 240	380 260	420 280	300	330	360	400	440	46
D	žut	ľ	+	20	30	40		50		65		0		00		20		145			170			90	21			30
Ε	Toleranzgrade		+	14	20	25		32		40		i0		60		72		85			100			10	12		13	
F G	alle T	-	+	6	10	13	-	16 6	-	7		9		30 10		36 12		43 14			50 15			56 17		62 18		86
Н	al	ł	7	0	0	0		0		0		0		0		0		0			0			0		0		0
J ¹⁾	6		+	2	5	5		6		8		0		13		16		18			22			25		29		33
J ¹⁾ J ¹⁾	7	_	+	4	6	8		10		12		4		18		22		28			30			36		9		13
	lle G		+ de	6 Die	10 Gren	12 zabm		15 netrai	gen ±	20 1/2 l'		:4 em ie		8 nen T		34 nzara	ad	41			47			55		60		66
K	5		+	0	1	1		1	9011 2	2		3		2	oioiu	3		3			2			3		3		2
K	6		+	0	2	2		2		2		3		4		4		4			5			5		7		8
K	7	4	+	0	3	5		6	Η.	6		7		9		10		12			13			16 25		17		18
K M	6	\dashv	-	2	1	3		4		4		4		5		6		20			8			9		10		10
М	7		-	2	0	0		0		0		0		0		0		0			0			0		0		0
M	8 abs	J		-2 2	+2	+1	1	7	+	4 8	-	5 9	+	5 11		+6 13		+8			+9 17			+9 20		11	+	11
M N	abs	,	-	4	5	7		9		11		12		14		16		20			22			20 25		26		27
N	7	1	-	4	4	4		5		7		8		9		10		12			14			14		16		17
Ν	8		-	4	2	3		3		3		3		4		4		4			5			5		5		6
N P	ab 9	9	-	4	9	12		0		0		0		0		0		36			0 41			0 47		0		0
R	ı	ł	-	10	12	16		20		24		19	35	37	44	47	56	58	61	68	71	75	85	89	97	103	113	11
S		į	-	14	16	20		25		31	-	18	47	53	64	72	85	93	101	113	121	131	149	161	179	197	219	23
T			-	-	-	- 25		- 30	37	37 44	43	49 65	50 81	59 96	84 117	97	115	127	139	157	171 249	187 275	209 306	231	257 379	283 424	317 477	34 52
۸ ۸		ł	-	18	20	- 25	-	36	43	51	55 63	76	96	114	139	165	195	183	245	275	301	331	376	416	464	519	582	64
Х		ł	-	20	25	31	37	42	50	60	75	92	116	140	171	203	241	273	303	303	376	416	466	516	579	649	727	80
Υ			-	-	-	-	-	-	59	71	89	109	138	168	207	247	293	333	373	416	461	511	571	641	719	809	907	96
Z ZA		ł	_	26 32	32 39	39 49	47 61	57 74	69 94	84 114	107 143	131 175	166	204 268	251 328	303	358 463	406 528	458 593	511 661	566 731	631 811	701 911	781 991	889 1139	989	^087 1437	123
ZB		ł	-	40	47	64	87	105	132	156	195	237	294	354	38	518	613	693	773	871	951	1041	1191	1291	1489	1639	1837	208
ZC	6		-	60	77	94	127	147	184	214	269	320	399	474	578	683	793	893	993	1141	1241	1341	1541	1691		2089	2387	258
P R	7	ł	-	10	11	9		11		14		7	30	32	38	41	48	28 50	53	60	33 63	67	74	36 78	87	93	103	15
S		ł	-	14	15	17		21		27		14	42	48	58	66	77	85	93	105	113	123	138	150	169	87	209	22
Τ			-	-	-	-		-	-	33	39	45	55	64	78	91	107	119	131	149	163	179	198	220	247	273	307	33
<		-	-	18	19	22	- :	32	33	40	51 59	61 72	76 91	91	111	131	155 187	175 213	195	219	241	267 323	295 365	330 405	369 454	414 509	457 572	51 63
X		ł	-	20	24	28	33	38	46	56	71	88	111	135	165	197	233	265	295	333	368	408	455	505	569	639	717	79
Υ			-	-	-	-	-	-	55	67	85	105	133	163	201	241	285	325	365	406	453	503	560	630	709	799	897	97
Z ZA		-	-	26	31	36 46	43	53	65	80	103	127	161	199	245	297	350	400	450	503	558 723	623	690	770	879	979	1077	122
ZB		ł	-	32 40	38 46	61	57 83	70 101	90 128	110	139	171 233	215	263 349	322 432	387 512	455 605	520 685	585 765	653 863	943	803 1033	900	980	1129 1479	1279	1427	157
ZC	7	ł	-	s160	76	91	123	143	180	210	265	316	394	469	572	677	785	885	985	1133	1233	1333	1530	1680	1879	2079	2377	257
Р	ab l	В	-	6	12	15		18		22		26		32		37		43	-		50	_		56		62		8
R S		-	-	10	15 19	19		23 28		28 35		34 43	41 53	43 59	51 71	54 79	63 92	65 100	106	122	130	140	94 158	98 170	106	114 206	126	13
T		ł	-	-	-	-	H	-	-	41	48	54	66	75	91	104	122	134	146	166	180	196	218	240	268	294	330	36
U		l	-	18	23	28	33		41	48	60	70	87	102	124	144	170	190	210	238	258	284	315	350	390	435	490	54
<		[-]	-	-	-	-	39	47 54	55 64	68 80	81 97	102	120 146	146 178	172	202 248	228	252 310	284 350	310 385	340 425	385 475	425 525	475 590	530 660	595 740	83
X		ł	-	20	28	34	40	45	63	76	94	97	122	174	178 214	210 254	300	280 340	310	350 425	385 470	425 520	475 580	525 650	730	820	920	100
Z		ł	-	26	35	42	50	60	73	88	112	136	172	210	258	310	365	415	465	520	575	640	710	790	900	1000	1100	125
ZA		į	-	32	42	52	64	77	98	118	148	180	226	274	335	400	470	535	600	670	740	820	920	1000	1150	1300	1450	160
ZB	J.J.		-	40 60	50	67 97	90	108	136	160	200	242 325	300 405	360	445 585	525	620 800	700	780	880 1150	960 1250	1050	1200	1300	1500	1604 2100	1850 2400	210
ZC	ab t	ď	-	60	80	97	130	150	188	218	2/4	325	405	480	ರಶರ	690	GUU	900	1000	1150	1250	1350	1550	1700	1900	2100	2400	201

1) Bei Toleranzlage J ist in der Tabelle generell das obere Grenzabmaß angegeben.

	über 450 bis 500	-1650	-1650	- 480	-230 -270	-135 -175	-135 -198	-135 -765	- 68	- 68 -108	- 68 -131	- 20 - 47	- 20	- 20	0 27	0 40	0	0 97	0-155	0 250	0-400
_	400 bis 450	-1500 -2130	-1500	- 440	77	1.1	1.1	1.17	-	1.1	1.1	1 1	1 1	1 1	1	1	1	-	ì	17	1
	über 355 bis 400	-1350 1920	-1350	- 400 - 970	-210 -246	-125	-125 -182	-125 -695	- 62 - 87	88	- 62 -119	- 18	- 18	- 18 - 75	25 0	0 %	0 - 57	0 68 -	0 -140	-230	980
_	315 bis 355	-1200	-1200	- 360	יןייןי	1.1	1.1	1 4	-	1 1	1.1	1 1	1 1	1 1	- 1	-	-	-	1	7	Υ
	über 280 bis 315	-1050 1570	-1050 -1860	- 330	-190	-110	-110	-110	- 56	- 56	- 56 -108	- 17 - 40	- 17	- 17 - 69	23	32	52	0 - 81	0-130	0 -210	920
	u 250 bis 280	- 920 -1440	- 920	- 300	17	- 1	1 1	1.7	-	1 1	1 1	1 1	1 1	' '	-			-		T	T
	225 bis 250	- 820 -1280	- 820	- 280																	
	über 200 bis 225	- 740 -1200	- 740 -1460	- 260	-170	-100	-100	-100	- 50	- 50	- 50	- 15	- 15	- 15	- 20	0 - 29	- 46	- 72	-115	-185	-290
_	180 200	- 660	- 660	- 240 - 700																	
	160 bis 180	- 580	- 580 -1210	- 230																	
	über 140 bis 160	- 520 - 920	- 520	- 210 - 610	-145	- 85	- 85	8 4	- 43	1 1 68	1 1	- 14	- 14	- 14	0 - 18	- 25	0 4	- 63	-100	-160	0250
	120 bis 140	- 460 - 860	- 460	- 200																	
	über 100 bis 120	410	950	180	-120 -142	- 72 - 94	- 72 -107	- 72	- 36	- 36	- 36	- 12 - 27	- 12	- 12 - 47	0 - 15	22	35	0 24	0 87	0-140	0 020
_	80 bis 100	-380	-380	-170	11	1 1	1.1	1.7	-	1 1	1 1	1 1	1 1	1 1	- 1	-	-	-	1	1	Y
	über 65 bis 80	980	-360	-150	-100	- 50	06 -	- 60	- 30	99	88	- 10	2 8	5 8	0 13	0 61	۰ 8	0 94	0 4	-120	001-
_	50 bis 65	940 640	-340	-140 -440	1 1	- 1	1 1	1.7	1 1	1 1	1 1	1 1	1 1	1 1	-		·		'	'	
	über 40 bis 50	430 570	-320	-130 -380	8 %	8 8	- 50 - 75	- 50	8 23	- 25	22 22	6 S	55 9	o 46	0 =	0 9	55 0	0 8	0 29	0 00 -	0 091-
_	30 bis 40	310 560	-310	-120	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	-		'		'		
_	über 18 bis 30	-510	900	-110	- 65	- 40	- 40	- 40	- 20	- 20	- 20	- 7	- 7	- 7	06	- 13	- 21	- 33	- 52	- 84	-130
m.	über 10 bis 18	290	-290	- 95	- 50	- 1 8 8	28 93	- 32	- 16 - 24	- 16 - 27	- 16	9 4	- 6	- 6	0 8	0 =	0 81 -	0 - 27	0 8	0 02 -	011-
eich in	über 6 bis 10	4 79 4 30	-280	-230	1 49	1 25	1 25	- 25	- 13	1 2 23	- 13	1 5	- 5	1 1 20 55	0 9	၀၈ ၊	- 15	08	0 %	0 88	0 %
Nennmaßbereich in mm	über 3 bis 6	-270	-270	- 70	88	- 28	8 8	- 140	- 10	10 - 10	- 10	4 0	4 - 12	- 16	1 9	0 8	- 12	0 - 18	0 %	- 48	0 - 75
Nennr	bis 3	-270	-270	,	8 8	1 2 4	- 14	,	- 10	- 12	1 1 1 8	1 1	1 1	- 12	0 4	0 9	- 7	0 - 14	- 25	0 9	0 %
કાર	Grenzabm	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes
ue	Kurzzeiche	a 12	a 13	c 12	9 p	9 9	6.7	e 12	15	9 4	17	9 2	96	26	h 5	9 H	h7	8 H	6 Y	h 10	h 11

Grenzabmaße in μm (1 μm = 0,001 mm)

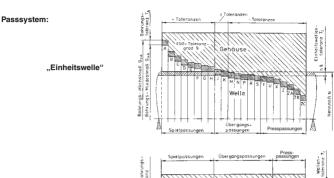
ISO-Toleranzen für Wellen

						,			,											
	über 450 bis 500	026-	- 20	- + 20	+ 31	+13.5	1 + 20	+31.5	+ 32	+ 45	+ + 68	+ + 50	88	+ + 88	+ 67	+ 80	+103	+ 95	+108	+131
	400 bis 450																			
	über 355 bis 400	068-	+ 7	+ 18	+ 29	+12.5	+ 18	+28.5	+ 29	+ 40	+ 61	+ 46	+ 57	+ 78	+ 62	+ 73	+ 94	+ 87	+ 98	+119
	315 bis 355													Ċ						
	über 280 bis 315	0 18-	+ 7 - 16	+ 16	+ 26	+11.5	+ 16	+ 26	+ 27	+ 36	+ 56	+ 43	+ 52	+ 72	+ 57	+ 66	+ 86	+ 79	+ 88	+108
	250 bis 280					Ť.														
	225 bis 250																			
	über 200 bis 225	0 -720	+ 7	+ 16	+ 25	+ 10	+14.5	+ 23	+ 24	+ +	+ + 50	+ 37	+ 46	+ 63	+ 51	+ 60	+ 77	+ 70	+ 79	+ + 96
	180 bis 200																			
_	160 bis 180																			
th in mm	über 140 bis 160	069	+ + +	+ 1 + 1	+ 22	იი + I	+12.5	1 + 20	+ 21	+ 28	+ + 43	+ 33	+ 40	+ 55	+ 45	+ 52	+8167	+ 61	+ 68	+ 83
Bbereic	120 bis 140																			
Nennmaßbereich in mm	über 100 bis 120	0 -540	9 6	+ 13	+ 20	+7.5	+ 11	+17.5	+ 18	25	38	+ 28	+ 35	+ 48	38	+ 45	58	52	59	72 37
_	ui 80 bis 100	Υ	+ 1	+ 1	+ 1	+ 1	+ 1	ŢΤ	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
	über 65 bis 80	0 94	+ 6	+ 12	+ 18	+ 6.5	+r9.5 - 9.5	+ 15	+ 15	+ 21	+ +	+ 24	+ 30	+ 41	+ + 33	+ +	+8150	+ + 32	+ 51	3 82
	50 bis 65																			
	über 40 bis 50	065-	9 49	+ 1	+ 15	+ 5.5	∞ & + ı	+12.5	+ 13	+ 18	+ 27	9 6	+ + 52	+ + 9	+ 28	+ 33	+ 42	+8137	+ 42	+ 51
	30 bis 40																			
	über 18 bis 30	-330	+ 1	+ I	+ 13	+ 4.5	+ 6.5	+10.5	+ 1	+ 15	+ +	+ 17	+ 21	+ +	+ 24	+ 28	+ 36	+ 31	+ 35	+ +
	über 10 bis 18	0 -270	+ _	ထက + I	+ 12	+ 1 4 4	+ 5.5	თ თ + I	o	+ 12	+ 19	+ 15	+ 18	+ 25	+ 20	+ + 23	+ 30	+ 26	+ 29	+ 36
	über 6 bis 10	0-220	+ I	+ 7	+ 10	ღ ღ + I	+ 4.5	+ 7.5	+ 7	+ 10	+ 16	+ 12	+ 15	+ 21	+ 16 + 10	+ 19	+ 125 + 10	+ 21	+ 24	+ 30
	über 3 bis 6	0 -180	+ I	+ 2	+ I 60 4	+25	+ I 4 4	9 9 + 1	+ +	6 + +	+ + 13	+ + 0 +	+ 12	+ 16	+ 13	+ 16	+ 20	+ 17	+ 20	+ 24 + 12
	1 bis 3	- 0	+ 2	+ 4	+ 6	+ 2	ღ ღ + I	+ 1	4 4	9 +	+ 10 0	+ +	+ 8+ 2		+ + 8	+ 10	+ 14	+ 10	+ 12	+ 16
S)	Grenzabma	oberes -	oberes -	oberes -	oberes -	oberes -	oberes -	oberes -	oberes unteres	oberes unteres	oberes unteres	oberes unteres	oberes unteres	oberes	oberes unteres	oberes unteres	oberes unteres	oberes -	oberes unteres	oberes -
L	Kurzzeicher	h 13	9 5 6	9 9 1	j 7 [js 2	o 9sí	p 7si	K 53	k6 °	k7 ^o	m5 c	9 m	m7 cm	n 5 0	9 u	n 7 n	p 5 q	9 d	p7 c

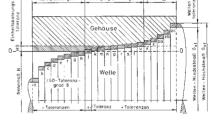
		über	0 900 i bis 0 1000	+ 225	+ 260	+ 530	+ 730	+1070	+ 142	+ 176	+ 226	+ 82	+ 116 + 26	+ 166	+ 56	06 +	+ 140 0	+ 230	0 +	0 +	1	-
			800 800 900																			
		über	630 710 bis bis 710 800	+210	+240	+480	+660	+960	+130	+ 160	+205	+ 74	+ 104	+ 149	900	e o	+125	+200	9320	0 +	1	1
:																						
-		über	500 560 bis bis 560 630	+189	+215	+425	+585	+845	+120	+146	+186	+ +	2 23	± ± 52	+ 4 o	0 +	+110	+175	+280	0 0	1	1
	٠																					
		über	400 450 bis bis 450 500	+175	+135	+385	+535	+765	+108	+131	+165	9 8	88	+117	s1 0	80	0 0	+155	+250 0	4400	+ 33	+ 43
		über	355 bis 400	+161	+182	+355	125	+605	+8198	+119	+151	18	18	+107	g 0	0	68	+140	0 0	0	4 29	39
		ä	315 355 bis bis 355 400	77	77	÷ ÷	± ±	÷ ÷	φ +	+ +	+ +	+ +	+ +	7 +	+	+	+	Ŧ	+	+	+ 1	+ 1
	٠	über	280 bis 315	+142	+162	+320	+430	+630	8 %	+108	+137	49	69	98	g 0	0 25	0	+130	+210 0	0+320	7	36
	_	ä	250 bis 280	77	77	÷ ÷	± ±	÷ ÷	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+	Ŧ	+	+	+ 1	+ 1
	E.		225 bis 250																			
	Nennmaßbereich in mm	über	200 bis 225 225	+129	+146	+285	+390	+560	+ 79	96 +	+122	+ 44	+ 61	+ 87	+ 29	+ 46	+ 72	1115	+185	1290	+ 22	+ 30
i	maßb		180 bis 200																			
	Nen		160 bis 180																			
		über	140 bis 160	+110	+125	+245	+335	+845	+ 68	+ 83	+ 43	+ 39	+ 54	+ 77 + 14	+ 25	0 40	63	+100	160	1250	+ 18	14
		ä		7 +	7 +	7 +	7 +	Ψ+	+ +	+ +	7 +	+ +	+ +	+ +	+	+	+	Ŧ	Ŧ	2	+ 1	+ 1
			120 bis 140																			
		über	100 bis 120	94	+107	+212	+292	+ 72	+ 58	+ 71	36	34	+ 47	+ 66	0 2	35	54	87	+140	+220	+ 16	13
		5	80 100 100	+ +	+ +	¥ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+	+	+	¥	+ 1	+ 1
		jper	65 bis 80	6 29	88	+180 +s160	+250	980	9 8	8 8	30	10 29	6 t	99 0	60	80	0 0	0 74	120	+190	6 6	18
		3	50 bis 65	+ +	+ +	+ ¥	+ +	Ÿ -	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+	+	7	Ŧ	+ 1	+ 1
		über	40 bis 50	8 %	75	+150	+210	+300	41	50	25	25	8 o	948	16	25	98	0 0	0 + 100	+160	10	4 t
			93 8 9 9	+ +	+ +				+ +	+ +	+ +	+ +	+ +	+ +	+	+	+	+	Ŧ		+ 1	+ 1
		über	18 30 30	+ 53	+ 61	+124	+170	+250	+ 33	20 4	+ 54	+ 20	+ 28	+ 40	+ 13 s1 0	+ 21	+ 33	+ 52	+ 84	+130	+ I	+ 12
)		über	10 bis 18	+ 43	+ 50	+102	+142	+212	+ 27	+ 34	+ 43	+ 17	- 24	. 33	11 0	18 + 0	. 27	+ 43	. 70	+110	+ 1	+ 10
		über		+ 34 +	+240 +	+ 83 +	+115 +	+175 +	22	+ 28 +	35	14	20 +	27 +	60	15 4	22 0	36	58	06	ıc 4	8 /
			6 bis 10	28 +	32 +2	68 +	95 +1		18 01	22 + 10 +	28 + 10 +	12 +	4 + +	4 + +	+ 0	+	+ 0	30 +	48 0	75 +	+ I	+ I
-		über	3 bis 6	+ +	+ +	+ +	+ +	+140	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+	+	+	+	+ 1	+ 1
	El	ew	Grenzabi	oberes unteres	oberes unteres	oberes unteres	oberes	oberes unteres	oberes	oberes unteres	oberes unteres	oberes unteres	oberes unteres	oberes unteres	oberes unteres	oberes	oberes unteres	oberes unteres	oberes	oberes unteres	oberes unteres	oberes
		uəu	Kurzzeich	9 H	E 7	5 5	Ξ	E 12	9 4	F 7	8 4	9 5	67	8 5	9 H	Ь Н	8 H	6 H	H 10	Ξ	9 0	77

ISO-Toleranzen für Bohrungen (Auswahl

Grenzabmaße in μm (1 μm = 0,001 mm)


ISO-Toleranzen für Bohrungen

0-	To	leran	zen	für	Во	hru	nge	n (A	Ausv	vahl)									
	über	800 900 bis bis 900 1000	,	28	45	22	0 99	0 06	0 -140	28	- 34	- 34	- 56	- 56 -146	- 56	-100	-100	-240	-220	-220
	ü	800 bis 900	i .	+ 1	+ 1	+ 1	1	1	T	1.1	1.7	1 7	1.7	1 7	1 7	TT	77	7 7	-210	-210
		710 bis 800		25	40	62	0 20	08	0 9	30	00	30-155	0.0	0.0	0 5	8 8	8 8	8 6	-185	-185
	über	630 bis 710	'	+ 1	+ 1	+ 1	1	ű	-125	1 1	- 30	. H	- 50	- 50	- 50	- 88	- 88	- 88	-175	-175
	über	560 bis 630		88	35	55	0 4	0 02	-110	26 70	9.9	9.9	4 8	44	4.2	8 2	8 8	8 8	-155	-155 -225
	qi	500 bis 560	i '	+ 1	+ 1	+ 1	ĩ	T.	Ť	1 1	- 26	- 26	- 44	- 44	- 44	- 78	- 78	- 78	150	-150 -220
	über	450 bis 500	31	20	+31.5	5.5	32	18	29	10	63	11	27	17	- 6	55	15	8 5	-119 -159	-109
	qi	400 bis 450	+ 1	+ 1	20	+48.5 48.5	+ ï	+ i	+ 1	1 1	Ĩ	+ 11	1 1	- 17 - 80	1 1	1 1	- 45	- 68	-113	-103 -166
	über	355 bis 400	29	+ 18	+28.5	44.5	7 29	17	28	- 10 - 46	0	+ 11	26 62	- 16 - 73	5	51	11	- 62 -151	-103	150
	qi	315 bis 355	+ 1	+ 1	\$ \$	44	+ 1	+ 17	+ 1	ìì	ï	+ 1	1 1	11	1 1	1 1	- 41	17	- 97	- 87 -144
	über	280 bis 315	55 26	16 16	26 26	+40.5	5 27	16 36	25 56	9	0	9	- 25	14	5 86	47	36	- 56	- 89	- 78
ε	ë	250 bis 280	+ 1	+ 1	+ 1	44	+ 1	+ 1	+ 1	ı i	ï	+ 1	ïï	1.1	1.1	ii	1.7	ΤŤ	- 85	- 74 -126
Nennmaßbereich in mm		225 bis 250																	- 75	- 67
pereicl	über	200 bis 225	+ 47	+14.5	- + 23	+ 36	+ 5	+ 133	+ 22 - 50	- 787	0 94 -	+ 1 63	- 51	- 14	- 73	- 41	1 33	- 50	- 71	- 63
nmaßt		180 bis 200																	- 68	-108
Nen		160 bis 180																	1 9 8 9	\$ \$
	über	140 bis 160	+ 1	+12.5	8 8	+31.5 -31.5	+ 4	+ 12	+ 1	1 I	0 6	+ 1 55 8	1 1 28	- 12	- 67	1 36	- 28	- 43	88 88	99 99
		120 bis 140																	-56	48
	über	100 bis 120	34	+ 11	+17.5	27	4	10 25	16 38	s16 28	35	6	- 16 - 38	10	58	30	24 59	37	4 8	41 -76
	g	80 bis 100	+ 1	+ 1	ŦŦ	+ 1	+ 1	+ 1	+ 1	1 1	1	+ 1	1 1	1.1	1 1	1 1	1.1	1 1	-44 -66	-38 -73
	über	65 bis 80	82 81	+ 9.5	5 5	ឌឌ	4 5	9	4 8	- s15 - 24	0 8	c +	4 88	တစ္တ	4 8	% &	21	28 82	-37	25 - - - - - -
	_	50 bis 65	+ 1	+ 1	+ 1	+ 1	+ 1	+ 1	+ 1	1.1	-	+ 1	1.1	1.1	1.1	1.1	1.1	1.1	-35	99
	über	30 40 bis bis 40 50	+ 24	∞ ∞ + I	+12.5	+19.5	+ 1	+ 7	+ 12	- 20	- 25	+ 1 34	- 12	1 33	- 42	- 21	- 17	- 26	- 29	- 25
	über	18 bis 30	+ 20	+6.5	+10.5	+16.5	+ 2	+ 6	+ 10	- 4	0 - 21	+ - 29	- 11	- 7	- 36	- 18 - 31	- 14	- 22	- 24	- 20
	über	0 sig	+ 15	1 5.5	იი + I	+13.5	0 0	- 12	8 6	4 5	0 81	+ 2	6 8	- 23	8 9	- 15	1 28	- 45	- 31	- 16
	über	6 bis 10	12 -	+ 4.5	+7.5	+ +	+ 2	+ 5	+ 16	- 12	- 15	- 21	- 7 -	- 19	- 25	- 12 -	- 24	- 15 -	- 16 -	- 13
	über	3 bis 6	+10	4 4	9 + 1	0 6 + I	1 + 2	ო ი + I	+ 5	1 - 1	0 -12	+ 2	- 5	- 4	-20	- 9	- 8	-12	-12	-53
٤		Grenzabi	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes	oberes
	uəu	Kurzzeic	8	9 Sf	JS 7	8 SD	9	× 4	ω ω	9 W	Δ 7	8 2	9 2	۲ Z	ω Ζ	9 d	ь 2	8	9 8	ъ.


12.5 Passsysteme: "Einheitswelle" und "Einheitsbohrung"

Durch entsprechende Paarung von Außen- und Innenmaß-Toleranzfeldlagen lassen sich Spielpaarungen, Übergangspaarungen und Presspaarungen realisieren.

Je nach Einsatzgebiet kommt das Passsystem "Einheitswelle" (Wellentoleranzfeldlage immer "h") oder "Einheitsbohrung" (Bohrungstoleranzfeldlage immer "H") zur Anwendung.

"Einheitsbohrung"

Höchstpassung = Höchstmaß der Bohrung – Mindestmaß der Welle

> 0 Größtspiel

< 0 Kleinstübermaß

Mindestpassung = Mindestpassung der Bohrung – Höchstmaß der Welle > 0 Kleinstspiel

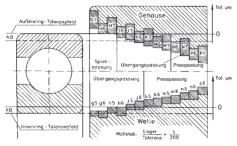
> 0 Kieinsispiei > 0 Größtübermaß

Bei der Paarung eines Außen- und eines Innenteiles gleichen Nennmaßes mit den durch die jeweiligen oberen und unteren Grenzabmaße vorgegebenen Höchst- und Mindestmaßen können sich folgende Sitzarten ergeben:

Spielpassung: Paarung mit einem Passtoleranzfeld, das nach dem Paaren der Teile stets ein Spiel ergibt.

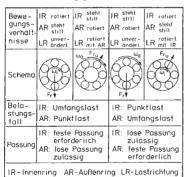
Übergangspassung: Paarung, die je nach Lage der Istmaße der beiden Teile nach dem Paaren sowohl ein Spiel als auch eine Pressung zwischen den Passflächen haben kann.

Übermaßpassung: Paarung mit einem Passtoleranzfeld, das nach dem Paaren der Teile stets eine Pressung zwischen den Passflächen ergibt, bei der also vor dem Paaren der Teile ein Übermaß vorhanden ist.


12.5

12.6 Anwendungsbeispiele von ISO-Passtoleranzfeldern

Einheits- bohrung	Anwendung	Einheits- welle
EB	Spielpassungen	EW
H 11 / a 11	Teile mit sehr großem Spiel und großer Toleranz ; Lokomotiv- und Waggonbau, Kuppelbolzen, Landmaschinenbau	A 11 / h 11
H 11 / c 11	Teile mit großem Spiel und großer Toleranz; Land- und Haushaltsmaschinen	C 11 / h 11
H 10/d9	Teile mit sehr reichlichem Spiel; Transmissionswellen, Stopfbuchsteile, Losscheiben, Vorgelegewellen	D 10/h9
H8/e8	Teile mit reichlichem Spiel; mehrfach gelagerte Werkzeugmaschinenwellen, Gleitlager	E8/h8
H7/f7	Teile mit merklichem Spiel; Werkzeugmaschinenhauptlager, Gleitmuffen auf Wellen, Kolben im Zylinder	F7/h7
H7/g6	Ohne merkliches Spiel verschiebbar; Schiebezahnräder, verschiebbare Kupplungsteile, Ventilhebellagerung	G7/h6
H7/h6	Geschmiert von Hand noch eben verschiebbar; Pinole im Reitstock, Zentrierflansche für Kupplungen und Rohrleitungen	H7/h6
H6/h5	Sehr kleines mittleres Spiel; für sich nicht gegeneinander bewegende Teile	H6/h5
	Übergangspassungen	
H7/j6	Fügen von Hand oder mit leichten Schlägen; für leicht auszubauende Riemenscheiben, Zahnräder, Lagerbuchsen	J7/h6
H7/k6	Gut mit Handhammer fügbar; für Riemenscheiben, Kupplungen, Schwungräder mit Passfederverbindung	K7/h6
H7/m6	Nur schwer mit Handhammer fügbar; einmalig aufgebrachte Riemenscheiben, Kupplungen und Zahnräder auf Elektromotor-Wellen	M7/h6
H7/n6	Mit Presse fügen; für Anker auf Motorwellen und Zahnkränze auf Zahnräder, Lagerbuchsen in Naben	N7/h6
	Presspassungen	
H7/r6	Unter großem Druck oder durch Erwärmung fügbar	R7/h6
H7s6	Bz-Kränze auf GG-Naben, Lagerbuchsen in Gehäusen (s 6 für größere, r 6 für kleinere Durchmesser)	S7/h6
H 8 / u 8	Nur mit Presse oder Temperaturdifferenz fügbar	U8/h8
H8/x8	Zur Übertragung großer Umfangs- oder Längskräfte durch Reibschluss	X8/h8


12.7 Wälzlagertoleranzen und ISO-Toleranzen für Wellen und Gehäuse

Die Toleranzen der Wälzlagerbohrungs- und -außendurchmesser unterliegen nicht dem ISO-Toleranzsystem. Für sie gelten die Toleranzfelder KB (für die Bohrung) und hB (für den Außendurchmesser) nach DIN 620. In beiden Fällen liegt das obere Grenzabmaß dieser Toleranzfelder auf dem Nennmaß. Die unteren Grenzabmaße (in beiden Fällen nach Minus) werden durch die Genauigkeitsgrade nach DIN 620 festgelegt.

Im Zusammenwirken mit den ISO-Toleranzen für Wellen und Bohrungen ergeben sich etwa die im vorstehenden Bild dargestellten Passungen.

12.8 Wahl der Einbau-Passtoleranzfelder für Wälzlager in Abhängigkeit von den Umlaufverhältnissen

Unter dem Umlaufverhältnis ist die Bewegung des jeweiligen Lagerringes im Verhältnis zur Lastrichtung zu verstehen.

Umfangslast liegt vor, wenn der Lagerring umlauft und die Last stillsteht oder wenn der Lagerring stillsteht und die Last umläuft. Bei Umfangslast kann der Lagerring wandem, wenn eint zu loser Passung auf der Welle oder im Gehäuse sitzt. Dies muss auf jeden Fall durch eine genügend feste Passung verhindert werden. Die Passung ist um so fester vorzusehen, je größer die Belastung und der Rinddurchmesser sind.

Punktlast liegt vor, wenn der Ring und die Last stillstehen oder wenn der Ring und die Last mit gleicher Drehzahl umlaufen. Bei Punktlast kann eine losere Passung gewählt werden, da die Gefahr des Ringwanderns gering ist.

Unbestimmte Lastrichtung liegt vor, wenn sich die Richtung der Last unregelmäßig oder pendelnd ändert oder wenn Stöße und Erschüterungen auftreten. Bei diesen Umlaufverhältnissen mit eile beiden Lagerringe verhältnismäßig feste Passungen gewählt werden.

Richtlinien für die Auswahl der Wellen- und Bohrungstoleranzen für die verschiedenen Lagerbauformen sind für gegebene Einbau- und Belastungsverhältnisse den Wälzlagerkatalogen zu entnehmen.

13 Konstruktionselemente

13.1 Schraubenverbindungen

Die Schraube ist eines der ältesten und das am häufigsten und vielseitigsten verwendete Maschinen- und Verbindungselement. Unübersehbar ist in der gesamten Technik der Anwendungsbereich der Schraube in ihrer unterschiedlichsten Form. Je nach Verwendungszweck unterscheidet man:

- Befestigungsschrauben für lösbare Verbindungen aller Art
- Bewegungsschrauben zum Wandeln von Drehbewegungen in Längsbewegungen,
 z.B. Leitspindeln von Drehmaschinen
- Bewegungsschrauben zum Erzeugen großer Kräfte, z.B. bei Ventilen, Spindelpressen, Schraubenwinden, Schraubstöcken und Schraubzwingen
- Dichtungsschrauben zum Verschließen von Einfüll- und Auslassöffnungen, z. B. bei Getrieben. Lagern. Ölwannen und Armaturen
- Einstellschrauben zum Einstellen von Spielen und Nachstellen von Verschleiß
- Messschrauben f
 ür kleine und kleinste Wege (Mikrometer)
- Spannschrauben (Spannschloss) zur Erzeugung von Spannkräften

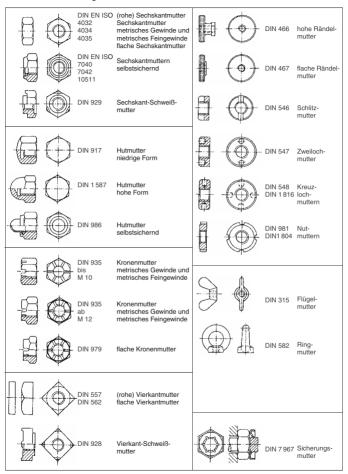
Entsprechend den unterschiedlichen Einsatzbedingungen haben sich bestimmte Gewindeformen bewährt, die in den DIN-Normen festgelegt sind.

Grundformen der gebräuchlichsten Gewinde

Befestigungsge	ewinde		Bewegungsgew	inde	
000		(55%)	300	3000	300
Metrisch Regelgewinde		Whitworth- Rohrgewinde	Trapezgewinde	Sägengewinde	Rundgewinde
DIN DIN		DIN 2999 DIN 3 858	DIN 103 DIN 263 DIN 380	DIN 513 DIN 2 781	DIN 405 DIN 15 403 DIN 20 400

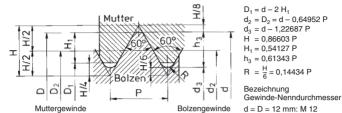
In den folgenden Abschnitten soll nur auf den Einsatz der Schrauben als Befestigungselement eingegangen werden.

13.1.1 Befestigungsschrauben


Schrauben sind die am meisten verwendeten Maschinenelemente zum Verbinden von Bauteilen. Gegenüber Schweiß-, Löt-, Klebe- und Nietverbindungen lassen sich die Bauteile zerstörungsfrei lösen und abermals verbinden. Als Befestigungselement hat die Schraube die Aufgabe zu erfüllen, Bauteile mit der bei der Montage aufgebrachten Vorspannkraft zu verbinden und diese Verbindung bei statischen und dynamischen Beanspruchungen aufrecht zu erhalten.

Neben den Vorteilen der Schraubenverbindung, die in der einfachen Montage, der zerstörungsfreien Lösbarkeit sowie der Übertragungsfähigkeit für große Kräfte liegen, besteht der Nachteil, dass die stark gekerbte Schraube bei dynamischen Beanspruchungen einen Dauerbruch erfahren kann oder dass ein unzulässiger Vorspannkraftabbau in der Verbindung durch Setzerscheinungen in den Kontaktstellen bzw. durch Losdrehen der Mutter von der Schraube erfolgen kann. Eine nochbeanspruchte Schraubenverbindung steht und fällt mit der Fähigkeit ihrer Schrauben, die bei der Montage aufgebrachte Vorspannkraft zu halten oder zu verlieren. Sehr oft ist die Ursache für einen Schraubenduerbruch in einem vorangegangenen Vorspannkraftabbau zu suchen. Eine sorgfältige konstruktive Auslegung und Berechnung einer Schraubenverbindung ist daher unumgänglich.

13.1.2 Übersicht über genormte Schrauben


	DIN EN ISO 4014 8765	Sechskantschrauben metr. Gew. und metr. Feingew.		DIN EN ISO 10642	Senkschrauben mit Innensechskant
	4017 8676	Sechskantschrauben Gewinde annähernd bis Kopf		DIN EN ISO 2009	Senkschrauben mit Schlitz
	4016	(rohe) Sechskantschrauben für Stahlkonstruktionen		DIN 925	Senkschrauben mit Schlitz und Zapfen
	4018	(rohe) Sechskantschrauben Gewinde annähernd bis Kopf		DIN 7969	Senkschrauben m. Schlitz (für Stahlkonstruktionen)
	DIN 6914	Sechskantschrauben mit großen Schlüsselweiten		DIN EN ISO 7046	Senkschrauben mit Kreuzschlitz
	DIN 561	Sechskantschrauben mit Zapfen	(DIN EN ISO 2010	Linsensenkschrauben mit Schlitz
	DIN 564	Sechskantschrauben mit Ansatzspitze		DIN 924	Linsensenkschrauben mit Schlitz und Zapfen
	DIN 2510	Sechskantschrauben mit dünnem Schaft		DIN EN ISO 7047	Linsensenkschrauben mit Kreuzschlitz
	DIN 609	Sechskant- Passschrauben	♠ Λ		Flachrundschrauben
	DIN 7968	Sechskant-Passschrauben für Stahlkonstruktionen		DIN 603	mit Vierkantansatz
	DIN 479	Vierkantschrauben mit Kernansatz		DIN 607	Halbrundschrauben mit Nase
	DIN 478	Vierkantschrauben		DIN 605 DIN 608	Senkschrauben mit Vierkantansatz
[]	DIN 480	mit Bund Vierkantschrauben mit Bund und Ansatzkuppe		DIN 604	Senkschrauben mit Nase
	DIN EN ISO 4762 DIN 6912	Zylinderschrauben mit Innensechskant		DIN 404	Kreuzlochschrauben mit Schlitz
 	DIN EN ISO 1207	Zylinderschrauben mit Schlitz		DIN EN ISO 10644 DIN EN ISO 10673	Kombi-Schrauben Scheiben
-{-	DIN EN ISO 1580	Flachkopfschrauben mit Schlitz		DIN 6900-2 DIN 6904	Kombi-Schrauben Federscheiben
{	DIN 920	Desgl. mit kleinem Kopf		DIN 6900-4 DIN 6907	Kombi-Schrauben Fächerscheiben
	DIN 921	Desgl. mit großem Kopf			
	DIN 922	Desgl. mit kleinem Kopf und Zapfen	THE CHILDREN	DIN ISO 1479	Blechschrauben
	DIN 923	Desgl. mit Ansatz		DIN 7513 DIN 7516	Gewinde-, Schneid- schrauben
	DIN EN ISO 7045	Linienschrauben mit Kreuzschlitz		DIN 571	Holzschrauben

13.1.3 Übersicht über genormte Muttern

13.1.4 Metrische ISO-Gewinde nach DIN 13, Teil 1

Regelgewinde von 1 bis 68 mm Gewinde-Nenndurchmesser

	ewinde-Nenn- urchmesser d = D eihe 1 Reihe 2 Reih		Steigung	Flanken-	Kerndurch	messer	Gewindet	iefe	Rundung
				durchmesser		ı		ı	
Reihe 1	Reihe 2	Reihe 3	P	$d_2 = D_2$	d_3	D ₁	h ₃	H ₁	R
1	1,1		0,25 0,25	0,838 0,938	0,693 0,793	0,729 0,829	0,153 0,153	0,135 0,135	0,036 0,036
1,2	1,1		0,25	1,038	0,893	0,929	0,153	0,135	0,036
1,6	1,4		0,3 0,35	1,205 1,373	1,032 1,171	1,075 1,221	0,184 0,215	0,162 0,189	0,043 0,051
1,0	1,8		0,35	1,573	1,371	1,421	0,215	0,189	0,051
2			0,4	1,740	1,509	1,567	0,245	0,217	0,058
2,5	2,2		0,45 0,45	1,908 2,208	1,648 1,948	1,713 2,013	0,276 0,276	0,244 0,244	0,065 0,065
3			0,5	2,675	2,387	2,459	0,307	0,271	0,072
4	3,5		0,6 0,7	3,110 3,545	2,764 3,141	2,850 3,242	0,368 0,429	0,325 0,379	0,087 0,101
	4,5		0,75	4,013	3,580	3,688	0,460	0,406	0,108
5 6			0,8 1	4,480 5,350	4,019 4,773	4,134 4,917	0,491 0,613	0,433 0,541	0,115 0,144
		7	1	6,350	5,773	5,917	0,613	0,541	0,144
8		9	1,25 1,25	7,188 8,188	6,466 7,466	6,647 7,647	0,767 0,767	0,677 0,677	0,180 0,180
10			1,5	9,026	8,160	8,376	0,920	0,812	0,217
12		11	1,5 1,75	10,026 10,863	9,160 9,853	9,376 10,106	0,920 1,074	0,812 0,947	0,217 0,253
	14		2	12,701	11,546	11,835	1,227	1,083	0,289
16	18		2 2,5	14,701 16,376	13,546 14,933	13,835 15,294	1,227 1,534	1,083 1,353	0,289 0,361
20			2,5	18,376	16,933	17,294	1,534	1,353	0,361
24	22		2,5 3	20,376 22,051	18,933 20,319	19,294 20,752	1,534 1,840	1,353 1,624	0,361 0,433
	27		3	25,051	23,319	23,752	1,840	1,624	0,433
30	33		3,5 3,5	27,727 30,727	25,706 28,706	26,211 29,211	2,147 2,147	1,894 1,894	0,505 0,505
36			4	33,402	31,093	31,670	2,454	2,165	0,577
42	39		4 4,5	36,402 39,077	34,093 36,479	34,670 37,129	2,454 2,760	2,165 2,436	0,577 0,650
	45		4,5	42,077	39,479	40,129	2,760	2,436	0,650
48	52		5 5	44,752 48,752	41,866 45,866	42,587 46,587	3,067 3,067	2,706 2,706	0,722 0,722

13.1.5 Auswahl für Regel- und Feingewinde nach DIN 13, Teil 2

Gewinde- Nenndurd d = D	hmesser		Steigungen für	P			Foir	ngewinde			
Reihe 1	Reihe 2	Reihe 3	Regel gewinde	4	3	2	1,5	1,25	1	0,75	0,5
1 1,2	1,4		0,25 0,25 0,3								
1,6	1,8		0,35 0,35 0,4								
2,5 3	2,2		0,45 0,45 0,5								
4 5	3,5		0,6 0,7 0,8								0,5 0,5
6 8 10			1 1,25 1,5					1,25	1	0,75 0,75 0,75	0,5 ¹⁾ 0,5 ¹⁾
12	14	15	1,75 2				1,5 1,5 1,5	1,25 1,25	1 1 1		
16	18	17	2,5			2	1,5 1,5		1 1 1		
20 24	22		2,5 2,5 3			2 2 2	1,5 1,5 1,5		1 1 1		
	27	25 26	3			2	1,5 1,5 1,5				
30		28 32	3,5			2	1,5 1,5 1,5				
36	33	35	3,5 4		3	2	1,5 1,5 1,5				
	39	38 40	4		3	2	1,5 1,5				
42 48	45		4,5 4,5 5		3 3 3	2 2 2	1,5 1,5 1,5				
	52	50 55	5		3	2 2	1,5 1,5 1,5				
56	60	58	5,5 5,5	4	3	2	1,5 1,5 1,5				
64	68	65	6	4	3	2 2 2					

¹⁾ In ISO 261: 1973 nicht enthalten.

13.1.6 Festigkeitsklassen für Schrauben

Mechanische Eigenschaften von Schrauben, eingeteilt in Festigkeitsklassen Ausschnitt aus DIN EN ISO 898-1

		Festigkeitsklassen									
								8.	.8		
		3.6	4.6	4.8	5.6	5.8	6.8	≤M16	>M16 ¹⁾	10.9	12.9
Zugfestigkeit R _m N/mm ²	nom	300	4	00	5	500		800	800	1000	1200
Zuglestigkeit H _m Willim	min	330	400	420	500	520	600	800	830	1040	1220
Streckgrenze R _{eL} N/mm ²	nom	180	240	320	300	400	480	640	640	900	1080
bzw. 0.2-Dehngrenze R _{P0.2} N/mm ²	min	190	240	340	300	420	480	640	660	940	1100
Bruchdehnung A _s %	min	25	22		20			12	12	9	8
Vickershärte HV	min	95	120	130	155	160	190	250	255	320	385
VICKEISHAITETTV	max			220			250	320	335	380	435
Brinellhärte HB	min	90	114	124	147	152	181	238	242	304	366
Differnate 11D	max	209		209			238	304	319	361	414
Kerbschlagarbeit (ISO-U) Joule	min		-		25	5 –		30	30	20	15

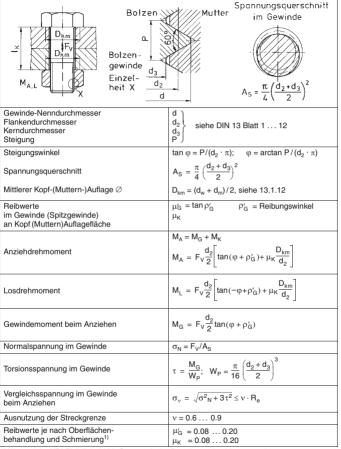
¹⁾ Für Stahlbauschrauben liegt die Grenze bei 12 mm.

13.1.7 Festigkeitsklassen für Muttern

Muttern mit Regelgewinde nach DIN EN 20898-2

Festigkeits-	Zugehörige Schraube		Mutter		
klasse der Mutter			Typ 1	Typ 2	
der wuller	Festigkeitsklasse	Größe	Größe		
4	3.6 4.6 4.8	>M 16	>M 16	-	
5	3.6 4.6 4.8 5.6 5.8	≤M 16 ≤M 39	≤M 39	_	
6	6.8	≤M 39	≤M 39	-	
8	8.8	≤M 39	≤ M 39	> M 16 ≤M 39	
9	9.8	≤M 16	_	≤ M 16	
10	10.9	≤M 39	≤M 39	-	
12	12.9	≤M 39	≤M 16	≤ M 39	

Muttern mit Nennhöhen $\geq 0.8 \cdot D$ (effektive Gewindehöhe $\geq 0.6 \cdot D$) werden bezeichnet mit einer Zahl entsprechend der höchsten Schraubenklasse, mit der die Mutter gepaart werden darf.


Eine Schraube mit Gewinde M 5 bis M 39, die mit einer Mutter der entsprechenden Festigkeitsklasse gepaart wird, ergibt eine Verbindung, die bis zu der für die Schraube festgelegten Prüfkraft belastet werden kann, ohne dass ein Abstreifen des Gewindes auffritt.

194

Typ 1: Mutternhöhe nach DIN EN 20898-2, Nennhöhe ≥ 0.8 · D

Typ 2: Mutternhöhe nach DIN EN 20898-2 (etwa 10 % größer als bei Typ 1)

13.1.8 Berechnung von Schraubenverbindungen

Werte siehe VDI-Richtlinie 2230: Systematische Berechnung hochbeanspruchter Schraubenverbindungen (Abschnitt 13.1.9)

13.1.9 Reibungszahlen μ'_G und μ_K

Reibungszahlen μ'_{G} für verschiedene Oberflächen- und Schmierungszustände

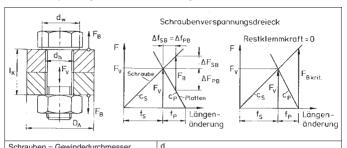
μ_{G}	Gewinde Außengewinde (Schraube)						e)									
	/1	Verk	stof	f	Stahl											
		Obe		fläche	schwarzvergütet oder phosphatiert			galvanisch verzinkt (Zn6)		galvanisch cadmiert (Cd6)		Kleb- stoff				
m	#	he		Gewinde- fertigung	gewalzt			geschnitten	geschnit	ten oder	gewalzt					
Gewinde	Werkstoff	Oberfläche	Gewinde- fertigung		trocken	geölt	MoS ₂	geölt	trocken	geölt	trocken	geölt	trocken			
		blank			0,12 bis 0,18	0,10 bis 0,16	0,08 bis 0,12	0,10 bis 0,16	-	0,10 bis 0,18	_	0,08 bis 0,14	0,16 bis 0,25			
(utter)		galvanisch verzinkt		nitten	nitten	nitten	geschnitten	schnitten	0,10 bis 0,16		1 1	-	0,12 bis 0,20	0,10 bis 0,18	_	-
Innengewinde (Mutter)		galvanisch cadmiert	gesch	troc	0,08 bis 0,14	-	-	-	-	-	0,12 bis 0,16	0,12 bis 0,14	-			
Innenge	GG/GTS	blank			_	0,10 bis 0,18	-	0,10 bis 0,18	-	0,10 bis 0,18	-	0,08 bis 0,16	_			

Reibungszahlen $\mu_{\rm K}$ für verschiedene Oberflächen und Schmierungszustände

μ_{K}	Αι	ıflage	efläc	läche Schraubenkopf															
	V	Verk	stoff		Stahl														
Auflagefläche	#		Obe	rfläche	schwarz	schwarz oder phosphatiert						galvanisch verzinkt (Zn6)		ch t					
lagef	Werkstoff	Oberfläche		Ferti- gung	gepress	t		gedre	ht	geschliffen	gepress	t							
Auf	We	Ope	Ferti- gung	Schmie- rung	trocken	geölt	MoS ₂	geölt	MoS ₂	geölt	trocken	geölt	trocken	geölt					
			geschliffen		1 1	0,16 bis 0,22	1 1	0,10 bis 0,18	1 1 1	0,16 bis 0,22	0,10 bis 0,18		0,08 bis 0,16	-					
		blank	itet		0,12 bis 0,18	0,10 bis 0,18	0,08 bis 0,12	0,10 bis 0,18	0,08 bis 0,12	-	0,10 bis	s 0,18	0,08 bis 0,16	0,08 bis 0,14					
		galvanisch verzinkt	verzinkt d bearbe	verzinkt d bearbe	avanisch gawanisch ble admiert verzinkt Spanend bearbeitet	verzinkt nd bearb	verzinkt nd bearbe	nd bearbo	trocken	0,10 bis	s 0,16	1	0,10 bis 0,16	-	0,10 bis 0,18	0,16 bis 0,20	0,10 bis 0,18	-	-
	Stahl	5	spanen	troc	0,08 bis 0,16						-	-	0,12 bis 0,20	0,12 bis 0,14					
age	S	3.0	ge- schliffen		-	0,10 bis 0,18	-	-	-		0,08 bis 0,16		-						
Gegenlage	GG/GTS	blank	spanend bearbeitet		-	0,14 bis 0,20	-	0,10 bis 0,18	-	0,14 bis 0,22	0,10 bis 0,18	0,10 bis 0,16	0,08 bis 0,16	-					

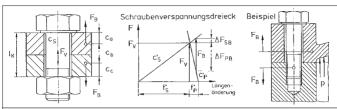
13.1.10 Vorspannkraft F_V und Anziehdrehmoment M_A Schaftschrauben mit Kopfauflagen nach DIN EN ISO 4014

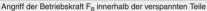
 $\mu_{\text{ges.}} = 0.10$


	Abmessung	Vorspannkraft F _V N			Anziehdrehmoment M _A Nm			
		8.8	10.9	12.9	8.8	10.9	12.9	
	M 4	4 250	6 200	7 250	2.4	3.6	4.2	
	M 5	6 900	10 200	11 900	4.8	7.1	8.3	
	M 6	9 750	14 300	16 800	8.3	12	14	
	M 8	17 900	26 300	30 700	20	30	35	
inde	M 10	28 500	41 800	48 900	40	59	69	
	M 12	41 500	61 000	71 500	69	100	120	
Regelgewinde	M 14	57 000	83 500	98 000	110	160	190	
	M 16	78 500	115 000	135 000	170	250	290	
	M 18	98 000	140 000	164 000	245	345	405	
Œ	M 20	126 000	180 000	210 000	340	490	570	
	M 22	158 000	224 000	263 000	460	660	770	
	M 24	182 000	259 000	303 000	590	840	980	
	M 27	239 000	340 000	398 000	870	1250	1450	
	M 30	291 000	414 000	484 000	1200	1700	1950	
de	M 8 × 1	19 600	28 700	33 600	22	32	37	
	M 10 ×1.25	30 600	44 900	52 500	42	62	72	
	M 12 ×1.25	46 600	68 500	80 000	75	110	130	
Feingewinde	M 12 ×1.5	44 000	64 500	75 500	72	105	125	
	M 14 ×1.5	63 000	92 500	108 000	120	175	200	
	M 16 ×1.5	85 500	125 000	147 000	180	265	310	
Fe	M 18 ×1.5	114 000	163 000	191 000	270	385	450	
	M 20 ×1.5	144 000	206 000	241 000	375	530	620	
	M 22 ×1.5	178 000	253 000	296 000	500	710	830	

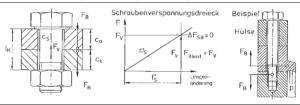
Schaftschrauben mit Kopfauflagen nach DIN EN ISO 4014

 $\mu_{\text{ges.}} = 0.16$

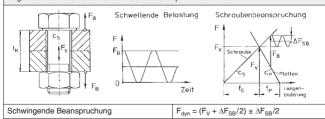

	Abmessung	Vorspannkraft F _V N			Anziehdrehmoment M _A Nm			
		8.8	10.9	12.9	8.8	10.9	12.9	
Regelgewinde	M 4 M 5 M 6 M 8 M 10 M 112 M 114 M 16 M 18 M 20 M 22 M 24 M 24 M 27 M 30	3 750 6 100 8 650 15 900 25 300 36 800 50 500 69 500 87 500 112 000 140 000 162 000 213 000 259 000	5 500 9 000 12 700 23 300 37 100 54 000 74 500 102 000 124 000 160 000 200 000 230 000 303 000 369 000	6 450 10 500 14 800 27 300 43 400 63 500 87 000 120 000 145 000 187 000 234 000 234 000 355 000 431 000	3.2 6.4 11 27 53 92 145 230 325 460 620 790 1150 1600	4.7 9.3 16 39 78 135 215 335 465 660 890 1150 1650 2250	5.5 11 19 46 91 155 250 390 540 770 1050 1300 1950 2650	
Feingewinde	M 8 ×1 M 10 ×1.25 M 12 ×1.25 M 12 ×1.5 M 16 ×1.5 M 18 ×1.5 M 20 ×1.5 M 22 ×1.5	17 400 27 200 41 600 39 200 56 000 76 000 102 000 129 000 159 000	25 600 40 000 61 000 57 500 82 500 112 000 146 000 184 000 227 000	29 900 46 800 71 500 67 500 96 500 131 000 171 000 216 000 266 000	29 56 100 96 160 245 370 520 690	43 83 150 140 235 360 530 740 990	50 97 175 165 275 425 620 860 1150	


13.1.11 Beanspruchung der Schraubenverbindung

Außendurchmesser Kopfauflagefläche Bohrungsdurchmesser der verspannten Teile Außendurchmesser der verspannten Teile Klemmlänge der verspannten Teile Klemmlänge der verspannten Teile Updammer Schraube angenähert: genauer (siehe VDI 2 230):
Bohrungsdurchmesser der verspannten Teile Außendurchmesser der verspannten Teile Klemmlänge der verspannten Teile VIR Federrate der Schraube angenähert genauer (siehe VDI 2230):
Außendurchmesser der verspannten Teile Klemmlänge der verspannten Teile Klemmlänge der verspannten Teile I I I I I I I I I I I I I I I I I I I
Klemmlänge der verspannten Teile I_{K} Federrate der Schraube angenähert: genauer (siehe VDI 2 230): $ c_{S} = E_{S} A / I_{K}; A = Schraubenquerschnitt \\ 1/c_{S} = 1/c_{K} + 1/c_{sch} + 1/c_{G} + 1/c_{GM} $ Federrate der verspannten Teile (VDI 2 230):
Federrate der Schraube angenähert: $c_S = E_S A / I_K$: $A = Schraubenquerschnitt$ genauer (siehe VDI 2 230):
$\begin{array}{c} \text{genauer (siehe VĎI 2 230):} & 1 / c_S = 1 / c_K^2 + 1 / c_{sch} + 1 / c_{g} + 1 / c_{gM} \\ \hline \text{Federrate der verspannten Teile} & c_P = E_P A_{ers} / I_K \\ \text{(VDI 2 230)} & c_P = E_P A_{ers} / I_K \\ \hline \text{dur} \ d_w \leq D_A \leq d_w + I_K & A_{rep} = \text{const.} \\ A_{rep} = \text{Querschnitt einer Ersatzhülse} & \text{mit } x = \frac{\pi}{4} (d_w^2 - d_h^2) + \frac{\pi}{8} d_w (D_A - d_w) [(x+1)^2 - 1] \\ \hline which is the energy of the ene$
Federrate der verspannten Teile (VDI 2 230)
$ \begin{array}{ll} (\text{VDI 2230}) & \text{A}_{ers} = \frac{\pi}{4} (d_w^2 - d_h^2) + \frac{\pi}{8} d_w (D_A - d_w) [(x+1)^2 - 1] \\ \text{ab } D_A = d_w + I_k; & \text{A}_{rep} = \text{const.} \\ \text{A}_{rep} = \text{Querschnitt einer Ersatzhülse} & \text{mit } x = \frac{3}{\sqrt{\frac{I_K d_w}{D_A^2}}} \\ \text{Verlängerung der Schraube durch } F_V & \text{f}_S = F_V/c_S \\ \text{Stauchung der Teile (Platten) durch } F_V & \text{f}_P = F_V/c_P \\ \text{Angriff einer statischen Betriebskraft } F_B \text{ unter dem Schraubenkopf und der Mutter} \\ \text{Zusatzbeanspruchung der Schraube} & \text{A}_{F_{ers}} = F_{F_{ers}} (f_{G_{ers}} + f_{G_{ers}}) \\ \end{array} $
$ab \ D_A = d_w + l_K \cdot R_{rep} = const.$ $A_{rep} = Querschnitt einer Ersatzhülse$ $mit \ x = \sqrt[3]{\frac{l_K d_w}{D_A^2}}$ $Verlängerung der Schraube durch \ F_V$ $f_S = F_V/c_S$ $Stauchung der Teile (Platten) durch \ F_V$ $f_P = F_V/c_P$ $Angriff einer statischen Betriebskraft \ F_B unter dem Schraubenkopf und der Mutter$ $Zusatzbeanspruchung der Schraube$ $AF_{rep} = F_{rep}/c_P$
$A_{rep} = \text{Querschnitt einer Ersatzhülse} \\ \text{mit } x = \sqrt[3]{\frac{ _K d_w}{D_A^2}} \\ \text{Verlängerung der Schraube durch } F_V \\ \text{Stauchung der Teile (Platten) durch } F_V \\ \text{f}_P = F_V/c_P} \\ \text{Angriff einer statischen Betriebskraft } F_B \text{ unter dem Schraubenkopf und der Mutter} \\ \text{Zusatzbeanspruchung der Schraube} \\ \text{AF}_{} = F_{} C_V/(c_+ + c) \\ \text{AB}_{} = $
Verlängerung der Schraube durch F_V $f_S = F_V/c_S$ Stauchung der Teile (Platten) durch F_V $f_P = F_V/c_P$ Angriff einer statischen Betriebskraft F_B unter dem Schraubenkopf und der Mutter Zusatzbeanspruchung der Schraube
Verlängerung der Schraube durch F_V $f_S = F_V/c_S$ Stauchung der Teile (Platten) durch F_V $f_P = F_V/c_P$ Angriff einer statischen Betriebskraft F_B unter dem Schraubenkopf und der Mutter Zusatzbeanspruchung der Schraube
Stauchung der Teile (Platten) durch F_V $f_P = F_V/c_P$ Angriff einer statischen Betriebskraft F_B unter dem Schraubenkopf und der Mutter Zusatzbeanspruchung der Schraube
Angriff einer statischen Betriebskraft F _B unter dem Schraubenkopf und der Mutter Zusatzbeanspruchung der Schraube
Zusatzbeanspruchung der Schraube $\Delta F_{} = F_{-} \cdot c_{-}/(c_{-} + c_{-})$
GGIOTT B
Entlastung der verspannten Teile $\Delta F_{PR} = F_R \cdot c_P / (c_S + c_P)$
durch P _B
Zusätzliche Längung der Schraube $\Delta f_{SR} = \Delta F_{SR}/c_S$; $\Delta f_{SR} = \Delta f_{PR}$
durch P _B
Rückfederung der verspannten Teile $\Delta f_{pp} = \Delta F_{pp}/c_p$; $\Delta f_{pp} = \Delta f_{sp}$
durch P _B
Kritische Betriebskraft, bei der die $F_{Bkrit} = F_V (1 + c_c/c_p)$
Restverspannkraft der Teile Null wird


13.1.11 Beanspruchung der Schraubenverbindung

Scheinbare Federrate der Schhraube	$1/c'_{S} = 1/c_{S} + 1/c_{a} + 1/c_{c}$
Scheinbare Federrate der verspannten Teile	$C'_p = C_b$


Es gelten mit c'_S und c'_P, die Beziehungen der vorhergehenden Seite

Angriff der Betriebskraft $F_{\rm B}$ in der Trennfuge der verspannten Teile

Scheinbare Federrate der Schhraube	$1/c'_{S} = 1/c_{S} + 1/c_{a} + 1/c_{c}$
Scheinbare Federrate der verspannten Teile	$C'_p \rightarrow \infty$
Kritische Betriebskraft, bei der die Restver- spannkaraft der Teile Null wird	$F_{Bkrit.} = F_V$

Schwellende Beanspruchung der Schraubverbindung Angriff der Betriebskraft unter dem Schraubenkopf und der Mutter

13.1.12 Flächenpressung in den Kopf- und Mutterauflageflächen

Genormte Sechskant- und Innensechskantschrauben bei Ausnutzung der Streckgrenze der Schrauben

a) Auflageflächen für Sechskantschrauben DIN EN ISO 4014 und Muttern DIN EN ISO 4032

	des Teller-	bohrung (DIN EN 20273)	fläche	querschnitt-	Flächenpressung unter Kop $p = \frac{A_S}{A_P} \cdot 0, 7R_{P~0,2} ~\frac{N}{mm^2} \label{eq:power_power}$.о. торі
s _{max} mm	ansatzes d _{w min} mm	d _h mm	A _P mm ²	A _S mm ²			N nm²
					8.8	10.9	12.9
5,5	4,6	3,4	7,54	5,03	299	439	514
7	5,9	4,5	11,4	8,78	344	505	591
8	6,9	5,5	13,6	14,2	467	686	802
10	8,9	6,6	28,0	20,1	322	473	553
13	11,6	9	42,0	36,6	390	573	670
16	14,6	11	72,3	58,0	359	527	617
17	15,6	11	96,1	58,0	270	397	465
18	16,6	13,5	73,2	84,3	516	757	886
19	17,4	13,5	94,6	84,3	399	586	686
21	19,6	15,5	113	115	456	670	784
22	20,5	15,5	141	115	365	535	627
24	22,5	17,5	157	157	448	658	770
27	25,3	20	188	192	471	670	784
30	28,2	22	244	245	463	660	772
32	30	24	254	303	550	784	917
34 36 41	31,7 33,6 38	24 26 30	337 356 459	303 353 459	416 459 497	592 653 707	693 764 828 749
	5,5 7 8 110 133 16 17 18 19 22 24 22 24 27 30 32 32 33 34 36	\$\text{S_{max}}\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Smax mm d _{wmin} mm d _h mm 5.5 4.6 3.4 7 5.9 4.5 8 6.9 5.5 10 8.9 6.6 13 11.6 9 16 14.6 11 17 15.6 11 18 16.6 13.5 19 17.4 13.5 21 19.6 15.5 22 20.5 15.5 24 22.5 17.5 27 25.3 20 30 28.2 22 32 30 24 34 31.7 24 36 33.6 26 41 38 30	S _{max} d _{w min} mm d _h mm Ap mm² 5,5 4,6 3,4 7,54 7 5,9 4,5 11,4 8 6,9 5,5 13,6 10 8,9 6,6 28,0 13 11,6 9 42,0 16 14,6 11 72,3 17 15,6 11 96,1 18 16,6 13,5 73,2 19 17,4 13,5 94,6 21 19,6 15,5 141 22 20,5 15,5 141 22 25,3 20 188 30 28,2 22 244 32 30 24 254 34 31,7 24 337 36 33,6 26 356 41 38 30 459	S _{max} d _{w min} d _h A _p A _S 5,5 4,6 3,4 7,54 5,03 7 5,9 4,5 11,4 8,78 8 6,9 5,5 13,6 14,2 10 8,9 6,6 28,0 20,1 13 11,6 9 42,0 36,6 16 14,6 11 72,3 58,0 17 15,6 11 96,1 58,0 18 16,6 13,5 73,2 84,3 19 17,4 13,5 94,6 84,3 21 19,6 15,5 113 115 22 20,5 15,5 141 115 24 22,5 17,5 157 157 27 25,3 20 188 192 30 28,2 22 244 245 32 30 24 254 303 34 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>S_{max} mm d_w min mm d_h mm A_P mm² A_S mm² p = A_P mm² 0.7 FR_P 0.2 n 8.8 10.9 5,5 4,6 3,4 7,54 5,03 299 439 8 6,9 5,5 13,6 14,2 467 686 10 8,9 6,6 28,0 20,1 322 473 13 11,6 9 42,0 36,6 390 573 16 14,6 11 72,3 58,0 359 527 17 15,6 11 96,1 58,0 270 397 18 16,6 13,5 73,2 84,3 399 586 21 19,6 15,5 131 115 456 670 22 20,5 15,5 141 115 365 535 24 22,5 17,5 157 157 448 658 27 25,3 20 188 192 4</td></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S _{max} mm d _w min mm d _h mm A _P mm ² A _S mm ² p = A _P mm ² 0.7 FR _P 0.2 n 8.8 10.9 5,5 4,6 3,4 7,54 5,03 299 439 8 6,9 5,5 13,6 14,2 467 686 10 8,9 6,6 28,0 20,1 322 473 13 11,6 9 42,0 36,6 390 573 16 14,6 11 72,3 58,0 359 527 17 15,6 11 96,1 58,0 270 397 18 16,6 13,5 73,2 84,3 399 586 21 19,6 15,5 131 115 456 670 22 20,5 15,5 141 115 365 535 24 22,5 17,5 157 157 448 658 27 25,3 20 188 192 4

b) Auflageflächen für Innensechskantschrauben DIN EN ISO 4762, DIN 6912 ...

Ab- messung	Kopf- durch- messer	Durch- messer der Auflage- fläche	Durchgangs- bohrung (DIN EN 20273)	Auflage- fläche	Spannungs- querschnitt-	Flächenpressung unter Ko		
d mm	d _K mm	d _{w min} mm	d _h mm	A _P mm ²	A _S mm ²	$p = \frac{A_S}{A_P} \cdot 0$,7R _{P 0,2} -	N nm²
						8.8	10.9	12.9
M 3	5,5	5,07	3,4	11,1	5,03	203	298	349
M 4	7	6,53	4,5	17,6	8,78	224	329	385
M 5	8,5	8,03	5,5	26,9	14,2	237	348	407
M 6	10	9,38	6,6	34,9	20,1	258	379	444
M 8	13	12,33	9	55,8	36,6	294	432	505
M 10	16	15,33	11	89,5	58,0	290	426	499
M 12	18	17,23	13,5	90,0	84,3	420	616	721
M 14	21	20,17	15,5	131	115	394	579	677
M 16	24	23,17	17,5	181	157	389	571	668
M 18	27	25,87	20	211	192	420	598	699
M 20	30	28,87	22	274	245	413	588	688
M 22	33	31,81	24	342	303	409	583	682
M 24	36	34,81	26	421	353	388	552	646
M 27	40	38,61	30	464	459	457	651	762
M 30	45	43,61	33	638	561	406	578	677

13.2 Wellen-Nabenverbindungen

13.2.1 Übersicht

Formschluss	DIN bzw. Hersteller	$\beta_{kt},\beta_{kb}{}^{1)}$	Reibschluss	DIN bzw. Hersteller	β_{kt} . $\beta_{kb}^{1)}$
Querstift	DIN EN ISO 8740 DIN EN ISO 2338	hoch	Press/Schrumpfsitz	siehe 13.2.4 Berech- nung	1.4 1.8 1.7 2.7
Passfeder	6885 Form A–J	1.4 2.1 1.9 2.8	Kegelsitz	228; 254; 1 448; 1 449	1.25
Scheibenfeder	6888	23	Ringfeder-Spannelement	Ringfeder, Uerdingen	1.1 1.3 1.2 1.6
Vielkeilwelle	DIN ISO 14 5471; 5472; 5464 Werkz. M.	1.9 2.2	Ringfeder-Spannsatz	Ringfeder, Uerdingen	1.5 1.7
Zahnwelle	5480	1.9 2.2	Spannhülse	Spieth, Zell/ Neckar	1.1 1.2 1.7 2.3
Kerbzahnwelle	5481	1.5 3.6	Sternscheibe	Ring- spann, Bad Homburg	1.1 1.3 1.5 1.6
Polygonprofil P 3	Fortuna- Werke, Bad Cannstatt Manurhin	1.1 1.3	Toleranzring	Star- Kugel- halter, Schwein- furt	-

¹⁾ Kerbwirkungszahl: β_{kt} für Torsion, β_{kb} für Biegung, bei E 295/ C 35; für hochfestere Werkstoffe höher

Wellen-Nabenverbindungen lassen sich nach der Art der Kraftübertragung in form- und reibschlüssige Verbindungen unterteilen.

Die Berechnung von formschlüssigen Verbindungen erfolgt nach der zulässigen Flächenpressung an den die Normalkraft übertragenden Fügeflächen. Problematisch ist die Erfassung der Lastverteilung, die stark von der Verformung der Welle. Nabe und der Formschlusselemente sowie von den Toleranzen abhängig ist. Zur Rechnungsvereinfachung wird eine gleichmäßige Lastverteilung über der Formschlussfläche angenommen. Bei reibschlüssigen Verbindungen erfolgt die Drehmomentund Kraftübertragung durch Beibschluss, der durch unterschiedliche Verbindungsarten erreicht wird. Reibschlüssige Verbindungen eignen sich besonders zum Übertragen von wechselnden Momenten

13.2.2 Passfeder-Verbindung

Der wichtigste Vertreter der formschlüssigen Wellen-Nabenverbindungen ist die Passfederverbindung. Sie ist iedoch nicht für die Übertragung von stoßartigen und hohen wechselnden Drehmomenten geeignet.

b = Passfederbreite h = Passfederhöhe

t₁ = Wellen-Nuttiefe t₂ = Naben-Nuttiefe

= wirksame Passfederlänge (bei rundstirnigen b abziehen)

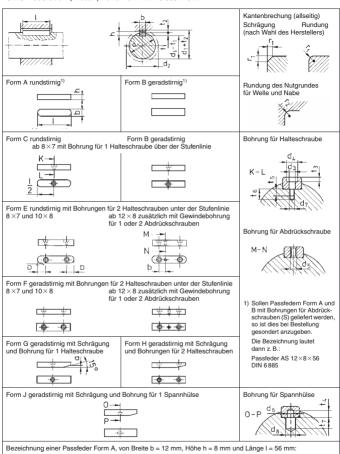
Sie überträgt an ihrer Stirnseite die durch das zu übertragende Moment erzeugte Umfangskraft und wird dadurch auf Flächenpressung beansprucht.

Umfangskraft:

$$F_u = \frac{2 \cdot M_t}{d}$$

wirksame Passfederlänge Anzahl der Passfedern bei i = 2 nur 75 % von I einsetzen

 $p = \frac{F_u}{(b_1 + b_2) \cdot i}$ Flächenpressung:


Richtwerte für die zulässigen Pressungen sind der nachstehenden Tabelle zu entnehmen. Bei der Wellenberechnung ist der festigkeitsmindernde Einfluss der Passfederverbindung $(\beta_{kt} = 1.4 \dots 2.1; \ \beta_{kb} = 1.9 \dots 2.8)$ zu berücksichtigen.

Richtwerte für zulässige Flächenpressungen nichtgleitender Flächen

Werkstoff	zulässige Flächenpressung p _{zul} in N/mm² bei Belastung						
	ruhend	schwellend	stoßartig				
Stahl, ungehärtet	100 200	70 150	40 80				
Stahl, gehärtet	150 250	100 170	50 100				
Stahlguss	100 150	80 100	40 60				
Gusseisen, Temperguss	80 100	60 80	30 50				
Kupferlegierungen (Bronze, Messing)	40 50	30 40	15 20				
AlCuMg ausgehärtet	100 160	70 100	40 60				
AlMg, AlMn, AlMgSi, ausgehärtet	80 150	60 90	30 50				
G AlSi, G AlSiMg	60 70	40 50	25 30				

Allgemein gelten die oberen Werte bei höheren Streckgrenzen, Bruchfestigkeiten und Härten der Werkstoffe, die unteren Werte entsprechend bei kleineren Festigkeitswerten.

13.2.3 Passfedern, Nuten, hohe Form DIN 6885 T1/T2

Bezeichnung einer Passfeder Form A, von Breite b = 12 mm, Höhe h = 8 mm und Länge l = 56 m Passfeder A 12 × 8 × 56 DIN 6 885 Werkstoff: T1 für h \leq 25 mm und T2 für alle Größen St50 – 1 K, T1 für h > 25 mm St60 – 2 K . . .

13.2	.o F	aıs	eu	ıer	н,	nc	nie	rom	יטו	IIV.	580	35 11	<i>,</i> ,	2.,											
25 14	85 95	25	6	25	5,4	4,4	5,5 4			4,1		70	2805)	110	о т	8 Z	10	9	9	M 8	6	15	12	M 8 × 16	10×20
14	75 85	22	0,	22	(1)	4	5,14	0,6/0,8	10	4	12	63	250	90 100		-			8		8	13	0	M 6 × 16	9
20 12	65 75	20	2,5	20	4,9	3,9	5	!	8	4,1	=	56	220	70 80	6,6	W .	80	4,8		9 W	9	Ξ	10	M 6 × 12	8 × 16
118	58 65	18	7	18	4,4	4	4,5		ω	3,1	8,5	50		63					7		7	12	Ξ	M 6	
9t 0t	50	16	9	16	4,3	m'	4		7,5	2,6	80	45	180	50 56	5,5	Z 2	9	4,1	9	M 5 6,5	9	9	80	M 5 ×10	6 × 12
9 9	44 50	14	5,5	14	3,8	2,9	3,5	0,40/0,60	6,5	ď	7	(40)	160	40 45	ω ÷	- 2		4		20		-		M 5	× 9
12	38	12	5	12				0,40/0,60	9	-	9	(32)		36	4,5	Σ 4	2	3,2	വ	M 4 5,5	9	10	7	M 4 × 10	5 × 10
10 8	38	10	4,	10	3,3	2,4	၈ထ		9	2,1	5,5	(25)	110	22 25 28 3 250 280 ⁵	3,4	ε N	4	2,4	4	M 3 4,5	2	80	2	M3×10	4×8
8 /	3 8	8	4	8				04 9	5,4	7,1	4,5	(20) 18	06	22 23				CV		7	4	7		M 3 × 8	4
9	17	9	3,5	9	2,8	2,2	1 40	0,25/0,40	4,4	_	4	(16)	20	4 16 18 180 200											
2	12 17	5	3	2	2,3	1,7	1 10		3,8	1,3	3,5	(12) 10	56	12 14 160 1			ı				ı				
4	10 12	4	2,5	4	1,8	4,5	- 4	0,16/0,25	3	1,1	က	(10)	45	6 8 10 125 140											
Breite b Höhe h	über bis	leichter Sitz N 9		leichter Sitz JS 9				min./max. max./min.				nov	siq		రోర	ž - č	d ₆ H 12	ţ.	\$	۾ ۾	۲,	و و	t ₇	DIN 7984	
Passfeder-Querschnitt (Keilstahl DIN 6880)	Wellendurchmesser d ₁	Welle b fester Sitz P 9	t, mit Rückenspiel	Nabe b fester SitzP 9	t, bei Rückspiel	_ bei Übermaß²)	a d _c = d. + ³⁾	Passfeder r ₁ Nut r ₂	Welle t ₁	Nabe t ₂	$d_2 = d_1 +$	(14)		Stufung von I			Passfeder				Welle			Zylinderschraube DIN 84, DIN 7984 oder DIN 6912	Spannhülse DIN 1481

¹⁾ Für T2 (nur Form A, C und E)getten die Maße t₁, t₂ und d₂ in dem mit breiten Linien umrahmten Teil; alle übrigen Maße wie für Passfedern nach 71. 2) t₂ bei Übermaß ist für Ausnahmeißile vorgesehen. In denen die Passteder nachgearbeitet (eingepasst) wird. 30 d₂ ist der Kleinste Luchmesser (Innemmaß) von Tellen, die zentrisch über die Passteder geschöben werden können. h In () sind die Kleinsten Längen der Basstedern nach T2 angegeben, solern sie nicht mit T1 übereinstimmen. 5) Für Passtedern nach T2 nur bis 250.

13.2.4 Zvlindrische Pressverbände

Zweck der Pressverbände ist das Fügen von Teilen aus wirtschaftlichen und technischen Gründen. Pressverbände sind besonders gut zum Übertragen großer Kräfte und Momente geeignet. Ihre besonderen Vorzüge liegen in einer optimalen Kraftübertragung bei gleichmäßigem Kraftfluss, ihrer hohen Gestaltfestigkeit und Betriebsfestigkeit sowie im Vermeiden von Querschnittschwächung durch zusätzliche mechanische Verbindungselemente.

Nach DIN ISO 286 versteht man unter einer Übermaßpassung eine Passung, bei der das Höchstmaß der Bohrung (Nabe) kleiner ist als das Mindestmaß der Welle, bei der also ein Übermaß vorhanden ist. Dieses Übermaß zwischen Nabe und Welle führt nach dem Fügen zu einem Pressverband mit einer auf den Fügeflächen stehenden Normalkraft. Die Normalkraft erzeugt eine Haftkraft, durch die in der Fuge von einem Teil zum anderen Längskräfte (parallel zur Achse) und Umfangskräfte bzw. Drehmomente (Kräfte, die in der Fuge tangential wirken) übertragen werden können.

Der Fügevorgang erfolgt durch:

a) Längseinpressen des Innenteils

b) Schrumpfen des Außenteils (vorhergehendes Erwärmen)
c) Dehnen des Innenteils (vorhergehendes Unterkühlen)

d) Dehnen des Innenteils und Schrumpfen des Außenteils

Längspressverband

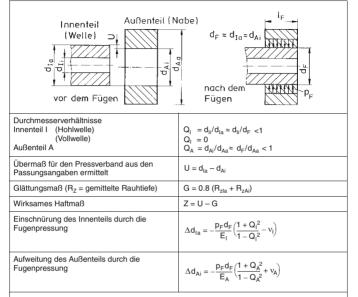
Querpressverband

Aus dem für die Übertragung des Momentes oder der Axialkraft erforderlichen Übermaß U kann die für den Querpressverband (b bis d) erforderliche Fügetemperatur ermittelt werden. Damit sicher montiert werden kann, muss ein Montagespiel \mathbf{s}_{M} berücksichtigt werden. Bei Erwärmung des Außenteiles ist z. B. folgende Übertemperatur für die Montage erforderlich

$$\begin{array}{lll} \textbf{U} + \textbf{s}_{\textbf{M}} = \alpha \cdot \textbf{d}_{\textbf{A}i} \cdot \Delta \textbf{T} & \textbf{d}_{\textbf{A}i} & = \text{Durchmesser des Außenteils innen} \\ \alpha & = \text{Wärmeausdehnungszahl} \\ \Delta \textbf{T} & = \overrightarrow{\textbf{U}} \textbf{Dertemperatur} \\ \Delta \textbf{T} & = \overrightarrow{\textbf{U}} \textbf{Stahl} & \alpha = (11 \dots 12) \ 10^{-6} \ 1/\text{K} \\ \alpha \cdot \textbf{d}_{\textbf{A}i} & \text{Gusseisen} & \alpha = (9 \dots 10) \ 10^{-6} \ 1/\text{K} \\ Aluminium & \alpha = (23 \dots 24) \ 10^{-6} \ 1/\text{K} \\ \end{array}$$

Als Temperaturquellen für das Erwärmen des Außenteiles bzw. die Unterkühlung des Innenteiles können die nachstehenden Möglichkeiten eingesetzt werden.

Anwärmmöglichkeit


Anwärmmöglichkeit	Anwendung bei	Hinweise
Elektro- Heizplatten	(meist kleinen) Serienteilen	Erwärmung häufig unvollkommen Gefahr örtlicher Überhitzung!
Electro-Heizkerne	Hülsen und Naben	Erreichbare Fügetemperatur: bis ≈ 50 °C
Bad-Erhitzung	Außenteilen, auf deren Füge- flächen beim Fügen Öl sein darf	natürliche organische Wärmeträger bis 300 °C; paraffin- bzw. silikon- basische Öle bis 400 °C
Heißluftöfen bzw. Heißluftkammern	Außenteilen, deren Fügeflächen trocken und frei von Oxidschichten sein müssen	üblich bis 400 °C Anwärmtemperatur; in besonderen Öfen bis 650 °C möglich

Mittel zum Unterkühlen

		Siedepunkt des Gases	Hinweise
Kohlensäure-Schnee oder Trockeneis	CO ₂		Fügeteil kühlt relativ langsam ab; schnellere Abkühlung bei Einsatz von Spiritus als Wärmeträger. Beigabe von Trichloräthylen verhindert Vereisen der Fügeteil-Oberflächen
verflüssigter Stickstoff	N ₂		Bei Einsatz in geschlossenen Räumen für gute Belüftung sorgen! Ansonsten keine besonderen Gefahren

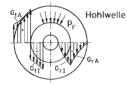
Von der Verwendung verflüssigten Sauerstoffs oder verflüssigter Luft wird wegen großer Explosionsgefahr abgeraten.

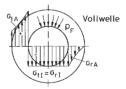
13.2.5 Berechnung eines zylindrischen Pressverbandes (Elastische Beanspruchung)

Das Haftmaß wird beim Fügen des Pressverbandes in eine Einschnürung des Innenteils und eine Aufweitung des Außenteiles gewandelt, so dass die Beziehung gilt:

$$Z = |\Delta d_{Ia}| + |\Delta d_{Ai}|$$

$$Z = p_F \left[\frac{d_F}{E_I} \left(\frac{1 + Q_I^2}{1 - Q_I^2} - \nu_I \right) + \frac{d_F}{E_A} \left(\frac{1 + Q_A^2}{1 - Q_A^2} + \nu_A \right) \right]$$

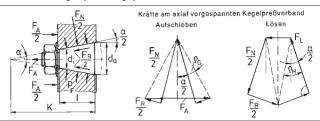

Aus dieser Beziehung ergibt sich der Zusammenhang zwischen dem wirksamen Haftmaß und der Fugenpressung. Die kleiniste Fugenpressung ergibt sich aus dem Mindestübermaß der Passungsangabe für den Pressverband


Axialkraftübertragung	F _A	$= p_F d_F \pi I_F \mu / S$
Erforderliche Fugenpressung	p _{Ferf}	$= F_A S/(d_F \pi I_F \mu)$
Momentenübertragung		$= p_F d_F \pi I_F \mu (d_F/2)/S$
Erforderliche Fugenpressung	p _{Ferf}	= 2 $M_t S/(d_F^2 \pi I_F \mu)$

13.2.5 Berechnung eines zylindrischen Pressverbandes (Fortsetzung)

Haftbeiwerte bei Querpresspassungen	Haftbeiwerte	μ (DIN 7190)
in Längs- und Querrichtung	trocken	geschmiert
Stahl-Stahl-Paarung Druckölverband, gefügt mit Mineralöl entfettete Pressflächen,m it Glyzerin gefügt	- 0,18	0,12
Schrumpfverband, Erwärmung bis zu 300 °C entfettete Pressflächen, Erwärmung bis 300 °C	- 0,20	0,14
Stahl-Gusseisen-Paarung Druckölverband, gefügt mit Mineralöl Druckölverband, entfettete Pressflächen	- 0,16	0,10
Haftbeiwerte bei Längspresspassungen Wellenwerkstoff: Chromstahl Nabenwerkstoff: St 60-2, GS-60 RSt 37-2 GG-25	0,11 0,10 0,120.14	0,08 0,07 0,06
Sicherheit gegen Durchrutschen Querpressverband Längspressverband		52,0 02,5

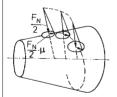
Die Spannungsverläufe im Außen- und Innenteil des zylindrischen Pressverbandes (Beanspruchung dickwandiger Rohre unter Innen- oder Außendruck) sind der Zusammenstellung der wichtigsten Beanspruchungsarten (Abschnitt Festigkeitsberechnung) zu entnehmen.



Die für den Pressverband kritischen Beanspruchungen treten in der Regel am Innenrand des Außenteiles (Nabe) auf. Im Fall einer Hohlwelle ist auch die Spannung σ_{til} am Innenrand des Innenteiles zu überprüfen.

Spannungen am Innenrand des Außenteils	
Tangentialspannung	$\sigma_{tAi} = p_F \frac{Q_A^2 + 1}{Q_A^2 - 1}$ $\sigma_{rAi} = -p_F$
Radialspannung	$\sigma_{rAi} = -p_F$
Vergleichsspannung (GEH)	$\begin{split} \sigma_{vAi} &= \sqrt{\sigma_{tAi}^2 + \sigma_{rAi}^2} - \sigma_{tAi} \cdot \sigma_{rAi} \\ \sigma_{vAi} &= p_F \frac{\sqrt{3 + Q_A}^4}{1 - Q_A^2} < \sigma_{zul} \end{split}$

13.2.6 Der axial vorgesspannte Kegelpressverband



Beim axial vorgespannten Kegelpressverband wird der Fugendruck p_Fdurch axiales Aufschieben der Nabe auf den konischen Wellensitz mit der Kraft F_A erzeugt.

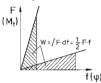
	A 9						
Kegel nach DIN 1 448/49	$d_{\alpha}/K = 1:10; \ \alpha = 5.7258^{\circ} = 5^{\circ}43'29'$						
Aufschubkraft (Axialkraft)	$F_A = F_N \left[\sin \left(\alpha/2 \right) + \mu \cos \left(\alpha/2 \right) \right]$						
Normalkraft	$F_N = p_F d_m \pi I/\cos (\alpha/2); d_m = (d_\alpha + d_i)/2$						
Fugenpressung	$p_F = F_N \cos(\alpha/2) / (d_m \pi I)$						
übertragbare Umfangskraft	$F_U = \mu F_N/S;$ S = Sicherheit						
übertragbares Moment	$M_t = F_U d_m/2$						
Lösekraft	$F_L = F_N [\sin(\alpha/2) - \mu \cos(\alpha/2)]$						

Haftbeiwerte μ siehe Abschnitt "Zylindrischer Pressverband (Längspressverband)"

Im axial vorgespannten Kegelpressverband herrscht Gleichgewicht zwischen der Axialkraft F_A und der Resultierenden aus der Normalkraftkomponente F_N sin $(\alpha/2)$ und der Reibungskomponente F_N un $(\alpha/2)$.

Kräfte auf eine axial vorgespannte Kegelpressverbindung beim Aufschieben unter erstmaliger Drehmomentbelastung

Bei der ersten Drehmomentübertragung kommt zu den Frügeprozess aufgebaute Gleichgewicht wird geändert. Infolge der nun zusätzlich wirkenden Umfangskraft F_U dreht der Reibungsvektor aus der Achsrichtung in die Richtung der von F_U und $\mu \cdot F_N$ gebildeten Resultierenden, so dass nur noch eine Komponente der Reibungskraft fugkantat der axialen Aufschubkraft entgegenwirkt. Als Folge schiebt die Kraft F_A die Nabe schraubenförmig etwas weiter auf den Kegelzapfen, bis die neue Gleichgewichtslage erreicht ist. Dabei geht die Axialkraft F_A zurück, wohingegen F_N und damit p_F ansteigen. Es ergibt sich dadurch eine erhöhte Sicherheit gegen Rutschen der Verbindung.


Wird in dem Kegelpressverband eine zusätzliche Passfeder (siehe DIN 1448/1449) oder Scheibenfeder verwendet, so überträgt diese allein das gesamte Drehmoment, weil sie das schraubenförmige Aufschieben verhindert. Eine Kombination von Kegelpressverband (kraftschlüssig) und Passfeder (formschlüssig) ist daher technisch nicht sinnvoll.

133 Elastische Elemente, Federn

Elastische Elemente – in der Praxis Federn genannt – sind Bauteile, die sich durch ihre Fähigkeit auszeichnen. Arbeit aufzunehmen und zu speichern, nach Wunsch ganz oder teilweise wieder abzugeben oder zur Aufrechterhaltung einer Kraft zur Verfügung zu stehen. Dementsprechend erstreckt sich die Anwendung von Federn auf folgende Funktionen:

- Arbeitsspeicher: Speicherung von potentieller Energie (z. B. Spannfeder eines Luftgewehres. Federn von mechanischen Uhren)
- Kraft-Weg-Wandler: Umsetzung von Kraft in Weg (z. B. Federwagen, Dehnschrauben, Federn in Schalt- und Rutschkupplungen)
- Energiewandler: Dämpfung von Stößen und Schwingungen. Wandlung der Stoßenergie in Wärmeenergie (z. B. Stoßdämpfer, Puffer, Schwingmetalle).

Im Folgenden sollen ausschließlich mechanische Federn betrachtet werden. Über das Verhalten einer Feder gibt das Federdiagramm oder die Federkennlinie Aufschluss. Man versteht darunter die Abhängigkeit der Federkraft (bzw. des Federdrehmomentes) von der Verformung (Längenänderung oder Verdrehwinkel).

Lineare Kennlinien

Gekrümmte Kennlinien a progressiv; b degressiv

bei Dämpfungsfedern

Für lineare Federkennlinien, wie sie die meisten Metallfedern aufweisen, ist die Abhängigkeit wie folgt gegeben:

bzw.
$$M_t = c_t \cdot \phi$$
 M_t

Federrate:

 $c_t = \frac{M_t}{C}$ Bei nichtlinearen Federn kann eine Federrate (Federsteifigkeit) für den Arbeitspunkt durch die

Tangentensteigung angegeben werden $c_t = \frac{dM_t}{d\omega}$ $c = \frac{dF}{df}$

Die elastische Federarbeit W ist diejenige Energie, die in einer Feder beim Einwirken einer äußeren Belastung als potentielle gespeichert wird. Sie ist durch den Flächeninhalt unterhalb der Federkennlinie gegeben

$$W = \int\limits_0^f \! F df \qquad \qquad bzw. \quad W = \int\limits_0^\phi \! M_t d\phi \; . \label{eq:W}$$

Bei Federn mit linearer Kennlinie wird zwischen dem unbelasteten Zustand und der Belastung folgende elastische Federarbeit gespeichert:

$$W \,=\, \frac{1}{2} \cdot \, c \, f^2 = \frac{1}{2} \, F \cdot f \qquad \quad \text{bzw.} \qquad W \,=\, \frac{1}{2} \cdot c \, \phi^2 = \frac{1}{2} \, M_t \cdot \phi \;. \label{eq:W}$$

Wird eine Feder wiederholt belastet und entlastet, so ist bei genügender Dämpfungsfähigkeit (Werkstoffdämpfung oder äußere Reibung) die Kennlinie für die Belastung und Entlastung unterschiedlich. Die von diesen beiden Kennlinien umschlossene Fläche ist ein Maß für die Dämpfungsarbeit W_R.

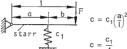
13.3.1 Federraten, Verformungen und Beanspruchung metall. Federn

Federart	Federrate c, c_t Verformung f, ϕ	Haupt- beanspruchung	Gestalt- nutzwert
Rechteckfeder	$c = \frac{3EI_a}{I^3} = \frac{bh^3E}{4I^3}$ $f = \frac{FI^3}{3EI_a} = \frac{4FI^3}{bh^3E}$	$\sigma_b = \frac{M_b}{W_a} = \frac{6FI}{bh^2}$	$\eta_A = \frac{1}{9}$
Dreieckfeder F	$c = \frac{2EI_0}{I^3} = \frac{b_0h^3E}{6I^3}$ $f = \frac{FI^3}{2EI_0} = \frac{6FI^3}{b_0h^3E}$	$\sigma_b = \frac{M_b}{W_0} = \frac{6FI}{b_0 h^2}$ $b(x) = (b_0/I)x$	gleiche Beanspruchung $\eta_A = \frac{1}{3}$
Zyl. Schraubenfeder	$c = \frac{Gd^4}{8iD^3}$ $f = \frac{8FiD^3}{Gd^4}$ $i = Windungszahl$	$\tau = \frac{M_t}{W_p} = \frac{8FD}{\pi d^3}$	$\eta_A = \frac{1}{2}$
Tellerfeder P IV I F D D D D D D D D D D D D D D D D D D	$c \approx \frac{4E}{1 - v^2} \frac{t^3}{K_1 D_e{}^2} \label{eq:continuous}$ $f \ddot{u} r (I_0 - t) / t \pounds 0, 4$ $D_e / D_i = 2 \; ; K_1 = 0, 69$	$\begin{split} \sigma_{I,II} &\approx \pm F \frac{K_3}{t^2} \\ \sigma_{III,IV} &\approx \pm F \frac{K_3}{t^2} \; \frac{D_i}{D_e} \\ K_3 &= 1.38 \end{split}$	$\eta_A < \frac{1}{3}$
Spiralfeder M _t	$\begin{aligned} c_t &= \frac{EI_a}{I} = \frac{Ebs^3}{12 \cdot I} \\ \phi &= \frac{M_tI}{EI_a} = \frac{12M_tI}{bs^3E} \\ I &= \text{Länge der Feder} \end{aligned}$	$\sigma_b = \frac{M_t}{W_a} = \frac{6M_t}{bs^2}$ $M_b = M_t = const.$	$\label{eq:partial_problem} \begin{aligned} & \text{Rechteck-} \\ & \text{querschnitt} \\ & \text{b, s} \\ & \eta_A = \frac{1}{3} \end{aligned}$
Zyl. Schraubenbiegefeder	$\begin{split} c_t &= \frac{EI_a}{I} = \frac{E\pi d^4}{64 \cdot I} \\ \phi &= \frac{M_t I}{EI_a} = \frac{64 M_t I}{\pi d^4 E} \\ I &= \text{Länge der Windungen} \end{split}$	$\sigma_b = \frac{M_t}{W_a} = \frac{32 M_t}{\pi d^3}$ $M_b = M_t = const.$	Kreisquerschnitt d $\eta_A = \frac{1}{4}$
Drehstabfeder Mt	$\begin{split} c_t &= \frac{GI_p}{I} = \frac{G\pi d^4}{34 \cdot I} \\ \phi &= \frac{M_t I}{GI_p} = \frac{32M_t I}{\pi d^4 G} \end{split}$	$\tau = \frac{M_t}{W_p} = \frac{16M_t}{\pi d^3}$	$\eta_A = \frac{1}{2}$

¹⁾ genauere Berechnung siehe DIN 2092

13.3.2 Federraten für einige elastische Systeme

Biegestab mit überkragendem Ende


Sonderfall a = b = 1/2

$$c = \frac{3E I_a}{(a+b)b^2}$$

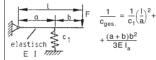
Sonderfall
$$a = b = I/2$$

$$c = \frac{12L I_a}{I^3}$$

Drehbarer Stab, federgestützt

Sonderfall
$$a = b = 1/2$$

Biegestab eingespannt und gestützt



$$c = \frac{12EI_aI^3}{a^3b^2(3I+b)}$$

Sonderfall
$$a = b = I/2$$

$$c = \frac{768EI_a}{7 \cdot I^3}$$

Drehbarer Stab, federgestützt

Biegestab eingespannt und geführt

$$c = \frac{12EI_a}{I^3}$$

Fachwerke

$$c = "1" F \sum_{i=1}^{n} \frac{E_i A_i}{N_i \overline{N}_i I_i}$$

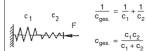
Ni = Normalkräfte infolge "1"

Biegestab beidseitig eingespannt

$$c = \frac{3EI_aI^3}{a^3b^3}$$

$$c = \frac{192I_a}{I^3}$$

Auftrieb


$$c = A \cdot \rho \cdot g$$

Federn parallel

$$c_{ges.} = c_1 + c_2$$

Federn in Reihe

$$c_{ges.} = \frac{c_1 c_2}{c_1 + c_2}$$

13.3.3 Verformung, Federrate und Beanspruchung von Gummifedern

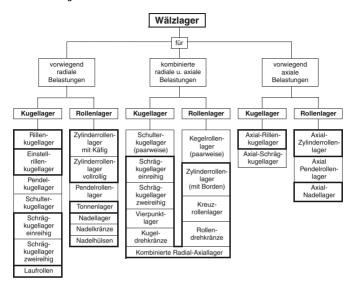
Federart	Verformung f/Federrate c	Beanspruchung
	veriorinarig i/i ederrate c	Deanspruchung
Scheibenfeder (Druck)	$f = \frac{Fh}{EA} = \frac{4Fh}{E\pi d^2}$	$\sigma_d = E \ \epsilon = \frac{F}{A}; \ \epsilon = \frac{f}{h}$
h f	$c = \frac{F}{f} = \frac{EA}{h} = \frac{E\pi d^2}{4h}$	$F_{zul} = \frac{\pi d^2}{4} \sigma_{zul}$
	Formfaktor $k = \frac{d}{4h}$	
Reckteckfeder (Schub)	$f = \frac{Ft}{GA} = \frac{Ft}{GbI}$	$\tau = G\gamma = \frac{F}{A}; \gamma = \frac{f}{t}$
Ţ,	$c = \frac{F}{f} = \frac{G b I}{t}$	$F_{zul} = G b I \gamma_{zul}$
<u>+ 380000</u>	Breite b	
Hülsenfeder (Schub)	e r.	
↓F	$f = \frac{F}{2\pi hG} \ln \frac{r_a}{r_a}$	$\tau_i = \frac{F}{A_i} = \frac{F}{2\pi r \cdot h}$
h 	$c = \frac{F}{f}$	$F_{zul} = 2 \pi r_i hG \gamma_{zul}$
Hülsenfeder (Drehschub)	Maranas	г М
 	$\phi = \frac{M_t}{4\pi IG} \left(\frac{1}{r_i^2} - \frac{1}{r_a^2} \right)$	$\tau_i = \frac{F}{A_i} = \frac{M_t}{2\pi r_i^2 I}$
r _a r _i M _t	$c_t = \frac{M_t}{\phi}$	$M_{t zul} = 2 \pi G r_i^2 I \gamma_{zul}$
Hülsenfeder		г
(Druck, Schub)	$f = \frac{F}{\pi I(E + G)} \ln \frac{r_a}{r_i}$	$\sigma_{\text{d max}} = \frac{2}{\pi} \frac{F_{\text{max}}}{Ir_{i}}$
f i	$c = \frac{F}{f}$	$F_{zul} = \frac{\pi I r_i}{2} \sigma_{d zul}$
 - -		

Shore-	Anhaltswerte für die überschlägige Berechnung von Gummifedern Shore- E-Modul E _{st} G-Modul Zul. stat. Verformung bei Dauerbelastung bei Dauerbelastung bei Dauerbelastung											
Sh (A)	13/111111		N/mm ²	Dei Daueibi	siasturiy /6	N/mm ²	naotung					
-	Druck k = 1/4 k = 1,0		-	Druck	Schub Zug	Dr k = 1/4	uck k = 1,0	Schub Zug				
30	1,1	4,5	0,3		50 75	0,18	0,7	0,20				
40	1,6	6,5	0,4		45 70	0,25	1,0	0,28				
50	2,2	9,0	0,55	10 15	40 60	0,36	1,4	0,33				
60	3,3	13,0	0,8		30 45	0,50	2,0	0,36				
70	5,2	20,0	1,3		20 30	0,80	3,2	0,38				
Zulässige W	echselbea	anspruchu	ingen 1/3 bis	1/2 der zuläs	sigen stat. B	eanspruch	nunaen.					

13.3.4 Eigenschaften von Elastomeren für Gummifedern

Elastomere mit Kurzzeichen und Handels- namen- Beispiel	Styrol-Butadien- Kautschuk	Naturkautschuk (Polyisopren)	Butyl-Kautschuk	Ethylen-Propylen- Dien-Kautschuk	Chlorbuladien- Kautschuk	Acrylnitril-Butadien- Kautschuk	Polyurethan- Kautschuk	Silikon- Kautschuk	Polyacrylat- Kautschuk (PA)	Fluor- Kautschuk
	SBR	NR	JIR	EPDM	CR	NBR	AU, EU	VMQ	ACM	FKM
Eigenschaften	Buna, Hüls	Gummi	Butyl	Buna AP	Neopren	Perbunan	Vulkollan	Silopren	Cyanacryl	Viton
Dichte in t/m ³	0,92	0,95	0,93	-	1,23	0,98	1,26	1,19	-	-
Zugfestigkeit in N/mm ² (DIN 53504)	24	28	15	18	20 27	22 27	3032	10	15	15
Bruchdehnung in % Höchstwert (DIN 53504)	700	1000	900	800	800	800	600	500	-	-
Shorehärte A (sh) (DIN 53505)	40 95	30 98	40 90	40 90	40 95	40 95	65 95	40 90	55 85	60 90
Temperatureinsatz- bereich in °C	-30 +90	-40 +70	-25 +110	-35 +130	-25 +100	-25 +100	-15 +80	-60 +200	-15 +150	-20 +220
Ölbeständigkeit	gering	gering	gering	mittel- mäßig	mittel- mäßig	gut	sehr gut	gut	sehr gut	sehr gut
Benzinbeständigkeit	-	-	-	-	-	gut	gut	mittel- mäßig	sehr gut	sehr gut
Ozonbeständigkeit	gering	gering	sehr gut	hervor- ragend	gut	gering	sehr gut	sehr gut	sehr gut	sehr gut
Kriechfestigkeit	sehr gut	hervor- ragend	mittel	gut	gut	sehr gut	gut	gut	gut	gut
Rückprallelastizität	gut	sehr gut	gering	gut	gut	gut	sehr gut	gut	gering	gering
Dämpfung	gut	mittel- mäßig	hervor- ragend	gut	gut	sehr gut	gut	gut	sehr gut	hervor- ragend
Abriebfestigkeit	sehr gut	sehr gut	-	-	gut	-	sehr gut	-	-	-
Haftfestigkeit an Metall	gut	hervor- ragend	mittel- mäßig	mittel- mäßig	gut	sehr gut	sehr gut	mittel	mittel	gut
Spezielle Eigenschaften		c)	a) b)	-	-	-	e)	d)	e)	b)
Verarbeitbarkeit					-	-	-	-	hell her- stellbar	schwer
Elektr. Isolierfähigkeit	gut	sehr gut	sehr gut	sehr gut	gering	-	gering	gut	mäßig	gut
Preis	tief	tief	tief	tief	mäßig	mäßig	mittel	hoch	hoch	sehr hoch

a) Gasdurchlässigkeit sehr gering
 b) Säurebeständigkeit gut


Quelle: Dubbel

c) Brennbar d) Flammwidrig

e) Wasserempfindlich bei 40 °C

13.4 Wälzlager

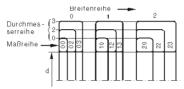
13.4.1 Wälzlager-Bauformen-Übersicht

Jede Wälzlagerbauform hat charakteristische Eigenschaften, die sie für bestimmte Lagerungsfälle besonders geeignet machen. Allgemein gültige Regeln für die Wahl der Lagerart lassen sich nicht aufstellen, da meist mehrere Faktoren berücksichtigt und gegeneinander abgewogen werden müssen. In vielen Fällen ist mindestens eine der Hauptabmessungen des Lagers – meist der Bohrungsdurchmesser – durch die Konstruktion bereits festgelegt. Für kleine Wellendurchmesser kommen hauptsächlich Rillenkugellager, für große Wellendurchmesser Rillenkugellager, Zylinderrollenlager und Pendelrollenlager in Frage.

Wenn in radialer Richtung wenig Platz zur Verfügung steht, müssen Lager mit geringer Querschnittshöhe gewählt werden (z. B. Nadelkränze; Nadellager ohne oder mit Innenring, Rillenkugellager und Pendelrollenlager bestimmter Reihen).

Bei axial beschränktem Einbauraum eignen sich bestimmte Lagerreihen von einreihigen Zylinderrollenlagern oder Rillenkugellagern (für radiale und kombinierte Belastungen) sowie Axial-Nadelkränze, Axial-Nadellager oder Axial-Rillenkugellager bestimmter Reihen (für axiale Belastungen).

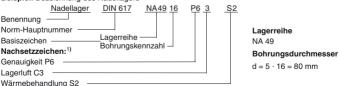
Die Größe der Belastung ist in erster Linie für die Bestimmung der Lagergröße ausschlaggebend. Im Allgemeinen können bei gleichen äußeren Abmessungen Rollenlager höher belastet werden als Kugellager. Bei kleinen und mittleren Belastungen werden daher meist Kugellager, bei höheren Belastungen und größeren Wellendurchmessern häufig nur Rollenlager verwendet.


13.4.2 Wälzlager-Bauformen und ihre Bezeichnungen (DIN 623, Auszug)

Bauform	Benennung	Lagerart	Lagerreihe Maßreihen nach DIN 616	DIN
0	Rillenkugellager (einreihig) (zweireihig)	6	18 28 38 19 39 10 02 03 04 ¹⁾ 22 ¹⁾	625 Teil 1/3
	Pendelkugellager	1	02 03 ¹⁾ 22 23 ²⁾	630
	Schrägkugellager (einreihig) (zweireihig)	7	02 03 ¹⁾ 32 33 ³⁾	628 Teil 1/3
	Axial-Rillen- kugellager (eins. wirkend) (zweis. wirkend)	5	11 12 13 14 22 23 24	711 715
	Zylinder- (einreihig) rollenlager (zweireihig)	NU NNU	10 20 22 23 02 03 04 ¹⁾ 49	5 412 Teil 1/4
	Zylinderrollenlager (zweireihig, vollrollig)	NNC NNCF NNCL	48 49	5 412 Teil 9
	Pendelrollenlager	2	39 30 40 31 41 22 32 23	635 Teil 2
	Axial-Pendelrollenlager	2	92 93 94	728
	Kegelrollenlager	3	29 20 30 31 02 22 32 03 13 23	720
	Axial-Zylinderrollenlager (einseitig wirkend)	8	11 12	722
7770\0777	Nadellager	NA	48 49	617
	Kombiniertes Nadellager	NKIA	59	5 429 Teil 2
	Nadelkranz	K	Die Maßreihen sind nicht in DIN 616 definiert Abmessungen nach	5 405 Teil 1
ø⊟ø⊏	Axial-Nadelkranz	AXK	DIN 5 405 T1/T2	5 405 Teil 2

¹⁾ Das Zeichen für die Breitenreihe wird bei der Bildung der Zeichengruppe für die Lagerreihe unterdrückt.
2) Das Zeichen für die Lagerart, "t wird bei der Bildung der Zeichengruppe für die Lagerreihe unterdrückt.
3) Das Zeichen für die Lagerart "o" wird bei der Bildung der Zeichengruppe für die Lagereihe unterdrückt.

13.4.3 Maßreihen nach DIN 616 (Juni 2000)


In DIN 616 sind Maßpläne für Wälzlager festgelegt. Die Kurzzeichen der in ihnen enthaltenen Maßreihen setzen sich aus der Kennziffer der Breiten- bzw. der Höhenreihe an erster Stelle und der Kennziffer bzw. dem Kurzzeichen der Durchmesserreihe an zweiter Stelle zusammen. Ein Beispiel für die Bildung von Maßreihen ist nachstehend dargestellt. Die für die einzelnen Lagerarten bestehenden Maßreihen können DIN 616 entnommen werden.

13.4.4 Bohrungskennzahlen für die Lagerbohrung

U	sdurchm. im	Bohrungsdurchm. mm	Bohrungs- kennzahl	Bemerkung
über	bis	Beispiele		
_	10	2,5 3 8	/2,5 /3 /8	Das Bohrungsmaß in mm wird unverschlüsselt an das Kurzzeichen für die Lagerreihe angehängt
		In folgenden Ausna wurde der Schrägs weggelassen:		Rillenkugellager: 607, 608, 609, 623, 624, 625, 626, 627, 628, 629, 634, 635, Pendelkugellager: 126, 127, 129, 135
10	17	10 12 15 17	00 01 02 03	Für alle Lagerreihen mit Ausnahme Reihen E
17	480	20 100 200 480	04 20 40 96	Bohrungskennzahl = 1/5 des Bohrungs- durchmessers in mm. Für Durchmesser bis 45 mm wird vor die Bohrungskennzahl eine "0" gesetzt.
480	alle Größen	500 600	/500 /600	Bohrungsdurchmesser in mm durch Schrägstrich getrennt an die Lagerreihe.

Beispiel: Bezeichnung des Nadellagers

Nachsetzzeichen werden hinter das Basiszeichen gesetzt. Sie ergänzen den Bezeichnungsteil und bestimmen Normal-, Varianten- oder Sonderausführungen des Lagers (siehe DIN 623 bzw. Kataloge der Hersteller).

13.4.5 Tragfähigkeit und Lebensdauer

Die Bestimmung der erforderlichen Lagergröße geht von den Anforderungen an Belastbarkeit, Lebensdauer und Betriebssicherheit des Wätzlagers aus. Als Maß für die Tragfähigkeit eines Wätzlagers werden bei der Lagerberechnung die **Tragzahlen** verwendet, wobei für umlaufende Lager (dynamische Belastung) die **Dynamische Tragzahl**, für Lager ohne oder mit selten auftretender Drehbewegung (statische Belastung) die **Statische Tragzahl** maßgebend ist.

- C Dynamische Tragzahl. Sie ist die Belastung unveränderlicher Größe und Richtung, bei der eine genügend große Menge gleicher Lager eine nominelle Lebensdauer von 10⁶ Umdrehunqen bei Wälzlagern für Drehbewegung erreicht.
- C₀ Statische Tragzahl. Sie stellt diejenige Belastung in Lager-Hauptlastrichtung dar, bei der die Hertz'sche Pressung zwischen Rollkörpern und Laufbahnen an der höchstbelasteten Stelle im Lager den Wert
 - 4000 N/mm2 für Rollenlager
 - 4 200 N/mm² für Kugellager
 - 4 600 N/mm² für Pendelkugellager

erreicht.

13.4.5.1 Dynamische Tragfähigkeit und Lebensdauer

Die **Dynamische Tragfähigkeit** eines Wälzlagers wird durch das Ermüdungsverhalten des Werkstoffes bestimmt, wobei die Lebensdauer als Ermüdungszeitraum von der Belastung und Drehzahl des Lagers sowie von der statistischen Zufälligkeit des ersten Schadenseintritts abhängt. Zur Beschreibung der Dynamischen Tragfähigkeit werden die Begriffe **Dynamische Tragzahl** und **Nominelle Lebensdauer** (Rechnerische Lebensdauer) eingeführt.

Lebensdauer

Die nominelle Lebensdauer wird wie folgt berechnet:

Radiallager, Axiallager L =
$$\left(\frac{C}{P}\right)^{P}$$
 in 10⁶ Umdr. (1)

$$L_h = \frac{16666}{n} \left(\frac{C}{P}\right)^p$$
 in h (2)

Hierin bedeuten:

L, L_h Nominelle Lebensdauer L in 10⁶ Umdrehungen bzw. L_h in Betriebsstunden, die von 90 % einer genügend großen Menge gleicher Lager erreicht oder überschritten wird, bevor die ersten Anzeichen einer Werkstoffermüdung auftreten.

C Dynamische Tragzahl in N p Lebensdauerexponent P Äquivalente Lagerbelastung in N p = 3 für alle Arten von Kugellagern n Betriebsdrehzahl in min⁻¹ p = 10/3 für alle Arten von Rollenlagern

Wälzlager werden bei einem Belastungsverhältnis C/P unter 6 als hoch, zwischen 6 und 15 als mittel und bei Werten über 15 als niedrig belastet angesehen.

Ist die Betriebsdrehzahl n konstant, so kann die Lebensdauer L_n in Betriebsstunden entsprechend Gleichung (2) berechnet werden.

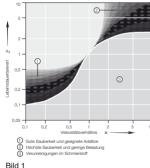
Quelle: INA-Schaeffler KG

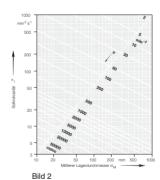
Modifizierte nominelle I ehensdauer

Für die Fälle, in denen neben Last und Drehzahl weitere Einflüsse bei der Berechnung der Lebensdauer berücksichtigt werden sollen, gibt DIN ISO 281 eine erweiterte Lebensdauergleichung an:

$$L_{na} = a_1 \cdot a_2 \cdot a_3 \cdot L \tag{3}$$

Hierin bedeuten:


modifizierte nominelle Lebensdauer für besondere Werkstoffeigenschaften und Betriebsbedingungen bei einer Erlebenswahrscheinlichkeit von (100-n) %.

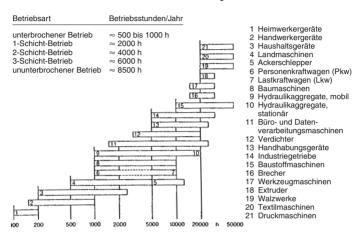

Lebensdauerbeiwert für eine von 90 % abweichende Erlebenswahrscheinlichkeit a₁

Lebensdauerbeiwert a.

Erlebenswahrscheinlichkeit %	a ₁
90	1
95	0,62
96	0,53
97	0,44
98	0,33
99	0,21

- Lebensdauerbeiwert für besondere Werkstoffeigenschaften. a_2 Für Standard-Wälzlagerstähle gilt; a₂ = 1.
- Lebensdauerbeiwert für besondere Betriebsbedingungen, insbesondere für den a₂ Schmierungszustand.

Der Lebensdauerbeiwert a_3 kann in Abhängigkeit vom Viskositätsverhältnis $K = v/v_1$ aus Bild 1 abgelesen werden. Hierbei ist v die vorhandene kinematische Viskosität des Schmierstoffes bei Betriebstemperatur und v₁ die zur ausreichenden Schmierfilmausbildung erforderliche Sollviskosität nach Bild 2. Bei Fettschmierung ist die Viskosität des Grundöles maßgebend.


nominelle Lebensdauer, siehe Gleichung (1)

Die erweiterte Berechnung der modifizierten nominellen Lebensdauer kann nach Abschnitt II/3 "Wälzlagertechnik - Grundlagen" erfolgen.

Erforderliche Lebensdauer

Ist die erforderliche Lebensdauer aus den Bedingungen des Maschinenbetriebs und den Ansprüchen an die Betriebssicherheit bekannt, so kann mit Hilfe der Lebensdauergleichungen die richtige Lagergröße gewählt werden. Liegen keine Angaben über die erforderliche nominelle Lebensdauer vor, sind Anhaltswerte aus dem folgenden Bild zu entnehmen.

Anhaltswerte für die nominelle Lebensdauer von Wälzlagern

Gebrauchsdauer

Unter der Gebrauchsdauer wird die tatsächlich erreichte Lebensdauer eines Wälzlagers verstanden, die von der errechneten nominellen Lebensdauer abweichen kann. So können Fluchtungsfehler zwischen Welle und Gehäuse, Verschmutzung der Lager, überhöhte Betriebstemperatur oder unzureichender Schmierungszustand zu einem vorzeitigen Ausfall der Lager durch Verschleiß oder Ermüdung führen.

Ungünstige Betriebsbedingungen wie oszillierende Lagerbewegung mit sehr kleinen Schwenkwinkeln oder Vibrationsbeanspruchung bei Lagerstillstand können ebenfalls zum vorzeitigen Lagerausfall durch Riffelbildung führen.

Bei der Vielfalt der Einbau- und Betriebsverhältnisse ist es nicht möglich, die Gebrauchsdauer der Lager exakt vorauszubestimmen. Der sicherste Weg zu einer zutreffenden Abschätzung der Gebrauchsdauer ist nach wie vor der Verdeiech mit ähnlichen Einbaufällen.

Einflüsse auf die Dynamische Tragfähigkeit

Die in Wälzlagerkatlalogen angegebenen Dynamischen Tragzahlen gelten normalerweise für eine Härte der Laufbahnen und Wälzkörper von 670 +170 HV bei dem für Wälzlagerteile charakteristischen Feingefüge.

Finfluss der Laufbahnhärte

Weist eine der Laufbahnen eine geringere Härte als 670 HV auf, so sinkt die Dynamische Tragzahl auf den geringeren Wert C_H ab; dies wird durch folgende Korrekturgleichung berücksichtigt:

$$C_{H} = f_{H} \cdot C \tag{4}$$

Hierin bedeuten: Cu Wirksame Dynamische Tragzahl in N

f
 □ Dvnamischer Härtefaktor

C Dynamische Tragzahl in N

Dynamischer Härtefaktor

Härte	Vickers HV	700	650	600	550	500	450	400	350	300	250	200
	Rockwell HRC ¹⁾	60,1	57,8	55,2	52,3	49,1	45,3	40,8	35,5	29,8	22,2	-
	Brinell HB ¹⁾	-	-	-	-	-	428	380	333	285	238	190
Härtefaktor	f _H	1	0,93	0,78	0,65	0,52	0,42	0,33	0,25	0,18	0,12	0,07

¹⁾ Umgewertet nach DIN 50150

Einfluss der Lagertemperatur

Bei hohen Betriebstemperaturen erfolgt bei allen Wälzlagern ein Härteabfall des Werkstoffes, der auf bleibenden Gefügeveränderungen beruht. Die dadurch bedingte Minderung der Dynamischen Tragfähigkeit wird durch nachstehende Korrekturgleichung berücksichtigt:

$$C_T = f_T \cdot C$$
 (5)

Hierin bedeuten: C_T Wirksame Dynamische Tragzahl in N

f- Temperaturfaktor

Dvnamische Tragzahl in N

Temperaturfaktor

Lagertemperatur °C	125	150	175	200	250	300
Temperaturfaktor f _T	1	1	0,92	0,88	0,73	0,6

Wälzlager können im allgemeinen bis +120 °C, bei kurzzeitig wirkenden Spitzentemperaturen bis +150 °C eingesetzt werden. Für Lager, die dauernd bei höheren Temperaturen betrieben werden, ist eine Stabilisierung erforderlich, da bei höheren Temperaturen eine teilweise Gefügeumwandlung im Werkstoff, verbunden mit Maßänderungen, auftreten kann.

Die Stabilisierung ist mit einem Härteabfall und einer Minderung der Tragfähigkeit verbunden. Die wirksame Tragfähigkeit ergibt sich durch Multiplikation der in den Maßtabellen angeführten Tragzahlen mit dem Temperaturfaktor fr.

Äquivalente dynamische Lagerbelastung

In den Lebensdauergleichungen wird vorausgesetzt, dass die Lagerbelastung P und die Drehzahl n konstant sind. Diese Bedingungen sind in vielen Fällen aber nicht erfüllt. Daher müssen äquivalente Betriebswerte bestimmt werden, welche die gleiche Auswirkung auf die Lebensdauer haben wie die tatsächlich wirkenden veränderlichen Beanspruchungen.

Kombinierte Lagerlast

Liegt kombinierte Lagerlast aus einer Radiallast und einer Axiallast vor, so wird die äquivalente dynamische Lagerbelastung wie folgt ermittelt:

$$P = X \cdot F_r + Y \cdot F_o \tag{6}$$

Hierin sind:

P die äquivalente dynamische Lagerbelastung in N

F_r die Radialkomponente der Belastung in N

F_a die Axialkomponente der Belastung in N

X der Radialfaktor des Lagers
 Y der Axialfaktor des Lagers

Sämtliche für die Berechnung der äquivalenten dynamischen Lagerbelastungen erforderlichen Angaben können den Wälzlagerkatalogen entnommen werden.

Veränderliche Lagerdrehzahl

Liegt eine während des Zeitraumes T mit der Zeit t veränderliche Lagerdrehzahl n(t) vor, so ist in der Lebensdauergleichung (2) mit der mittleren Drehzahl nach folgender Beziehung zu rechnen:

$$n = \frac{1}{T} \int_{0}^{T} n(t) dt$$
 (7)

Stufenweise veränderliche Lagerdrehzahl

Bei stufenweise veränderlicher Drehzahl n_i im Zeitraum T kann Gleichung (7) durch die einfachere Summenformel über die z Zeitabschnitte Δt_i resetzt werden, wobei die $q_i = (\Delta t/T) \cdot 100$ die jeweiligen Anteile der Wirkungsdauer in % bedeuten:

$$n = \frac{q_1 \cdot n_1 + q_2 \cdot n_2 + \dots + q_z \cdot n_z}{100}$$
 (8)

Oszillierende Lagerbewegungen

Bei oszillierender Lagerbewegung wird die äquivalente Drehzahl zur Verwendung in der Lebensdauergleichung (2) nach folgender Beziehung ermittelt:

$$n = n_{osz} \cdot \frac{\gamma}{90^{\circ}}$$

Hierin bedeuten:

n äquivalente Drehzahl in min-1

n_{osz} Frequenz der Hin- und Herbewegung in min⁻¹

y Schwingungsamplitude in Grad

Veränderliche Lagerbelastung und konstante Drehzahl

Folgt eine mit der Zeit t veränderliche Lagerbelastung im Zeitraum T einer eindeutig definierten Funktion F(t), so ergibt sich aus dem Lebensdauergesetz folgende Beziehung für die äquivalente Lagerbelastung:

$$P = \sqrt[p]{\frac{1}{T}} \int_{0}^{T} FP(t)dt$$
 (10)

Periodisch veränderliche Lagerbelastung

Die Berechnung der äquivalenten Lagerbelastung erfolgt auch bei periodischem Lastverlauf grundsätzlich nach Gleichung (10). Für eine in einem bestimmten Zeitabschnitt bei konstanter Drehzahl linear veränderlichen Last zwischen einem Kleinstwert ${\sf F}_{\sf min}$ und einem Größtwert ${\sf F}_{\sf max}$ wird die äquivalente dynamische Belastung

$$=\frac{F_{min}+2\times F_{max}}{3} \tag{11}$$

Stufenweise veränderliche Lagerbelastung

Bei stufenweise veränderlicher Belastung F, im Zeitraum T kann die allgemeine Gleichung (10) durch die einfachere Summenformel über die z Zeitabschnitte Δt_i ersetzt werden, wobei die $q_i = (\Delta t_i/T) \cdot 100$ die jeweiligen Anteile der Wirkungsdauer in % bedeuten:

$$P = p \sqrt{\frac{q_1 \cdot F_1^{p} + q_2 \cdot F_2^{p} + \dots + q_z \cdot F_z^{p}}{100}}$$
 (12)

Veränderliche Drehzahl und Lagerbelastung

Sind die Drehzahl und die Lagerbelastung im Zeitraum T eindeutig definierte Zeitfunktionen n(t) und F(t), so wird die äquivalente Drehzahl nach Gleichung (7) bestimmt, während sich die äquivalente Lagerbelastung aus nachstehender Berechnung ergibt:

$$P = \int_{0}^{T} \int_{0}^{T} n(t) \cdot F^{p}(t) dt$$

$$\int_{0}^{T} \int_{0}^{T} n(t) dt$$
(13)

Stufenweise veränderliche Drehzahl und Lagerbelastung

Bei stufenweise veränderlichen Beanspruchungsgrößen n_i und F_i im Zeitraum T kann zur Berechnung der äquivalenten Drehzahl die Gleichung (8) herangezogen werden; für die äquivalente Belastung gilt hier die aus Gleichung (13) abgeleitete Summenformel über die z Zeitabschnitte Δt_i , wobei die $q_i = (\Delta t_i/T) \cdot 100$ die jeweiligen Anteile der Wirkungsdauer in % bedeuten.

$$P = \sqrt[p]{\frac{q_1 \cdot n_1 \cdot F_1^{p} + q_2 \cdot n_2 \cdot F_2^{p} + \dots + q_z \cdot n_z \cdot F_z^{p}}{q_1 \cdot n_1 + q_2 \cdot n_2 \cdot \dots + q_z \cdot n_z}}$$
(14)

13.4.5.2 Statische Tragfähigkeit

Die **Statische Tragfähigkeit** wird durch die bei hoher ruhender Last an den Laufbahnen und Wälzkörpern erzeugten plastischen Verformungen begrenzt, die im Hinblick auf die Geräusche beim späteren Lagerlauf noch als zulässig angesehen werden.

Die Statische Tragzahl stellt diejenige Belastung in Lager-Hauptlastrichtung dar, bei der die Hertzsche Pressung zwischen Rollkörpern und Laufbahnen an der höchstbelasteten Stelle im Lager bestimmte Werte (siehe Seite 217) annimmt, die einer bleibenden plastischen Verformung von 1/10 000stel des Wälzkörperdurchmesses entsprechen.

Statische Tragsicherheit

Die Statische Tragsicherheit gibt die Sicherheit gegen die zulässigen bleibenden Verformungen im Lager an und ist wie folgt definiert:

$$S_0 = C_0 / P_0 (15)$$

Hierin bedeuten: So Statische Tragsicherheit

C₀ Statische Tragzahl in N

 ${\rm P}_0$ Maximale äquivalente statische Belastung (Spitzenbelastung) des Lagers in N.

Empfohlene Statische Tragsicherheiten

Einsatzfall	S ₀
Ruhiger, erschütterungsarmer Betrieb und normaler Betrieb mit geringen Ansprüchen an die Laufruhe; Lager mit nur geringen Drehbewegungen	≥ 1
Normaler Betrieb mit höheren Anforderungen an die Laufruhe	≥ 2
Betrieb mit ausgeprägten Stoßbelastungen	≥ 3
Lagerung mit hohen Ansprüchen an Laufgenauigkeit und Laufruhe	≥ 4

Einfluss der Laufbahnhärte auf die Statische Tragfähigkeit

Weist eine der Laufbahnen eine geringere Härte als 670 HV auf, so wird die Statische Tragzahl auf den Wert $C_{\rm 0H}$ herabgesetzt; dies wird durch nachstehende Korrekturgleichung berücksichtigt:

$$C_{0H} = f_{H0} \cdot C_0$$

Hierin bedeuten: CoH Wirksame Statische Tragzahl in N

f_{H0} Statischer Härtefaktor C_o Statische Tragzahl in N

Statischer Härtefaktor

Härte	Vickers HV	700	650	600	550	500	450	400	350	300	250	200
	Rockwell HRC ¹⁾	60,1	57,8	55,2	52,3	49,1	45,3	40,8	35,5	29,8	22,2	-
	Brinell HB ¹⁾	-	-	-	-	-	428	380	333	285	238	190
Härte-	Kugellager	1	0,99	0,84	0,71	0,59	0,47	0,38	0,29	0,21	0,15	0,09
faktor f _{H0}	ZylRollen- u. Nadellager	1	1	0,98	0,95	0,88	0,71	0,57	0,43	0,32	0,23	0,15

1) Umgewertet nach DIN 50150

13.4.6 Lagerluft und Betriebsspiel

Die einwandfreie Funktion eines Wätzlagers hängt in besonderem Maße von der Einstellung des richtigen Betriebsspiels ab. Dieses ergibt sich aus der im nicht montierten Lager vorhandenen Lagerfulft und deren Verminderung durch Passungswahl und Temperatureinfluss.

Radiale Lagerluft

Die radiale Lagerluft eines Wälzlagers ist das Maß, um das sich der Innenring gegenüber dem Außenring des nicht eingebauten Lagers ohne Belastung in radialer Richtung von einer Grenzstellung zur gegenüberliegenden verschieben läßt.

Nachsetzzeichen für radiale Lagerluft

Nachsetzzeichen	Bedeutung
C 2	radiale Lagerluft kleiner als normal
CN ¹⁾	radiale Lagerluft normal
C 3	radiale Lagerluft größer als normal
C 4	radiale Lagerluft größer als C 3
C 5	radiale Lagerluft größer als C 4

¹⁾ war bisher C0.

Diese Nachsetzzeichen für die radiale Lagerluft werden an das Lagerkurzzeichen bzw. an die Genauigkeitsbezeichnung angefügt.

Die normale Lagerluft ist so ausgelegt, dass sich bei Anwendung der in den Maßkatalogen der Hersteller empfohlenen Wellen- und Gehäusetoleranzen ein für normale Betriebsverhältnisse funktionsgerechtes Betriebsspiel ergibt.

Alle abweichenden Einbau- und Betriebsbedingungen, z.B. festere Passungen für die Lagerringe oder außergewöhnliche Lagertemperaturen, erfordern eine andere Lagerluft als normal. Radiallager, die von der Ausführung mit normaler Lagerluft abweichen, werden durch die Nachsetzzeichen gekennzeichnet.

Arbeiten Wälzlager unter höheren Betriebstemperaturen, insbesondere bei großem Wärmegefälle zwischen Innen- und Außenring, so muss eine Lagerluftgruppe C 3 bis C 5 gewählt und das Betriebsspiel rechnerisch kontrolliert werden. Wenn keine genauen Angaben über das Wärmegefälle im Lager zur Verfügung stehen, und es die Genauigkeitsanforderungen zulassen, sollten aus Sicherheitsgründen die Lagerluftgruppen nach folgender Tabelle gewählt werden.

Empfohlene Lagerluftgruppen für höhere Betriebstemperaturen

Betriebstemperatur des Lagers °C	120 bis 150	über 150 bis 180	über 180
Lagerluftgruppe	C 3	C 4	C 5

Die Lagerluftwerte zu den einzelnen Lagerbauarten sind DIN 620 bzw. den Maßkatalogen der Hersteller zu entnehmen.

Betriebsspiel

Als Betriebsspiel eines Wälzlagers wird das Maß bezeichnet, um das sich die Welle gegenüber dem Außenring des montierten Lagers ohne Belastung in radialer Richtung verschieben lässt. Das Betriebsspiel ergibt sich aus der radialen Lagerluft, vermindert um die durch Passungsübermaße und Wärmedehnung hervorgerufene Veränderung Δs.

$$\Delta s = \Delta s_0 + \Delta s_T \quad \text{in } \mu m \tag{16}$$

Normales Betriebsspiel

Das normale Betriebsspiel wird dann erreicht, wenn bei normaler Betriebstemperatur für Wälzlager mit Innenring die empfohlenen Gehäuse- und Wellentoleranzen für normale Belastung angewendet werden.

Betriebsspiel kleiner als normal

Kleineres Betriebsspiel von Wälzlagern sollte nur in Sonderfällen angewandt werden, z.B. bei Genauigkeilslagerungen für Werkzeug- und Meßmaschinen, bei starken Stoßbelastungen zur Verringerung der Schlagarbeit oder bei Wechsellast.

Betriebsspiel größer als normal

Größeres Betriebsspiel als normal ist für Wälzlager bei hohen Drehzahlen mit erhöhter Betriebstemperatur sowie bei Fluchtungsfehlern und Wellendurchbiegungen erforderlich.

Einfluss der Passungen auf das Betriebsspiel

Die passungsbedingte radiale Lagerluftverminderung Δs_p des montierten Lagers ergibt sich aus der Aufweitung des Innenringes Δd und der Einschnürung des Außenringes ΔD zu:

$$\Delta s_{o} = \Delta d + \Delta D$$
 in μm (17)

Es hat sich als praktisch brauchbar erwiesen, das theoretische Übermaß U (in μ m) entweder aus den mittleren Abmaßen oder aus den oberen Abmaßen der von der Gutseite her um 1/3 eingeengten Toleranzfelder der Passteile zu bestimmen. Hiervon ist noch der Betrag abzuziehen, um den sich die Teile beim Zusammenfügen dlätten.

Einfluss der Temperatur auf das Betriebsspiel

Ein größeres Temperaturgefälle zwischen dem Innen- und Außenring eines Wälzlagers verursacht ebenfalls eine merkliche Veränderung des Betriebsspiels, wodurch unter Umständen die einwandfreie Funktion des Lagers beeinträchtigt wird. Bei einem linearen Wärmeausdehnungskoeffizienten für Stahl α = 0,000011 K⁻¹ und einer Temperaturdifferenz $\Delta \vartheta$ zwischen Welle und Lagerbohrung beträgt die radiale Spielveränderung:

$$\Delta s_{t} \approx 0.011 \cdot d \cdot \Delta \vartheta$$
 in μm (18)

Die Temperaturdifferenz $\Delta\vartheta$ zwischen Innen- und Außenring kann zu einer Betriebsspieleinengung oder -erweiterung führen. $\Delta\vartheta$ ist daher in Gleichung (16) mit dem richtigen Vorzeichen einzusetzen:

- +∆⊕ der Welle wird Wärme zugeführt, das Gehäuse wird gekühlt: Betriebsspieleinengung
- -∆ϑ die Welle wird gekühlt, die Wärmezufuhr erfolgt durchs Gehäuse: Betriebsspielerweiterung.

13.4.7 Schmierung

Geeignete Schmierstoffe und regelmäßige Wartungsintervalle sind wichtige Voraussetzungen für eine lange Gebrauchsdauer der Wälzlager. Obwohl der Schmierstoffbedarf eines Wälzlagers wesentlich geringer als der von Gleitlagern unter vergleichbaren Betriebszuständen ist, muss eine ausreichende Schmierstoffmenge zu jeder Zeit und bei allen Belastungszuständen in allen Kontaktflächen vorhanden sein. Nur dann kann der Schmierstoff die an ihn gestellten Aufgaben (tragfähiger Schmierfilm, Verschleißminderung, Korrosionsschutz, Dämpfung, Wärmeabfuhr, Abdichtung usw.) erfüllen.

Die Schmierungsart sowie die Auswahl der erforderlichen Menge des Schmierstoffes richten sich nicht nur nach den Betriebsbedingungen des Wälzlagers (Drehzahl, Belastung, Lagertemperatur, Umgebungseinflüsse, Schmutzanfall, Abdichtung), sondern auch nach der Lagerbauform, der konstruktiven Ausführung der Lagerumgebung und der Schmierstoff-Führung.

Abdichtungsprobleme lassen sich bei Fettschmierung mit geringem konstruktiven Aufwand lösen. Eine Kühlung der Lagerstelle kann jedoch mittels Fettschmierung nicht erreicht werden.

Ölschmierung wird überall dort angewendet, wo benachbarte Maschinenteile mit Öl geschmiert werden (z. B. Getriebe, Hydraulikanlagen), wenn Wälzlager mit hohen Drehzahlen laufen und/oder Wärme aus der Lagerung abgeführt werden muss.

Verunreinigungen im Schmierstoff erzeugen im Wälzlager bei Überrollung Geräusche. Insbesondere harte und größere Teilchen verschlechtern die Trennung der Wälzflächen. Dies führt zu Verschleiß und einer Minderung der Wälzlagerlebensdauer. Ölumlaufschmierung mit geeigneter Filterung vermindert oder vermeidet die schädliche Auswirkung von Verschleißteilchen.

Das Verhalten gegenüber Dichtungswerkstoffen und Kunststoffen ist zu beachten. Wasser im Schmierstoff setzt die Gebrauchsdauer eines Lagers beträchtlich herab.

Ölschmierung

Mineralöle

Sie werden durch Vakuumdestillation aus dem Erdől gewonnen. Je nach Struktur werden sie als paraffin-, naphthen- und gemischtbasisch bezeichnet. Durch Raffination werden sie von unerwünschten Komponenten befreit, die z. B. die Alterungs- und Korrosionsbeständigkeit negativ beeinflussen. Mit Additiven (Zusätzen) werden die Gebrauchseigenschaften den speziellen Anforderungen (Motor-, Getriebe-, Hydrauliköl) angepasst. Durch VI-Verbesserer kann der natürliche Viskositäts-Temperatur-Verlauf beeinflusst werden. Der natürliche VI liegt zwischen 70 und 100, kann aber durch Zugabe von sogenannten Viskositäts-Index-Verbesserern oder durch spezielle Raffinationstechniken (HVI-Öle) auf über 100 angehoben werden.

Poly-α-Olefine (PAO)

Es handelt sich um synthetische Mineralöle, bei denen das Kältefließverhalten und die Oxidationsbeständigkeit wesentlich besser sind als bei den Mineralölen. Der natürliche VI beträgt ca. 130. Sie sind mit Mineralölen in jedem Verhältnis mischbar.

Polyalkylenglykol (PG)

Sie sind bezüglich der Oxidationsbeständigkeit, des Stockpunktes und ihrer polaren Eigenschaften den Mineralölen überlegen. Der natürliche VI geht bis 150. Infolge ihres günstigen Reibungsverhaltens werden sie vorzugsweise in Schneckengetrieben eingesetzt, sind aber ungeeignet zur Schmierung, wenn ein oder beide Partner aus Aluminium bzw. Aluminium-Legierungen bestehen. Polyqlykole, speziell die wasserlöslichen, sollten mit Mineralölen nicht vermischt werden.

Die nachfolgend beschriebenen Syntheseflüssigkeiten sind nicht mit den Mineralölen (Kohlenwasserstoff-Basis) verwandt.

Diester (E)

Das natürliche Viskositäts-Temperatur-Verhalten (VI = bis 170) ist besser und die Verdampfungsverluste sind geringer als bei Mineralölen und Polyglykolen. Im Kältefließ- und Verschleißschutz-Verhalten sind sie den Mineralölen überlegen. Sie kommen, da die Ausgangviskositäten niedrig liegen, vorzugsweise nur für die unteren Viskositätsklassen in Betracht. Diester sind mit Mineralölen mischhar

Polyolester (E)

Sie haben die gleiche Charakteristik wie Diester, sind aber thermisch wesentlich stabiler als diese und bis zur ISO VG 220 lieferbar. Die Mischbarkeit mit Mineralölen ist gegeben.

Silikonöle (SI)

Sie weisen ein sehr gutes Temperatur-Viskositäts-Verhalten auf (VI = bis 300 möglich), sind thermisch bis ca. 300 Grad C stabil und haben eine geringe Verdampfbarkeit. Jedoch sind ihr Lasttrage- (C/P > 40), das Korrosionsschutz- und das Verschleißschutz-Vermögen gering. Sie sind physiologisch unbedenklich und können im Lebensmittelbereich eingesetzt werden. Mit Mineralölen sind sie nicht mischbar, finden aber als Schaumbremsen in geringsten Mengen Anwendung.

Kennwerte von Schmierflüssigkeiten

Ölart	Mineralöl	Polyalpha- olefine	Polyglykol (wasser- unlöslich)	Ester	Silikonöl	Alkoxy- fluoröl
Viskosität bei 40 °C in mm²/s	2 4500	15 1200	20 2000	7 4000	4 100 000	20 650
Einsatz für Ölsumpf- Temperatur in °C bis	100	150	100 150	150	150 200	150 220
Einsatz für Ölumlauf- Temperatur in °C bis	150	180	180	180	250	250
Pourpoint in °C	-20 ²⁾	-40 ²⁾	-40	-60 ²⁾	-60 ²⁾	-30 ²⁾
Flammpunkt in °C	220	230	200	220	300 ²⁾	-
Verdampfungsverluste	mäßig	niedrig	mäßig bis hoch	niedrig	niedrig ²	sehr niedrig ²⁾
Wasserbeständigkeit	gut	gut	gut ²⁾ , schlecht trennbar, da gleiche Dichte	mäßig bis gut ²⁾	gut	gut
V-T-Verhalten	mäßig	mäßig bis gut	gut	gut	sehr gut	mäßig bis gut
Druck-Viskositäts- Koeffizient ³⁾ in m ² /N	1,1 3,5 · 10 ⁻⁸	1,5 2.2 · 10 ⁻⁸	1,2 3,2 · 10 ⁻⁸	1,5 4,5 · 10 ⁻⁸	1,0 3,0 · 10 ⁻⁸	2,5 4,4 · 10 ⁻⁸
Eignung für hohe Temperaturen (~150 °C)	mäßig	gut	mäßig bis gut ²⁾	gut ²	sehr gut	sehr gut
Eignung für hohe Last	sehr gut1)	sehr gut1)	sehr gut1)	gut	schlecht2)	gut
Verträglichkeit mit Elastomeren	gut	gut ²⁾	mäßig, bei Anstrichen prüfen	mäßig bis schlecht	sehr gut	gut
Preisrelationen	1	6	4 10	4 10	40 100	200 800

¹⁾ mit EP-Zusätzen

²⁾ abhängig vom Öltyp 3) gemessen bis 200 bar, Höhe ist abhängig vom Öltyp und der Viskosität

Alkoxifluoröle (FK)

Sie sind thermisch sehr stabil, weisen ein gutes Lasttragevermögen und eine geringe Verdampfbarkeit auf. Ihre Reaktionsträgheit bewirkt die sehr gute Beständigkeit gegen aggressive flüssige und gasförmige Medien.

Das Viskosität-Temperatur-Verhalten entspricht in etwa denen der Mineralöle (VI = ca. 120). Ebenso wie die Silikonöle sind sie physiologisch unbedenklich und können im Lebensmittelbereich eingesetzt werden. Mit Mineralölen sind sie nicht mischbar.

Die zuvor aufgeführten Schmieröle werden auch als Grundöle für die Schmierfettherstellung verwendet

Die folgende Tabelle führt die Viskositätsklassen auf. Die angegebenen Viskositäten sind errechnet aus der Mittelpunkt-Viskosität bei 40 °C und einem Viskositäts-Index von 95. Außerdem können die ungefähr zugeordneten SAE-Klassen entnommen werden.

Gegenüberstellung der gebräuchlichen Viskositätsklassifikationen

ISO-VG	Ölviskositä	it bei		Zuordnung	g der
	20 °C mm²/s	40 °C mm²/s	100 °C mm²/s	Motoröle SAE	Kfz-Getriebeöle SAE
5	8	4,6	1,5		
7	12	6,8	2,0		
10	21	10	2,5		
15	34	15	3,5	5 W	
22	55	22	4,5	10 W	70 W
32	88	32	5,5	10 VV	75 W
46	137	46	6,5	15 W	
				20 W	80 W
68	219	68	8,5	20	
100	345	100	11	30	85 W
150	550	150	15	40	00 11
220	865	220	19	50	90
320	1 340	320	24		
460	2 060	460	30		140
680	3 270	680	40		140
1 000	5 170	1 000	50		
1 500	8 400	1 500	65		250

Fettschmierung

Wälzlagerfette müssen die Anforderungen nach DIN 51 825, Schmierfette K, erfüllen. Eine Kühlung der Lagerstelle kann mit Fettschmierung nicht erreicht werden. Im Normalfall sollte die Lager-temperatur +70 °C nicht übersteigen. Gegebenenfalls sind Kühlmaßnahmen zur Herabsetzung der Lagertemperatur erforderlich, oder ein Schmierverfahren mit besserer Wärmeabfuhr ist einzusetzen.

Geeignete Schmierfette und deren Eigenschaften

Die Eigenschaften eines Schmierfettes (Temperatur- und Anwendungsbereich, Wasserbeständigkeit, Korrosionsschutzverhalten usw.) werden bestimmt durch Art und Menge des eingesetzten Verdickers/Grundöls, den Herstellungsprozess und durch Additive. Beispielsweise beeinflussen diese Zusätze das Lasttragevermögen, den Alterungsschutz, das Haftvermögen und das Antiverschleißverhalten. Besondere Bedeutung haben der Reinheitsgrad (geräuscharme Fette), die thermische Beständigkeit (Hochtemperaturfette), das Ölabgabevermögen und das Verhalten gegenüber Käfig- und Dichtungswerkstoffen.

Für die Wälzlagerschmierung werden bevorzugt Schmierfette der Konsistenzklasse 1, 2 und 3 nach DIN 51 818 verwendet. Eine Übersicht über die Wälzlagerfette und ihre Eigenschaften ist in der Tabelle auf der nächsten Seite angefürt.

Hinweise für die Anwendung

Der Gebrauchstemperaturbereich eines Schmierfettes muss den Bereich der möglichen Temperaturen im Wälzlager mit ausreichender Sicherheit abdecken. Die möglichen Betriebstemperaturen sollten den oberen und den unteren Grenzwert nicht ausschöpfen.

Voraussetzung für einen tragfähigen Schmierfilm ist eine ausreichend hohe Viskosität bei Betriebstemperatur.

Bei der Auswahl des Schmierfettes sollten die Betriebsdrehzahlen berücksichtigt werden. Für schnelllaufende Wälzlager oder für geringes Anlaufmoment sind Schmierfette mit niedriger scheinbarer dynamischer Viskosität geeignet, für langsam laufende Wälzlager werden Schmierfette mit hoher scheinbarer dynamischer Viskosität verwendet.

Für eine zuverlässige Anlagenwartung ist es immer erforderlich, möglichst viele Wälzlagerungen, meist auch andere Reibstellen, mit möglichst wenigen Fettsorten zu versorgen. Der zunehmende Einsatz von Zentral-Fettschmieranlagen verstärkt diese Tendenz. Von den Fettarten sind heute die Lithiumseifenfette auf Mineralölbasis überwiegend an dem Gesamtbedarf beteiligt. Bei betrieblich erforderlichem Wechsel der Fettypen ist immer die Mischungsverträglichkeit mit dem Folgeprodukt zu überprüfen.

Festschmierstoffe

Festschmierstoffe sind aufgrund ihrer besonderen Struktur schmierwirksam. Die wichtigsten Festschmierstoffe sind Graphit, Molybdändisulfid (MoS2), Polytetrafluorethylen (PTFE) und zunehmend auch anorganisch herstellbare Stoffe. Ebenso können Weichmetallfilme eingesetzt werden.

Festschmierstoffe können in reiner Form, als Compounds oder als Bestandteil von Schmierölen/-fetten eingesetzt werden. Ihre bevorzugten Einsatzgebiete sind Anwendungen im Vakuum, bei hohen Temperaturen, zur Verbesserung des Einlaufverhaltens und bei oszillierender Bewegung.

Umweltfreundliche Schmierstoffe

Aufgrund des immer stärker in den Vordergrund tretenden Umweltgedankens hat sich in letzter Zeit eine neue Klasse von Schmierstoffen herausgebildet. Sie müssen den Anforderungen nach einer niedrigen Wassergefährdungsklasse, der Gefahrstoffverordnung und der biologischen Abbaubarkeit genügen. Diese Produkte sind auf der Basis von Rapsöl, synthetischem Ester oder Polyqlykol erstellt.

Umweltfreundliche Schmierstoffe sind heute durchaus in ihrem Leistungsvermögen auf dem Niveau der konventionellen Schmierstoffe mit Abstrichen in Bezug auf Einsatztemperaturbereich (Rapsöle) und Lagerungszeit. Bevorzugt angewendet werden sie im Bereich der Land- und Forstwirtschaft.

Fettart			Eigenschaften						
Verdicker Art	Seife	Grundöl	Temperatur Anwendungs-	Tropf- punkt	Wasser- Korro- Druck- Preis- bestän- sions- belast- relatio	Korro- sions-	Druck- belast-	Preis- relation ¹⁾	Besondere Hinweise
					digkeit				
normal	Aluminium Mineral20	Mineral-	-20 70	120	‡	+	+	2,5 bis 3	quillt mit Wasser
	Kalzium	١ö	-30 50	80/100	++	‡	+	0,8	gute Dichtwirkung gegen Wasser
	Lithium		-35 130	170/200	++	‡	+	_	Mehrzweckfett
	Natrium		-30 100	150/190	1	‡	+	6,0	emulgiert Wasser, u. U. Verfestigung
komplex	Aluminium	Mineral-	Mineral30 160	>200	+	+++	+	2,5 bis 4	Mehrzweckfett
	Barinm	ö	-30 140	>220	‡	+ + +	‡	4 bis 5	Mehrzweckfett, dampfbeständig
	Kalzium		-30 140	>240	‡	‡	‡	0,9 bis 1,2	Mehrzweckfett, neigt zum Verhärten
	Natrium		-30 130	>220	+	‡ ‡	+	3,5	Mehrzweckfett
	Lithium		-30150	>240	‡	+	‡	2	Mehrzweckfett für höhere Temperaturen
normal	Lithium	Diester	-60 130	>190	+	+	+	5 bis 6	für tiefe Temperaturen, hohe Drehzahlen
	Lithium	Silikon	-60 130	>190	+	ı	ı	20	-für P/C <0,025; C/P >40
komplex	Barinm	Diester	-60 130	>200	++	+++	+	7	für tiefe Temperaturen und höhere
									Drehzahlen bei mäßigen Belastungen
	Lithium	Polyol- Ester	-40 180	>240	‡	+	+	10	für besonders breiten Temperaturbereich
Bentonite		Mineral-	-20150	>300	+++	1	+	6 bis 10	für höhere Temperaturen bei niedrigen
Aerosil		ö	-20 150	>300	1	ı	ı	5	Drehzahlen
Poly-			-25 160	>250	‡	+	‡	3	für höhere Temperaturen und mittlere
harnstoff									Drehzahlen
Poly-		Silikonöl	Silikonöl –40200	>250	++++	+	1	35 bis 40	für hohe und tiefe Temperaturen,
harnstoff		i							geringe Belastungen, → P/C <0,03
		Fluor- silikonöl	-40 200	>250	‡ ‡	+	+	100	mäßige Belastungen
PTFE		Alkoxy-	-50250	>300	+++	+	+	150 bis	für sehr hohe und tiefe Temperaturen,
oder		fluoröle						400	sehr hohe Chemikalien- und
FF		Fluor-	-40 230	>300	+ + +	+	‡	9	Lösungsmittelstabilität
		SIIIKONOI						l ZO	

+++ sehr gut; ++ gut; + mäßig; - schl 1) bezogen auf Lithiumseifenfett/Mineralölbasis (= 1)

14 Hydraulik – Pneumatik

14.1 Hydrogetriebe

In Hydrogetrieben sind Pumpen und Motoren sowie Steuerungselemente (Hydroventile) im Kreislauf zusammengeschaltet, in dem die Hydraulikflüssigkeit zur Leistungsübertragung umläuft. Der Kreislauf kann offen oder geschlossen ausgeführt werden. Die Steuerung dient dazu, die Bewegung und die Bewegungsrichtung zu bestimmen, die Belastung des Getriebes zu begrenzen und gegebenenfalls die Übersetzung gemäß den Arbeitsbedingungen einzustellen.

Hydropumper

Hydropumpen sind Umlaufverdränger-(Drehkolben-) oder Hubverdränger-(Schubkolben-)Maschinen mit festem oder verstellbarem Verdrängervolumen.

In der Praxis sind die Verdrängerprinzipien bestimmten Anwendungsbereichen zugeordnet. Der zulässige Dauerbetriebsdruck wird durch die Art des Verdrängers und die daraus folgende Belastung des Triebwerkes bestimmt. Das zweite wesentliche Merkmal ist die Kammerbildung, d. h. die Größe des Hubvolumens im Vergleich zur Maschinengröße und die Kammerform. Bei den meist rechteckigen Zellenquerschnitten der Umlaufverdrängermaschinen sind die Spalttoleranzen schwieriger zu beherrschen. Die druckabhängigen inneren Leckverluste begrenzen den Anwendungsbereich auf Nieder- und Mitteldruckanlagen. Zylindrische Passungen sind einfach herzustellen. Der Hoch- und Höchstdruckbereich erfordert daher Schubkollbenmaschinen.

Umlaufverdrängermaschinen

Sie fördern die Druckflüssigkeit bei gleichförmiger Drehung in Zellen, deren Volumen durch die Gestaltung der Begrenzungswände oder das Eindringen eines Zahnes zyklisch verändert wird. Der Umlaufverdränger bewirkt ferner den gegenseitigen Abschluss der Saug- und Druckräume. Verstellbares Hubvolumen wird nur bei einhubigen Flügelzellenpumpen ausgeführt.

Hubverdrängermaschinen

Diese sind gekennzeichnet durch die Trennung des Triebwerkes vom Förderraum, die zyklische Veränderung der Zellengröße erfolgt mit einem längsbewegten Kolben. Verstellung des Hubvolumens ist durch Eingriff in die Triebwerksgeometrie oder in die Steuerung möglich. Wegen der inneren Strömungsumkehr der Flüssigkeit benötigen die Maschinen Schieber- oder Ventilsteuerung zwischen dem Verdrängungsraum und den Strömungswegen.

Hydromotoren

Hydromotoren setzen die ihnen zur Verfügung gestellte Fluidenergie in mechanische Arbeit um. Nach ihrer Abtriebsbewegung unterscheidet man Drehmotoren, Schwenkmotoren mit begrenztem Drehwinkel und Schubmotoren (Zylinder). Gegenüber den Hydropumpen haben die Hydromotoren in der Regel ein konstantes Hubvolumen, nur in Ausnahmefällen werden Verstellmaschinen eingesetzt.

Drehmotoren

Als Drehmotoren eignen sich alle für die Hydropumpen beschriebenen Bauprinzipien der Umlaufverdrängermaschinen sowie die schiebergesteuerten Schubkolbenmaschinen. In ihnen wird die hydraulische Leistung $P_h=\dot{V}\cdot\Delta p$ – vermindert um Leckverlustleistung $P_{v,\ v}=\dot{V}_v\cdot\Delta p$, die hydraulische Verlustleistung $P_{v,\ r}=M_r\cdot\omega$ – in die mechanische Motorleistung $P_m=\dot{M}\cdot\omega$ – wungesetzt.

In der folgenden Tabelle sind lediglich die Beziehungen für Hydropumpen angeführt. Sie lassen sich sinngemäß auch für den gegenläufigen Energieumwandlungsprozess in Hydromotoren anwenden.

Schwenkmotoren

Diese Motoren erzeugen die Schwenkbewegung entweder direkt durch Schwenken eines Flügels im unterteilten Kreiszylinder (Flügelmotor mit Schwenkwinkel 300°) oder aus einer geradlinigen Kolbenbewegung über ein Zahnstangengetriebe.

Schubmotoren

Man unterscheidet bei den Schubmotoren die einfachwirkenden (Plungerzylinder) und doppeltwirkenden (Differenzialzylinder) Ausführungen. Differenzialzylinder sind durch wechselweise Kolbenbeaufschlagung für Schub und Zug einsetzbar.

14.2 Größen, Einheiten und Beziehungen für Hydropumpen

Größe	Einheit	Bezeichnung	Beziehung, Bemerkung
V _H	m ³	Hubvolumen = Verdrängungs- volumen (listenmäßig meist angegeben in cm³/U)	Das Verdrängungsvolumen wird aus den geometrischen Daten der Pumpe ermittelt
V _{th}	m ³ /s	Theoretischer Förderstrom (unter Voraussetzung vollständi- ger Füllung des Hubvolumens beim Ansaugen)	$\begin{array}{lll} \dot{V}_{th} &= n \cdot V_H = \omega \cdot V_0 \\ n &= \text{Drehzahl} \\ \omega &= 2 \cdot \pi \cdot n \\ V_0 &= V_H/(2 \cdot \pi) \text{ Grundvolumen} \end{array}$
M _{th}	Nm	Theoretisches Pumpen- moment	$\begin{array}{ll} M_{th} = \Delta p \cdot V_H/(2\cdot\pi) \\ = \Delta p \cdot V_0 \end{array}$
М	Nm	Mechanisches Antriebs- moment der Pumpe	von der Antriebsmaschine an die Pumpenwelle abgegebenes Moment
M _r	Nm	Reibungsmoment innerhalb der Pumpe	Reibung im Triebwerk und zwischen den Verdrängerelementen
P _m	W	Mechanische Antriebsleistung der Pumpe	$\begin{array}{ll} P_m &= M \cdot \omega \\ P_m &= P_{th} + P_{v, r} + P_{v, h} \end{array}$
P _{v,r}	W	Reibverlustleistung der Pumpe	$P_{v,r} = M_r \cdot \omega$
P _u	W	Verdrängerleistung	$\begin{array}{l} P_u = (M-M_r) \cdot \omega \\ \text{Die Verdrängerleistung wird auf den} \\ \text{Verdrängungsvolumenstrom übertragen und aufgeteilt in die Verdrängungsleistung P_{th} gegen Δp und die hydraulische Verlustleistung $P_{\text{v},h}$ \\ \end{array}$
P _{th}	W	Verdrängungsleistung gegen ∆p	$P_{th} = M_{th} \cdot \omega$
P _{v, h}	W	Hydraulische Verlustleistung	$P_{v,h} = \dot{V}_{th} \Delta p_h = M_h \cdot \omega$
η _{h, m}	_	Mechanisch-hydraulischer Wirkungsgrad	$\eta_{h,m} = \frac{P_{th}}{P_m} = 1 - \frac{P_{v,r} - P_{v,h}}{P_m}$
Ÿ	m³/s	Tatsächlicher Förderstrom	$\begin{array}{l} V=V_{th}-\dot{V}_{v}\\ \text{Die Druckdifferenz}\ \Delta p\ \text{verursacht einen}\\ \text{Leckstrom}\ V_{v}\ \text{durch die Spalte, der den}\\ \text{Verdrängungsvolumenstrom reduziert} \end{array}$
$\eta_{\rm v}$	-	Volumetrischer Wirkungsgrad	$\eta_{v} = \frac{P_{h}}{P_{th}} = 1 - \frac{P_{v,v}}{P_{th}} = 1 - \frac{\dot{V}_{v}}{\dot{V}_{th}}$
η	-	Gesamtwirkungsgrad	$\begin{split} \eta &= \frac{P_h}{P_m} = 1 - \frac{\Sigma P_v}{P_m} \\ \eta &= \eta_{h,m} \cdot \eta_v \end{split}$

14.3 Übersicht über gebräuchliche Hydropumpen und übliche Betriebswerte

Bauart	Verdräng- element	Benennung	Schematische Darstellung	Verdrän- gungs- volumen in cm ³ /U	Druck- bereich bar	Drehzahl 1/min	günstigste Ölviskosität in 10 ⁻⁶ m ² /s
	Zahn	Zahnradpumpe		0,4 1200	200	1500 3000	40 80
schinen	Za	Schrauben- pumpe		2 800	200	1000 5000	80200
Umlaufverdrängermaschinen		Treibschieber- pumpe einhubig		30 800	100	500 1500	30 50
Umlaufve	Flügel	Treibschieber- pumpe mehrhubig		3 500	160 (200)	500 3000	30 50
		Sperrschieber- pumpe		8 1000	160	500 1500	30 50
		Reihenkolben- pumpe		800	400	1000 2000	20 50
schinen		Radialkolben- pumpe mit innerer Kolbenabstütz.		0,4 15000	630	1000 2000	20 50
Hubverdrängermaschinen	Kolben	Axialkolbenp. Taumelscheib pumpe					
Hubve		Schrägscheib pumpe	9	1,5 3600	400	500 3000	30 50
		Schrägachsen- pumpe					Quelle: DUBBEL

Einteilung der hydrostatischen Standgetriebe mit einigen ihrer charakteristischen Merkmale 14.4

Antiebs- maschine Matth Matth Mathematic Mathhamath Mat	Offener Kreislauf Hydropumpe und Hydromotor nicht verstellbar	Hydropumpe Hydromotor	Hydropumpe n1 Hydromotor N2 M2 M2	1	Antriebs- maschine n2 maschine	Hydropur	Geschlossener Kreislauf Hydropumpe verstellbar und rever- sierbar, Hydromotor nicht verstellbar
Momemtenüb. setzung µ.g.	konstant	-	konstant	-			
Steuerung/Regelung der Drehzahlübersetzung Jurch Regelung	_			1	zw. Rege- erstellung mens einer	germasch.	
Steuerung der Drehzah durch Steuerung	nicht möglich	*	*	Zuschalten einer Maschine	Steuerung bzw. Regelung durch Verstellung des Hubvolumens	germasch.	
Drehzahlübersetzung ig konst./einstellbar abhängig/unabhängig von der Belastung	konstant, unabhängig von der Belastung	i _g einstellbar, bei Steuerung abhängig, bei Regelung unabhän- gig von der Belastung	i _g einstellbar, bei Steuerung abhängig, bei Regelung unabhän- gig von der Belastung	stufenweise einstellbar, unabhängig von der Belastung	ig einstellbar, Drehzahlübersetzung ist unabhängig von der	Detastung des riyano- motors	
Verdrängermaschinen Hubvolumen fest/verstellbar umpe Motor	\Diamond	\ominus	\rightarrow	\(\rightarrow \)	\(\rightarrow\)	- Q-	\Diamond
Verdränger Hubvo fest/ver Pumpe	\Diamond	\Diamond	\(\dag{\phi} \)		\Diamond	\Diamond	\Diamond
Getriebetyp	_	II Hauptstrom- drosselgetr.	III Neben- strom- drosselgetr.	2	>	5	II/

Sinnbilder und Benennung für ölhydraulische Anlagen

Sinnbild	Benennung und Erklärung	Sinnbild	Benennung und Erklärung
	Hydropumpe		Hydroventile (allgemein)
	Pumpe mit konstant. Verdrängungsvolumen a) mit einer Stromrichtung b) mit zwei Stromrichtungen		Das Ventil wird durch ein Rechteck dargestellt.
\$(g \$\phi_{(D)}\$	Pumpe mit veränderl. Verdrängungsvolumen a) mit einer Stromrichtung b) mit zwei Stromrichtungen	1 0 2	Anzahl der Felder = Anzahl der Ventilstellungen, wobei die mittlere die Nullstellung ist.
	Hydromotor Motor mit konstant. Verdrängungsvolumen a) mit einer Stromrichtung b) mit zwei Stromrichtungen		Bei Ventilen mit stetigem funktionellem Übergang zwischen den Schaltstellungen können die Felder durch gestrichelte Linien dargestellt werden.
	Motor mit veränderi. Verdrängungsvolumen a) mit einer Stromrichtung b) mit zwei Stromrichtungen	\Box	An das Feld Nullstellung werden die Anschlüsse bzw. Zu- und Abläufe herangezogen.
<u></u>	Schwenkmotor (mit begrenztem Schwenkwinkel)		Innerhalb der Felder geben die Linien und die Pfeile die Durchflussrichtung an.
4	Hydropumpe – Motor Pumpe-Motor mit konst. Verdrängungsvolumen als Pumpe in einer Stromrichtung als Motor in entgegengssetzer Richtung		Eine Verbindung zweier Wege innerhalb eines Ventils wird durch einen Punkt gekennzeichnet. Sich kreuzende Linien ohne Punkt bedeuten Wege, die keine Verbindung untereinander
.	als Fumpe oder Motor in einer Stromirchtung als Pumpe oder Motor in zwei Stromrichtungen	1 P	Absperrungen werden durch Querstriche gekennzeichnet.
) (D	Hydrokompaktgetriebe a) Getriebe für eine Abtriebsdrehrichtung mit Verstellpumpe und Konstantmotor	0	Die jeweilige Lage der Wege und Pfeile (schräg oder gerade) innerhalb der Felder entspricht der Lage der Anschlüsse.
	für eine Förderrichtung b) für zwei Abriebszeherrichtungen mit Verstellpumpe und Verstellmotor für zwei Förderrichtungen	-[Bleibt bei Stellungsänderung Zu-oder Ablauf mit einem Anschluss verbunden, so erhält der Preil an diesem Ende einen Querstrich.

Sinnbilder und Benennung für ölhydraulische Anlagen (Fortsetzung)

Sinnbild	Benennung und Erklärung	Sinnbild	Benennung und Erklärung
	Hydroventilbetätigung		Hydrodruckventile
Die Sinnbilder der Beta Anschlüssen außerhall	Die Sinnbilder der Betätigungsarten und Hilfsglieder werden rechtwinklig zu den Anschlüssen außerhalb des Rechteckes angeordnet. (Weitere B. siehe Seite 238)	(a) (b)	Druckventil (allgemein)
MXIII	4/2-Wegeventil mit Elektromagnetbetätigung und Rückholfeder.	(2)	a) Einkantenventil mit geschloss. Nullstellung b) Einkantenventil mit offener Nullstellung c) Zweikantenventil, drei gesteuerte
M X X X X	4/3-Wegeventil mit Handbetätigung und Feder- zentrierung in Nullstellung.	}	Anschlusse
9	Hydrowegeventile	W	Druckbegrenzungsventil Begrenzung des Druckes am Eingang durch
+	2/2-Wegeventil, in Nullstellung gesperrt.	-[Omrein des Absiasses gegen nucksteinkan. Druckregelventil, das den Ausgangsdruck
- t	2/2-Wegeventil, in Nullstellung Durchfluss frei.	WLT W	a) ohne Auslassöffnung = Druckminderventil b) mit Auslassöffnung = Druckregelventil
	3/2-Wegeventil, in Nullstellung Zufluss gesperrt.	W	Druckgefälleventil, das den Ausgangsdruck um einen festen Betrag gegenüber dem Eingangsdruck vermindert.
* * *	3/3-Wegeventil mit Sperr-Nullstellung,	-	
	Vorwärts- und Rückwärtsstellung. 4/2-Wegeventil mit Vorwärts- und Rückwärts-		Druckverhältnisventil, das den Ausgangsdruck in festem Verhältnis gegenüber dem Eingangsdruck vermindert
	4/3-Wegeventil mit Umlauf-Nullstellung. Vorwärts- und Rückwärtsstellung.	W	Zuschaltventil, das bei Erreichen des durch die Federkraft bestimmten Eingangsdruckes den War zu walteren Geräten freicht
	4/4-Wegeventil, wie 4/3, jedoch mit Schwimmstellung n. Vorwärtsstellung.	-	Dricketteniont!! doc don Eingendrick out
	6/3-Wegeventil, in Nullstellung, 1 Zulauf frei, 2 Zuläufe gesperrt.		einen Wert begrenzt, der proportional dem Steuerdruck ist.

Sinnbilder und Benennung für ölhydraulische Anlagen (Fortsetzung) 14.5

		(6:	(2)
Sinnbild	Benennung und Erklärung	Sinnbild	Benennung und Erklärung
	Hydrostromventile		Hydrosperrventile
Ж	Drossei, Ventil mit eingebauter, konstanter Verengung, Durchfluss und Druckgefälle sind viskositätsabhängig.	¥ (q	Sperventile, die den Durchfluss in einer Richtung sperren und in entgegengesetzter Richtung freigeben.
*	Drosselventil, dessen Einschnürung verstellbar und in beiden Richtungen wirksam ist.	> —	 a) Huckschlagventil: Sperrung, wenn Ausgangs- druck größer als Eingangsdruck, b) Sperrung, wenn Ausgangsdruck größer oder oleich Einnannsdruck (mit Feder).
*	Drosselventil, dessen Einschnürung verstellbar und in beiden Richtungen wirksam ist.		Rückschlagventil, dessen a) Sperrung aufgeben werden kann, h) Dirrektilise gesnert werden kann
	2-Wege-Stromregelventil, das den Ablaufstrom durch selbsträtiges Schließen konstant hält. a) 2-Wege-Strombegrenzungsventil	A A	Entspertnares gespent wetven mann. Entspertnares Zwilligsrückschlagventil mit 2 Plückschlagventilen für 2 getrennte Durchflüsse, deren selbstätlige Spertung durch den Zulauf- druck wechselseitig aufgehoben wird.
M - 1	b) 2-Wege-Stromeinstellungsventil c) Funktion		Drosselrückschlagventil, mit Durchfluss in einer und Drosselung in der anderen Richtung. Budroteitungen und Zubahör
(p)	3-Were-Stromrenelventil das den		Arbeitsleitungen und Zuberton Arbeitsleitung, Rohrleitung und Energie- übertragung.
- A	Ablaufstrom durch selbsträtiges Öffnen eines Abfusses konstant hält (Bypass-Vertil).	L=20·D	Steuerleitung, zum Übertragen der Steuerenergie. Zum Einstellen und Regeln.
- * · ·	a) 3-Wege-Stromeinstellventil b) 3-Wege-Stromeinstellventil c) Funktion	L=2.0	Leckleitung , zum Abführen auftretender Leckflüssigkeiten.
	Ctromtailar Vantila zum Tailan oder Vereiniran)	Biegsame Leitung, im Betrieb biegsame Leitung, Gummischlauch, Wellrohr usw.
*	mehrerer Ab- oder Zulaufströme. Weitgehend unabhängig vom Druck.	d=5·D	Leitungsverbindung, feste Verbindung, z.B. geschweißt, gelötet, geschraubt (einschl. Fittings).

Sinnbilder und Benennung für Ölhydraulische Anlagen (Fortsetzung)

		•	60
Sinnbild	Benennung und Erklärung	Sinnbild	Benennung und Erklärung
	Hydroleitungen und Zubehör		Hydroleitungen und Zubehör
+	Leitungskreuz, Überquerung von Leitungen, die nicht miteinander verbunden sind.	\Diamond	Filter oder Sieb zum Abscheiden von Schmutz-teilchen.
a) ++	Schnellkupplung a) verbunden ohne mechan. öffnendes		Wärmeaustauscher, die Pfeile zeigen das Zuführen der Wärme an.
	Rückschlagventil b) verbunden mit mechan. öffnendem		Kühler, die Pfeile zeigen das Abführen der Wärme an.
T T	nucksunagventii c) entkuppelt. Leitung offen d) entkuppelt I eitung geschlossen	\odot	Manometer
	Control of the contro	<u></u>	Thermometer
	Leitungsverbindung, im Deureb dreinbare Leitungsverbindung z. B. Drehzapfen a) mit einem Weg b) mit drei Wegen	Y. W	Druckschalter , der elektrische Kontakte enthält
4 4	Elektrische Leitung	‡	Absperrventil
]	Auslass. mit Bohranschluss		Betätigungs- und Antriebsarten
-		a). T	
*	Druckanschluss, Stelle zum etwaigen Anschließen eines Gerätes	다. 라 나 하	Manuelle betatigungsarten a) allgemein b) durch Knopf c) durch Hebel d) durch Pedal
¥	Blindanschluss, Kennzeichnung eines verschlossenen Anschlusses an einem Gerät oder an einer Leitung		B e
	Behälter	₽	
q) (q	offen, mit Atmosphäre verbunden a) mit Rohrende über dem Flüssigkeitsspiegel b) mit Rohrende unterhalb des Flüssigkeits-		Elektrische Betätigung a) Elektromagnet, b) Elektromotor
	oppose of the state of the stat	L (q L (b	Druckbetätigung (direkt)
	nyarospercher, zum speichem nyaraunscher Energie	→ ←	a) durch Druckbeautschlagung b) durch Druckentlastung

238

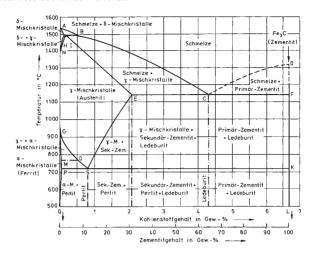
Sinnbilder und Benennung für ölhydraulische Anlagen (Fortsetzung) 14.5

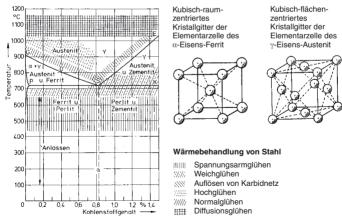
			Beispiel einer vollständigen ölhydraulischen Anlage	Fahren Wippen Heben Ausleger Schieben				No. of the second secon	♦		Industriekran Dargestellt wird immer die Ruhestellung der Anlage	
Similaride dud Dereminary (i Orbetzany)	Benennung und Erklärung	Betätigungs- und Antriebsarten	Druckbetätigung (indirekt) a) durch Druckbeaufschlagung der Steuerleitung b) durch Druckentlastung der Steuerleitung	Kombinierte Betätigung a) Elektromagnet und Vorsteuerventil b) Elektromagnet oder Vorsteuerventil	Welle a) in einer Drehrichtung b) in zwei Drehrichtungen	Raste Aufrechterhaltung einer Schaltstellung	Sperre Sperrung einer Stellung oder Richtung	Sprungwerk Gerät springt über einen Totpunkt	Druckquelle Allgemein	Druckquelle Hydraulische Energie	Elektromotor, mit nahezu konst. Drehzahl	Wärmekraftmaschine
	Sinnbild		a) b)	In Jan	# _{B=5} O			*	.	^	Σ	M

Sinnbilder und Benennung für pneumatische Anlagen 14.6

Sinnbild	Benennung und Erklärung	Sinnbild	Benennung und Erklärung
	Pneumatik – Kompressor		Pneumatikleitungen und Zubehör
⊕	Kompressor mit konstantem Verdrängungsvolumen, nur eine Stromrichtung.	417	Schalldämpfer, zur Verminderung des entstehenden Geräusches.
*	Vakınımının dia dazıı diant daeförmide	¢	Druckluftspeicher
•€	Medien aus einem Baum niedrigen Druckes zu		-
5	entfernen.		Wasserabscheider, Abscheiden und Entfernen von Kondenswasser aus der Anlage.
- ∀	Druckübersetzer, bestehend aus zwei		a) handbetätigt b) autom. Entleerung
×	unterschiedlichen Druckkammern x und y.		Filter mit Wasserabscheider. a) handbetätigt b) autom. Entleerung
◆	Druckmittelwandler, in dem bei gleichem Druck von einem Druckmittel zum anderen	<u></u>	Auslass ohne Rohranschluss.
	übergegangen wird.	$\overline{\ }$	Trockner, in dem Luft mittels Chemikalien
	Pneumatik – Motor	>	getrocknet wird.
a (6)	Pneumatischer Motor mit konstantem Verdrängungsvolumen	\Rightarrow	Öler, in dem durchströmender Luft eine geringe Menge Öl zugeführt wird.
<u>5</u>	a) mit einer Stromrichtung b) mit zwei Stromrichtungen	фф 5 = 5	Durchflussmessgerät(auchf.hydraul. Anlagen) a) Strömungsmesser b) Volumenmesser
4	Schwenkmotor	9	Betätigungen
4		l l a	Druckbetätigung (direkt)
	Pneumatikventil	→	a) durch Druckbeaufschlagung b) durch Druckentlastung
	Schnellentlüftungsventil, Sperrventil, bei dem bei entlüfteter Eingangsleitung die Ausgangsleitung ins Freie entlüftet wird.		Druckbetätigung (indirekt) a) durch Druckbeaufschlagung b) durch Druckentlastung
Ċ	Ole ilbridge Symbole sind identisch	10 P	Kombinierte Betätigung
5	mit denen der Ölhydraulik		a) Elektromagnet oder Steuerventil b) Elektromagnet oder Steuerventil

15 Betriebstechnik

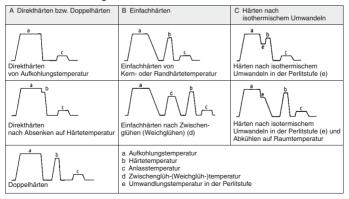

15.1 Wärmebehandlung von Stahl


15.1.1 Übersicht über die wichtigsten Wärmebehandlungsverfahren (Härten)

Verfahren	Beschreibung
Härten	Das Härten bewirkt bei hierfür geeigneten Eisenwerkstoffen das Entstehen der
	Martensit-Struktur und dadurch eine Steigerung von Härte und Festigkeit.
Härten	Beim Härten wird zum Herstellen der Austenit-Struktur und Auflösen von Carbiden
über den	auf die Härte- oder Austenitisiertemperatur erwärmt, bestimmte Dauer gehalten
ganzen Querschnitt	und mit einer für die Bildung des Martensits ausreichenden Geschwindigkeit (dem
Querschnitt	ZTU-Schaubild des jeweiligen Stahls zu entnehmen) auf Raumtemperatur oder darunter abgekühlt bzw. abgeschreckt.
Anlassen	Anlassen ist eine Wärmebehandlung, die dem gehärteten und relativ spröden
Alliassell	Werkstoffzustand eine höhere Zähigkeit verleihen soll. Es besteht in einem Erwär-
	men auf Temperaturen im Bereich 160 650 °C mit ausreichender Haltedauer
	und Abkühlen auf Raumtemperatur. Durch das Anlassen wird die Härte verringert,
	die Festigkeit nimmt ab und die Verformbarkeit und die Zähigkeit nehmen zu.
	Eventuell vorhandener Restaustenit wird je nach Stahl bei Temperaturen über
	230 °C umgewandelt.
Vergüten	Die Kombination aus Härten und Anlassen oberhalb 500 °C wird als Vergüten
	bezeichnet. Es soll ein optimales Verhältnis zwischen Festigkeit und Zähigkeit her-
	beiführen.
Rand-	Bei diesem Verfahren bleibt das Austenitisieren und Härten auf die Werkstück-
schicht-	randschicht beschränkt. Das Erwärmen wird meist durch Elektroinduktion (mittel-
härten	oder hochfrequenter Wechselstrom) oder mit Gasbrennern vorgenommen. Abgeschreckt wird durch Tauchen oder Spritzen.
	Durch Randschichthärten vorher vergüteter Bauteile kann eine hohe Grundfestig-
	keit mit hoher Randhärte an besonders hoch beanspruchten Stellen kombiniert
	werden. Die Dicke der eingehärteten Randschicht ergibt sich aus dem Härte-
	verlauf als Randhärtungstiefe, kurz Rht, in mm (vgl. DIN 50 190, Teil 2).
Einsatz-	Das Einsatzhärten besteht aus Aufkohlen oder Carbonitrieren mit nachfolgendem
härten	Härten entweder unmittelbar anschließend daran oder nach einem Zwischenküh-
	len und Wiedererwärmen auf eine zweckentsprechende Härtetemperatur. Je nach
Aufkohlen,	den geforderten Gebrauchseigenschaften bzw. den Erfordernissen der nachfol-
Carboni- trieren	genden Bearbeitung wird nach dem Härten noch angelassen oder tiefgekühlt und
uieren	angelassen. Das Einsatzhärten dient dazu, der Randschicht von Werkstücken aus Stahl eine
	wesentlich höhere Härte und dem Werkstück bessere mechanische Eigenschaf-
	ten zu verleihen. Hierzu wird die Randschicht vor dem Härten mit Kohlenstoff
	(Aufkohlen) oder Kohlenstoff und Stickstoff (Carbonitrieren) angereichert.
	Die zusätzliche Stickstoffanreicherung bewirkt gegenüber dem Aufkohlen durch
	Veränderung des Umwandlungsverhaltens in der Randschicht eine höhere Härt-
	barkeit und nach dem Härten eine höhere Anlassbeständigkeit.
Bainit-	Bei diesem Wärmebehandlungsvorgang wird nach einem Erwärmen und Halten
härten	auf Austenitisiertemperatur auf eine Temperatur je nach Stahl zwischen 200 und
loothormi	350 °C abgekühlt und so lange auf dieser Temperatur gehalten, bis sich das Stahl- gefüge in Bainit umgewandelt hat, danach wird auf Raumtemperatur abgekühlt. In
Isothermi- sches	diesem Zustand ist die Härte geringer als die von Martensit, jedoch die Zähigkeit
Umwan-	höher. Das Verfahren gilt als Alternative zum Härten, wenn hohe Zähigkeit und
deln in der	nicht zu hohe Härte erforderlich ist und wenn Verzug und Maßänderung minimiert
Bainit-Stufe	werden müssen.

15.1.1 Übersicht über die wichtigsten Wärmebehandlungsverfahren (Glühen)

Verfahren	Beschreibung
Glühen	Unter Glühen versteht man die Wärmebehandlung eines Werkstückes bei einer bestimmten Glühtemperatur, um sowohl die Gebrauchs- als auch Verarbeitungseigenschaften des Werkstoffes zu beeinflussen und zu optimieren. Die Glühbehandlung besteht in einem Erwärmen auf die jeweils erforderliche Glühtemperatur mit einer ausreichend langen Haltedauer und einem dem jeweiligen Zweck angepassten Abkühlen.
Spannungs- armglühen	In Werkstücken können Eigenspannungen, bedingt durch ungleichmäßige Erwärmung oder Abkühlung, durch Gefügeumwandlungen oder Kaltverformungen auftreten. Zum Abbau dieser Eigenspannungen wird ein Spannungsarmglühen zwischen 450 650 °C durchgeführt, um die in Werkstücken, Werkzeugen oder Rohlingen vorliegenden Eigenspannungen durch plastische Verformungen abzubauen. Nach einer Glühdauer von 0,5 1 h muss möglichst langsam abgekühlt werden, damit keine neuen Spannungen entstehen können.
Weich- glühen	Zur Verbesserung des Formänderungsvermögens von C-Stählen und Erleichterung der spanenden Bearbeitung oder wenn Werkstücke durch Härten, Aushärten, Kaltumformung verfestigt worden sind, wird bei Temperaturen im Bereich Ac, weichgeglüht. Die Temperatur richtet sich nach dem Werkstoff: Bei Stahl 650 750 °C, bei Nichteisenmetallen darunter. Soll ein bestimmter Gefügezustand, gekennzeichnet durch eine kugelige Einformung der Carbide, erreicht werden, dann wird "Glühen auf kugeligen Zermentit" (abgekürzt: GKZ-Glühen) angewendet. Dabei ist zwischen GKZ2 (Ausgangszustand Martensit oder Bainit) und GKZ1 (Ausgangszustand Normalgefüge) zu unterscheiden.— Die kugelige Form des Zementits kann auch durch Austenitisierung und geregeltes Abkühlen erzielt werden.
Rekristalli- sations- glühen	Die Möglichkeit der Kaltumformung eines Werkstoffes wird begrenzt durch die Zunahme der Verfestigung und die Abnahme der Verformungsfähigkeit mit dem Umformgrad. Es wird deshalb bei spanlos umgeformten Werkstücken angewendet, um eingetretene Verfestigungen aufzuheben und eine Kornneubildung herbeizuführen, damit ein nachfolgendes Umformen wieder ermöglicht bzw. erleichtert wird. Die Temperatur richtet sich nach dem Verformungsgrad, sie liegt bei Stahl im Allgemeinen bei ca. 550 730 °C.
Normal- glühen	Normalglühen wird bei Austenitisierungstemperatur, d. h. bei einer Temperatur wenig oberhalb Ac ₃ (bei übereutektoiden Stählen oberhalb Ac ₁) durchgeführt. Abgekühlt wird nach ausreichend langer Haltedauer mit einer Geschwindigkeit, durch die bei Raumtemperatur ein Gefüge aus Ferrit und Perlit entsteht. Das Normalglühen wird zum Verfeinern eines grobkörnigen Gefüges (z.B. bei Stahlgussteilen und in Schweißnähten) und zum Erzielen einer möglichst homogenen Ferrit-Perlit-Verteilung angewendet. Es sollte anstelle eines Rekristallisationsglühens angewendet werden, wenn bei unterkritisch verformten Werkstücken eine Grobkornbildung zu befürchten ist. Wird die Austenitisierungstemperatur zu hoch gewählt, tritt ein Wachstum der γ-Mischkristalle ein, das auch nach der Umwandlung zu grobkörnigem Gefüge führt. Ebenso verursacht eine zu langsame Abkühlung ein grobes Ferritkorn.
Diffusions- glühen	Das Diffusionsglühen erfolgt bei Temperaturen zwischen 1030 und 1150 °C oberhalb Ac ₃ . Es dient zur Beseitigung von Seigerungszonen in Blöcken und Strängen. Wird keine Warmumformung nach dem Diffusionsglühen vorgenommen, muss zur Beseitigung des groben Korns normalgeglüht werden.
Aushärten	Das Aushärten besteht aus Lösungsglühen, Abschrecken und Auslagern oberhalb Raumtemperatur (Warmauslagern). Durch ein Auslagern erfolgt ein Entmischen und Ausscheiden intermetallischer Verbindungen bestimmter im Grundwerkstoff gelöster Lösungselemente. Hierbei verändern sich Werkstoffeigenschaften wie z.B. Härte, Festigkeit, Verformbarkeit, Zähigkeit.


15.1.3 Übliche Temperaturen beim Einsatzhärten von Einsatzstählen nach DIN EN 10 084

Stahlbezeic Kurzname	hnung Werkstoff- nummer	Aufkohlungs- temperatur ¹⁾	Kernhärte- temperatur ²⁾	en von Randhärte- temperatur ²⁾	Abkühlmittel	Anlassen ³⁾
		°C	°C	°C		°C
C10E C10R C15E C15R	1.1121 1.1207 1.1141 1.1140		880 bis 920		Die Wahl des Abkühl-(Abschreck-)	
17Cr3 17Cr53 28Cr 4 28Cr54 16MnCr5 16MnCr5 20MnCr5 20MnCr5 20MoCr4 20MoCr4 20NiCrMo2-2 20NiCrMo5-2	1.7016 1.7014 1.7030 1.7036 1.7131 1.7139 1.7147 1.7149 1.7321 1.7323 1.6523 1.6526	880 bis 980	860 bis 900	780 bis 820	mittels richtet sich im Hinblick auf die erfor- derlichen Bauteil- eigenschaften nach der Härtbarkeit bzw. der Einsatzhärtbar- keit des verwendeten Stahles, der Gestalt und dem Quer- schnitt des zu härtenden Werk- stückes sowie der	150 bis 200
17NiCrMo6-4 17NiCrMoS6-4	1.6566 1.6569		830 bis		Wirkung des Abkühlmittels	
20NiCrMoS6-4	1.6571		870			

¹⁾ Für die Wahl der Aufkohlungstemperatur maßgebende Kriterien sind hauptsächlich die gewünschte Aufkohlungsdauer, das gewählte Aufkohlungsmittel und die zur Verfügung stehende Anlage, der vorgesehene Verfahrensablauf sowie der gefordert Gefügezustand. Für ein Direkthärten wird üblicherweise unterhalb 950 °C aufgekohlt. In besonderen Fällen werden Aufkohlungstemperaturen bis über 1000 °C angewendet.

3) Anlassdauer mindestens 1 h (Anhaltswert)

Übliche Wärmebehandlung beim Einsatzhärten

²⁾ Beim Direkthärten wird entweder von Aufkohlungstemperatur oder einer niedrigeren Temperatur abgeschreckt. Besonders bei Verzugsgefahr kommen aus diesem Bereich vorzugsweise die niedrigeren Härtetemperaturen in Betracht.

15.1.4 Wärmebehandlung von Wälzlagerstählen nach DIN EN ISO 683-17

)	•						
Stahlbezeichnung		Härtetemperatur für Stirn- abschreckversuch	Normal- glühen	Vorwärm- temperatur	Härten in Öl²)	Härten in Wasser ²⁾	Anlassen	Frühere Bezeichnung
Kurzname	Werkstoff- nummer	°C # 5°C	°	ô	ô	ô	ô	
			Durchhä	Durchhärtende Wälzlagerstähle	erstähle			
1	1.3501	1	1	1	820 bis 850	ı	150 bis 180	100 Cr 2
100Cr6	1.3505	1	1	1		ı	150 bis 180	100 Cr 6
100CrMnSi6-6	1.3520	ı	ı	ı		ı	150 bis 180	100 CrMn 6
100CrMo7	1.3537	ı	ı	ı		ı	150 bis 180	100 CrMo 7
100CrMo7-3	1.3536	1	1	1		1	150 bis 180	100 CrMo 7 3
100CrMoSi8-4-6	1.3539	1	1	1	840 bis 880	1	150 bis 180	100 CrMnMo 8
			Einsatzh	Einsatzhärtende Wälzlagerstähle	erstähle			
17MnCr5	1.3521	870	1	1	810 bis 840	1	150 bis 180	17 MnCr 5
19MnCr5	1.3523	870	1	1	810 bis 840	ı	150 bis 180	19 MnCr 5
1	1.3531	860	1	1		ı	150 bis 180	16 CrNiMo 6
18NiCrMo14-6	1.3533	830	1	ı		ı	150 bis 180	17 NICrMo 14
			Induktions	Induktionshärtende Wälzlagerstähle	agerstähle			
C56E2	1.1219	840	830 bis 860	1		805 bis 835	550 bis 660	Cf 54
1	1.3561	820	840 bis 870	1		820 bis 850	550 bis 660	44 Cr 2
43CrMo4	1.3563	820	840 bis 880	ı		820 bis 850	540 bis 680	43 CrMo 4
1	1.3565	850	840 bis 880	ı	830 bis 860	820 bis 850	540 bis 680	48 CrMo 4
			Nichtros	Nichtrostende Wälzlagerstähle	rstähle			
X47Cr14	1.3541	1	1	_	1020 bis 1070	1	100 bis 200	X 45 Cr 13
X108CrMo17	1.3543	ı	ı	ı	1030 bis 1080	ı	100 bis 200	X 102 CrMo 17
X89CrMoV18-1	1.3549	ı	1	ı	1030 bis 1080	ı	100 bis 200	X 89 CrMoV 18 1
			Warmi	Warmharte Wälzlagerstähle	stähle			
80MoCrV42-16	1.3551	1	-	750 bis 875	1070 bis 1120 ³⁾	1	500 bis 580 ⁴⁾	80 MoCrV 42 16
X82WMoCrV6-5-4	1.3553	ı	1	750 bis 875	1180 bis 1230 ³⁾	ı	500 bis 580 ⁴⁾	X 82 WMoCrV 6 5 4
X75WCrV18-4-1	1.3558	ı	1	750 bis 875	1220 bis 1270 ³⁾	ı	500 bis 580 ⁴⁾	X 75 WCrV 18 4 1

¹⁾ Es handelt sich, außer bei den Härtetemperaturen für den Stirnabschreckversuch, um Anhaltsangaben; betrieblich sind die Temperaturen und die sonstigen Bedingungen so zu wählen, dass die gewünschten Eigenschaften erreicht werden.

245

Wahl des Abschreckmittels bei den Verg
ütungsst
ählen je nach Form und Ma
ßen des Werkst
ückes.

³⁾ Dieser Stahl wird üblicherweise in einem Salzbad mit einer Temperatur von 500 bis 560 °C abgeschreckt. 4) Anlassdauer 2 h.

15.1.5 Umwertungstabelle für Vickershärte, Brinellhärte, Rockwellhärte und Zugfestigkeit

Zug- festig- keit	Vi- ckers härte		Rockwellhärte		Zug- festig- keit	Vi- ckers- härte	Brinellhärte ²⁾	Rockwell- härte		
N/ mm ²	(F ≥ 98N)	$\left(0,102 \frac{F}{D^2} = 30 \frac{N}{mm^2}\right)$	HRB HRC HRA		N/ mm ²	(F ≥ 98N)	$\left(0,102\frac{F}{D^2} = 30\frac{N}{mm^2}\right)$	HRC	HRA	
255 270 285 305 320	80 85 90 95 100	76,0 80,7 85,5 90,2 95,0	41,0 48,0 52,0 56,2	1110		1155 1190 1220 1255 1290	360 370 380 390 400	342 352 361 371 380	36,6 37,7 38,8 39,8 40,8	68,7 69,2 69,8 70,3 70,8
335 350 370 385 400	105 110 115 120 125	99,8 105 109 114 119	62,3 66,7			1320 1350 1385 1420 1455	410 420 430 440 450	390 399 409 418 428	41,8 42,7 43,6 44,5 45,3	71,4 71,8 72,3 72,8 73,3
415 430 450 465 480	130 135 140 145 150	124 128 133 138 143	71,2 75,0 78,7			1485 1520 1555 1595 1630	460 470 480 490 500	437 447 (456) (466) (475)	46,1 46,9 47,7 48,4 49,1	73,6 74,1 74,5 74,9 75,3
495 510 530 545 560	155 160 165 170 175	147 152 156 162 166	81,7 85,0			1665 1700 1740 1775 1810	510 520 530 540 550	(485) (494) (504) (513) (523)	49,8 50,5 51,1 51,7 52,3	75,7 76,1 76,4 76,7 77,0
575 595 610 625 640	180 185 190 195 200	171 176 181 185 190	87,1 89,5 91,5			1845 1880 1920 1955 1995	560 570 580 590 600	(532) (542) (551) (561) (570)	53,0 53,6 54,1 54,7 55,2	77,4 77,8 78,0 78,4 78,6
660 675 690 705 720	205 210 215 220 225	195 199 204 209 214	92,5 93,5 94,0 95,0 96,0			2030 2070 2105 2145 2180	610 620 630 640 650	(580) (589) (599) (608) (618)	55,7 56,3 56,8 57,3 57,8	78,9 79,2 79,5 79,8 80,0
740 755 770 785 800	230 235 240 245 250	219 223 228 233 238	96,7 98,1 99,5	20,3 21,3 22,2	60,7 61,2 61,6		660 670 680 690 700		58,3 58,8 59,2 59,7 60,1	80,3 80,6 80,8 81,1 81,3
820 835 850 865 880	255 260 265 270 275	242 247 252 257 261	(101) (102)	23,1 24,0 24,8 25,6 26,4	62,0 62,4 62,7 63,1 63,5		720 740 760 780 800		61,0 61,8 62,5 63,3 64,0	81,8 82,2 82,6 83,0 83,4
900 915 930 950 965	280 285 290 295 300	266 271 276 280 285	(104) (105)	27,1 27,8 28,5 29,2 29,8	63,8 64,2 64,5 64,8 65,2		820 840 860 880 900		64,7 65,3 65,9 66,4 67,0	83,8 84,1 84,4 84,7 85,0
995 1030 1060 1095 1125	310 320 330 340 350	295 304 314 323 333		31,0 32,2 33,3 34,4 35,5	65,8 66,4 67,0 67,6 68,1		920 940		67,5 68,0	85,3 85,6

Die eingeklammerten Zahlen sind Härtewerte, die außerhalb des Definitionsbereichs der genormten Härteprüfverfahren liegen, praktisch jedoch vielfach als Näherungswert benutzt werden.

15.2 Schalltechnik

15.2.1 Schall, Schalldruck, Schallpegel

Mechanische Schwingungen mit Frequenzanteilen im Hörbereich von 16 bis 16 000 Hz werden als Schall bezeichnet, wobei die Begriffe für Schwingungen in Luft und Gasen: Luftschall

Schwingungen in Flüssigkeiten: Flüssigkeitsschall Schwingungen in festen Körpern: Körperschall

verwendet werden

In Luft und anderen Gasen sowie in Flüssigkeiten breitet sich Schall nur in Form von Kompressionswellen aus. Der dabei dem statischen Druck überlagerte Wechseldruck p(t) wird als Schalldruck bezeichnet und stellt für diese Fälle die wichtigste Messgröße dar, die mittels Mikrofonen oder Druckaufnehmern gemessen wird.

Für den Körperschall ist die wichtigste Messgröße die Schwinggeschwindigkeit v(t) oder Körperschall-Schnelle senkrecht zur abstrahlenden Oberfläche eines Geräuscherzeugers. Die in der Regel mit Piezoquarz-Aufnehmern gemessene Beschleunigung a(t) kann mit der Beziehung

$$a(t) = dv(t)/dt$$

umgerechnet werden. Für ein Frequenzband mit der Mittenfrequenz f gilt für den Effektivwert der Schnelle $\bar{v}(f) = \bar{a}(f)/2 \cdot \pi \cdot f$

Auch die Schnelle wird meistens relativ als Schnellepegel L, angegeben

$$L_v = 10 \cdot \lg(\bar{v}/v_0)^2 = 20 \cdot \lg(\bar{v}/v_0)$$

wobei als Bezugswert $v_0 = 5.10^{-8}$ m/s gewählt wird.

Akustische Wahrnehmungen des menschlichen Ohres

Wahrnehmung	Lautstärke	Schalldruck	Schallleistung	Schallintensität
Hörschwelle ¹⁾	0 – 10 phon	2·10 ⁻⁵ N/m ² ²⁾	10 ⁻¹² W	10^{-12} W/m^2
Unterhaltung	50 – 60 phon	0,2 N/m ²	≈ 10 ⁻³ W	$\approx 10^{-3} \text{ W/m}^2$
Schmerzgrenze	130 phon	20 N/m ²	≈ 10 ⁺³ W	$\approx 10^{+3} \text{ W/m}^2$

¹⁾ Geringster, dem menschlichen Ohr wahrnehmbarer Lautstärkepegel.

Schallpegel, Geräuschsituation und Empfindung

Schallpegel db (A)1)	Geräuschsituation	Empfindung
0 0- 10 10- 20	Absolute Stille, Beginn des Hörbereiches Hörschwelle Blätterrascheln	ruhig
30 40 50	Flüstern Leise Radiomusik Obergrenze für konzentrierte geistige Arbeit	leise
50 - 70 75 80 85 90 90 - 100	Büroarbeit, Gespräche zwischen Personen Beginn eines störenden Einflüsses auf das Nervensystem Starker Straßenverkehr, Grenze der Gehörerholung Beginn der Gehörgefährdung Lkw-Fahrerhaus Auto-Hupe	mäßig laut sehr laut extrem laut
100-110 110 110-120	Diskothek Presslufthammer Großer Schmiedehammer	unerträglich
130 140	Düsenflugzeug (100 m), Schmerzgrenze Raketenstart	schmerzhaft

Bei der Frequenz von 1000 Hz wird dem Schalldruckpegel in dB der Lautstärkepegel in phon gleichgesetzt. Schädlichkeitsgrenzen: 90 phon vorübergehend, etwa 75 phon dauernd.

²⁾ Bezugsschalldruck: pn = 2 · 10⁻⁵ N/m², international festgelegter Bezugswert für den Effektivwert des Schalldruckes.

15.2.2 Größen, Einheiten und Beziehungen in der Schalltechnik

Bezeichnung	Einheit	Beziehung	Definition		
Schall- geschwindig- keit	m/s	$c_L = \sqrt{\frac{2G(1-\nu)}{\rho(1-2\cdot\nu)}}^{1}$	feste Stoffe Longitudinalwellen in großen Körpern		
		$c_T = \sqrt{G/\rho}$	Transversalwellen in großen Körpern		
		$c_D = \sqrt{E/\rho}$	Dehnwellen in Stäben, Stahl: 5000 m/s		
		$c = \sqrt{x/\rho}$	Flüssigkeiten Wasser: 1485 m/s		
		$c = \sqrt{\kappa \cdot R \cdot T}$	Gase Luft: 331 m/s 1 bar, Wasserstoff: 1280 m/s 0 °C		
Schall- schnelle	m/s	$v = a_0 \cdot \omega$ $v = a_0 \cdot 2 \cdot \pi \cdot f$	Wechselgeschwindigkeit der schwingenden Teilchen		
Schalldruck	N/m² μbar	р	durch die Schallschwingung hervor- gerufener Wechseldruck		
Schallleistung	W	P	Schallenergie pro Zeiteinheit, die durch eine bestimmte Fläche geht		
Schall- intensität, Schallstärke	W/m ²	$I = P/A$ $= p^2/(c \cdot \rho)$	Schallleistung pro Flächeneinheit senkrecht zur Ausbreitungsrichtung		
Schallpegel	Bel B, dB	L = $10 \cdot \lg (P/P_0)$ = $10 \cdot \lg (I/I_0)$ = $20 \cdot \lg (p/p_0)$	$ \begin{array}{ll} \text{logarithmisches MaB für den} \\ \text{Schalldruck} & P_0 = 10^{-12} \text{W} \\ 0 \dots 140 \text{dB:} & I_0 = 10^{-12} \text{W/m}^2 \\ p_0 = 2 \cdot 10^{-5} \text{N/m}^2 \\ \end{array} $		
Lautstärke	phon	bei 1000 Hz $\Lambda = 10 \cdot \text{Ig (I/I}_0)$	Maß der subjektiven Empfindung der Schallintensität für das Ohr		
Schall- absorptions- grad	1	$\begin{aligned} \alpha &= (P_a - P_r)/P_r \\ \alpha &= (p_a^2 - p_r^2)/p_r^2 \\ \text{Index a und r auftreffend} \\ \text{und reflektierend} \end{aligned}$	Maß für die Umwandlung der Schall- energie in Wärme durch Reibung für 500 Hz: Beton 0,01 Glas 0,03 Schlackenwolle 0,36		
Schall- dämmmaß	dB	$R = 10 \cdot \lg \left(I_1 / I_2 \right)$	logarithmisches Maß für die Luftschall- dämmung einer Wand, Index 1 davor, Index 2 dahinter Stahlblech 1 mm: R = 29 dB		
akustischer Wirkungsgrad	1	$\eta = P_{aku}/P_{mech}$	Verhältnis der akustischen zur mechanischen Leistung		
1) a ₀ Amplitude A Fläche P Leistung × Isentropenexponent f Frequenz E Elastizitätsmodul R Gaskonstante v Poisson-Zahl Q Dichte X Kompressibilität					

16 Anhang

16.1 Alphabete

Deutsches Alphabet (Fraktur)

ABCDEFGHJSTRLMNDPDREZUVWXYZAHA abedefghijkImnopgristuvwyyjäöü chaffifillississis

Deutsches Alphabet (Schreibschrift)

OBLVE GGGFACEM NOPGRFFUDNXYZ Werr af yfijslmnopy a 1 6 ps ñonegz

Griechisches Alphabet

Α α	Ββ	Γγ	Δ δ	Ε ε	Ζζ
Alpha (a)	Beta (b)	Gamma (g)	Delta (d)	Epsilon (e)	Zeta (z)
Η η	Θ ϑ	Ιι	Κ и	Λ λ	Μ μ
Eta (e)	Theta (th)	lota (i)	Kappa (k)	Lambda (I)	My (m)
Νν	Ξξ	O o	Ππ	P Q	Σ σ
Ny (n)	Xi (x)	Omikron (o)	Pi (p)	Rho (r)	Sigma (s)
Τ τ	Υυ	Φ φ	Χ χ	Ψψ	Ω ω
Tau (t)	Ypsilon (ü)	Phi (f)	Chi (ch)	Psi (ns)	Omega (o)

Kyrillisches (Russisches) Alphabet

A a	Б б b	Вв	$\Gamma_{ m g}$	Дд	Ее je
Ëë ë	Жж sch	3 s	, И м	Йй	Кк k
n R	М м m	Нн	0 0	пп	\Pr_{r}
C c	T_{t}	Уу u	Φ φ f	X x	Цц
Чч tsch	III III sch	Щ щ schtsch	Ъъ hartes jär	Ыы ü dumpf	Ь в weiches jär
Ээ	Юю ju	Яя ja			

16.2 Buchstabiertafel (im Fernsprechverkehr)

Inland					Ausland				
A Ä B C Ch D E F G H I	= Anton = Ārger = Berta = Cāsar = Charlotte = Dora = Emil = Friederich = Gustav = Heinrich = Ida = Julia	N O Ö P Q R S T U Ü V W	= Nordpol = Otto = Ötkonom = Paula = Quelle = Richard = Samuel = Theodor = Ulrich = Übermut = Viktor = Wilhelm	A B C D E F G H I J K	= Amsterdam = Baltimore = Casablanca = Danemark = Edison = Florida = Gallipoli = Havanna = Italia = Jerusalem = Kilogramme = Liverpool	N O P Q R S T U V W X Y	= New York = Oslo = Paris = Quebec = Roma = Santiago = Tripolis = Upsala = Valencia = Washington = Xanthippe = Yokahama		
K L M	= Kaufmann = Ludwig = Martha	X Y Z	= Xanthippe = Ypsilon = Zacharias	M	= Madagaskar	Z	= Tokanama = Zürich		

16.3 Morsealphabet (international)

Buch- stabe	Zeichen	Merkwort ¹⁾	Buch- stabe	Zeichen	Merkwort ¹⁾	
а	· –	Arno	0		Ökonom	
b		Borvaselin	Ö		Ökonomie	
С		Coburg-Gotha	р		Per Motorrad	
d	- · ·	Doria	q		Quohnsdorf bei Forst	
е		Ernst	r		Revolver	
f		Friedrichsroda	s		Sabine	
g		Gomorrha	t	_	Tod	
h		Herrenzimmer	u		Uniform	
i		Ida	ü		Überkonto	
i		Jawohl Odol	v		Verbrennungstod	
k		Kolberg Ost	w		Weltnordpol	
I		Leonidas	х		Xolabaphon	
m		Motor	у		York Yellowstone	
n		Nora	z		Zoroaster	
Zahlen:	3 · · ·	7 · · ·	Punkt -		Bruchstrich - · · - ·	
	4 · · · · -	8·· 9	Komma		Bindestrich - · · · -	
1						
1 · 5 · · · · 9 · Strichpunkt - · · - · · · · · · · · · · · · · · ·						

¹⁾ o bedeutet Strich

16.4 Nationalitätskennzeichen (für Kraftfahrzeuge souveräner Staaten)

Euro	ра	вн	Belize	ОМ	Oman
Α	Österreich	BOL	Bolivien	PA	Panama
AL	Albanien	BR	Brasilien	PE	Peru
AND		BRN	Bahrain	PK	Pakistan
В	Belgien	BRU	Brunei	PY	Paraguay
BG	Bulgarien	BS	Bahama-Inseln	Q	Katar
BIH	Bosnien-	C	Cuba	RA	Argentinien
ып	Herzegowina	CAM	Kamerun	RB	Botswana
BY	Weissrußland	CDN	Kanada	RC	Republik China
CH	Schweiz	CI	Cote d'Ivoire	RCA	Zentralafrikan. Republik
CZ	Tschechien	CL	Sri Lanka	RCB	Kongo
D D	Deutschland	CO	Kolumbien	RCH	Chile
DK		CR	Costa Rica	RG	Guinea
	Dänemark	CY	Cypern	RH	Haiti
E EST	Spanien	DOM	Dominikanische Republik	RI.	Indonesien
F	Estland	DY	Benin	RIM	Mauretanien
	Frankreich	DZ	Algerien	RL	Libanon
FIN	Finnland	FAK	Kenia	RM	
FL	Liechtenstein	FAT			Madagaskar
FR	Farör-Inseln		Tansania	RMM	Mali
GB	Verein. Königreich	EAU	Uganda	RN	Niger
	von Großbritannien	EC	Ecuador	ROK	Korea
	Alderney	ER	Eritrea	ROU	Uruguay
	Guernsey	ES	El Salvador	RP	Philippinen
GBJ	Jersey	ET	Ägypten	RT	Togo
	Insel Man	ETH	Äthiopien	RWA	Ruanda
	Gibraltar	FJI	Fidschi-Inseln	SA	Saudi-Arabien
GR	Griechenland	FR	Faröer	SD	Swasiland
Н	Ungarn	GBZ	Gibraltar	SGP	Singapur
HR	Kroatien	GCA	Guatemala	SME	Suriname
1	Italien	GE	Georgien	SN	Senegal
IRL	Irland	GH	Ghana	SP	Somalia
IS	Island	GUY	Guyana	SY	Seychellen
L	Luxemburg	HK	Hongkong	SYR	Syrien
LT	Litauen	HN	Honduras	THA	Thailand
LV	Lettland	IL	Israel	TCH	Tschad
M	Malta	IND	Indien	TN	Tunesien
MC	Monaco	IR	Iran	TR	Türkei
MD	Moldawien	IRQ	Irak	TT	Trinidad und Tobago
MK	Mazedonien	J	Japan	UAE	Verein, Arab, Emirate
N	Norwegen	ĴΑ	Jamaika	USA	Verein, Staat, v. Amerika
NL	Niederlande	JOB	Jordanien	VN	Vietnam
Р	Portugal	K	Kambodscha	WAG	Gambia
PL	Polen	KSA	Saudi-Arabien	WAL	Sierra Leone
RO	Rumänien	KWT	Kuweit	WAN	Nigeria
SK	Slowakei	KZ	Kasachstan	WD	Windward-Insel Dominica
RSM	San Marino	LAO		WG	Grenada
RUS	Russische Föderation	LAC	Laotische Volksrepublik Lybien	WL.	Windward-Insel St. Lucia
S	Schweden	LAH		WS	
SLO	Slowenien	LS MA	Lesotho	WS WV	Westsamoa Windward-Insel St. Vincent
V	Vatikanstadt		Marokko		
YU	Restjugoslawien	MAL	Malaysia	YV	Venezuela
		MEX	Mexiko	Z	Sambia
Auße	ereuropa	MOC	Mosambik	ZA	Südafrika
	Afghanistan	MS	Mauritius	ZRE	Zaire
		MW	Malawi	ZW	Simbabwe
	Angola	MYA	Myanmar (Burma)		
AUS AZ		NA	Niederl. Antillen	CC	Konsularisches Corps
	Aserbaidschan	NAM	Namibia	CD	Diplomatisches Corps
BD	Bangladesch	NIC	Nicaragua	EUR	Behörden u. Bedienstete
BDS		NZ	Neuseeland		der EG Quelle: Falk-Verlag
BF	Burkina Faso	NZ	neuseeland		der EG Quelle: Falk-Verla

16.5 Römisches Zahlensystem

I ≙ 1 V ≙ 5 X ≙ 10 I ≙ 50 C ≙ 100 D ≙ 500 M ≙ 1000

1 I	5 V	9 IX	40 XL	80 LXXX	200 CC	600 DC
2 II	6 VI	10 X	50 L	90 XC	300 CCC	700 DCC
3 III	7 VII	20 XX	60 LX	99 XCIX	400 CD	800 DCCC
4 IV	8 VIII	30 XXX	70 LXX	100 C	500 D	900 CM

Schreibweise von links beginnend, die Zahlen werden addiert.

Steht eine kleinere Zahl vor einer größeren, so wird die kleinere hiervon subtrahiert.

V. L und D werden nur einmal geschrieben.

I. X. C und M können bis zu dreimal geschrieben vorkommen.

Beispiele 1496 MCDXCVI 1673 MDCLXXIII 1891 MDCCCXCI 1981 MCMLXXXI

16.6 Kalendarische Berechnungen

Aus den **Tafeln** können der Wochentag eines Gregorianischen Datums und die Osterdaten für die Jahre 1901 – 2099 entnommen werden.

Kalendertafeln

Tafel 1 gibt zu den einzelnen Jahren gehörende Ziffern Z. So gehört z. B. zum Jahre 2075 die Ziffer 1. In den Schaltjahren gilt die erste der beiden Ziffern für Januar und Februar, die zweite für den Rest des Jahres. Tafel 2 gibt für jeden Monat eine Ziffer M. Dabei wird aber z. B. November 27 = November 20 = November 13 = November 6 gerechnet. Die Ziffern M sind daher nur für die ersten sieben Monatstage gegeben. Aus Tafel 2 ist der Wochentag direkt zu entnehmen, indem man in der Kolumne der Monatsziffer von November 6 bis zur Zielle Z = 1 abwärts geht und den Mittwoch als Wochentag des 271. 2075 findet.

Zur Ermittlung des **Osterdatums** teilt man das Jahr durch 19 und bildet den bei der Division entstehenden Rest R, z. B. R = 18 für 1975. **Tafel 3** gibt zu jedem Wert von R das Datum V des ersten Frühlingsvollmondes. Dabei bedeuten die halbfetten Ziffern Tage im März, die anderen Tage im April. In unserem Beispiel gehört zu 18 der 27.3. als Datum des ersten Frühlingsvollmondes. Man sucht jetzt den Wochentag, der zum 27.3. 1975 gehört. Für 1975 findet man Z = 2. In einem Schaltjahr ist dabei stets die zweite Ziffer zu nehmen. Zu Z = 2 und zum 27.3. gehört nach **Tafel 2** ein Donnerstag. Ostern fällt dann auf den darauf folgenden Sonntag, den 30.3.

Wochentage und Osterdatum für 1901 – 2099

19	Tafel 1	20		Т	afel 2						Tafe	13
Z	Talor I	Z			u.o. L		М				R	V
2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 7 6 0 1 8 6 0 1 8 7 6 0 0 8 7 6 0 0 0 8 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	02 30 58 86 86 97 98 97 98 97 98 97 98 97 98 97 97 98 97 97 98 97 97 98 97 97 97 97 97 97 97 97 97 97 97 97 97	1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 3 4 5 6 6 1 2 3 3 4 5 6 6 1 2 3 3 4 5 6 6 1 2 3 3 4 5 6 6 1 2 3 3 4 5 6 6 1 2 3 3 4 5 6 6 1 2 3 3	März Agril Mai Juni Juli Juli August September Oktober November Dezember Z = 6 Z = 5 Z = 4 7 = 3 Z = 2 Z = 1 Z = 0 Die Ostergrenze (21–31 in	5 2 7 4 2 6 3 1 5 3 So Sa Fr Do Mi Di Mo	6 3 1 5 3 7 4 2 2 6 4 4 Mo Sa Fr DMi Di Di Tz, 1 –	7 4 2 6 4 1 5 3 7 5 Di Mo Soa Fr Do Mi	1 5 3 7 5 2 6 4 1 6 Mi Di Mo So Sa Fr Do	26 41 16 37 52 7 Do Mi Di Mo So Sa Fr	3 7 5 2 7 4 1 6 3 1 1 Fr Do Mi Di Mo So Sa	4 1 6 3 1 5 2 7 4 2 Sa Fr Doi Mo So	0 1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	14 3 23 11 31 18 8 28 16 5 25 13 2 22 10 30 17 7 27

Quelle: Knaurs Lexikon

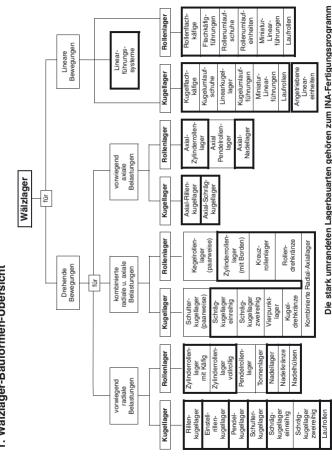
17 Stichwortverzeichnis

A		Bewegungsgleichung, freier Schwinger	101
Ableitungen, Differenziationsregeln	43	Bewegungsgleichungen, Grundgesetz	80
Additionstheoreme	28	Bewegungsvorgänge, mechanische	81
Ähnlichkeitskennzahlen	67	Biegelinie, elastische, von Trägern	127
Alkoxifluoröle	228	Binome, Arithmetik	24
Allgemeintoleranzen, Längen- u. Winkelmaße	171	Binomialkoeffizienten	22
Alphabet, deutsches, Fraktur	249	Blattgrößen nach DIN 823	162
Alphabet, deutsches, Schreibschrift	249	Bogenhöhen, Kreis	36f
Alphabet, griechisches	249	Bogenlängen, Kreis	36f
Alphabet, kyrillisches	249	Bohr'scher Badius	61
Ampere, Basiseinheit	11	Boltzmann-Konstante	60
Anlassen	241	Breitengrad	63
Anlasstemperatur	244	Brinellhärte	246
Arbeit, mechanische	84	Bruchformen, einachsiger Spannungszustand	117
Assoziatives Gesetz, Arithmetik	24	Buchstabiertafel, Ausland	250
Astronomische Einheit	64	Buchstabiertafel, Inland	250
Atom	58		
Atomare Energie	59	С	
Atomare Masse	59	Candela, Basiseinheit	11
Aufkohlen	241	Carbonitrieren	241
Aufkohlungstemperatur	244		
Auflagerarten	125	D	
Ausdehnungskoeffizient, thermischer	66	Dauerfestigkeit, Schaubild nach Smith	141
Aushärten	242	Dauerfestigkeit, Wöhler-Diagramm	141
Austenit	243	Dauerfestigkeitsschaubilder, Baustähle	142
Automatenstähle DIN 1651	149	Determinante, Gleichungen 1. Grades	26
Avogadro-Konstante	60	Dezimalsystem	46
3		Diester	227
В		Diffusionsglühen	242
Bainithärten	241	Diskriminante, quadratische Gleichung	25
Baryonen	58	Drehimpulssatz	87f
Basiseinheiten, SI-System	11	Drehstoß, geführte Bewegung	90
Basisgrößen, SI-System	11	Drehstoß, ungeführte Bewegung	90
Baustähle, allgemeine, DIN 17100	143	Dreieck, ebene	29
Beanspruchung dickwandiger Rohre	114	Dreieck, gleichseitig, Fläche	34
Beanspruchung dünnwandiger Rohre	114	Dreieck, rechtwinklig	29
Beanspruchung, Gestaltfestigkeit	141	Dreigelenkstütze	125
Beanspruchung, dynamische	141	Druckellipse, Achsen	135
Beanspruchung, zulässige	141	Dualsystem	46
Beanspruchungsarten, Biegung, Torsion	113	Dualsystem, Grundrechenarten	48
Beanspruchungsarten, Schub, Scherung	112	Durchflussmenge, Umrechnungen	20
Beanspruchungsarten, Zug, Druck	112	Dämpfungsdekrement, logarithmisches	95
Befestigungsgewinde	189		
Befestigungsschrauben	189	E	
Belastung, Punktlast	188	Ebenheit, Toleranzen	171
Belastung, Umfangslast	188	Eigenfrequenz	94
Belastungsverhältnis, Wälzlager	217	Eigenkreisfrequenz	95
Beleuchtungsstärke	16	Einheiten, astronomische	64
Beschleunigung	14	Einsatzhärten	241
Betriebsspiel, Passungseinfluss	225	Einsatzhärten, Temperaturen	244
Betriebsspiel, Temperatureinfluss	225	Einsatzhärtungstiefe	140
Betriebsspiel, Wälzlager	225	Einsatzstähle DIN 17210	147
Betriebsspiel, normales	225	Einspannung, fest	125
Bewegungsgewinde	189	Elastische Elemente	209

Elastische Systeme, Federrate	211	G	
Elastizitätsmodul	109f	Gammastrahlen	62
Elastomere für Gummifedern	213	Gaskonstante	60
Elektrische Stromstärke, Basisgröße	11	Gaskonstante	248
Elektromagnetische Strahlung	62	Gauß-Verteilung	54
Elektron	58	Gebrauchsdauer, Wälzlager	219
Elektronenmasse	59	Gebrauchstemperaturbereich, Schmierfett	229
Elektronenradius	61	Gelenk	125
Elementarladung	60	Gelenklager, fest	125
Elementarteilchen	58	Gelenklager, verschieblich	125
Elemente, Periodensystem	68f	Geometrische Grundlagen, Darstellungen	38f
Elemente, chemische	70f	Geradheit, Toleranzen	171
Ellipse, Fläche	34	Geschwindigkeiten, wissenswerte	63
Ellipse, Konstruktion	39	Gestaltfestigkeit	141
Energie, Verluste	84f	Gestaltänderungsenergiehypothese	118
Energie, kinetische	84	Gestaltänderungsenergiehypothese, Mises	138
Energie, potentielle	84	Gewicht, Bedeutung	12
Energiedosisrate	16	Gewichtskraft, Definition	12
Energieformen, Kinetik	85	Gewinde, metrisches DIN 13	192
Energiesatz, Mechanik	84	Gleichung, quadratische	25
Enthalpie	15	Gleitkommadarstellung	46
Entropie	15	Glühen	242
Erde, Größenzahlen	63	Goldener Schnitt	21
Erregerfrequenz	95	Gon, Einheit	13
Erregerfunktion für Schwinger	102f	Gravitationskonstante	60
Erstbefettung, Wälzlager	229	Grundfunktionen, Differenzialformen	43
Euler-Hyperbel	116	Grundgesamtheit	49
Euler'sche Gleichung, komplexe Zahlen	25	Grundintegrale	44
Euler'sche Knickfälle	116	Grundtoleranz	177
F		Größenzahl, Gestaltfestigkeit	141 212
- -	10	Gummifedern, Berechnung	151
Fallbeschleunigung	12 60	Gusseisen, Kugelgraphit DIN 1693	150
Faraday-Konstante Federn, Arbeitsspeicher	209	Gusseisen, Lamellengraphit DIN 1691	150
Federn, Federrate	210	н	
Federn, Gummifedern	212	Hadronen	58
Federn, Kennlinien	209	Hektar, Einheit	13
Federn, metallische	210	Hertz, Beiwerte	134f
Feingewinde, Auswahl DIN 13	193	Hertz, Gleichungen	133
Feldkonstante, elektrische	60	Hertz, Hilfswerte für Wälzlager	136
Feldkonstante, magnetische	60	Hertz, ebener Spannungszustand	137
Ferrit	243	Hertz, elastische Verformungen	133ff
Festigkeitsberechnung	109	Hertz, räumlicher Spannungszustand	138
Festigkeitshypothesen	118	Hertz'sche Kontakte	133
Festkommadarstellung	46	Hertz'sche Pressung, statische Tragzahl	217
Festschmierstoffe	229	Hexadezimalsystem	46
Fettschmierung	228	Histogramm	52
Flächenausdehnungskoeffizient	66	Hooke'sches Gesetz	109
Flächenmaße, Umwandlung deutsch/englisch	18	Hydraulik	231
Flächenmoment 1. Grades, statisches	110	Hydrogetriebe	231
Flächenmoment 2. Grades, axiales	110	Hydrogetriebe, charakt. Merkmale	234
Flächenmoment 2. Grades, polares	110	Hydromotoren	231
Flächenmomente 2. Grades, Kreisquerschnitt	121	Hydropumpen	231
Flächenmomente 2. Grades, axiale	119f	Hydropumpen, Größen, Einheiten	232
Flächenmomente, verschiedene		Hydropumpen, übliche Betriebswerte	233
Bezugsachsen	122	Hyperbelfunktionen	28
Flächenpressung, nicht gleitende		Hyperonen	58
Flächen	202	Härte-Zugfestigkeit, Umrechnung	246
Folge, arithmetische	26	Härtefaktor, dynamischer	220
Folge, geometrische	26	Härtefaktor, statischer	223
Formänderungen, elastische, plastische	109	Härten	241
Formänderungsarbeit, passive	128	Härtungstiefe	139f
Frequenz	14	Häufigkeitsdichte, relative	52

Häufigkeitsdichtefunktion 50 Häufigkeitssumme Höchstmaß	50 177	Kunststoffe, vollsynthetische Körper-Berechnungen	155 40
Höchstpassung	186	L	
riodistpassurig	100	Lager, Freiheitsgrade	125
1		Lager, Zwischenreaktionen	125
ISO-Gewinde, metrisches DIN 13	192	Lagerbelastung, äquivalente dynamische	220
Impulssatz	87	Lagerbelastung, periodisch veränderliche	222
Integraltafeln	129ff	Lagerbelastung, stufenweise veränderliche	222
Integration, Grundintegrale Ionendosisrate	44 16	Lagerbeuagungen, agrillierende	217 221
Istmaß	177	Lagerbewegungen, oszillierende Lagerdrehzahl, stufenweise veränderliche	221
istiliais	177	Lagerdrehzahl, veränderliche	221
J		Lagerlast, kombinierte	221
Jahr, siderisches	64	Lagerluft, Nachsetzzeichen	224
Jahr, tropisches	64	Lagerluft, radiale	224
		Lagerluftgruppe	224
K		Lagerreaktionen, einfache Träger	126
Kalendarische Berechnungen	252	Lagertemperatur, Lebensdauereinfluss	220
Kaon Karat, metrisches	58 13	Last, Bedeutung Laufbahnhärte, Lebensdauereinfluss	12 220
Karat, metrisches Kegel, Kegelstumpf, Volumen, Oberfläche	40	Laufbahnhärte, statische Tragfähigkeit	220
Kegelpressverband	208	Lautstärke	248
Kelvin, Basiseinheit	11	Lebensdauer, Anhaltswerte	219
Kerbwirkungszahl	141	Lebensdauer, Wälzlager	217
Kernhärtetemperatur	244	Lebensdauer, modifizierte	218
Kilogramm, Basiseinheit	11	Lebensdauer, nominelle	217
Kilogramm, SI-Einheit	13	Lebensdauerexponent, Wälzlager	217
Kilopond, Definition	17	Lebensdauergleichung, Beiwerte	218
Kinetik, Kräfte	82f	Ledeburit	243
Klasseneinteilung	51	Leptonen	58
Knicklast Knickspannung	115f 115f	Lichtgeschwindigkeit Lichtgeschwindigkeit im Vakuum	60 64
Knickspannung Knickung schlanker Stäbe	115f	Lichtgeschwindigkeit im vakuum Lichtjahr	64
Kommutatives Gesetz, Arithmetik	24	Lichtquant	58
Komplexe Zahlen	25	Lichtstrahlen, Wellenlänge	62
Korrelation	57	Lichtstärke, Basisgröße	11
Kraft, Definition	12	Linienarten nach DIN 15	163
Kraftstoß, zentraler	89	Linienberührung, Rolle-Ebene	137f
Kreis, Bogenlängen, Bogenhöhen, Sehnen	36f	Liniengruppen nach DIN 15	163
Kreis, Fläche, Umfang	34	Logarithmengesetze	23
Kreisabschnitt, Fläche	34	Logarithmus, Briggs'scher	23
Kreisausschnitt, Fläche Kreisfrequenz	34 14	Logarithmus, allgemeiner Logarithmus, natürlicher	23 23
Kreisfrequenzverhältnis	95	Loschmidt-Konstante	60
Kreisring, Fläche	34	Länge, Basisgröße	11
Kreisringausschnitt, Fläche	34	Längengrad	63
Kreistorus, Volumen, Oberfläche	40	Längenmaße, Umwandlung deutsch/englisch	18
Kristallgitter, kubisch-flächenzentriert	243	Lösungsfunktion für Schwinger	102f
Kristallgitter, kubisch-raumzentriert	243		
Kräfte, Kinetik	82f	M	
Kugel, Volumen, Oberfläche	40	Masse, Basisgröße	11
Kugelabschnitt, Kugelausschnitt, Volumen	40	Masse, Eigenschaft Masseneinheit, Energieumrechnung	12 61
Kugelzone, Volumen, Mantelfläche	40	Masseneinheit, atomare	61
Kunststoffe, Eigenschaften	154	Massenmomente 2. Grades von Körpern	86
Kunststoffe, Elastomere	154	Mathematische Zeichen	21
Kunststoffe, Festigkeitskennwerte	156ff	Maßeinheiten	11
Kunststoffe, Formbeständigkeit	156ff	Maßstäbe nach DIN ISO 5455	164
Kunststoffe, Verarbeitungsverfahren	160	Maßsystem, SI-System	11
Kunststoffe, Verwendungsformen	160	Maßsystem, physikalisch	17
Kunststoffe, duroplastische	154	Maßsystem, technisch	17
Kunststoffe, thermoplastische	154	Maßsysteme, fps-System/SI-System	19

Maßtoleranz	177	Passsystem Einheitsbohrung	186
Mechanik, Dynamik	79	Passsystem Einheitswelle	186
Mechanik, Größen und Einheiten	79	Passtoleranzfelder, Anwendungsbeispiele	187
Mengenlehre, Zeichen	45	Pendelstütze	125
Merkmalswert	49	Periodensystem, Elemente	68f
Mesonen	58	Perlit	243
Metallsalze, Lösungen	77	Photonen	58
Meter, Basiseinheit	11	Pion	58
Meter, SI-Einheit	13	Planck'sche Konstante	60
Mindestmaß	177	Planck'sche Strahlungskonstante	61
Mindestpassung	186	Planlauf, Toleranzen	171
Mineralöle	226	Platten, Federrate	198
Mittelwerte, Arithmetik	24	Pneumatik	231
Mittenrauwert	168	Pneumatische Anlagen, Sinnbilder	240
Mittenrauwert, quadratisch	168	Poissonzahl, Querzahl	109
Mittenrauwerte Ra, erreichbare	168	Poissonzahl, Schallgeschwindigkeit	248
Mittenrauwerte, erreichbare DIN 4768	170	Poly-alpha-Olefine	226
Mol, Basiseinheit	11	Polyaddition	155
Molares Normvolumen	60	Polyalkylenglykol	226
Molekül	58	Polykondensation	155
Momentanpol	90	Polymeristion	155
Momentenverlauf, Träger	126	Polynomfläche	34
Monat, siderischer	64	Polyolester	227
Monat, synodischer	64	Positron	58
Monat, tropischer	64	Potenzen, Rechenregeln	24
Mond, Umlaufzeit	64	Pressverband, Berechnung	205f
Morsealphabet, international	250	Pressverband, Fügevorgang	205
Muttern, Festigkeitsklassen	194	Pressverband, zylindrisch	205
Muttern, Übersicht	191	Primzahlen	22
Mutternauflage, Flächenpressung	200	Prinzip nach d'Alembert	80
		Profil, wirkliches	168
N		Profilhöhe	168
Nationalitätskennzeichen	251	Profilkuppenhöhe	168
Naturstoffe, modifizierte	155	Profiltaltiefe	168
Nennmaß	177	Profiltraganteil	168
Neutrino	58	Projektion, dimetrische DIN 5	162
Neutron	58	Projektion, isometrische DIN 5	162
Newton'sches Grundgesetz	80	Proton	.58
Normalglühen	242	Punktberührung, Kugel-Ebene	137
Normalspannung, Definition	109	Pyramide, Pyramidenstumpf, Volumen	40
Normalspannungshypothese	118	Pythagoreische Zahlen	21
Normalverteilung	54	_	
Normfallbeschleunigung	60	Q	
Normschrift nach DIN 6776	164	Quader, Volumen, Oberfläche	40
Normzahlen, Normzahlreihen DIN 323	161	Quadrat, Fläche, Diagonale	34
Nukleonen	58	Querkraftverlauf, einfache Träger	126
		Querzahl	109
0		_	
Oberflächen, Kennzeichnung	165	R	
Oberflächenangaben, Anordnung der Symbole	167	Radiant, SI-Einheit	13
Oberflächenbeschaffenheit	165	Randhärtetemperatur	244
Oberflächenbeschaffenheit, Symbole	166	Randhärtungstiefe	140
Oberflächenhärte	140	Randschichthärten	241
Oberflächenzahl, Gestaltfestigkeit	141	Rauheitskenngrößen, Oberflächen	168
Ölhydraulische Anlagen, Sinnbilder	235ff	Rautiefe, gemittelte	168
Ölschmierung	226	Rautiefe, maximale	168
Oktalsystem	46	Raumausdehnungskoeffizient	66
-		Raummaße, Umwandlung deutsch/englisch	18
P		Reaktionen, kinetische	80
Parallelogramm, Fläche	34	Rechteck, Fläche	34
Passfeder-Verbindung	202	Regelgewinde, Auswahl DIN 13	193
Passfedern, Nuten	203	Regression	57
Passfedern, hohe Form DIN 6885	204	Reibungszahlen, Gewinde	196


Reibungszahlen, Mutternauflage	196	Spannungsarmglühen	242
Reihe, arithmetische	26	Spannungsreihe, elektrolytische	78
Reihe, geometrische	26	Spannungsreihe, thermoelektrische	78
Rekristallisationsglühen	242	Spannungszustand, ein-, mehrachsig	118
Resonanz	94	Spielpassung	186
Rillenrichtung, Symbole	167	Stahlguss, allgemeine Verwendungszwecke	152
Rockwellhärte	246	Stahlguss, warmfester DIN 17245	152
Ruhmasse des Elektrons	61	Standardabweichung	52f
Rundlauf, Toleranzen	171	Standardabweichung, Grundgesamtheit	50
Rydberg-Konstante	61	Stat. Tragfähigkeit, plastische Verformung	223
Röntgenstrahlen	62	Statistik, technische	49
Tioritgenstranien	02	Statistische Auswertung, Beispiel	51
s		Stefan-Boltzmann'sche Strahlungskonstante	61
Schall, Flüssigkeitsschall	247	Steradiant, SI-Einheit	13
	247		64
Schall, Körperschall	247	Sterntag	49
Schall, Luftschall		Stichprobe	
Schallabsorptionsgrad Schalldruck	248 247f	Stichprobe, Standardabweichung	50 73f
		Stoffe, chemische	
Schalldämmmaß	248	Stoffmenge, Basisgröße	11
Schallgeschwindigkeit	248	Stoffwerte, Flüssigkeiten	75
Schallleistung	248	Stoffwerte, Gase und Dämpfe	77
Schallpegel	247	Stoffwerte, feste Stoffe	76
Schallschnelle	248	Stoß, Körper	91
Schiebehülse	125	Stoß, geführte Bewegung	92
Schlankheitsgrad eines Stabes	116	Stoß, gerader exzenrischer	92
Schmelztemperaturen, Salze	72	Stoß, gerader zentraler	91
Schmierflüssigkeiten, Kennwerte	227	Stoß, schiefer exzentrischer	93
Schmierstoffe, umweltfreundliche	229	Stoß, schiefer zentraler	92
Schmierung, Wälzlager	226	Stoß, ungeführte Bewegung	93
Schraube, Federrate	198	Stoßgesetze	89
Schrauben, Festigkeitsklassen	194	Stoßgesetze, Stoß fester Körper	91
Schrauben, Übersicht	190	Stoßhypothese	91
Schraubenkopfauflage, Flächenpressung	200	Strahlung, elektromagnetische	62
Schraubenverbindung, Anziehdrehmoment	197	Streufaktor	50
Schraubenverbindung, Beanspruchung	198	Stähle, Automatenstähle DIN 1651	149
Schraubenverbindung, Berechnung	195	Stähle, Einsatzstähle DIN 17210	147
Schraubenverbindung, Vorspannkraft	197	Stähle, Vergütungsstähle DIN 17200	144ff
Schraubenverbindungen	189	Stähle, Wälzlagerstähle DIN 17230	148
Schraubenverspannungsdreieck	198	Stähle, unlegiert, legiert	143
Schubmittelpunkte, dünnw. Querschnitte	124	Summenhäufigkeit	52
Schubmodul	109f	System, statisch bestimmt	128
Schubspannung, Definition	109	System, statisch unbestimmt	128
Schubspannungshypothese	118		
Schubspannungshypothese, Tresca-St. Venant	138	Т	
Schwerpunktlagen von Linien	42	Temperatur, Anlasstemperatur	244
Schwerpunktlagen von ebenen Flächen	35	Temperatur, Aufkohlungstemperatur	244
Schwerpunktlagen von homogenen Körpern	41	Temperatur, Kernhärtetemperatur	244
Schwingung, erzwungene	94	Temperatur, Randhärtetemperatur	244
Schwingung, gedämpfte	94	Temperatureinheit Celsius	65
Schwingung, mechanische	94	Temperatureinheit Grad Fahrenheit	65
Schwingung, ungedämpfte	94	Temperatureinheit Grad Rankin	65
Schwingungen, Begriffe, Formelzeichen	95	Temperatureinheit Kelvin	65
Schwingungen, freie ungedämpfte	96f	Temperatureinheiten, Umrechnungstabelle	65
Schwingungsverlauf, zeitlicher	101	Temperaturfaktor, Tragzahl	220
Sechseck, Fläche	34	Temperaturpunkte, wichtige	65
Seemeile, Einheit	13	Temperaturpunkte, wichtige Temperatus DIN 1692	153
Sehnenlängen, Kreis	36f	Tetmajer-Gerade	116
Sekunde, Basiseinheit	11	Tex. Einheit	13
Sekunde, SI-Einheit	13	Thermodynamische Temperatur, Basisgröße	11
Silikonöle	227	Tilgungsformel, Zinseszinsrechnung	27
Solarkonstante	61		177
	63	Toleranzen, Begriffe	177 171f
Sonnensystem	63 64	Toleranzen, Form und Lage Toleranzen, Grenzabmaße	1/11
Sonnentag, mittlerer	04	ioicianzen, Grenzabiliabe	1//

Foleranzen, Grundtoleranz	177	Wellenlänge, Strahlungen	62
Toleranzen, Wälzlagertoleranzen	188	Werkstoffe, Einsatzhärtung	140
Foleranzfeld	178	Werkstoffe, Induktionshärtung	140
Toleranzgrad	180ff	Werkstoffkennwerte, Metalle	111
Foleranzlage	180f	Werkstoffkennwerte, Nichtmetalle	111
loleranztabellen	180ff	Widerstandsmoment, axiales	110
Tonne, Einheit	13	Widerstandsmoment, polares	110
Tonne, Volumen	40	Widerstandsmomente, Kreisquerschnitt	121
Forsionswiderstandsmoment	110	Widerstandsmomente, axiale, Querschnitte	119f
Torsionsflächenmomente, Querschnitte	123	Wien-Konstante	61
Torsionswiderstandsmomente, Querschnitte	123	Winkelbeschleunigung	14
Fragfähigkeit, dynamische	217	Winkelfunktionen	28ff
Fragfähigkeit, statische	223	Winkelfunktionen sin/cos, Tabelle	30f
Tragsicherheit, statische	223	Winkelfunktionen tan/cot, Tabelle	32f
ragzahl, dynamische	217	Winkelgeschwindigkeit	14
ragzahl, statische	217	Wirkungsgrad, akustischer	248
rapez, Fläche	34	Wurzeln, Arithmetik	24
rigonometrische Funktionen	29	Würfel, Volumen, Oberfläche	40
fräger, Lagerreaktionen	126	Wägewert, konventioneller	12
räger, Momenten-, Querkraftverläufe	126	Wälzlager, Bauformen-Übersicht	214
räger, elastische Biegelinie	127	Wälzlager, Maßreihen	215
Frägheitsmoment, Massenmoment, Körper	80 116	Wälzlager, Benennungen	215
Frägheitsradius eines Querschnittes	116	Wälzlager, Bauformen-Benennung	215
		Wälzlager, Lagerarten	215
Übergangspassung	186	Wälzlager, Maßreihen nach DIN 616	216
Übermaßpassung	186	Wälzlager, Bohrungskennzahlen	216
Jrliste	49	Wälzlagerfette, Eigenschaften	230
Jiliste	40		148
,		Wälzlagerstähle DIN 17230	66
/arianz	50	Wärmeausdehnung, Gase Wärmeausdehnung, Körper	66
/ergleichsspannung	141	Wärmebehandlung	241
/ergleichsspannung, Hertz	138		241
Vergrößerungsfunktion, unged. Schwingung	103	Wärmebehandlung, Wälzlagerstähle	245 15
/ergrößerungsfunktionen, ged. Schwingung	106f	Wärmedurchgangszahl	15
/ergüten	241	Wärmeleitfähigkeit	
Vergütungsstähle DIN 17200	144ff	Wärmeübergangszahl	15
/erteilungsfunktion	50	7	
/ickershärte	246	Z	
/iskosität, Schmierflüssigkeiten	227	Zahlen, häufig gebrauchte	21
/iskosität, dynamische	14	Zahlensystem, römisches	252
/iskosität, kinematische	14	Zahlensysteme, Datenverarbeitung	46
/iskositätsklassifikationen	228	Zahlensysteme, Umrechnung	47
/olumeneinheiten, Umrechnungen	20	Zehnpunkthöhe	168
/orzeichenregeln, Arithmetik	24	Zeit, Basisgröße	11
		Zementit	243
N		Zinseszinsrechnung	27
Nahrscheinlichkeitsnetz	53	Zinseszinstabelle	27
Neibull-Verteilung	56	Zugfestigkeit-Härte, Umrechnung	246
Weichglühen "	242	Zustandsschaubild Eisen-Kohlenstoff	243
Wellen-Naben-Verbindung, Übersicht	201	Zylinder, Volumen, Oberfläche	40

II. Wälzlagertechnik

- 1. Wälzlager-Bauformen-Übersicht
- 2. INA-Katalogprogramm
- 2.1 Nadel- und Zylinderrollenlager
- 2.2 Kugellager / Gehäuseeinheiten
- 2.3 Permaglide®-Gleitlager
- 2.4 Gelenklager / Gleitbuchsen / Gelenkköpfe
- 2.5 Drehverbindungen
- 2.6 Linearführungen
- 2.7 Flachkäfigführungen
- 2.8 Miniaturführungen
- 2.9 Angetriebene Lineareinheiten
- Grundlagen
 (Auszug aus INA-Katalogen)
- 3.1 Tragfähigkeit und Lebensdauer
- 3.2 Lagerluft und Betriebsspiel
- 3.3 Schmierung

1. Wälzlager-Bauformen-Übersicht

II.

INA steht weltweit für

- durchdachte Wälzlagertechnik
- modernste Produktionsstätten
- höchste Qualität.

INA-Qualitätsprodukte sind funktionstüchtige, wirtschaftliche Maschinenelemente, die sich millionenfach bewähren.

INA-Qualitätsprodukte gibt es in den unterschiedlichsten Abmessungen für rotierende und lineare Bewegungen, ebenso wie für ganz spezielle Anwendungen; da ist für Konstrukteure aller Fachrichtungen etwas dabei.

Das Taschenbuch ITT zeigt einen repräsentativen Querschnitt durch das INA-Produktprogramm:

- Nadel- und Zvlinderrollenlager
- Kugellager und Gehäuseeinheiten
- Drehverbindungen
- Gelenklager, Gleitbuchsen und Gelenkköpfe
- Permaglide®-Gleitlager
- Profilschienenführungen
- Laufrollenführungen
- Wellenführungen
- Miniatur-Linearführungen
- Flachkäfigführungen
- Angetriebene Lineareinheiten.

Das INA-Produktprogramm ist in Katalogen, Druckschriften, Technischen Produktinformationen und Marktinformationen dokumentiert. Diese sind sowohl Arbeitsunterlage und Konstruktionsmittel für den Techniker als auch ein wertvolles Nachschlagewerk für ieden Interessenten.

INA hat als besondere Serviceleistung die CD-ROM

■ medias[®] professional entwickelt

Dies CD informiert über das Produktprogramm und ist als Beratungssystem konzipiert.

Kataloge, Druckschriften, Technische Produktinformationen, Marktinformationen und CDs versendet INA auf Anfrage.

Wichtiger Hinweis:

Das Technische Taschenbuch ist ein Nachschlagewerk.

Für die Auslegung von Lagern steht das umfangreiche INA-Katalogprogramm zur Verfügung.

2.1 Nadel- und Zvlinderrollenlager

Nadelrollen Nadelkränze

Nadelkränze

- sind Baueinheiten, bestehend aus K\u00e4fig und Nadelrollen
- setzen voraus, dass eine gehärtete und geschliffene Welle und eine Gehäusebohrung als Laufbahnen genutzt werden können
- haben geringe radiale Bauhöhen, entsprechend dem Durchmesser der Nadelrollen
- sind hoch tragfähig
- sind f
 ür hohe Drehzahlen geeignet
- sind besonders montagefreundlich
- lassen Lagerungen mit hoher Rundlaufgenauigkeit zu
 - abhängig von der formgenauen Ausführung der Laufbahnen
- ermöglichen eine einstellbare radiale Lagerluft
 - abhängig von Nadelsorte, Wellen- und Gehäusetoleranzen.

Nadelrollen

- sind die Grundelemente der INA-Nadellager
- entsprechen DIN 5402-3 bzw. ISO 3096, Form B, mit ebenen Stirnflächen
- sind aus durchgehärtetem Wälzlagerstahl nach DIN 17230
- haben eine Härte von mindestens 670 HV und eine feinstbearbeitete Oberfläche
- sind endprofiliert, d.h. die Mantelflächen fallen nach den Enden ballig ab. Dadurch
 verringerte Kantenspannung an den Wälzkörperenden
- werden verwendet
 - für vollnadelige Lagerungen
 - als Achsen.

Nadelkränze für Pleuellagerungen

- KZK für Kurbelzapfenlagerungen
- KBK für Kolbenbolzenlagerungen siehe

INA-Technische Produktinformation TPI 94 INA-Katalog 307

Nadelkranz einreihig

- basierend auf DIN 5405-1/ISO 3030 für Wellen von 3 mm bis 265 mm
- Nadelkränze zweireihig K..ZW für Wellen von 24 mm bis 95 mm

Nadelrollen

NRB

Durchmesser von 1 mm bis 6 mm

Nadelhülsen/Nadelhüchsen

Nadelhülsen und Nadelbüchsen

- sind Baueinheiten, bestehend aus dünnwandigen, spanlos geformten Außenringen und Nadelkränzen
- sind radial besonders raumsparend
- setzen voraus, dass eine gehärtete und geschliffene Welle als Laufbahn genutzt werden kann
- werden bei ungehärteter Welle mit Innenringen der Baureihen IR oder LR kombiniert
- haben in zweireihiger Ausführung eine Schmierbohrung
- sind montagefreundlich
 - werden in die Gehäusebohrung eingepresst
 - benötigen keine weitere axiale Fixierung
- sind mit Axial-Nadellager AXW kombinierbar

Nadelbüchsen

- schließen Lagerstellen an Wellenenden ab. Dadurch
 - Unfallschutz bei drehender Welle
 - Schutz vor Feuchtigkeit und Verschmutzung.

Abgedichtete Nadelhülsen und Nadelbüchsen

- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen
- sind befettet mit Lithiumkomplexseifenfett DIN 51825–KP2N–25
- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch das Schmierfett und den Dichtringwerkstoff.

Weitere Informationen zu Nadelhülsen und Nadelbüchsen: INA-Katalog 307

Nadelhülsen

нк

- nach DIN 618-1/ISO 3245
- für Wellen von 3 mm bis 60 mm
- einseitig mit Lippendichtung HK..RS für Wellen von 8 mm bis 50 mm
- beidseitig mit Lippendichtung HK..2RS für Wellen von 8 mm his 50 mm

Nadelbüchsen

BK

05135

- nach DIN 618-1/ISO 3245
- einseitig geschlossen
- für Wellen von 3 mm bis 45 mm einseitig mit Lippendichtung
 - für Wellen von 14 mm bis 25 mm

Nadellager

Nadellager ohne und mit Innenring

- sind Baueinheiten, bestehend aus spanend gefertigten Außenringen. Nadelkränzen und herausnehmbaren Innenringen
- sind raumsparend durch die geringe radiale Bauhöhe
- haben eine Schmierrille und Schmierbohrung im Außenring
 - Ausnahmen:

NK, $F_w \le 10 \text{ mm}$ NKI, $d \le 7 \text{ mm}$.

Nadellager ohne Innenring

setzen voraus, dass eine gehärtete und geschliffene Welle als Laufbahn genutzt werden kann.

Nadellager mit Innenring

werden eingesetzt, wenn die Welle nicht als Wälzlagerlaufbahn ausgeführt ist.

Abgedichtete Nadellager

- sind vor Schmutz und Spritzwasser aeschützt durch
 - Lippendichtungen
- sind befettet mit Lithiumkomplexseifenfett DIN 51825-KP2N-25
- sind nachschmierbar über Außenund Innenring.

Weitere Informationen zu Nadellagern: INA-Katalog 307

Nadellager ohne Innenring

NKS **RNA 49 RNA 48**

88 8

- NK. leichte Reihe: für Wellen von 5 mm bis 110 mm
- NKS: schwere Reihe: für Wellen von 20 mm bis 75 mm
- RNA 49 (DIN 617/ISO 1206): für Wellen von 14 mm bis 160 mm RNA 48 (DIN 617/ISO 1206); für Wellen von 120 mm bis 415 mm

Nadellager mit Innenring

NKI NKIS NA 49 NA 48

- NKI: leichte Reihe; für Wellen von 5 mm bis 100 mm
- NKIS: schwere Reihe: für Wellen von 15 mm bis 65 mm
- NA 49 (DIN 617/ISO 1206): für Wellen von 10 mm bis 140 mm
- NA 48 (DIN 617/ISO 1206): für Wellen von 110 mm bis 380 mm

RNA 69

- Maßreihe 69
- zweireihig (einreihig bis RNA 6906)
- für Wellen von 16 mm bis 110 mm

RNA 49..RS RNA 49...2RS

Maßreihe 49

ein- oder beidseitig mit Lippendichtungen (Nachsetzzeichen RS oder .2RS)

für Betriebstemperaturen von –30°C bis +100°C, begrenzt durch das Schmierfett und den Dichtringwerkstoff

für Wellen von 14 mm bis 58 mm

NA 69

- Maßreihe 69
- zweireihig (einreihig bis NA 6906)
- für Wellen von 12 mm bis 95 mm

NA 49..RS NA 49...2RS

Maßreihe 49

ein- oder beidseitig mit Lippendichtungen (Nachsetzzeichen

RS oder .2RS)

für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch das Schmierfett und den Dichtringwerkstoff

- IR 1 mm breiter als AR, Schmierbohrung, keine Schlupffase
- für Wellen von 10 mm bis 50 mm

Nadellager ohne Borde Einstell-Nadellager Innenringe

Nadellager ohne Borde

- sind Baueinheiten, bestehend aus herausnehmbaren Nadelkränzen und spanend gefertigten Außen- und Innenringen
- Innenring, Außenring und Nadelkranz können unabhängig voneinander montiert werden
- sind raumsparend durch die geringe radiale Bauhöhe
- zweireihige Lager sind nachschmierbar durch Schmierrille und Schmierbohrung im Außenring.

Nadellager ohne Borde, ohne Innenring

setzen voraus, dass eine gehärtete und geschliffene Welle als Laufbahn genutzt werden kann.

Nadellager ohne Borde, mit Innenring

werden eingesetzt, wenn die Welle nicht als Wälzlagerlaufbahn ausgeführt ist.

Einstell-Nadellager ohne und mit Innenring

- sind Baueinheiten, bestehend aus spanlos geformten Außenhülsen, Außenringen mit kugeliger Mantelfläche, Nadelkränzen und herausnehmbaren Innenringen
- gleichen statische Fluchtungsfehler der Lagerachse bis maximal 3° aus
- sind montagefreundlich
 - werden in die Gehäusebohrung
 - eingepresst

 benötigen keine weitere axiale
 Fixierung.

Einstell-Nadellager ohne Innenring

setzen voraus, dass eine gehärtete und geschliffene Welle als Laufbahn genutzt werden kann.

Einstell-Nadellager mit Innenring

werden eingesetzt, wenn die Welle nicht als Wälzlagerlaufbahn ausgeführt ist.

Innenringe

- werden als Wälzlagerlaufbahn eingesetzt, wenn die Welle dazu nicht genutzt werden kann
- sind raumsparend durch die geringe radiale Bauhöhe
- haben Schlupffasen, Dadurch
 - einfaches Einführen in die Nadellager
 - Schutz von Dichtlippen bei der Montage

Nadellager ohne Borde, ohne Innenring

103196

für Wellen von 5 mm bis 100 mm

Weitere Baureihe:

- zweireihig
- Schmierrille und Schmierbohrung im
 - Außenrina
- für Wellen von 18 mm bis 60 mm

Nadellager ohne Borde, mit Innenring

88

für Wellen von 6 mm bis 90 mm

Weitere Baureihe:

- zweireihig
- Schmierrille und Schmierbohrung im
- Außenring
- für Wellen von 25 mm und 30 mm

Einstell-Nadellager ohne Innenring

RPNA

- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch die Stützringe aus Kunststoff
- für Wellen von 15 mm bis 45 mm

Innenring

- gehärtet, feinbearbeitet
- Schlupffasen und Schmierbohrung
- für Wellen von 5 mm bis 380 mm

Einstell-Nadellager mit Innenring

PNA

- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch die Stützringe aus Kunststoff
- für Wellen von 12 mm bis 40 mm

- gehärtet, geschliffen
 - Stirnflächen nicht geschliffen, Kanten gebrochen
 - für Wellen von 7 mm bis 50 mm

Kombinierte Nadellager

Kombinierte Nadellager ohne und mit Innenring

- sind Radial-Nadellager mit axial belastbarem Lagerteil
- sind Fest- oder Stützlager.

werden kann

Kombinierte Nadellager ohne Innenring

setzen voraus, dass eine gehärtete und geschliffene Welle als Laufbahn genutzt

Kombinierte Nadellager mit Innenring

werden eingesetzt, wenn die Welle nicht als Wälzlagerlaufbahn ausgeführt ist.

Kombinierte Nadellager ohne Innenring

NX NX..Z

Nadel-Axial-Rillenkugellager, Axialteil vollkugelig

- NX: für Ölschmierung, Deckkappe mit Schmierbohrungen
- NX..Z: für Fettschmierung, Axialteil erstbefettet; Deckkappe ohne Schmierbohrungen
- einseitig mit Verschlussring für Wellen von 7 mm bis 35 mm

Kombinierte Nadellager mit Innenring

NKIA

7300

Nadel-Schrägkugellager nach DIN 5429-2

- max. Betriebstemperatur +120 °C, begrenzt durch Axialkugelkäfig aus Kunststoff
- für Wellen von 12 mm bis 70 mm

NKX NKX..Z

107297

Nadel-Axial-Rillenkugellager

- NKX: (NAXK nach DIN 5429-1), für Ölschmierung
- NKX..Z: (NAXK..Z nach DIN 5429-1), für Fettschmierung, Axialteil erstbefettet; mit Deckkappe
- einseitig mit Verschlussring für Wellen von 10 mm bis 70 mm

07296

Nadel-Axial-Zylinderrollenlager

- NKXR: (NAXR nach DIN 5429-1), für Ölschmierung
- NKXR..Z: (NAXR..Z nach DIN 5429-1), für Fettschmierung, Axialteil erstbefettet; mit Deckkappe
- max. Betriebstemperatur +120 °C, begrenzt durch Axialkäfig aus Kunststoff
- für Wellen von 15 mm bis 50 mm

NKIR

07299

Nadel-Schrägkugellager

- mit breitem und schmalem Innenring
- max. Betriebstemperatur +120 °C, begrenzt durch Axialkugelkäfig aus Kunststoff
- für Wellen von 12 mm bis 70 mm

Hülsenfreiläufe Hülsenfreiläufe mit Lagerung

Hülsenfreiläufe

- sind Einwegkupplungen, bestehend aus dünnwandigen, spanlos geformten Außenringen mit Klemmrampen, Kunststoffkäfigen, Andruckfedern und Nadelrollen
- übertragen Drehmomente in einer Richtung
- sind radial besonders raumsparend
- sind schaltgenau
 - die Einzelanfederung der Nadelrollen sichert den ständigen Kontakt zwischen Welle, Nadelrollen und Klemmrampen
- lassen hohe Schaltfrequenzen zu

 durch die geringe Masse und das damit verbundene geringe Trägheitsmoment der Klemmelemente
- haben ein geringes Leerlauf-Reibungsmoment
- moment
 sind befettet mit Lithiumseifenfett
 DIN 51825–K2E–25
- sind montagefreundlich
 - werden in die Gehäusebohrung eingepresst
 - benötigen keine weitere axiale Fixierung
- sind kombinierbar mit Nadelhülsen HK und Nadelbüchsen BK
 - haben die gleiche radiale Bauhöhe.

Hülsenfreiläufe mit Lagerung

- nehmen Drehmomente und zusätzlich radiale Kräfte auf
 - durch integrierte Gleit- oder Wälzlager.

Weitere Informationen zu Hülsenfreiläufen: INA-Druckschrift "Hülsenfreiläufe, HFL" INA-Katalog 307

Hülsenfreiläufe

- mit Andruckfedern aus Stahl
- Betriebstemperaturen
- für Wellen von 6 mm bis 35 mm

Hülsenfreiläufe mit Lagerung

HEL

- mit Andruckfedern aus Stahl, beidseitige Lagerung – Gleit- oder Wälzlager
 - Betriebstemperaturen von –10 °C bis +70 °C
- für Wellen von 6 mm bis 35 mm

HE.R

HF..KF: mit Andruckfedern aus Kunststoff

HF. KFR: zusätzlich mit Rändelung

Betriebstemperaturen von -10 °C bis +70 °C

HF..KF: für Wellen von 3 mm bis 10 mm

HF..KFR: für Wellen von 3 mm bis 8 mm

mit Andruckfedern aus Stahl. Rändelung

Betriebstemperaturen von -10 °C bis +70 °C

für Wellen von 6 mm bis 8 mm

HFL..R

HFL..KF: mit Andruckfedern aus Kunststoff, Gleit- oder

Wälzlager

HFL..KFR: zusätzlich mit Rändelung

Betriebstemperaturen von -10 °C bis +70 °C

HFL..KF: für Wellen von 3 mm bis 8 mm

HFL..KFR: für Wellen von 4 mm his 8 mm

Betriebstemperaturen von -10 °C bis +70 °C

Gleit- oder Wälzlager,

Rändelung

für Wellen von 6 mm bis 8 mm

mit Andruckfedern aus Stahl. beidseitige Lagerung -

Dichtringe

Dichtringe

- sind als berührende Dichtungen ausgeführt
- schützen vor
 - Verunreinigungen und Spritzwasser
 - übermäßigem Verlust von Schmierfett
- sind abgestimmt auf die geringen radialen Abmessungen der Nadelhülsen und Nadellager
- sind montagefreundlich
 - sie werden in die Gehäusebohrung eingepresst
- lassen bei Drehbewegung Umfangsgeschwindigkeiten bis 10 m/s an der Dichtlippe zu
 - abhängig von der Beschaffenheit der Welle.

Dichtringe G

- sind einlippig aus synthetischem NBR-Elastomer (Farbe grün)
- für Wellendurchmesser bis 7 mm. mit
 - außenliegender Stahlarmierung zur Versteifung
- für Wellendurchmesser über 7 mm. mit gummiummantelter Stahlarmierung zur Versteifung
 - Gummi-Wellprofil am Außendurchmesser, dadurch gute Abdichtung am Außendurchmesser und reduzierte Einpresskräfte.

Dichtringe SD

- sind zweilippia
 - eine berührende Dichtlippe
 - eine zur Welle hin berührungsfreie Staublippe (beschriftete Seite)
- bestehen aus zwei Kunststoff-Komponenten
 - der Dichtungsträger aus verstärktem Polyamid (Farbe schwarz)
 - der Dichtlippenbereich aus thermoplastischem PU-Elastomer (Farbe grün)
- sind auch als Abstreifer bei axial bewegten Wellen verwendbar
 - möglich sind Hubgeschwindigkeiten bis 3 m/s, abhängig von der Beschaffenheit der Welle.

Weitere Informationen zu Dichtringen: INA-Druckschrift "Dichtringe, GSD"

Dichtringe

- Betriebstemperaturen von -30 °C bis +110 °C,
 - abhängig vom Medium, das auf den Dichtring einwirkt
- für Wellendurchmesser von 4 mm bis 70 mm

- Betriebstemperaturen von -30 °C bis +100 °C.
- abhängig vom Medium, das auf den Dichtring einwirkt
- für Wellendurchmesser von 8 mm bis 50 mm

Zylinderrollenlager mit Ringnuten

Zylinderrollenlager mit Ringnuten

- sind Baueinheiten, bestehend aus massiven Außen- und Innenringen, bordgeführten Zylinderrollen und Dichtringen
- sind einfach axial zu fixieren
 durch beidseitige Sicherungsringe
- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen
- sind Festlager
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte in beiden Richtungen auf
- haben die maximale dynamische und statische Tragzahl
 - durch die größtmögliche Anzahl der Zylinderrollen
- haben eine große Steifigkeit
- sind befettet mit
 Lithiumkomplexseifenfett nach DIN
 51 825–KP2N–25
- sind nachschmierbar
 - durch Schmierrille und Schmierbohrungen im Außen- und Innenring
- sind für Betriebstemperaturen von –30 °C bis +80 °C
 - begrenzt durch Schmierfett und Dichtringwerkstoff
- sind sehr gut einsetzbar zur Lagerung von Seilscheiben.

Weitere Informationen zu Zylinderrollenlagern: INA-Katalog 307

Zylinderrollenlager mit Ringnuten

SL04 50.PP SL04..PP

Innenring axial geteilt und durch eingerolltes Stahlband zusammengehalten, 1 mm breiter als der Außenring

- SL04..PP (leichte Reihe) für Wellen von 130 mm bis 300 mm
- SL04 50..PP (Maßreihe 50) für Wellen von 20 mm bis 300 mm

Zvlinderrollenlager

Zvlinderrollenlager

- sind Baueinheiten, bestehend aus massiven Außen- und Innenringen und bordgeführten Zylinderrollen, vollrollig. oder mit Käfig bzw. Zwischenstücken
- sind Loslager, Stützlager oder Festlager
- haben maximale dynamische und statische Tragzahlen durch die größtmögliche Anzahl der Zylinderrollen
- sind mit Käfig oder Zwischenstücken durch ein niedriges Reibmoment für hohe Drehzahlen geeignet
- haben eine große Steifigkeit
- sind nachschmierbar
 - einreihige Lager von den Stirnseiten
 - zweireihige Lager zusätzlich durch Schmierrille und Schmierbohrungen.

Loslager

- nehmen radiale Kräfte auf
- Außen- und Innenring sind in beide Richtungen axial gegeneinander verschiebbar.

Stützlager

- nehmen zusätzlich zu den radialen Kräften. auch axiale Kräfte in einer Richtung auf
- wirken in der anderen Richtung wie Loslager
- Außen- und Innenring sind in eine Richtung axial gegeneinander verschiebbar.

Festlager

nehmen zusätzlich zu den radialen Kräften. auch axiale Kräfte in beiden Richtungen

Loslager

SI 02 48 SI 02 49

SL02 48 (Kurzzeichen nach DIN 5412-9: NNCL 48..V) für Wellen von 150 mm bis 400 mm SL02 49 (Kurzzeichen nach DIN 5412-9: NNCL 49..V) für Wellen von 60 mm bis 400 mm

Stützlager

SI 18 18 SL18 29 SL18 30 SL18 22 SL18 50

- SL18 18 (Maßreihe 18) für Wellen von 200 mm bis 500 mm
- SL18 29 (Maßreihe 29) für Wellen von 60 mm bis 500 mm
- SL18 30 (Maßreihe 30)
- für Wellen von 20 mm bis 400 mm
- SL18 22 (Maßreihe 22)
- für Wellen von 20 mm bis 200 mm SL18 50 (Maßreihe 50)

Festlager

SL01 48 SL01 49

3 326

- SL01 48 (Kurzzeichen nach DIN 5 412-9: NNC 48..V) für Wellen von 150 mm bis 400 mm SL01 49 (Kurzzeichen nach DIN 5 412-9: NNC 49..V) für Wellen von 60 mm bis 400 mm
- Außenring axial geteilt und mit Befestigungselementen zusammengehalten

SL19 23

Maßreihe 23 für Wellen von 25 mm bis 120 mm

350

- Maßreihe 23
- LSL mit Scheibenkäfig aus Messing ZSL mit Zwischenstücken aus Kunststoff
 - LSI 19 23
- für Wellen von 100 mm bis 300 mm
- ZSL19 23
- für Wellen von 25 mm bis 120 mm

Axial-Zylinderrollenkränze Axial-Nadelkränze Axiallagerscheiben

Axial-Nadellager Axial-Zylinderrollenlager

Axial-Nadelkränze Axial-Zvlinderrollenkränze

- sind Baueinheiten, bestehend aus Axialkäfigen mit Nadel- oder Zylinderrollen
- setzen voraus, dass gehärtete und geschliffene Flächen als Laufbahnen genutzt werden können
- haben eine geringe axiale Bauhöhe
- nehmen Axialkräfte in einer Richtung auf
- wirken in radialer Richtung als Loslager
- sind hoch tragfähig
- haben eine große Steifigkeit.

Axiallagerscheiben

- werden eingesetzt, wenn die angrenzenden Flächen nicht als Laufbahnen genutzt werden können
- sind kombinierbar mit Axial-Nadel- und Axial-Zylinderrollenkränzen zu Axiallagerungen.

Axial-Nadellager

- sind Baueinheiten, bestehend aus Axial-Nadelkränzen und Axiallagerscheiben mit Zentrierbund
- sind kombinierbar mit Nadelhülsen, Nadelbüchsen, Nadellagern.

Axial-Zylinderrollenlager

sind Baueinheiten, bestehend aus Axial-Zylinderrollenkränzen und Axiallagerscheiben.

Axial-Nadelkranz, Axial-Nadellager

AXK AXW

- AXK Axial-Nadelkranz nach DIN 5 405-2/ISO 3031
- AXW Axial-Nadellager, bestehend aus AXK und Axialscheibe mit Zentrierbund
- AXK für Wellen von 4 mm bis 160 mm AXW für Wellen von 10 mm bis 50 mm

Axiallagerscheiben

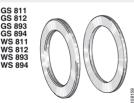
ΔS

- nach DIN 5 405-3/ISO 3 031
- als Wellen- und Gehäusescheibe verwendbar, passend zu AXK und K 811
- gestanzt, durchgehärtet und poliert geeignet, wenn das angrenzende Maschinenteil nicht gehärtet, jedoch ausreichend starr und formgenau ist für Wellen von 4 mm bis 160 mm

Axial-Zylinderrollenkränze

K 811 K 812 K 893 K 894

- K 811, K 812, einreihig, Durchmesserreihen 1, 2, nach DIN 616/ISO 104
- K 893, K 894, zweireihig, Durchmesserreihen 3, 4, nach DIN 616/ISO 104
- mit Axiallagerscheiben kombinierbar
- für Wellen von 15 mm bis 320 mm


Axial-Zylinderrollenlager

- Axial-Zylinderrollenlager 811, 812 nach DÍN 722/ISO 104
- Axial-Zylinderrollenlager, Maßreihen 93, 94 nach DIN 616/ISO 104. kombiniert aus K 893 bzw K 894 mit GS und WS
- für Wellen von 15 mm bis 320 mm

- GS Gehäusescheibe. außenzentrierbar. Mantelfläche aeschliffen
- WS Wellenscheibe, innenzentrierbar, Bohrung geschliffen
- Durchmesserreihen 1, 2, 3, 4 nach DIN 616/ISO 104
- spanend gefertigt, Lauffläche feinstbearbeitet
- für Wellen von 15 mm bis 320 mm

- als Wellen- und Gehäusescheibe verwendbar
- Bohrung und Mantelfläche gedreht, Lauffläche geschliffen
- passend zu AXK und K 811
- für Wellen von 6 mm bis 160 mm

Axial-Schrägkugellager

Axial-Schrägkugellager

- sind Baueinheiten, bestehend aus einteiligem Außenring, zweiteiligem Innenring, Kugelkränzen und Dichtungen
- sind zweiseitig wirkende Schrägkugellager mit 60° Druckwinkel in O-Anordnung
- nehmen beidseitig axiale und zusätzlich radiale Kräfte auf
- werden beim Einbau durch die Präzisions-Nutmutter vorgespannt
- sind vor Schmutz geschützt durch
 - Lippendichtungen
 - Spaltdichtungen
- sind befettet mit Lithiumkomplexfett nach DIN 51825–KE2P–35
- sind nachschmierbar
- sind für Betriebstemperaturen von –30 °C bis +120 °C geeignet
 - begrenzt durch Schmierfett, Dichtringwerkstoff und den Kugelkränzen aus Kunststoff
- sind Präzisionslager, z. B. für Gewindetriebe
- gepaart, wie ZKLN...2RS
 - außen beidseitig Lippendichtungen
 - für Wellen von 17 mm bis 50 mm
- gepaart, wie ZKLF...2RS, anflanschbar
 außen beidseitig mit Lippendichtungen
 - für Wellen von 17 mm bis 50 mm

Weitere Informationen zu Axial-Schrägkugellagern: INA-Druckschrift "Lager für Gewindetriebe, ZAE" INA-Katalog 307

Axial-Schrägkugellager

ZKLN...2RS ZKLN...2RS PE

ZKLN...2RS PE mit erweiterten Toleranzen

beidseitig mit Lippendichtungen für Wellen von 6 mm bis 50 mm beidseitig mit Spaltdichtung für hörhere Drehzahlen ZKLN...•2Z, für Wellen von 6 mm bis 100 mm

ZKLF...2RS ZKLF...2RS PF

107273

- Außenring anflanschbar
- ZKLF...2RS PE mit erweiterten Toleranzen

beidseitig mit Lippendichtungen

- für Wellen von 12 mm bis 50 mm
- beidseitig mit Spaltdichtung für höhere Drehzahlen ZKLF...2Z, für Wellen von 12 mm bis 100 mm

Nadel-Axial-Zylinderrollenlager 7uhehör

Nadel-Axial-Zvlinderrollenlager

- sind Baueinheiten, bestehend aus einem Außenring mit Radial- und Axiallaufbahnen, zwei Wellenscheiben, Innenring, radialem Nadelkranz und zwei Axial-Zylinderrollenkränzen
- nehmen beidseitig axiale und zusätzlich radiale Kräfte auf
- werden beim Einhau durch die Präzisions-Nutmutter axial vorgespannt
- sind über den Außenring nachschmierbar.

Abdichtung für Nadel-Axial-Zylinderrollenlager

- in Richtung Gewindespindel
 - mit Radialwellen-Dichtring auf drallfrei geschliffener Mantelfläche der abgestuften Wellenscheibe
- in Richtung Antrieb
- mit Dichtungsträger DRS
- sind Präzisionslager, z. B. für Gewindetriebe.

Dichtungsträger

- sind Baueinheiten, bestehend aus Dichtungsflansch, integriertem Radial-Wellendichtring und Zylinderschrauben mit Innensechskant nach DIN 912 zur Befestiauna
- werden an die Zwischenscheibe der Nadel-Axial-Zylinderrollenlager ZARF, ZARF..L angeflanscht
- dichten das Lager von der Antriebsseite Außenseite - her ab
- für Wellen von 15 mm bis 90 mm

Präzisions-Nutmuttern

- spannen Axial-Schrägkugellager und Nadel-Axial-Zylinderrollenlager beim Einbau voi
- haben eine hohe Planlaufgenauigkeit
- haben eine hohe Steifigkeit
- übertragen Axialkräfte.

Weitere Informationen zu Nadel-Axial-Zvlinderrollenlagern: INA-Druckschrift "Lager für Gewindetriebe, ZAE" INA-Katalog 307

Nadel-Axial-Zylinderrollenlager

- ZARN..L mit abgestufter, breiter Wellenscheibe
 - leichte Reihe
 - für Wellen von 15 mm bis 50 mm
- schwere Reihe für Wellen von 20 mm bis 90 mm

- Außenring anflanschbar
- ZARF..L mit abgestufter, breiter Wellenscheibe
- leichte Reihe für Wellen von 15 mm bis 50 mm
 - schwere Reihe für Wellen von 20 mm bis 90 mm

Stützrollen

Stützrollen

- sind Baueinheiten, bestehend aus Außenringen, Nadelkränzen oder vollrolligen bzw. vollnadeligen Wälzkörpersätzen, mit und ohne Innenring
- werden auf Achsen montiert
- haben dickwandige Außenringe mit profilierter Mantelfläche
- nehmen hohe radiale Kräfte auf
- sind befettet mit Lithiumkomplexseifenfett nach DIN 51 825–KP2N–25
- sind über den Innenring nachschmierbar
- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen
 - Spaltdichtungen
 - Labvrinthdichtungen.

Stützrollen ohne Innenring

setzen voraus, dass eine gehärtete und geschliffene Achse als Laufbahn genutzt werden kann.

Profil der Außenring-Mantelfläche

Mit dem Katalg 307 führt INA, beginnend mit den Baureihen NUTR und PWTR...2RS, ein neues, optimiertes Profil für die Mantelfläche des Außenrings ein.

Bei Stützrollen mit diesem Profil ist:

- die Hertz'sche Pressung geringer
- die Kantenbelastung bei Verkippung niedriger
- der Verschleiß der Gegenlaufbahn geringer
- die Gebrauchsdauer der Gegenlaufbahn

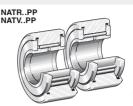
Stützrollen mit dem neuen Profil sind bei der Lieferung durch das Nachsetzzeichen A gekennzeichnet.

Weitere Informationen zu Stützrollen: INA-Druckschrift "Laufrollen, LFR" INA-Katalog 307

Stützrollen

109177

- ohne Axialführung des Außenrings
- RSTO ohne Innenring
- Innenring, Außenring und Nadelkranz getrennt montierbar
 - Außendurchmesser von 16 mm bis 90 mm


- mit Axialführung des Außenrings über Anlaufscheiben
- beidseitig mit Spaltdichtung
- NATV vollnadelig
- Außendurchmesser von 16 mm bis 62 mm

NA 22...2RS RNA 22...2RS

99174

- ohne Axialführung des Außenrings
- beidseitig mit Lippendichtung
- RNA 22...2RS ohne Innenring
- für Betriebstemperaturen von –30 °C bis +120 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 19 mm bis 90 mm

- mit Axialführung des Außenrings über Anlaufscheiben
- NATV vollnadelig
- beidseitig mit Lippendichtung
- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 16 mm his 62 mm

NUTR

PWTR...2RS

9/1

- optimiertes INA-Profil
- vollrollig, mit Axialführung des Außenrings über Wälzkörper
- beidseitig mit Labyrinthdichtung
- Außendurchmesser von 35 mm bis 110 mm

- optimiertes INA-Profil
- vollrollig, mit Axialführung des Außenrings über Wälzkörper
- beidseitig mit Lippendichtung
- für Betriebstemperaturen von –30 °C bis +120 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 35 mm bis 110 mm

Kurvenrollen

Kurvenrollen ohne und mit Exzenter

- sind Baueinheiten, bestehend aus massiven Bundbolzen, Anlaufscheiben, Außenringen und Nadelkränzen oder vollrolligen bzw. vollnadeligen Wälzkörpersätzen
- haben dickwandige Außenringe mit profilierter Mantelfläche
- nehmen hohe radiale Kräfte auf
- sind befettet mit Lithiumkomplexseifenfett nach DIN 51825–KP2N–25
- sind über den Bundbolzen nachschmierbar
- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen
 - Spaltdichtungen
 - Labvrinthdichtungen
- sind montagefreundlich durch
 - Gewinde am Bolzenende
 - Schlitz oder Innensechskant

Kurvenrollen mit Exzenter

möalich.

- sind durch Zustellung der Außenring-Mantelfläche an die Laufbahn der Anschlusskonstruktion anpassbar. Dadurch
 - ist die Lastverteilung beim Einsatz mehrerer Kurvenrollen besser
 - mehrerer Kurvenrollen besser
 sind vorgespannte Linearsysteme

Profil der Außenring-Mantelfläche

Mit dem Katalog 307 führt INA, beginnend mit den Baureihen NUKR, NUKRE, PWKR...2RS und PWKRE...2RS, ein neues, optimiertes Profil für die Mantelfläche des Außenrings ein.

Bei Kurvenrollen mit diesem Profil ist:

- die Hertz'sche Pressung geringer
- die Kantenbelastung bei Verkippung niedriger
- der Verschleiß der Gegenlaufbahn geringer
- die Gebrauchsdauer der Gegenlaufbahn länger.

Kurvenrollen mit dem neuen Profil sind bei der Lieferung durch das Nachsetzzeichen A gekennzeichnet.

Weitere Informationen zu Kurvenrollen: INA-Druckschrift "Laufrollen, LFR" INA-Katalog 307

Kurvenrollen ohne und mit Exzenter

10108

- Nadelrollen käfiggeführt, Axialführung über Anlaufbund und Anlaufscheibe
- KR..PP beidseitig mit Lippendichtung
- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- KR beidseitig mit Spaltdichtung
- Außendurchmesser von 16 mm bis 62 mm

optimiertes INA-Profil

- vollrollig, Außenring über Wälzkörper axial geführt
- beidseitig mit Labyrinthdichtung
- NUKRE mit Exzenter
- Außendurchmesser von 35 mm bis 90 mm

KRE..PP

- Bundbolzen mit Exzenter
- Nadelrollen käfiggeführt, Axialführung über Anlaufbund und Anlaufscheibe
- beidseitig mit Lippendichtung
- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 16 mm bis 62 mm

KRV..PP

- vollnadelig, Axialführung über Anlaufbund und Anlaufscheibe
- beidseitig mit Lippendichtung
- für Betriebstemperaturen von –30 °C bis +100 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 16 mm bis 62 mm

PWKR...2RS

optimiertes INA-Profil

- vollrollig, Außenring über Wälzkörper und Borde axial geführt
- großer Fettraum, beidseitig mit Lippendichtungen für Betriebstemperaturen von –30 °C
- für Betriebstemperaturen von –30 °C bis +120 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 35 mm bis 90 mm

PWKRE...2RS

- optimiertes INA-Profil
 - Bundbolzen mit Exzenter
- vollrollig, Außenring über Wälzkörper und Borde axial geführt
- großer Fettraum, beidseitig mit Lippendichtungen
- für Betriebstemperaturen von –30 °C bis +120 °C, begrenzt durch Schmierfett und Dichtringwerkstoff
- Außendurchmesser von 35 bis 90 mm

Momentenlager

Axial-Radiallager

- sind Baueinheiten, bestehend aus
 Axiallager
 - Axial-Nadelkränze, Außenring, Winkelring, Wellenscheibe, nach dem Einbau axial vorgespannt
 - Radiallager
 vollrolliger Zylinderrollensatz, vorgespannt
 - Halteschrauben zur Transportsicherung
- nehmen beidseitig axiale und zusätzlich radiale Kräfte sowie Kippmomente auf
- sind Präzisionslager, besonders geeignet
 - zur Aufnahme von hohen Kippmomenten bei hoher Laufgenauigkeit
 für Rundtische
- sind befettet mit Lithiumkomplexseifenfett nach DIN 51 825–KP2N–25
- sind nachschmierbar über Außen- und Winkelring
- werden angeschraubt
 - Außenring, Winkelring und Wellenscheibe haben Durchgangsbohrungen.

Axial-Schrägkugellager

- sind Baueinheiten, bestehend aus
 - einteiligem Außenring, zweiteiligem Innenring und zwei Kugelkränzen, nach dem Einbau vorgespannt
 - Halteschrauben zur Transportsicherung
- nehmen beidseitig axiale und zusätzlich radiale Kräfte sowie Kippmomente auf
- sind Präzisionslager, besonders geeignet
 zur Aufnahme von hohen Kippmomenten bei hoher Laufgenauigkeit
 - und hohen Drehzahlen
 - für Planscheiben
 - für schnellaufende Rundtische
- haben Spaltdichtungen
- sind befettet mit Bariumkomplexseifenfett nach DIN 51 825 – KPE2K – 30
- sind nachschmierbar über den Außenring
- werden angeschraubt
 - Außenring und Innenringe haben Durchgangsbohrungen.

Weitere Informationen zu Momentenlagern: INA-Druckschrift YRT, INA-Katalog 307

Axial-Radiallager

Bohrungsdurchmesser von 50 mm bis 950 mm

Axial-Schrägkugellager

Bohrungsdurchmesser von 100 mm bis 460 mm

Kreuzrollenlager

- sind Baueinheiten, bestehend aus Außen- und Innenringen, Wälzkörpern, Distanzstücken und Halteringen
 - Außenring geteilt
 - Distanzstücke aus Kunststoff
- nehmen beidseitig axiale Kräfte sowie radiale Kräfte und Kippmomente auf
- reduzieren in der Regel Konstruktionen mit zwei Lagerstellen auf eine Lagerstelle
- basieren auf der sehr kleinbauenden
 Maßreihe 18 nach DIN 616
- haben Normalspiel oder sind vorgespannt (Nachsetzzeichen VSP)
- sind nicht abgedichtet
 - eine notwendige Abdichtung der Lagerstelle kann frei gestaltet werden
- können mit Öl oder Fett geschmiert werden
- sind geeignet für Umfangsgeschwindigkeiten
 - bei Normalspiel und Ölschmierung bis 8 m/s
 bei Normalspiel und Fettschmierung bis 4 m/s
 - bei Vorspannung und Ölschmierung bis 4 m/s
 bei Vorspannung und Fettschmierung bis 2 m/s.

Kreuzrollenlager

- für Betriebstemperaturen von –30 °C bis +80 °C
 - für Wellen von 70 mm his 500 mm

Weitere Informationen zu Kreuzrollenlagern: INA-Druckschrift "Kreuzrollenlager, KSX" INA-Katalog 307

2.2 Kugellager / Gehäuseeinheiten Spannlager

Spannlager

- sind besonders montagefreundlich
 - werden auf die Welle geschoben, positioniert und einfach auf der Welle fixiert
- sind für gezogene Wellen geeignet
 - bis Qualität h9, bei niedrigsten
 Drehzahlen und Belastungen auch h11
- sind befettet mit Lithiumseifenfett auf Mineralölbasis nach DIN 51 825–K3N–30.
 - Ausnahmen:

 GLE..KRRB, GE..KLLHB und Baureihen mit Nachsetzzeichen FA 125
- haben größere Fetträume als normale Rillenkugellager. Dadurch längere Nachschmierfristen
- sind teilweise nachschmierbar über zwei Bohrungen im Außenring (Vorsetzzeichen G). Ausnahmen:
 - RALE.., RAE.., RANE.., AY.., W.., Z.., 6.., E..KLLH
- sind durch Dichtungen vor Schmutz und Spritzwasser geschützt
- sind für Betriebstemperaturen von –20 °C bis +120 °C geeignet.

Spannlager mit kugeliger Mantelfläche des Außenrings

- werden in kugelige Gehäusebohrungen eingebaut
- gleichen Fluchtungsfehler der Welle aus mit Exzenterspannring
 - bei Normalausführung: Innenring zur Vermeidung von Passungsrost Corrotect®-beschichtet – bis d = 60 mm, Ausnahme RALE..NPPB: Spannring
 - phosphatiert

 bei Ausführung FA 125: komplett

 Corrotect[®]-beschichtet und mit Bariumkomplexfett nach DIN 51825–KP2N–
 20 befettet dadurch sehr beständig
 gegen Wasser und Wasserdampf.

Spannlager mit zylindrischer Mantelfläche des Außenrings

- werden in zylindrische Gehäusebohrungen eingebaut
- sind mit oder ohne Nuten im Außenring ausgeführt.
 - Innenring zur Vermeidung von Passungsrost Corrotect[®]-beschichtet (Ausnahme: RALE..NPP) – bis d = 60 mm; Spannring phosphatiert.

mit kugeliger Mantelfläche

- mit Exzenterspannring
- Innenring einseitig verlängert
- P-Dichtung
- GRAE..NPPB u. GRAE..NPPB FA
- GRAE..NPPB FA 125 komplett
- Weitere Baureihen siehe INA-Katalog 517

GE..KPPB 3

- mit Exzenterspannring
- Innenring beidseitig verlängert
- P3-Dichtung
- nachschmierbar

mit zylindrischer Mantelfläche

RALE..NPP RAE..NPP RAE..NPP NR

190403

mit Gummidämmring

mit Exzenterspannring

- Innenring einseitig verlängert
- P-Dichtung
- RAE..NPP NR mit zwei Nuten nach DIN 616 im Außenring und einem Sprengring nach DIN 5417
- weitere Baureihen siehe INA-Katalog 517

- direkt ins Rohr eindrückbar
 - CR-B.. mit Gummihärte 80° Shore A Betriebstemperaturen von –20 °C his +85 °C
- nehmen Schwingungen, Stöße, Fluchtungs- und Lauffehler auf und dämpfen Laufgeräusche
- weitere Baureihen siehe INA-Katalog 517

E..KLLH

190107

RCR..

mit Exzenterspannring

- Innenring beidseitig verlängert
- L-Dichtung (Labyrinthdichtung)

einseitige Montagefase am Gummidämmring

- Gummihärte 55° 70° Shore A
 - Betriebstemperaturen von –20 °C bis +85 °C

Gehäuseeinheiten

Gehäuseeinheiten

- sind Baueinheiten, bestehend aus Steh-, Flansch- oder Spanngehäusen, kombiniert mit Spannlagern
- sind besonders montagefreundlich werden auf die Welle geschohen positioniert und fixiert
- gleichen Fluchtungsfehler der Welle aus durch Einstellbewegungen der kugeligen Mantelfläche des Außenrings
- lassen einfache, robuste und wirtschaftliche Lagerungen zu.

Grauguss-Gehäuseeinheiten

- sind ungeteilt
- haben eine Bruchfestigkeit von mindestens 250 N/mm²
- können bis zur Tragfähigkeit der montierten Spannlager belastet werden. Ausnahme:
 - TUE, TUEO bei ziehender Anordnung 25% von C₀
- haben bis auf wenige Ausnahmen Schmierbohrungen
 - R 1/8ő oder M6, verschlossen mit Kunststoffstopfen.

Grauguss-Gehäuseeinheiten Corrotect®-beschichtet

- sind vor Korrosion geschützt
- werden mit Corrotect®-beschichteten Spannlagern geliefert.

Kunststoff-Gehäuseeinheiten

- bestehen aus glasfaserverstärktem Kunststoff PBT, schwarz durchgefärbt
- sind ungeteilt
- sind beständig gegen Feuchtigkeit, UV-Strahlung, Bakterien, Pilze und die meisten chemischen Medien
- haben Lagerschutzkappen aus Kunststoff.

Stahlblech-Gehäuseeinheiten

- bestehen aus Tiefziehblech
- sind kostengünstige Leichtbaugehäuse
- sind als rostfreie Ausführung vor Korrosion bei Feuchtigkeit und Spritzwasser geschützt.

Weitere Informationen zu Gehäuseeinheiten: INA-Technische Produktinformationen TPI 88 INA-Katalog 517

Stehlager-Gehäuseeinheiten

Graugussgehäuse

- Nachsetzzeichen FA 125: Graugussgehäuse und Spannlager Corrotect®-beschichtet
- PASE... PASE..FA 125, RASE und RASE. FA 125 haben eine Befestigungsnut für Lagerschutzkappen aus Kunststoff

- Stahlblechgehäuse Corrotect®-beschichtet
- Weitere Baureihen siehe INA-Katalog 517

Zweiloch-Flanschlager-Gehäuseeinheiten

PCJT..FA 125 RCJT..(S) FA 125 . RCJT..(S)

Drei- u. Vierloch-Flanschlager-Gehäuseeinheiten

PCFTR.

Graugussgehäuse

Graugussgehäuse

- Nachsetzzeichen FA 125: Graugussgehäuse und Spannlager Corrotect[®]-beschichtet PCJT.., PCJT..FA 125, RCJT und
- RCJT..FA 125 haben eine Befestigungsnut für Lagerschutzkappen aus Kunststoff

RCSMF..

- mit Gummidämmring,
- Gummihärte 60° bis 70° Shore A
- Gehäuse Corrotect®-beschichtet
- nimmt Schwingungen, Stöße, Fluchtungs- und Lauffehler auf
- dämpft Laufgeräusche

Kunststoffgehäuse

Nachsetzzeichen FA 125: Spannlager Corrotect®-beschichtet

- Nachsetzzeichen VA: Spannlager rostfrei
- Betriebstemperaturen von –20 °C

bis +80 °C

Präzisions-Rillenkugellager

Rillenkugellager

- sind Baueinheiten, bestehend aus massivem Außen- und Innenring ohne Einfüllnut und Kugelkranz mit Käfig
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte in beiden Richtungen auf
- sind für hohe bis sehr hohe Drehzahlen geeignet
- sind unempfindlich in Betrieb und Wartung
- lassen durch ihren einfachen Aufbau besonders wirtschaftliche Lagerungen zu
- haben Hauptabmessungen nach DIN 625-1.

Abgedichtete Rillenkugellager

- sind vor Schmutz und Spritzwasser geschützt durch:
 - Lippendichtungen
 - Spaltdichtungen
- Labyrinthdichtungen
- sind befettet mit Lithiumseifenfett
 sind für Betriebstemperaturen von
- 20 °C bis +120 °C geeignet, begrenzt durch Schmierfett, Dichtring- und K\u00e4figwerkstoff.

Nicht abgedichtete Rillenkugellager

- sind konserviert
- sind für Betriebstemperaturen von –40 °C bis +120 °C geeignet, begrenzt durch Schmiermittel und Käfigwerkstoff
- erlauben h\u00f6here Drehzahlen als abgedichtete Rillenkugellager.

Weitere Informationen zu Rillenkugellagern: INA-Katalog 901

Präzisions-Rillenkugellager – einreihig

618.. 519.. 60.. 60..E 182.. 62..

63..

9

Nachsetzzeichen E-

- Wälzkörpersatz verstärkt gegenüber der Standardausführung
- Geeignet, wenn eine höhere Lebensdauer notwendig ist, die Anschlusskonstruktion jedoch nicht geändert werden kann
- Weitere Baureihen siehe INA-Katalog 901

Präzisions-Kleinkugellager

Präzisions-Kleinkugellager

- sind durch ihre geringen Abmessungen
 - besonders geeignet für:

 Elektro-Kleinmotoren
 - Büromaschinen
 - medizinische Geräte
 - Haushaltsgeräte.

Zweireihige Rillenkugellager ohne Finfüllnuten

- nehmen zusätzlich zu den radialen Kräften auch hohe axiale Kräfte in beiden Richtungen auf
- haben Hauptabmessungen nach DIN 625-3

Weitere Informationen zu Präzisions-Kleinkugellagern: INA-Katalog 901

Präzisions-Kleinkugellager

6..2Z T9H 66 7 TR 6..2RS

- T9H und TBH besonders für hohe Drehzahlen
- Z TBH einseitig mit Spaltdichtung. Die andere Seite ist durch den
- Käfigrücken abgedichtet
 F. und MF. mit Flansch am Außenring
 Nachsetzzeichen 2Z:
- beidseitig mit Spaltdichtung Nachsetzzeichen 2RS. 2URS:
- beidseitig mit Lippendichtung Nachsetzzeichen 2BRS beidseitig mit Labvrinthdichtung

Schrägkugellager Vierpunktlager

Schrägkugellager

- sind Baueinheiten, bestehend aus massiven Außen- und Innenringen und Kugelkränzen mit Kunststoffkäfigen
- eignen sich besonders für kombinierte Belastungen
 - Radial-, Axial- und Momentenbelastung
- haben Hauptabmessungen nach DIN 628-1.

Einreihige Schrägkugellager

- sind selbsthaltend
- nehmen zusätzlich zu den radialen
- Kräften auch axiale Kräfte in einer Richtung auf
 - durch den Druckwinkel von 40°, bei bestimmten Baugrößen 30°
- werden in der Regel paarweise in O- oder X-Anordnung eingesetzt
 nehmen so auch Axialkräfte aus beiden
- Richtungen und Momente auf.

Zweireihige Schrägkugellager ohne Einfüllnuten

- sind in ihrem Aufbau ähnlich zwei einreihigen Schrägkugellagern in O-Anordnung
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte in beiden Richtungen und Momente auf durch den Druckwinkel von 25°.

Abgedichtete Schrägkugellager

- sind vor Schmutz und Spritzwasser geschützt durch:
 - Lippendichtungen
 - Spaltdichtungen
- sind befettet mit Lithiumseifenfett auf Mineralölbasis.

Weitere Informationen zu Schrägkugellagern: INA-Katalog 901

0.243

- konserviert
- ohne Einfüllnuten

Pendelkugellager Axial-Rillenkugellager

Pendelkugellager

- sind Baueinheiten, bestehend aus spanend gefertigten Außen- und Innenringen sowie Kugelkränzen mit Stahlblechkäfigen
 - Außenringe mit hohlkugeliger Lauffläche
 - Innenringe mit zwei Laufrillen
- gleichen Fluchtungsfehler der Lagerachse und Wellendurchbiegungen bis ±1.5° aus
- nehmen zusätzlich zu den radialen Kräften auch geringe axiale Kräfte in beiden Richtungen auf
- haben Hauptabmessungen nach DIN 630
- sind vor Schmutz und Spritzwasser geschützt durch Lippendichtungen
- sind befettet mit Lithiumseifenfett

Pendelkugellager

190 272

zweireihig

- Nachsetzzeichen 2RS:
- beidseitig mit Lippendichtungen
- für Betriebstemperaturen von –20 °C bis +120 °C

Axial-Rillenkugellager

- sind Baueinheiten, bestehend aus Axialkugelkränzen, Wellen- und Gehäusescheiben
 - Käfig aus Stahlblech
 - Wellen- und Gehäusescheibe mit Laufrillen
- nehmen hohe axiale Kräfte in einer Richtung auf
- sind nicht selbsthaltend
 - Kugelkranz sowie Wellen- und Gehäusescheibe können getrennt montiert werden.

Weitere Informationen zu Kugellagern: INA-Katalog 901

Axial-Rillenkugellager

90 27 1

- einreihig
- konserviert

Laufrollen Laufrollen mit Kunststoffmantel Profillaufrollen

Laufrollen, Laufrollen mit Kunststoffmantel, Profillaufrollen

- sind Baueinheiten, bestehend aus Außenringen, Innenringen und Kugelkränzen mit Kunststoffkäfigen
 gleichen im Aufbau den Rillen- bzw. Schrägkugellagern
- werden auf Achsen montiert
- haben dickwandige Außenringe mit balliger oder zylindrischer Mantelfläche
 bei balliger Mantelfläche geringere Kantenbelastungenbei Fluchtungsfehlern
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte in beiden Richtungen auf
- sind befettet mit Lithiumseifenfett nach
 - bei Corrotect[®]-beschichteten Lagern mit Bariumkomplexfett nach DIN 51825–KP2N–20. Dadurch sehr beständig gegen Wasser und Wasserdampf
 - zweireihige Laufrollen sind über den Innenring nachschmierbar
- sind vor Schmutz und Spritzwasser geschützt durch
 Lippendichtungen oder Spaltdichtungen
- sind geeignet für Betriebstemperaturen von –20 °C bis +120 °C, begrenzt durch Schmierfett, Käfig- und Dichtringwerkstoff
- sind in Corrotect[®]- oder VA-Ausführung für Anwendungen mit erhöhtem Korrosionsschutz geeignet.

Laufrollen mit Kunststoffmantel

- bestehen aus einreihigen Rillenkugellagern mit Polyamid-Mantelfläche (PA) am Außenring
 - Polyamid verträgt höhere spezifische Flächenpressungen als Elastomer und ist relativ abriebfest
- werden eingesetzt, wenn ein besonders geräuscharmer Lauf notwendig ist.

Profillaufrollen

- haben einen als gotischen Bogen profilierten Außenring. Dadurch
 2-Punkt-Auflage in der Kontaktzone
- werden vorzugsweise eingesetzt mit einer Welle oder kreisförmigen Gegenlauffläche
 mit Durchmesser von 6 mm bis 40 mm
- sind befettet mit Lithiumseifenfett nach DIN 51825-K3N-30.

Laufrollen – einreihig

LR 6..NPPU LR 60..NPPU LR 2..NPPU LR 2..NPP

- Nachsetzzeichen U: ballige Mantelfläche des Außenrings
 - Nachsetzzeichen FA 125: Corrotect®-beschichtet
- beidseitig mit Lippendichtung (P-Dichtung); aus Platzgründen zum Teil RS-Dichtungen
- Außendurchmesser von 13 mm bis 90 mm

Laufrollen - zweireihig

LR 52..KDD LR 52..KDDU LR 53..KDDU LR 50..NPPU LR 52..NPPU LR 53..NPPU

- Nachsetzzeichen U: ballige Mantelfläche des Außenrings
- Nachsetzzeichen DD: beidseitig mit Spaltdichtung
- Nachsetzzeichen PP:
- beidseitig mit Lippendichtung
- Nachsetzzeichen FA 125: Corrotect®-beschichtet
- Außendurchmesser von 17 mm bis 100 mm

LR 2..RRU

- ballige Mantelfläche des Außenrings
- Innenring beidseitig verlängert
- beidseitig mit Lippendichtung
- Außendurchmesser von 35 mm und 40 mm

Laufrollen mit Kunststoffmantel

KLR-U.27 KLR-Z..2RS KLR-Z..2Z

KLR-U: ballige, KLR-Z zylindrische

- Mantelfläche des Außenrings 2RS: beidseitig mit Lippendichtung 2Z: beidseitig mit Spaltdichtung für Betriebstemperaturen von –20 °C bis +80 °C, begrenzt durch Schmierfett, Dichtring- und Käfigwerkstoff und Kunststoffmantel
- Außendurchmesser von 27.5 mm bis 41 mm

Profillaufrollen

LFR 5..KDD

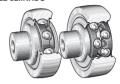
- beidseitig mit Spaltdichtung
- ab Außendurchmesser 52 mm durch den Innenring nachschmierbar
- Außendurchmesser von 17 mm his 80 mm

Zapfenlaufrollen ohne und mit Exenter

Zapfenlaufrollen ohne und mit Exzenter

- sind Baueinheiten, bestehend aus massiven Zapfen, Außenringen und Kugelkränzen mit Kunststoffkäfigen
 - Zapfen mit Laufbahnen für die Wälzkörper oder Baueinheit mit Innenring
- haben dickwandige Außenringe mit balliger Mantelfläche. Dadurch
 - geringer Kantenbelastungen bei
 Fluchtungsfehlern
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte in beiden Richtungen auf
- sind befettet mit Lithiumseifenfett nach DIN 51825–K3N–30
- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen
 - Spaltdichtungen
- sind geeignet f
 ür Betriebstemperaturen von –20 °C bis +120 °C, begrenzt durch Schmierfett, K
 äfig- und Dichtringwerkstoff
- sind montagefreundlich durch
- Gewinde am Zapfenende oder
 Gewindebohrung im Zapfen
 - Schlitz, Innensechskant oder Schlüsselfläche an der Stirnseite zum Gegenhalten.

Zapfenlaufrollen mit Exzenter


- sind durch die Zustellung der Außenring-Mantelfläche spielfrei an die Laufbahn einstellbar. Dadurch
 - bessere Lastverteilung bei Einsatz mehrerer Zapfenlaufrollen.

Weitere Informationen zu Laufrollen: INA-Druckschrift "Laufrollen, LFR"

Zapfenlaufrollen ohne und mit Exenter

ZL 2..NPDU ZL 52..KRDU

ZL 2..NPDU einreihig

- ZL 52..KRDU zweireihig
- Lippendichtung auf der Zapfenseite, andere Seite mit beiliegendem Kunststoffdeckel abdichtbar
- Außendurchmesser von 35 mm bis 85 mm
- weitere Baureihe KR 52..NPPU

ZL 52..KDDU AH07

- ZL 52..KDDU AH07 mit Exzenter
- nachschmierbar durch den Zapfen beidseitig mit Spaltdichtung
- Außendurchmesser von 35 mm bis 85 mm

Kettenspannräder Spannrollen

Kettenspannräder

- sind Baueinheiten, bestehend aus Kettenradscheiben und Rillenkugellagern
 - Kettenradscheiben aus Stahl h\u00f6herer Festigkeit, Sintereisen oder Kunststoff (Polyamid)
 - Rillenkugellager beidseitig abgedichtet, befettet mit Lithiumseifenfett auf Mineralölbasis nach DIN 51825–K3–N, wartungsfrei
- sind montagefertige Kettenführungsund Umlenkeinheiten für Hülsen- und Rollenketten
- gleichen betriebsbedingte Längungen der Ketten aus
- verbessern die Laufruhe des Systems bei hohen Belastungen und Geschwindigkeiten
- werden mit dem Schmierstoff der Kette geschmiert, Öl oder Fett.

Spannrollen

- sind Baueinheiten, bestehend aus Stahlblechscheiben und Rillenkugellagern
 - Stahlblechscheiben tiefgezogen, profiliert und miteinander vernietet, größere Scheibendurchmesser zusätzlich punktverschweißt
 - Einlauffase zur Vermeidung von Riemenschäden
 - Rillenkugellager beidseitig abgedichtet, befettet mit Lithiumseifenfett auf Mineralölbasis nach DIN 51825–K3–N, wartungsfrei
- sind montagefertige Spannsysteme für Riementriebe und Umlenkeinheiten
 - je nach Bauform für Keil-, Flach-, Rundriemen, Stahl- und Hanfseile geeignet
- können den Umschlingungswinkel bei Riementrieben vergrößern
 - übertragen dadurch höhere Leistungen oder lassen kleinere Dimensionierungen zu
- gleichen betriebsbedingte Längungen der Riemen aus
- lassen kürzere Achsabstände zu
- reduzieren den Verschleiß am Riementrieh
- haben durch die Stahlblechausführung nur niedrige zusätzliche Drehmassen und geringe Unwuchten

Kettenspannräder

KSR..LO..

190373

- Kettenradscheibe aus Stahl oder Sintereisen
- Innenring des Rillenkugellagers beidseitig verlängert – dadurch keine Distanzringe notwendig
- Teilung von 3/8" bis 1 1/4"
 Weitere Baureihen
 KSR..LO. KSR..30.

Spannrollen

RSR A..LO

- Bauform A: geeignet für Keilriemen
- Nachsetzzeichen KO: Rillenkugellager der Reihe 62.., beidseitig Lippendichtung
- Laufbahndurchmesser von 61,6 mm bis 130,8 mm
- Bohrungsdurchmesser von 13 mm bis 17 mm
- weitere Baureihen RSR B..LO, RSR D..LO

2.3 Permaglide®-Gleitlager

Wartungsfreie Gleitlager

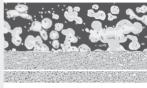
Permaglide®-Gleitlagermaterial P1

- besteht aus drei Schichten:
- Stahlrücken P10 oder Bronzerücken P11
 - Bronzeschicht
 - Gleitschicht
- eignet sich vor allem für Trockenlauf
- aibt es als
 - Buchsen PAP
 - Bundbuchsen PAF
 - Anlaufscheihen PAW - Streifen PAS

Wartungsarme Gleitlager

Permaglide®-Gleitlagermaterial P2

- hesteht aus drei Schichten
 - Stahlrücken
 - Bronzeschicht
 - Gleitschicht
- benötiat Schmieruna
- gibt es in vier Varianten - P20 mit Schmiertaschen, ohne Bearbeitungszugabe;


davon auf Anfrage:

- P21 mit Schmiertaschen. mit Bearbeitungszugabe
- P22 ohne Schmiertaschen. mit Bearbeitungszugabe
- P23 ohne Schmiertaschen. ohne Bearbeitungszugabe
- aibt es als
 - Buchsen PAP
 - Anlaufscheiben PAW
 - Streifen PAS

Weitere Informationen zu Permaglide®-Gleitlagern:

INA-Katalog 706

Permaglide®-Gleitlagermaterial P1

136 297

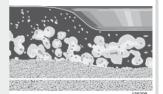
wartungsfrei.

mit Stahl- oder Bronzerücken

pv_{max}: 1.8 N/mm² · m/s 3.6 N/mm2 · m/s

pv_{kurzzeit}: 250 N/mm² statisch/ p_{max}: 56 N/mm² dynamisch

V_{max}:


-200 °C bis +280 °C

303 88

Buchsen PAP..P10, PAP..P11 Bundbuchsen PAF..P10, PAF..P11

Permaglide®-Gleitlagermaterial P2

wartungsarm, mit Stahlrücken und Schmiertaschen

3 N/mm² · m/s pv_{max}: 250 N/mm² statisch/ 70 N/mm² dynamisch p_{max}: 3 m/s

V_{max}:

-40 °C bis +110 °C ϑ: bis +140 °C

ϑ_{kurzzeit}:

- Anlaufscheiben PAW..P10, PAW..P11
- Streifen PAS..P10, PAS..P11

- Buchsen PAP..P20
- Anlaufscheiben PAW..P20
- Streifen PAS..P20

2.4 Gelenklager / Gleitbuchsen / Gelenkköpfe Wartungspflichtige Gelenklager

Radial-Gelenklager

- sind Baueinheiten, bestehend aus Innenund Außenringen mit Stahl/Stahl- oder Stahl/Bronze-Gleitpaarung
 - Innenring mit zylindrischer Bohrung und kugeliger Außengleitbahn
 - Außenring mit zylindrischer Mantelfläche und hohlkugeliger Innengleitbahn.
 - Ab d = 320 mm axial zweimal gesprengt und mit Halteringen zusammengehalten
 - bei GE..PB Außenring aus Bronze
- nehmen radiale Kräfte auf
- übertragen Bewegungen und Kräfte momentenarm
 - halten dadurch Biegespannungen von den Konstruktionselementen fern
- sind besonders für Wechselbelastungen mit schlag- und stoßartiger Beanspruchung geeignet
- lassen axiale Belastungen in beiden Richtungen zu
- werden über den Außen- und Innenring geschmiert
 - Ausnahmen
 - beim Lastwechsel wird eine Seite entlastet. Durch die Schwenkbewegung wird diese Zone geschmiert.

Abgedichtete wartungspflichtige Radial-Gelenklager

- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen.

Weitere Baureihen siehe INA-Katalog 236

Weitere Informationen zu wartungspflichtigen Gelenklagern: INA-Katalog 238

Radial-Gelenklager

nach DIN 648-Maßreihe E, ISO 6124-1; Großgelenkläger nach DIN 648-Maßreihe C, ISO 6124-3 Nachsetzzeichen -2RS: beidseitig mit Lippendichtung, für Betriebstemperaturen von –60 °C bis +130 °C GE..DO für Wellen von 6 mm bis 200 mm; Großgelenklager für Wellen von 320 mm bis 1000 mm GE.DO-2RS für Wellen von 15 mm bis 300 mm

GF..HO-2RS

- Innen- und Außendurchmesser und Außenringbreite wie GE..DO mit zylindrischen Ansätzen am Innenring. Dadurch keine Distanzringe beim Einbau zwischen zwei Wangen nötig beidseitig mit Lippendichtung,
- für Betriebstemperaturen von –60 °C bis +130 °C
- für Wellen von 17 mm bis 80 mm

Schräg-Gelenklager

- sind Baueinheiten, bestehend aus Wellen -und Gehäusescheiben mit Stahl/Stahl-Gleitpaarung
 - Wellenscheibe mit kugeliger
 Außengleitbahn
 - Gehäusescheibe mit hohlkugeliger Innengleitbahn
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte auf
 - geeignet für wechselnde dynamische
 Belastungen
- werden u. a. eingesetzt, wenn Belastungen in Verbindung mit kleinen Schwenkwinkeln zu Schäden an Wälzlagern führen
 - als Gleitlageralternative f
 ür Kegelrollenlager der Reihe 320 X nach DIN 720
- übertragen Bewegungen und Kräfte momentenarm
 - halten dadurch Biegespannungen von den Konstruktionselementen fern
- sind standardmäßig für Fettschmierung vorgesehen
 - werden über die Gehäusescheibe geschmiert.

Axial-Gelenklager

- sind Baueinheiten, bestehend aus Wellen- und Gehäusescheiben mit Stahl/Stahl-Gleitpaarung
 - die Wellenscheibe lagert in der kugelpfannenförmigen Gleitzone der Gehäusescheibe
- nehmen axiale Kräfte auf
- leiten Stützkräfte momentenarm in die Anschlußkonstruktion ein
- können mit Radial-Gelenklagern der Maßreihe E nach DIN 648 kombiniert werden
 - zur Aufnahme radialer Kräfte
- werden über die Gehäusescheibe geschmiert.

Schräg-Gelenklager

für Wellen von 25 mm bis 200 mm

Axial-Gelenklager

für Wellen von 10 mm bis 200 mm

Wartungsfreie Gelenklager

Radial-Gelenklager

- sind Baueinheiten, bestehend aus Innenringen. Außenringen und wartungsfreien Gleitschichten
 - Innenring mit zylindrischer Bohrung und kugeliger Außengleitbahn
 - Außenring mit zvlindrischer Mantelfläche und hohlkugeliger Innenaleithahn

Bei GE..UK-2RS Bohrungsdurchmesser <140 mm. Außenring einmal gesprengt: bei Bohrungsdurchmesser ≥140 mm Außenring zweimal gesprengt und mit massiven Haltescheiben zusammengehalten. Bei GE., FW-2RS Bohrungsdurchmesser <120 mm, Außenring einmal gesprengt; bei Bohrungsdurchmesser ≥120 mm Außenring zweimal gesprengt und mit massiven Haltescheiben zusammengehalten. Bei GE..DW Außenring radial geteilt und axial mit Schrauben und Stiften zusammengehalten

- Gleitschichten aus PTFE-Verbundwerkstoff, PTFE-Folie oder PTFE-Gewebe (Polytetrafluoräthylen)
- nehmen vorzugsweise radiale Kräfte auf
- sind absolut wartungsfrei
 - bei Lagern mit PTFE-Gewebe verringert Schmierstoff die Lebensdauer
- werden eingesetzt, wenn
 - bei wartungsfreiem Betrieb besondere Anforderungen an die Gebrauchsdauer gestellt werden
 - aus schmiertechnischen Gründen Lager mit metallischen Gleitpaarungen nicht geeignet sind, z. B. bei einseitiger Belastung.

Abgedichtete wartungsfreie Radial-Gelenklager

- sind vor Schmutz und Spritzwasser geschützt durch Lippendichtungen.
- Weitere Informationen zu

wartungsfreien Gelenklagern: INA-Katalog 238

- nach DIN 648-Maßreihe G. ISO 6124-1
- Gleitpaarung Hartchrom/ PTFE-Verbundwerkstoff
- arößerer Kippwinkel α durch breiteren Innenring
- für Wellen von 6 mm bis 25 mm

Schräg-Gelenklager

- sind Baueinheiten, bestehend aus Wellen- und Gehäusescheiben und wartungsfreien Gleitschichten in den Gehäusescheiben
 - Wellenscheibe mit kugeliger Außengleitbahn
 - Gehäusescheibe mit hohlkugeliger Innengleitbahn und eingeklebter Gleitschicht
- nehmen zusätzlich zu den radialen Kräften auch axiale Kräfte auf
 - sind für wechselnde dynamische Belastungen geeignet
- sind in paarweiser Anordnung als vorgespannte Einheit möglich
- werden eingesetzt, wenn hohe Lasten bei geringen Bewegungen übertragen werden
 - als Gleitlageralternative für Kegelrollenlager
- sind wartungsfrei auf Gebrauchsdauer
 Schmierstoff verringert die Lebensdauer

Axial-Gelenklager

- sind Baueinheiten, bestehend aus Wellen- und Gehäusescheiben und wartungsfreien Gleitschichten in den Gehäusescheiben
 - die Wellenscheibe lagert in der kugelpfannenförmigen Gleitzone der Gehäusescheibe
- nehmen vorzugsweise axiale Kräfte auf
- sind geeignet als Stütz- oder Fußlager
- können mit Radial-Gelenklagern der Maßreihe E nach DIN 648 kombiniert werden
- sind absolut wartungsfrei
 - Schmierstoff verringert die Lebensdauer.

Schräg-Gelenklager

GEE..SW

117 091

- Einbaumaße wie Kegelrollenlager nach DIN 720, 320 X
- Gleitpaarung Hartchrom/ PTFE-Gewebe
- für Wellen von 25 mm bis 200 mm

Axial-Gelenklager

GE..AW

- Gleitpaarung Hartchrom/ PTFE-Gewebe
 - für Wellen von 10 mm bis 360 mm

Wartungspflichtige Gelenkköpfe

Wartungspflichtige Gelenkköpfe

- sind Baueinheiten, bestehend aus einem Stangenkopf und einem wartungspflichtigen Gelenklager
 - Stangenkopf mit Außen- oder Innengewinde
 - Gelenklager fest mit dem lageraufnehmenden Bauteil verbunden
- nehmen radiale Kräfte in Zug- oder Druckrichtung auf
- übertragen Bewegungen und Kräfte momentenarm
- sind geeignet für wechselnde Belastung
 bedingt geeignet für einseitige
 Belastung
- sind durch Zinküberzug vor Korrosion geschützt
- sind nachschmierbar über Kegelschmiernippel oder Gehäusebohrung
- lassen durch die schmalbauenden Augen kompakte Umgebungskonstruktionen zu.

Abgedichtete wartungspflichtige Gelenkköpfe

- sind vor Schmutz und Spritzwasser geschützt durch
 - Lippendichtungen.

Gelenkköpfe nach DIN 648-Maßreihe E

- haben Radial-Gelenklager GE..DO oder GE..DO-2RS
- haben rechts- bzw. linksgängiges Innengewinde oder Außengewinde
- haben Kegelschmiernippel nach DIN 71 412

Gelenkköpfe nach DIN 648-Maßreihe K

- haben Stahl/Bronze-Gleitpaarungen
- haben rechts- bzw. linksgängiges Innengewinde oder Außengewinde
- haben Trichterschmiernippel nach DIN 3405 am Gelenkkopfauge

Weitere Baureihen siehe INA-Katalog 238.

Wartungspflichtige Gelenkköpfe

18 046

- nach DIN 648-Maßreihe E, Form B, ISO 6126
 - Schaft mit Innengewinde
- Nachsetzzeichen -2RS: beidseitig mit Lippendichtung, für Betriebstemperaturen von -60 °C bis +130 °C GIR. DO. GIR. DO-2RS
- mit Rechtsgewinde
- GIL..DO, GIL..DO-2RS mit Linksgewinde

- nach DIN 648-Maßreihe E, Form A, ISO 6126
- Schaft mit Außengewinde
- Nachsetzzeichen -2RS: beidseitig mit Lippendichtung, für Betriebstemperaturen von –60 °C bis +130 °C
- GAR..DO, GAR..DO-2RS mit Rechtsgewinde
- GAL..DO, GAL..DO-2RS mit Linksgewinde

Hydraulik-Gelenkköpfe

Hydraulik-Gelenkköpfe

- sind mit Radial-Gelenklagern GE..LO oder GE..DO ausgerüstet
- haben Stahl/Stahl-Gleitpaarungen
- nehmen radiale Kräfte in Zug- oder Druckrichtung auf
- übertragen Bewegungen und Kräfte momentenarm
- sind geeignet f
 ür wechselnde Belastung
- können angeschraubt werden durch
- können angeschweißt werden durch kreisförmige bzw. rechteckige Anschweißenden
 - Köpfe mit kreisförmigen Anschweißenden haben eine 45°-Schweißfase und eine Zentriermöglichkeit durch einen zentrisch angeordneten Spannstift
 - sind mit kreisförmigen Anschweißenden besonders für Kolbenstangen geeignet
 - sind mit rechteckigem Querschnitt besonders für Zylinderböden geeignet
- sind beidseitig geschlitzt bis d ≤50 mm, ab d > 50 mm einseitig
- sind nachschmierbar über Kegelschmiernippel

Weitere Informationen zu Gelenkköpfen: INA-Katalog 238.

Hydraulik-Gelenkköpfe

GIHN-K..LO

18 050

- nach DIN 24 338, ISO 6 982
- für Norm-Hydraulikzylinder nach Cetop-Empfehlung RP 58 H DIN 24 333; DIN 24 336; ISO/DIS 6 020 I: ISO/DIS 6 022
- Gelenklager mit Sicherungsringen im Gelenkkopf fixiert
- als Gewinde-Klemmeinrichtung sind zwei Innensechskantschrauben nach DIN 912-10.9 vorhanden

GIHR-K..DO

8 05 1

- besonders für Hydraulikzylinder
- geringste Anlenkabstände bei maximaler Hubausnutzung
- als Gewinde-Klemmeinrichtung sind zwei Innensechskantschrauben nach DIN 912-10.9 vorhanden
- Gelenklager mit Sicherungsringen im Gelenkkopf fixiert
- für Wellen von 20 mm bis 120 mm

Wartungsfreie zylindrische Gleitbuchsen

Wartungsfreie zvlindrische Gleitbuchsen

- sind Radial-Trockengleitlager, bestehend aus zylindrischem Stahlstützkörper und wartungsfreier Gleitschicht
 - der Štahlkörper schützt vor Beschädigungen bei der Handhabung und beim Einbau
 die Gleitschicht besteht aus 0.5 mm
 - die Gleitschicht besteht aus 0,5 mm starkem PTFE-Gewebe, ist in Kunstharz eingebettet und auf dem Stützkörper hochfest verankert.
 Das Fließverhalten der Gleitschicht ist – in Verbindung mit dem Stützkörper – auch bei höchster Belastung nahezu vernachlässigbar.

Der Klebeverbund ist feuchtigkeitsstabil und quellfrei

- sind wartungsfrei auf Gebrauchsdauer
 - Schmierstoff verringert die Lebensdauer erheblich
- ersetzen Stahl-, Bronze- und Kunststoff-Gleitlager
 - die Gleitbuchsen nehmen h\u00f6here
 Kr\u00e4fte auf als konventionelle Gleitlager
- nehmen sehr hohe radiale Kräfte bei einseitiger Lastrichtung und hohe statische Stoßbelastungen auf
- werden eingesetzt bei hohen Wechsellasten und Schwenkbewegungen
- sind reibungsarm
- haben ein gutes Dämpfungsverhalten
- lassen axiale Bewegungen zu
- sind montagefreundlich
 - werden in die Gehäusebohrung eingepresst
 - benötigen keine weitere axiale Fixierung
- sind auch mit vorgeschalteten, separaten Dichtungen kombinierbar.

Wartungsfreie zylindrische Gleitbuchse

- Abmessungen nach DIN 1850-1, Durchmesserreihe 2 und 3
- für Betriebstemperaturen von −50 °C bis +150 °C
- für Wellen von 30 mm bis 200 mm

2.5 Drehverbindungen

Drehverbindungen

- sind Baueinheiten, bestehend aus Außen- und Innenringen, Wälzkörpern, Distanzstücken und Winkeldichtungen
 - Distanzstücke aus Kunststoff
- nehmen mittlere axiale sowie radiale Kräfte und Kippmomente auf
- haben ein auf die jeweilige Lagergröße abgestimmtes Lagerspiel
- werden mit Fett geschmiert
- aibt es
 - außenverzahnt
 - innenverzahnt
 - unverzahnt
- gibt es in verschiedenen BauformenVierpunktlager
 - Kreuzrollenlager
 - Sonderbauformen
 - Sonderbautormen
 siehe INA-Katalog 404
 - Momentenlager
 - siehe Seite 284/285.

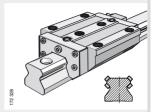
Weitere Informationen zu Drehverbindungen: INA-Katalog 404

Vierpunktlager, Bauform VLI 20

- zulässige Umfangsgeschwindigkeit 4 m/s, kurzzeitig bis 5,2 m/s
- für Baureihen VL..20 und VS..20 2 m/s, kurzzeitig 2,6 m/s

Kreuzrollenlager, Bauform XSI 14

zulässige Umfangsgeschwindigkeit 2 m/s, kurzzeitig 2,6 m/s


2.6 Linearführungen Profilschienenführungen

Rollenumlaufeinheiten RUE..D

- bestehen aus mindestens
 - einem Führungswagen RWU..D auf
 - einer Führungsschiene TSX..D
- haben ein vollrolliges Laufsystem
- sind serienmäßig vorgespannt
- sind aus allen Richtungen belastbar
- nehmen Momente um alle Achsen auf
- können mit Öl und mit Fett geschmiert werden
 - Schmierstoffverteiler für Fett
 - Schmierstoffverteiler für Öl
 - Minimal-Schmiermengen-Dosiereinheit (Sonderzubehör)
- besitzen umfangreiches Standard- und Sonderzubehör
- können nur als vormontierte Einheit bestellt werden.

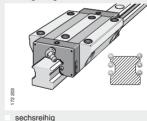
Weitere Informationen zu Profilschienenführungen: INA-Katalog 605

Rollenumlaufeinheiten RUE..D


Kugelumlaufeinheiten KUE

- bestehen aus mindestens
 - einem Führungswagen KWE auf
 - einer Führungsschiene TKD
- haben ein vollkugeliges Laufsystem mit zwei Kugelreihen, wobei
 - die Kugeln im Vierpunktkontakt mit den Laufhahnen stehen
- sind in zwei Vorspannklassen erhältlich
- sind aus allen Richtungen belastbar
- nehmen Momente um alle Achsen auf
- können mit Öl und mit Fett geschmiert werden
- besitzen umfangreiches Standard- und Sonderzubehör
- Führungswagen und Führungsschienen
 - können beliebig kombiniert werden
 - können getrennt oder vormontiert hestellt werden

Sechsreihige Kugelumlaufeinheiten KUSE


- bestehen aus mindestens
 - einem Führungswagen KWSE auf
 - einer Führungsschiene TKSD
- haben ein vollkugeliges Laufsvstem mit sechs Kugelreihen, wobei
 - die Kugeln im Zweipunktkontakt mit den Laufbahnen stehen
 - vier Kugelreihen Druckbelastung und zwei Kugelreihen Zugbelastung aufnehmen
- sind in zwei Vorspannklassen erhältlich
- sind aus allen Richtungen belastbar
- nehmen Momente um alle Achsen auf
- können mit Öl und mit Fett geschmiert werden
 - sind tragfähiger als andere Kugelumlaufeinheiten
- ermöglichen hohe Geschwindigkeiten und
- Beschleunigungen besitzen umfangreiches Standard- und Sonderzubehör
- Führungswagen und Führungsschienen
 - können beliebig kombiniert werden
 - können getrennt oder vormontiert bestellt werden.

Kugelumlaufeinheiten KUE

zweireihig

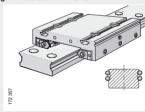
Sechsreihige Kugelumlaufeinheiten KUSE

Profilschienenführungen

Vierreihige Kugelumlaufeinheiten KUVE

- bestehen aus mindestens
 - einem Führungswagen KWVE auf
 - einer Führungsschiene TKVD
- haben ein vollkugeliges Laufsystem mit vier Kugelreihen, wobei
 - die Kugeln im Zweipunktkontakt mit den Laufbahnen stehen
- sind in zwei Vorspannklassen erhältlich
- sind aus allen Richtungen belastbar
- nehmen Momente um alle Achsen auf
- ermöglichen hohe Geschwindigkeiten und Beschleunigungen
- können mit Öl und mit Fett geschmiert werden
- Führungswagen und Führungsschienen sind in vielen Ausführungen erhältlich
 - können beliebig kombiniert werden
 - können getrennt oder vormontiert bestellt werden.

Linearführungen mit Kugelumlaufschuhen KUVS


- bestehen aus mindestens
 - zwei Kugelumlaufschuhen KUVS oder einem Führungswagen KWVK..AL auf einer
 - Führungsschiene TKVD
- haben ein vollkugeliges Laufsystem mit zwei mal zwei Kugelreihen, wobei
 - die Kugeln im Zweipunktkontakt mit den Laufbahnen stehen
 - die Druckwinkel 45° betragen und eine O-Anordnung bilden
- Kugelumlaufschuhe oder Führungswagen und Führungsschiene werden immer getrennt bestellt

Vierreihige Kugelumlaufeinheiten KUVE

vierreihig

Kugelumlaufschuhe KUVS

vierreihig (zwei mal zweireihig)

Laufrollenführungen

Hohlkammer-Laufwagen LFCL

- bestehen aus
 - einer Wagenplatte aus eloxiertem Aluminiumprofil mit Hohlkammern
 - vier Zapfen
 - vier Laufrollen
 - zwei Abdeckkappen für die
 - Hohlkammer .
- acht Nutensteinen
- laufen spielfrei auf den Tragschienen LFS
- benötigen keine exzentrischen Zapfen zur Spieleinstellung
- und Tragschienen LFS lassen sich beliebig untereinander austauschen und kombinieren
- werden durch Schmier- und Abdeckkappen AB LFR geschmiert.

Offener Laufwagen LFL..SF

- bestehen aus
 - einer Wagenplatte aus eloxiertem Aluminium
 - Aluminum
 - vier Zapfen
 - vier Laufrollen
- laufen spielfrei auf den Tragschienen LFS
- benötigen keine exzentrischen Zapfen zur Spieleinstellung
- und Tragschienen LFS lassen sich beliebig untereinander austauschen und kombinieren
- werden durch Schmier- und Abdeckkappen AB LFR geschmiert.

Weitere Informationen zu Laufrollenführungen: INA-Katalog 801 Technische Produktinformation "Profillaufrollenführungen" TPI 99

Hohlkammer-Laufwagen LFCL

mit Tragschiene LFS..C

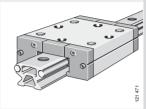
Offener Laufwagen LFL..SF

mit Tragschiene LFS..C

Laufrollenführungen

Kompakt-Laufwagen LFKL

- bestehen aus
 - einer Wagenplatte aus eloxiertem Aluminiumprofil
 - vier Zapfen
 - vier Laufrollen
 - zwei Längsdichtungen
 - einer Schmier- und Abstreifeinheit aus Kunststoff ie Stirnseite
- laufen spielfrei auf den Tragschienen LFS
- benötigen keine exzentrischen Zapfen zur Spieleinstellung
- und Tragschienen LFS lassen sich beliebig untereinander austauschen und kombinieren
- werden durch Schmier- und Abstreifeinheiten geschmiert.


Drehschemel-Laufwagen LFDL

- bestehen aus
 - einer Wagenplatte aus Stahl
 - zwei schwenkbaren Trägern aus eloxiertem Aluminium, die radial und axial mit wartungsfreiem Permaglide®-Gleitlagermaterial gelagert sind - zwei zentrischen Zapfen

 - zwei exzentrischen Zapfen
 - vier Laufrollen
- werden mit Hilfe der exzentrischen Zapfen spielfrei eingestellt.

Weitere Informationen zu Laufrollenführungen: INA-Katalog 801 Technische Produktinformation "Profillaufrollenführungen" TPI 99

Kompakt-Laufwagen LFKL..SF

mit Tragschiene LFS..C

Drehschemel-Laufwagen LFDL

mit Bogenelementen LFS..R

Wellenführungen

Linear-Kugellager und -Kugellagereinheiten

- qibt es als
 - Kompakt-Reihe
 - Finstell-Reihe
 - Leichthau-Reihe
 - Gleitlager-Reihe
 - Massiv-Reihe.

Kompakt-Reihe

Basis: Linear-Kugellager KH

- bestehen aus
- einer spanlos geformten, gehärteten
 - Außenhülse und
 - einem Kunststoffkäfig
- gibt es auch mit schleifenden Dichtungen: KH..PP
- sind nachschmierbar

Linear-Kugellagereinheiten der Kompakt-Reihe

- bestehen aus
 - einem Gehäuse aus hochfestem Aluminium
 - ein oder zwei Linear-Kugellagern KH.

Finstell-Reihe

Linear-Kugellagereinheiten der Einstell-Reihe

- bestehen aus
 - beidseitig abgedichteten Linear-Kugellagern KH..PP
 - einer Hülse mit balligem Außenring
 einem zweiteiligen Cehäuse aus
 - einem zweiteiligen Gehäuse aus Corrotect®-beschichtetem Stahlblech
- sind erstbefettet.

Weitere Informationen zu Wellenführungen: INA-Katalog 801

Linear-Kugellagereinheiten, Kompakt-Reihe

120 237

haben kleine Abmessungen und niedrige Bauhöhen

Linear-Kugellagereinheiten, Einstell-Reihe

20 27 8

- haben kleine Abmessungen und niedrige Bauhöhen
- sind winkeleinstellbar zwischen ±3°

Wellenführungen

Leichtbau-Reihe

Basis: Linear-Kugellager KN, KNO

- bestehen aus
 - einem K\u00e4fig mit eingesetzten Tragplatten
 - Tragplatten aus gehärtetem Stahl mit profilgeschliffenen Laufbahnen
 - einem Stahlhaltering, der die Tragplatten von außen abstützt
- sind lieferbar mit
 - Spaltdichtungen: KN, KNO
 - schleifenden Dichtungen: KN...PP, KNO...PP
- Linear-Kugellager KNO haben einen Segmentausschnitt.

Linear-Kugellagereinheiten der Leichtbau-Reihe

- bestehen aus
 - einem Gehäuse aus hochfestem

 Aluminium
 - einem oder zwei Linear-Kugellager KN oder KNO
- haben eine Anschlagkante
- haben Zentrierungen für Stiftbohrungen.

Gleitlager-Reihe

Basis: Permaglide®-Linear-Gleitlager PAB

- bestehen aus
 - einem Außenring aus einer Aluminiumlegierung mit
 - einer Permaglide®-Gleitlagerbuchse PAP..P20
- gibt es auch mit schleifenden Dichtungen (erstbefettet und nachschmierbar)
- Permaglide®-Linear-Gleitlager PABO haben einen Segmentausschnitt.

Permaglide®-Linear-Gleitlagereinheiten

- bestehen aus
 - einem Gehäuse aus Druckguss
 - einem abgedichteten Permaglide[®]-Linear-Gleitlager
- haben schleifende Dichtungen
- mit Segmentauschnitt eignen sich für unterstützte Wellen: PAGBAO.

Linear-Kugellagereinheiten, Leichtbau-Reihe

KGNO..PP AS

gleichen Fluchtungsfehler bis zu ±30' aus

nehmen hohe Belastungen bei relativ niedrigem Gewicht auf.

Permaglide®-Linear-Gleitlagereinheiten

- PAGBA...PP AS
- gute Notlaufeigenschaften
- statisch hoch belastbar und stoßunempfindlich
- unempfindlich gegen Verschmutzung
- geräuscharm
 - weitere Informationen zu Permaglide®-Gleitlagern siehe INA-Katalog 706

Massiv-Reihe

Basis: Linear-Kugellager KB

- bestehen aus
 - einem gehärteten und geschliffenen Außenring aus Wälzlagerstahl. Die Laufbahnen für die Kugeln sind endprofiliert.
- einem K\u00e4fig aus hochfestem Kunststoff sind lieferbar mit
- stirnseitig Spaltdichtungen:
 - KB, KBS, KBO
 - schleifenden Dichtungen: KB. PP. KBS. PP. KBO. PP
- haben einen gleichmäßigen und niedrigen Verschiebewiderstand
- Linear-Kugellager KBS haben einen geschlitzten Außenring und sind spieleinstellbar
- Linear-Kugellager KBO haben einen Seamentausschnitt.

Linear-Kugellagereinheiten der Massiv-Reihe

- bestehen aus
 - einem Gehäuse aus Druckauss oder hochfestem Aluminium
 - einem oder zwei Linear-
 - Kugellagern KB
- haben eine Anschlagkante
- haben schleifende Dichtungen
- sind nachschmierbar
- mit geschlitztem Gehäuse sind spieleinstellbar: KGBS, KGBAS: basierend auf KBS
- mit Segmentausschnitt eignen sich für unterstützte Wellen: KGBO, KGBAO, KTBO: basierend auf KBO.

Linear-Kugellagereinheit, Massiv-Reihe

KGB PP AS

- niedriae Reibuna
- hohe Steifigkeit
- hohe Genauigkeit große Laufruhe

2.7 Flachkäfigführungen

HYDREL/EGIS J- und S-Führungsschienen mit Nadelrollen-Flachkäfig

- bestehen aus
 - Führungsschienen der Bauform J und S
 - Flachkäfigen mit einer großen Anzahl Wälzkörper
- werden als lineare Loslager eingesetzt
- sind sehr gut geeignet für begrenzte
- sind bei geringstem Bauraum sehr steif und hoch tragfähig
- haben eine geringe, gleichförmige Reibung
- haben eine hohe, gleichbleibende Genauigkeit während der Gebrauchsdauer
- können mit Zubehörteilen komplettiert werden.

HYDREL KS-/KSR-Führungsschienen mit Kugel-Flachkäfig

- bestehen aus:
 - Führungsschienen der Bauform KS oder KSR
 - Kugel-Flachkäfigen
- werden als lineare Festlager eingesetzt
- sind sehr gut geeignet für begrenzte Hübe
- sind unempfindlich gegenüber Winkelfehlern bis max. 2.5°
- stellen nur geringe Anforderungen an die Genauigkeit der Anschlusskonstruktion
- sind hoch tragfähig und haben eine lange Gebrauchsdauer durch große Kugeln
- haben eine gleichbleibende Genauigkeit während der Gebrauchsdauer
- können mit Zubehörteilen komplettiert werden.

Weitere Informationen zu Flachkäfigführungen: INA-Druckschrift "HYDREL-Flachkäfigführungen" FRF

- Grundausführung, bestehend aus:
 - Führungsschienen J. S
- Nadelrollen-Flachkäfigen FF oder H
- hohe oder flache Ausführung

- Grundausführung, bestehend aus:
- Führungsschienen KS oder KSR
- Kugel-Flachkäfig HBE

HYDREL/EGIS M- und V-Führungsschienen mit Winkel-Nadelrollen- und Winkel-Zylinderrollen-Flachkäfig

bestehen aus:

- Führungsschienen der Bauform M und V
- Winkel-Flachkäfigen mit einer großen Anzahl Wälzkörper
- werden als lineare Festlager eingesetzt
- sind sehr gut geeignet für begrenzte Hübe
- sind bei geringem Bauraum sehr steif und hoch tragfähig
- haben eine geringe, gleichförmige Reibung
- haben eine hohe gleichbleibende Genauigkeit während der Gebrauchsdauer
- können mit Zubehörteilen komplettiert werden
- sind auch mit Längsdichtleisten lieferbar.

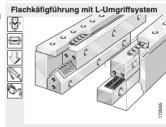
Weitere Ausführungen mit M- und V-Führungsschienen:

■ HYDREL/EGIS

ML- und V-Führungsschienen mit Zustellkeil und Winkel-Nadelrollen Flachkäfig

HYDREL/EGIS

M- und V-Führungsschienen mit integrierter Zahnstange zur Zwangsführung des Winkel-Nadelrollen-Flachkäfigs


HYDREL/EGIS M-Führungsschienen mit Gleitbelag und V-Führungsschienen.

HYDREL/EGIS L-Umgriffsystem mit Nadelrollen- und Zylinderrollen-Flachkäfigen, Fest-Loslager-Einheiten

- sind lineare Fest-Loslager-Einheiten
- durch die Aufteilung in eine Fest-Loslagerführung verspannt sich das System nicht durch Wärmedehnung
- werden eingesetzt, wenn Führungen hochgenau, äußerst starr und tragfähig sein müssen und die Anschlusskonstruktion durch Vorspannkräfte und Wärmedehnung nicht verspannt werden darf
- haben die höchste Genauigkeit aller wälzgelagerten Linearführungen
- sind montagefreundlich
- sind besonders reibungsarm
- können mit Zubehörteilen komplettiert werden

- Grundausführung, bestehend aus:
 - Führungsschienen M. V
 - Winkel-Nadelrollen-Flachkäfigen FW, HW oder HGW

Grundausführung

Flachkäfige

Flachkäfige

- bestehen aus:
 - einem Grundkörner aus Kunststoff oder Metall - abhängig von der Raureihe
 - einer großen Anzahl von Wälzkörpern. die in präzisen Taschen geführt werden
- haben eine geringe Bauhöhe
- sind hoch tragfähig
- haben eine hohe Steifigkeit
- setzen voraus, dass gehärtete und geschliffene Flächen als Laufbahn genutzt werden können
- werden als Einzelteil und in Verbindung mit Führungsschienen geliefert.

Nadelrollen-Flachkäfige

- haben Nadelrollen als Wälzkörper
- haben die höchste Steifigkeit der Flachkäfige
- sind als Flach- oder Winkel-Flachkäfig. ausgeführt.

Weitere Ausführungen von Flachkäfigen:

- Zvlinderrollen-Flachkäfige
- Kugel-Flachkäfige HB, HBE

Nadelrollen-Flachkäfige mit Reibungsdämpfung

- bestehen aus:
 - einer großen Anzahl Wälzkörper
 - speziellen Zwischenelementen aus Metall, die mit Zugankern in einer bestimmten Zahl aufgereiht sind
- werden eingesetzt, wenn Schlittensysteme für sehr hohe Positioniergenauigkeit ausgelegt sind
- verhindern selbst- und fremderregte Schwingungen in Bewegungsrichtung oder bauen diese schnell ab
- ersparen zusätzliche Dämpfungselemente
- sind Stick-slip-frei auch bei niedrigsten Geschwindigkeiten
- haben standardmäßig eine Dämpfungskraft RS von 0.2% der statischen Tragzahl Co - bezogen auf eine Wälzkörperreihe.

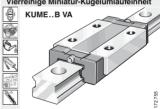
- Nadelrollen-Flachkäfig, einreihig Grundkörper aus Kunststoff
- Schwalbenschwanznuten an den Enden zur einfachen Verbindung beliebig vieler Elemente
- für Temperaturen bis 120 °C

- Nadelrollen-Flachkäfig mit Reibungsdämpfung, einreihig und zweireihig Einbauabmessungen gleich wie H und H..ZW
- für J-/S-Führungsschienen

Miniatur-Kugelumlaufeinheiten

Zwei- und vierreihige Miniatur-Kugelumlaufeinheiten

- sind Baueinheiten, bestehend aus ieweils:
 - mindestens einem Führungswagen mit vollkugeligem Laufsystem
 - einer Führungsschiene mit zwei gleichwertigen Anschlagkanten
 - integrierten elastischen Abstreifern zur Abdichtung an den Stirnseiten der Führungswagen
- werden als lineare Festlager eingesetzt
 - nehmen Kräfte aus allen Richtungen ausgenommen die Bewegungsrichtung - und Momente um alle Achsen
- werden durch Schmierbohrungen im Kopfstück oder über die Schiene mit Öl oder mit Fett geschmiert
- werden standardmäßig vormontiert geliefert
 - auf einer Führungsschiene sind ein oder mehrere Führungswagen montiert
- sind sehr aut geeignet für Anwendungen
 - großen Hüben
 - hoher Belastung bei kleinstem vorhandenem Bauraum
 - hohen Geschwindigkeiten und niedriger Reibung
 - hoher Steifiakeit
 - Momentenbelastungen.


Weitere Informationen zu Miniatur-Kugelumlaufeinheiten: INA-Marktinformation MAI 81

Zweireihige Miniatur-Kugelumlaufeinheit

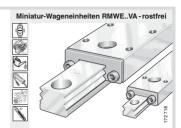
- Grundausführung, bestehend aus:
 - Führungswagen mit vollkugeligem Laufsystem
 - Führungsschiene
 - geeignet für Temperaturen von -40°C bis +100°C
- rostfrei

Vierreihige Miniatur-Kugelumlaufeinheit

- Grundausführung, bestehend aus:
 - Führungswagen mit vollkugeligem Laufsystem
 - Führungsschiene
- Verschlüsskappen aus Kunststoff
- geeignet für Temperaturen von -40°C bis +100°C
- rostfrei

Miniatur-Wageneinheiten und -Linearführungs-Sets mit Zylinderrollen-Flachkäfigen

Miniatur-Wageneinheiten und -Linearführungs-Sets mit Zylinderrollen-Flachkäfigen


- werden als lineare Festlager eingesetzt
 - nehmen Kräfte aus allen Richtungen –
 ausgenommen Bewegungsrichtung –
 und Momente um alle Achsen auf
- haben eine hohe Ablaufgenauigkeit
- sind besonders geeignet für
 - kurze Hübe
 - reibungsarme Bewegungen
 - oszillierende Bewegungen
 - hohe Belastungen bei gleichzeitig hoher/höchster Steifigkeit.

Miniatur-Wageneinheiten

- sind Baueinheiten, bestehend aus jeweils:
 - einem Führungswagen und einer Führungsschiene
 - dazugehörigen Zylinderrollen-Flachkäfigen und Endstücken
 - Verschlusskappen aus Kunststoff
- sind rostfrei Wälzkörper ausgenommen.
 Dadurch sehr gut geeignet für Anwendungen
 - im Medizinbereich und in der Elektroindustrie
 - in der Robotik und Labortechnik
 - unter Reinraum-Bedingungen.

Miniatur-Linearführungs-Sets

- sind Baueinheiten, bestehend aus:
 paarweisen, gleich langen oder ungleich langen inneren (1) und äußeren (2) Führungsschienen
 - dazugehörigen Zylinderrollen-Flachkäfigen und Endstücken
- sind einfach an vorgegebene Anschlusskonstruktionen anpassbar
- sind sehr gut geeignet für Anwendungen
 - in der Elektronikindustrie und artverwandten Branchen
 - in optischen Geräten
 - unter Reinraum-Bedingungen
 - mit höheren Temperaturen.

- Grundausführung, bestehend aus:
 - Führungswagen und Führungsschiene
 - Zylinderrollen-Flachkäfigen
- Endstücken
- Verschlusskappen
- geeignet für Temperaturen bis +120°C

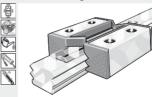
Miniatur-Linearführungs-Set RWS

- Grundausführung, bestehend aus:
- innerem (1) und äußerem (2) gleich langen oder ungleich langen Schienenpaar
- Zvlinderrollen-Flachkäfigen
- Endstücken
- geeignet für Temperaturen bis +120°C

Miniatur-Linearführungs-Sets mit Kugel-Flachkäfigen

- werden als lineare Festlager eingesetzt
 - nehmen Kräfte aus allen Richtungen ausgenommen Bewegungsrichtung und Momente um alle Achsen auf
- sind besonders geeignet für
- kurze Hübe
 - reibungsarme und oszillierende Bewegungen
 - mittlere Belastungen bei gleichzeitig hoher Steifiakeit
- haben hohe Ablaufgenauigkeit
- sind einfach an vorgegebene Anschlusskonstruktionen anpassbar
- sind sehr gut geeignet für Anwendungen
 - im Medizinbereich und in der Elektronikindustrie
 - in der Robotik und Labortechnik
 - unter Reinraum-Bedingungen.

Miniatur-Gleitführungen


- werden als lineare Festlager eingesetzt
 - nehmen Kräfte aus allen Richtungen ausgenommen Bewegungsrichtung und Momente um alle Achsen auf
- sind wartungsfrei und dadurch für Trockenlauf geeignet
 - können aber auch mit Öl oder Fett geschmiert werden
- sind spieleinstellbar und arbeiten
- weitestgehend ruckfrei haben aute Gleiteigenschaften
- haben einen Gleitwerkstoff mit sehr geringer Wasseraufnahme-Fähigkeit und sind chemisch hoch beständig
- sind verschleißarm und unempfindlich gegen Schmutz
- haben die gleichen Anschlussmaße wie Miniatur-Kugelumlaufeinheiten
- stellen keine hohen Anforderungen an die Form- und Lagegenauigkeit der Anschlussflächen
- sind sehr gut geeignet für Anwendungen
 - niedriger Belastung bei kleinstem Bauraum
 - Momentenbelastungen
 - Trockenlauf
 - niedriger Reibung
 - einstellbarem Lagerspiel
 - stärkerem Schmutzanfall.

Miniatur-Linearführungs-Set KFS..VA

- Grundausführung, bestehend aus: innerem (1) und äußerem (2) gleich langem oder ungleich langem Führungspaar
- Kugel-Flachkäfigen
- Endstücken
- geeignet für Temperaturen
- bis +120°C
- rostfrei

Miniatur-Gleitführungen GFW / GFS

- Grundausführung, bestehend aus:
- Führungswagen mit Gleitschicht, Stirnseiten und Federstegen
- Führungsschiene
- geeignet für Temperaturen von -40°C bis +80°C
- rostfrei

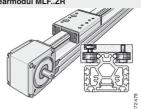
2.9 Angetriebene Lineareinheiten

Linearmodule mit Laufrollenführungen und Zahnriemenantrieb MLF..ZR

- hestehen aus
 - einer Transchiene
 - einem Kompaktlaufwagen in verschiedenen L\u00e4ngen, der aus einem Tragk\u00f6rper aus eloxiertem Aluminiumprofil, vier Zapfen, vier Laufrollen, zwei Schmier- und Abstreifeinheiten aufgebaut ist
 - zwei Umlenkeinheiten
- können kleine bis mittlere Lasten mit v_{max} = 8 m/s und a_{max} = 40 m/s² positionsgenau bewegen
- werden einzeln geliefert. Eine Umlenkung und der Laufwagen sind vormontiert.

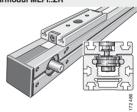
Linearmodule mit Laufrollenführungen und Zahnriemenantrieb MLFI..ZR

- sind ähnlich den Linearmodulen MLF..ZR aufgebaut. Die Laufrollen sind jedoch innenliegend und werden durch den im Trägerprofil geführten Zahnriemen vollständig abgedeckt
- bestehen aus
- einer Tragschiene LFS 25 MI
 - einem innengeführten Kompaktlaufwagen in verschiedenen Längen
 - im Trägerprofil integrierte Umlenkeinheiten
- können kleine Lasten mit v_{max} = 8m/s und a_{max} = 40 m/s² positionsgenau bewegen.


Linearmodule mit Gleitführungen und Zahnriemenantrieb MGFI..ZR (ohne Bild)

- sind ähnlich den Linearmodulen MLFI..ZR aufgebaut
- bestehen aus
 - einer Tragschiene GFS 25 MI
 - einem innengeführten Laufwagen
- zwei integrierten Umlenkeinheiten
- können kleine Lasten mit v_{max} = 1 m/s und a_{max} = 5 m/s² positionsgenau bewegen
- laufen sehr geräusch- und wartungsarm.

Weitere Informationen zu Linearmodulen: INA-Druckschrift

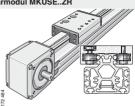

"Angetriebene Lineareinheiten" ALE

Linearmodul MLF..ZR

mit außenliegenden Laufrollen LFR und Zahnriemenantrieb ZR

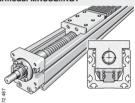
Linearmodul MLFI..ZR

- mit innenliegenden Laufrollen LFR und Zahnriemenantrieb ZR
- weitere Baureihe: MGFI..ZR mit vier innenliegenden Gleitführungskassetten der Baureihe GFK und Zahnriemenantrieb ZR


Lineareinheiten mit Kugelumlaufeinheiten und Zahnriemenantrieb

- bestehen aus
 - einer Tragschiene
 - einem Kompaktlaufwagen, der aus einem Tragkörper aus eloxiertem Aluminiumprofil und zwei hintereinander angeordneten zweireihigen oder sechsreihigen Kugelumlaufeinheiten aufgebaut ist
 - einem Zahnriemenantrieb
 zwei I Imlenkeinheiten
- können mittlere bis hohe Lasten mit v_{max} = 3 m/s und a_{max} = 15 m/s² positionsgenau bewegen
- können höhere Momentenbelastungen aufnehmen, wenn
 - ein längerer Laufwagen eingesetzt wird oder
 - weitere Laufwagen hintereinander angeordnet werden
- werden einzeln geliefert. Eine Umlenkung und der Laufwagen sind vormontiert.

Lineareinheiten mit Kugelumlaufeinheiten und Kugelgewindetrieb


- bestehen aus
 - einer Tragschiene
 - einem K\u00f3mpaktlaufwagen, der aus einem Tragk\u00f6rper aus eloxiertem Aluminiumprofil und zwei hintereinander angeordneten zweireihigen oder sechsreihigen Kugelumlaufeinheiten aufgebaut ist
 - einem Kugelgewindetrieb
- können mittlere bis hohe Lasten mit v_{max} = 1,73 m/s und a_{max} = 8,5 m/s² positionsgenau bewegen
- haben eine maximale Spindeldrehzahl von 2 600 min⁻¹, begrenzt durch das eingebaute Festlager
- können höhere Momentenbelastungen aufnehmen, wenn ein zweiter, nicht angetriebener Laufwagen montiert wird
- haben einen Faltenbalg, der die Gewindespindel und das Führungssystem vor Schmutz schützt.

Linearmodul MKUSF..ZR

- mit sechsreihigen Kugelumlaufeinheiten KUSE und Zahnriemenantrieb ZR
- weitere Baureihe: MKUE..ZR mit zweireihigen Kugelumlaufeinheiten KUE und Zahnriemenantrieb ZR

Linearmodul MKUSE..KGT

- mit sechsreihigen Kugelumlaufeinheiten KUSE und Kugelgewindetrieb KGT
- weitere Baureihe: MKUE..KGT mit zweireihigen Kugelumlaufeinheiten KUE und Kugelgewindetrieb KGT
- die Baureihe MKUSE..KGT hat eine höhere Gebrauchsdauer als die Baureihe MKUE..KGT

Angetriebene Lineareinheiten

Lineareinheiten mit zwei Kugelumlaufeinheiten und 3fach Zahnriemenantrieb (Tandemmodule)

- gibt es in den Baureihen

 - MDKUVE...3ZR mit vierreihigen Kugelumlaufeinheiten KUVE und 3fach Zahnriemenantrieb
 - MDKUSE..3ZR mit sechsreihigen Kugelumlaufeinheiten KUSE und 3fach Zahnriemenantrieb
- bestehen aus
 - zwei Umlenkeinheiten (Antrieb mit 3 Zahnriemen)
 - einem Laufwagen, der aus einem Tragkörper aus eloxiertem Aluminiumprofil und vier Führungswagen der beiden Kucelumlaufeinheiten aufgebaut ist
 - einer Tragschiene, in der zwei parallel angeordnete Kugelumlaufeinheiten integriert sind
- können hohe Lasten mit hohen Momentenbelastungen um alle drei Achsen mit v_{max} = 3 m/s und a_{max} = 15 m/s² positionsgenau bewegen
- eignen sich sehr gut für den senkrechten Einbaufall, da der 3fach Zahnriemen sehr hohe maximale Betriebskräfte zuläßt
- können höhere Momentenbelastungen aufnehmen, wenn
 - ein längerer Laufwagen eingesetzt wird oder
 - weitere Laufwagen hintereinander angeordnet werden
- werden einzeln geliefert. Eine Umlenkung und der Laufwagen sind vormontiert.

Weitere Informationen zu Linearmodulen: INA-Druckschrift

"Angetriebene Lineareinheiten" ALE

Linearmodul MDKUSE..3ZR

mit sechsreihigen Kugelumlaufeinheiten KUSE und 3fach Zahnriemenantrieb 3ZR

mit vierreihigen Kugelumlaufeinheiten KUVE und 3fach Zahnriemenantrieb 3ZR

Lineartische

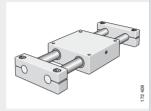
Lineartische mit geschlossener Linear-Kugellager-Führung LTE

- gibt es in verschiedenen Ausführungen
 - LTE ohne Antrieb
 - LTE mit Trapezgewindetrieb (ohne Bild)
 - LTE mit Kugelgewindetrieb
- sind geeignet für mittlere Belastungen und kurze Hübe
- können mit Zubehörteilen komplettiert werden.

Lineartische LTE ohne Antrieb

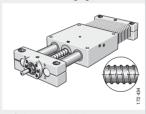
- bestehen aus
 - einem Laufwagen aus Aluminiumlegierung mit vier Linearkugellagern KB (erstbefettet, abgedichtet und nachschmierbar)
 - zwei Wellen aus hochlegiertem Edelstahl (gehärtet und geschliffen)
 - zwei Wellenböcken Ausführung A: beweglicher Laufwagen Ausführung B:
 - feststehender Laufwagen
- wahlweise zwei Faltenbälge.

Lineartische LTE mit Kugelgewindetrieb


- bestehen zusätzlich aus
 - einer Spindel mit gerolltem Kugelgewinde und einer nicht vorgespannten zylindrischen Gewindemutter oder einer doppelten, vorgespannten zylindrischen Gewindemutter
 - einem Schmiernippel für Spindel und Gewindemutter
 - einem Festlager mit einem vorgespannten zweireihigen Schrägkugellager ZKLN sowie einem Schmiernippel
 - einem Nadellager NA als Loslager und einem Schmiernippel.

Bei gleichem Hub ist der Bauraum eines Lineartisches mit Faltenbalg größer als der eines Lineartisches ohne Faltenbalg.

Weitere Informationen zu Lineartischen: INA-Druckschrift


"Angetriebene Lineareinheiten" ALE

Lineartisch LTE ohne Antrieb

Grundausführung

Lineartisch LTE mit Kugelgewindetrieb

Steigungsgenauigkeit 50 µm auf 300 mm

Lineartische

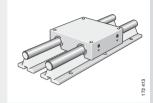
Lineartische mit offener Linear-Kugellager-Führung LTS

- gibt es in verschiedenen Ausführungen
 LTS ohne Antrieb
 - LTS ohne Antrieb
 LTS mit Trapezgewindetrieb (ohne Bild)
 - LTS mit Trapezgewindetrieb (om
 LTS mit Kugelgewindetrieb
- sind geeignet für mittlere Belastungen und lange Hübe
- können mit Zubehörteilen komplettiert werden.

Lineartische LTS

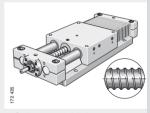
- bestehen aus
 - einem Laufwagen aus Aluminiumlegierung mit vier Linearkugellagern KBO (erstbefettet, abgedichtet und nachschmierbar)
 - zwei Wellen aus hochlegiertem Edelstahl (gehärtet und geschliffen), die auf Tragschienen befestigt sind
 - wahlweise zwei Faltenbälge (Ausnahme: LTS 12).

Lineartische LTS mit Kugelgewindetrieb


- bestehen zusätzlich aus
 - einer Spindel mit gerolltem Kugelgewinde und einer nicht vorgespannten zylindrischen Gewindemutter oder einer doppelten, vorgespannten zylindrischen Gewindemutter
 - einem Schmiernippel für Spindel und Gewindemutter
 - einem Festlager mit einem vorgespannten zweireihigen Schrägkugellager ZKLN sowie einem Schmiernippel
 - einem Nadellager NA als Loslager und einem Schmiernippel.

Bei gleichem Hub ist der Bauraum eines Lineartisches mit Faltenbalg größer als der eines Lineartisches ohne Faltenbalg.

Weitere Informationen zu Lineartischen: INA-Druckschrift


"Angetriebene Lineareinheiten" ALE

Lineartisch LTS ohne Antrieb

Grundausführung

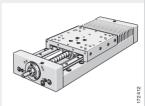
Lineartisch LTS mit Kugelgewindetrieb

Steigungsgenauigkeit 50 µm auf 300 mm

Präzisions-Lineartische mit Kugelumlaufeinheiten

- eignen sich besonders zum Positionieren mittlerer und hoher Lasten
- haben Lager, die erstbefettet, abgedichtet und nachschmierbar sind
- können mit Zubehörteilen komplettiert werden.

Präzisions-Lineartische LTP


- bestehen aus
 - einer Grundplatte aus Aluminium
 - zwei Kugelumlaufeinheiten KUE (vorgespannt) mit zwei Führungswagen KWE pro Seite
 - einem Laufwagen aus Aluminium mit einem zentralen Schmiersystem, das sowohl die Kugelumlaufeinheiten als auch den Kugelgewindetrieb versorgt
 - einer Spindel mit gerolltem Kugelgewinde und einer nicht vorgespannten Flanschgewindemutter oder einer Flanschgewindemutter mit zylindrischer Gewindemutter in vorgespannter Ausführung
 einer Endolatte aus Aluminiumlegierung
 - zur Aufnahme des Festlagers und einem Schmiernippel
 - einem zweireihigen Schrägkugellager ZKLF als Festlager
 - einer Endplatte aus
 Aluminiumlegierung zur Aufnahme des
 Loslagers und einem Schmiernippel
 - einem Nadellager NA als Loslager
 - wahlweise zwei Faltenbälgen.

Präzisions-Lineartische LTPG

- unterscheiden sich von den Lineartischen LTP durch
 - eine Grundplatte aus Gusseisen
 - einen Laufwagen aus Gusseisen mit geschliffener Oberfläche
 - eine Endplatte aus Gusseisen zur Aufnahme des Festlagers
 - eine Endplatte aus Gußeisen zur Aufnahme des Loslagers.

Bei gleichem Hub ist der Bauraum eines Lineartisches mit Faltenbalg größer als der eines Lineartisches ohne Faltenbalg.

Präzisions-Lineartisch LTP

- mit Kugelumlaufeinheiten
- Aluminiumausführung
- Steigung 50 um auf 300 mm

Präzisions-Lineartisch LTPG

- mit Kugelumlaufeinheiten
- Gusseisenausführung

3. Grundlagen

3.1 Tragfähigkeit und Lebensdauer

Auszug aus INA-Katalogen

Die erforderliche Größe eines Wälzlagers hängt ab von den Anforderungen an seine:

- Tragfähigkeit Belastbarkeit
- Lebensdauer
- Betriebssicherheit.

Das Maß für die Tragfähigkeit sind die statischen und dynamischen Tragzahlen.

Dynamische Tragfähigkeit und Lebensdauer

Das Ermüdungsverhalten des Werkstoffs bestimmt die dynamische Tragfähigkeit des Wälzlagers.

Die dynamische Tragfähigkeit wird beschrieben durch:

- die dynamische Tragzahl
- die nominelle Lebensdauer.

Die Lebensdauer als Ermüdungszeitraum hängt ab von:

- der Belastung
- der Betriebsdrehzahl
- der statistischen Zufälligkeit des ersten Schadenseintritts.

Dynamische Tragzahl

Für umlaufende Wälzlager gilt die dynamische Tragzahl C. Sie ist:

- bei Radiallagern eine konstante Radiallast
- bei Axiallagern eine zentrisch wirkende, konstante Axiallast

Die dynamische Tragzahl C ist die Belastung unveränderlicher Größe und Richtung, bei der eine genügend große Menge gleicher Lager eine nominelle Lebensdauer von einer Million Umdrehungen erreicht.

Nominelle Lebensdauer

$$L = \left(\frac{C}{P}\right)^{p}$$

$$L_{h} = \frac{16666}{n} \left(\frac{C}{P}\right)^{p}$$

L 10⁶ Umdr.

nominelle Lebensdauer in Millionen Umdrehungen, die von 90% einer genügend großen Menge gleicher Lager erreicht oder überschritten wird, bevor die ersten Anzeichen einer Werkstoffermüdung auftreten

L_h h nominelle Lebensdauer in Betriebsstunden entsprechend der Definition für L

C N dynamische Tragzahl

dynamische Tragzahl

äquivalente Lagerbelastung für Radial- bzw. Axiallager

p – Lebensdauerexponent.

Nadel-, Zylinderrollenlager: p = 10/3 Kugellager: p = 3

n min-1 Betriebsdrehzahl.

Modifizierte nominelle Lebensdauer

$$L_{na} = a_1 \cdot a_2 \cdot a_3 \cdot L$$

Lna 106 Umdr.

modifizierte nominelle Lebensdauer für besondere Werkstoffeigenschaften und Betriebsbedingungen bei einer Erlebenswahrscheinlichkeit von (100–n) %

L 106 Umdr.

nominelle Lebensdauer

 a_1

Lebensdauerbeiwert für eine Erlebenswahrscheinlichkeit, die von 90% abweicht

a٩

Lebensdauerbeiwert für besondere Werkstoffeigenschaften

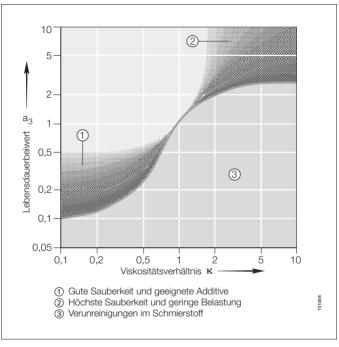
für Standard-Wälzlagerstähle: a2 = 1

 a_3

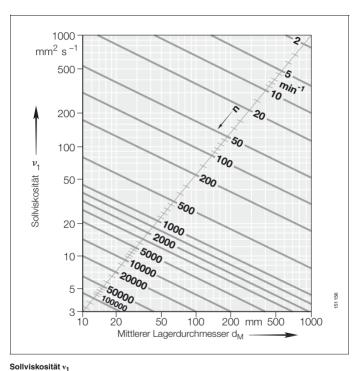
Lebensdauerbeiwert für besondere Betriebsbedingungen

insbesondere für den Schmierungszustand.

Bei nicht konstanten Betriebsbedingungen siehe Hinweis auf Seite 339.


Lebensdauerbeiwert a_3 aus dem Diagramm Seite 330 ermitteln. Er hängt ab vom Viskositätsverhältnis $\varkappa=\nu/\nu_1$:

- v ist die kinematische Viskosität des Schmierstoffes bei Betriebstemperatur
- v₁ ist die Sollviskosität des Schmierstoffes bei Betriebstemperatur (Bild, Seite 331) für die ausreichende Ausbildung des Schmierfilms in den Kontaktzonen


Bei Fettschmierung gilt die Viskosität des Grundöls.

Lebensdauerbeiwert a₁

Erlebenswahrscheinlichkeit %	90	95	96	97	98	99
Lebensdauerbeiwert a ₁	1	0,62	0,53	0,44	0,33	0,21

Lebensdauerbeiwert a₃

Erweiterte Berechnung der modifizierten nominellen Lebensdauer

Mit diesem Berechnungsverfahren wird ein neuer Kennwert eingeführt:

die Ermüdungsgrenzbelastung P_u.
Die Ermüdungsgrenzbelastung ist definiert als die Belastung, unterhalb der – bei Laborbedingungen – keine Ermüdung im Werkstoff auffritt.

Dieser Beiwert berücksichtigt:

- die Ermüdungsgrenze des Werkstoffs
- die Zusammenhänge zwischen Schmierung, Belastung und Verunreinigungen im Schmierspalt
- die Reibungsverhältnisse
- die Lastverteilung im Lager.

Berechnung

$$L_{naa} = a_1 \cdot a_{vc} \cdot L$$

L_{naa} 10⁶ Umdr.

erweiterte modifizierte nominelle Lebensdauer

L 106 Umdr.

nominelle Lebensdauer

a₁

Lebensdauerbeiwert für eine Erlebenswahrscheinlichkeit, die von 90% abweicht

_

Lebensdauerbeiwert zur Berücksichtigung der Betriebsbedingungen.

Bei nicht konstanten Betriebsbedingungen siehe Hinweis auf Seite 339.

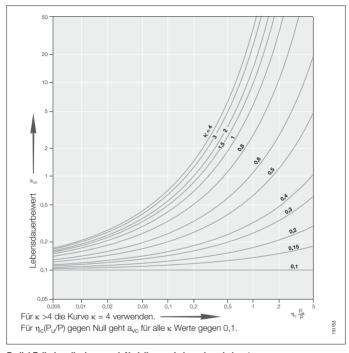
Einfluss der Verschmutzung

Der Beiwert η_c berücksichtigt den Einfluss von Verunreinigungen im Schmierspalt auf die Lebensdauer.

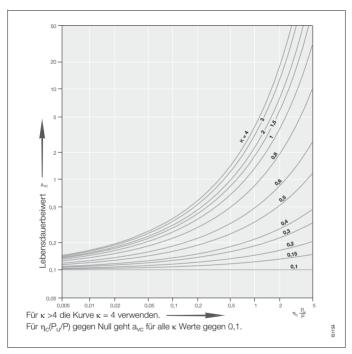
Die verminderte Lebensdauer durch feste Partikel im Schmierspalt hängt ab von:

- der Art, Größe, Härte und Menge der Partikel
- der Lagergröße.

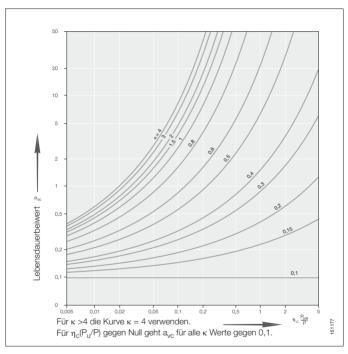
Komplexe Wechselwirkungen zwischen diesen Einflussgrößen lassen nur grobe Anhaltswerte zu. Die Werte gelten für:

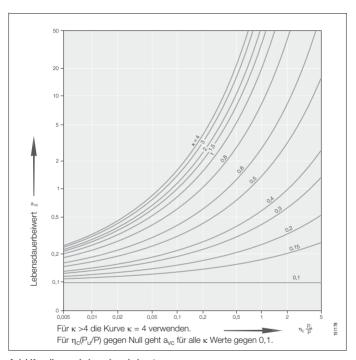

Verunreinigungen durch feste Partikel.

Nicht berücksichtigt sind andere Verschmutzungen – wie Verunreinigungen durch Wasser oder andere Flüssigkeiten.


Bei starker Verschmutzung – $\eta_c \rightarrow 0$ – fallen die Lager durch Verschleiß aus! Die Gebrauchsdauer liegt dann weit unter der berechneten Lebensdauer!

Verschmutzung und Beiwert η_c


Verschmutzung	Beiwert η _c
Größte Sauberkeit Partikelgröße in Höhe des Schmierfilms Laborbedingungen	1
Große Sauberkeit Schmieröl feinstgefiltert abgedichtete, befettete Lager	0,8
Normale Sauberkeit Schmieröl feingefiltert	0,5
Leichte Verunreinigungen leichte Verunreinigungen im Schmieröl	0,5 bis 0,3
Typische Verunreinigungen Lager mit Abrieb von anderen Maschinenelementen kontaminiert	0,3 bis 0,1
Starke Verunreinigungen Umgebung der Lager stark verschmutzt Lagerung unzureichend abgedichtet	0,1 bis 0
Sehr starke Verunreinigungen	0


Radial-Zylinderrollenlager und -Nadellager - Lebensdauerbeiwert avc

Axial-Zylinderrollenlager und -Nadellager – Lebensdauerbeiwert avc

Radial-Kugellager - Lebensdauerbeiwert avc

Axial-Kugellager - Lebensdauerbeiwert avc

Äquivalente Betriebswerte

Die Lebensdauer-Gleichungen setzen voraus. dass die Lagerbelastung P und die Lagerdrehzahl n konstant sind

Sind Belastung und Drehzahl nicht konstant. können äguivalente Betriebswerte bestimmt werden, die die gleiche Ermüdung verursachen, wie die tatsächlich wirkenden Beanspruchungen.

Hinweis

△ Die hier berechneten äguivalenten Betriebswerte berücksichtigen bereits die Lebensdauerbeiwerte a3 bzw. avc. Diese dürfen bei der Berechnung der modifizierten Lebensdauer nach Seite 329 und 332 nicht noch einmal berücksichtigt werden. Für die Berechnung der modifizierten Lebensdauer gilt:

 $L_{na} = a_1 \cdot a_2 \cdot \tilde{L}$ und L_{naa}= a₁ · L.

Veränderliche Lagerbelastung und veränderliche Lagerdrehzahl

Zeitlich veränderlicher Verlauf der Belastung und Drehzahl.

$$n = \frac{1}{T} \int_{0}^{T} n(t) \cdot dt$$

$$P = \sqrt[p]{ \int\limits_0^T \frac{1}{a(t)} \cdot n(t) \cdot F^p t \cdot dt } \\ \int\limits_0^T n(t) \cdot dt$$

Stufenweise veränderliche Lagerbelastung und Lagerdrehzahl im Zeitraum T

$$n = \frac{q_1 \cdot n_1 + q_2 \cdot n_2 + \dots + q_z \cdot n_z}{100}$$

$$P = \sqrt[q]{\frac{a_i}{a_i} \cdot q_i \cdot n_i \cdot F_i^{\ p} + \ldots + \frac{1}{a_z} \cdot q_z \cdot n_z \cdot F_z^{\ p}}$$
$$q_i \cdot n_i + \ldots + q_z \cdot n_z$$

mittlere Drehzahl

т min

betrachteter Zeitraum

äguivalente Lagerbelastung

Lebensdauerexponent.

Nadel-, Zylinderrollenlager: p = 10/3

Kugellager: p = 3

Lebensdauerbeiwert (a3 oder avc) für den momentanen Betriebszustand

min-1

Lagerdrehzahl im momentanen Betriebszustand

Zeitanteil eines Betriebszustandes an der Gesamthetriebsdauer:

 $a_i = (\Delta t_i/T) \cdot 100$

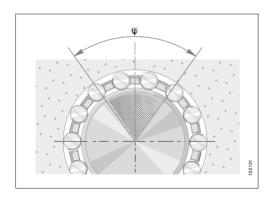
Fi. F(t) Ν

Lagerbelastung im momentanen Betriebszustand.

Oszillierende Lagerbewegung

Gleichung nicht einsetzen, wenn der Schwenkwinkel kleiner als der doppelte Teilungswinkel der Wälzkörper ist – Gefahr der Riffelbildung!

$$n = n_{osz} \cdot \frac{\phi}{180^{\circ}}$$

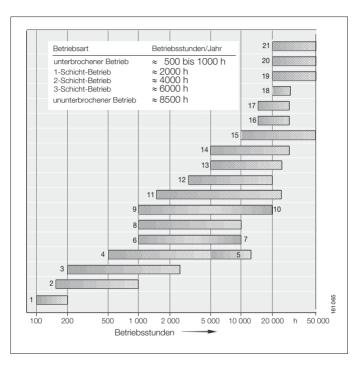

n min⁻¹

äquivalente Drehzahl

n_{osz} min⁻¹ Frequenz der Hin- und Herbewegung

00

Schwenkwinkel.



Erforderliche Lebensdauer

Liegen keine Angaben über die erforderliche Lebensdauer vor, können Anhaltswerte aus dem Diagramm, Seite 341, entnommen werden.

Lager nicht überdimensionieren – Lebensdaueranforderungen über 60 000 h führen in der Regel zu überdimensionierten Lagerungen!

	Anwendungsfall
21	Druckmaschinen
20	Textilmaschinen
19	Walzwerke
18	Extruder
17	Werkzeugmaschinen
16	Brecher
15	Baustoffmaschinen
14	Industriegetriebe
13	Handhabungsgeräte
12	Verdichter
11	Büro- und Datenverarbeitungs- maschinen
10 9	Hydraulikaggregate, mobil Hydraulikaggregate, stationär
8	Baumaschinen
7 6	Lastkraftwagen (Lkw) Personenkraftwagen (Pkw)
5	Ackerschlepper
4	Landmaschinen
3	Haushaltsgeräte
2	Handwerkergeräte
1	Heimwerkergeräte

Praxiswerte für die nominelle Lebensdauer

Einflüsse auf die dynamische Tragfähigkeit

Die dynamischen Tragzahlen gelten für

- eine Härte der Laufbahnen und Wälzkörper von 670 +170 HV und
- dem für Wälzlagerteile charakteristischen Feingefüge.

Finfluss der Laufbahnhärte

Bei einer geringeren Laufbahnhärte sinkt die Dynamische Tragzahl auf die geringere Wirksame dynamische Tragzahl CH:

$$C_H = f_H \cdot C$$

Сн

Wirksame dynamische Tragzahl

Dynamischer Härtefaktor

Dynamische Tragzahl.

Härte HV	Dynamischer Härtefaktor f _H
700	1
650	0,93
600	0,78
550	0,65
500	0,52
450	0,42
400	0,33
350	0,25
300	0,18
250	0,12
200	0,07

Einfluss der Lagertemperatur

Bei hohen Betriebstemperaturen nimmt die Härte des Werkstoffes ab:

$$C_T = f_T \cdot C$$

Ст

Wirksame dynamische Tragzahl

Temperaturfaktor

С Ν

Dvnamische Tragzahl.

Betriebstemperatur °C	Temperaturfaktor f _T
125	1
150	1
175	0,92
200	0,88
250	0,73
300	0,6

Bei hoher ruhender oder stoßartiger Last können an den Laufbahnen und Wälzkörpern plastische Verformungen entstehen. Diese Verformungen, bezogen auf die noch zulässigen Geräusche beim Lauf, begrenzen die statische Tragfähigkeit des Lagers.

Statische Tragzahl

Wälzlager ohne oder mit selten auftretender Drehbewegung werden nach der statischen Tragzahl C_{Ω} dimensioniert. Diese ist:

- bei Radiallagern konstante Radiallast
- bei Axiallagern zentrisch wirkende,

konstante Axiallast.

Die statische Tragzahl C₀ ist die Belastung, bei der die Hertz'sche Pressung zwischen Wälzkörpern und Laufbahnen an der höchstbelasteten Stelle folgende Werte erreicht:

- bei Rollenlagern 4000 N/mm²
- bei Kugellagern 4200 N/mm².

Diese Belastung erzeugt bei normalen Berührungsverhältnissen eine bleibende Verformung in den Kontaktstellen von 1/10 000 des Wälzkörperdurchmessers.

Statische Tragsicherheit

Die statische Tragsicherheit S_0 ist das Verhältnis aus der statischen Tragzahl C_0 und der höchsten auftretenden Belastung F_0 .

Anhaltswerte und im Betrieb auftretende Stoßbelastungen berücksichtigen!

$$S_0 = \frac{C_0}{F_0}$$

So -

statische Tragsicherheit

C₀ N

statische Tragzahl

F₀ N maximale Belastung des Radial- bzw.

Axiallagers.
Für Nadelhülsen muss S₀≧3 sein!

Anhaltswerte für statische Tragsicherheit

Betriebsbedingungen	Sn
ruhiger, erschütterungsarmer und normaler Betrieb mit geringen Ansprüchen an die Laufruhe; Lager mit geringen Drehbewegungen	≥1
normaler Betrieb mit höheren Anforderungen an die Laufruhe	≧2
Betrieb mit ausgeprägten Stoßbelastungen	≧3
Lagerung mit hohen Ansprüchen an die Laufgenauigkeit und die Laufruhe	≧4

Einfluss der Laufbahnhärte auf die Statische Tragfähigkeit

Bei einer geringeren Laufbahnhärte sinkt die Statische Tragzahl auf die geringere Wirksame statische Tragzahl C_{DH}:

$$C_{0H} \,=\, f_{0H} \cdot C_0$$

C_{0H} N

Wirksame statische Tragzahl

f_{OH} –

Statischer Härtefaktor

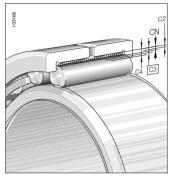
Statische Tragzahl.

Härte	Statischer Härtefak	Statischer Härtefaktor f _{0H}			
HV	Kugellager	Nadel- und Zylinderrollenlager			
700	1	1			
650	0,99	1			
600	0,84	0,98			
550	0,71	0,95			
500	0,59	0,88			
450	0,47	0,71			
400	0,38	0,57			
350	0,29	0,43			
300	0,21	0,32			
250	0,15	0,23			
200	0,09	0,15			

3.2 Radiale Lagerluft und Betriebsspiel

Auszug aus INA-Katalogen

Radiale Lagerluft


Die radiale Lagerluft gilt für Lager mit Innenring und wird am ausgebauten Lager ermittelt.

Sie ist das Maß, um das sich der Innenring gegenüber dem Außenring in radialer Richtung von einer Grenzstellung zur gegenüberliegenden verschieben läßt.

Nach DIN 620 ist die radiale Lagerluft in vier Gruppen unterteilt

- CN. Lagerluft normal (Standard)
 - verwendbar für normale Betriebsverhältnisse
- C3, Lagerluft > CN (Sonderausführung)
 - einsetzbar bei Presspassungen der Lagerringe oder bei
 - größerem Temperaturgefälle zwischen Innen- und Außenring
- C4, Lagerluft > C3
 - einsetzbar bei Presspassungen der Lagerringe oder bei
 - größerem Temperaturgefälle zwischen Innen- und Außenring
- C2, Lagerluft < CN.</p>
 - einsetzbar z.B. bei starken Wechselbelastungen in Verbindung mit Schwenkbewegungen

Lager sorgfältig überwachen, da stärkere Erwärmung auftreten kann!

Radiale Lagerluft Beispiel Nadellager NKI

Nadellager ohne Innenring - Hüllkreis

Für Lager ohne Innenring ist anstelle der radialen Lagerluft das Maß des Hüllkreises F_w maßgebend – Hüllkreis ist der innere Begrenzungskreis der Nadelrollen bei spielfreier Anlage an der Außenlaufbahn.

Im nicht eingebauten Zustand der Lager liegt der Hüllkreis im Toleranzfeld F6 (ausgenommen Nadelhülsen HK und Nadelbüchsen BK).

Radiale Lagerluft und Betriebsspiel

Radiale Lagerluft für Nadel- und Zylinderrollenlager nach DIN 620-4

Bohrung		radiale Lagerluft							
d mm		CN μm		C3 µm		C4 µm		C2 µm	
über	bis	min.	max.	min.	max.	min.	max.	min.	max.
_	24	20	45	35	60	50	75	0	25
24	30	20	45	35	60	50	75	0	25
30	40	25	50	45	70	60	85	5	30
40	50	30	60	50	80	70	100	5	35
50	65	40	70	60	90	80	110	10	40
65	80	40	75	65	100	90	125	10	45
80	100	50	85	75	110	105	140	15	50
100	120	50	90	85	125	125	165	15	55
120	140	60	105	100	145	145	190	15	60
140	160	70	120	115	165	165	215	20	70
160	180	75	125	120	170	170	220	25	75
180	200	90	145	140	195	195	250	35	90
200	225	105	165	160	220	220	280	45	105
225	250	110	175	170	235	235	300	45	110
250	280	125	195	190	260	260	330	55	125
280	315	130	205	200	275	275	350	55	130
315	355	145	225	225	305	305	385	65	145
355	400	190	280	280	370	370	460	100	190
400	450	210	310	310	410	410	510	110	210
450	500	220	330	330	440	440	550	110	220

Betriebsspiel

Das Betriebsspiel wird am eingebauten und betriebswarmen Lager ermittelt.

Es ist das Maß, um das sich die Welle in radialer Richtung von einer Grenzstellung zur gegenüberliegenden verschieben läßt.

Das Betriebsspiel ergibt sich aus:

- der radialen Lagerluft und
- der Veränderung der radialen Lagerluft durch Passungsübermaß und Temperatureinflüsse im eingebauten Zustand

Die Größe des Betriebsspiels hängt von den Betriebs- und Einbaubedingungen des Lagers ab

Betriebsspiel normal

Das normale Betriebsspiel wird mit der Lagerluft CN, bei größeren Lagern überwiegend mit C3 erreicht, wenn die empfohlenen Wellenund Gehäusetoleranzen eingehalten werden.

Betriebsspiel größer als normal

Erforderlich z.B. bei Wärmezufuhr über die Welle

Berechnung des Betriebsspiels

$$s = s_r - \Delta s_n - \Delta s_T$$

um

radiales Betriebsspiel des eingebauten, unbelasteten Lagers

s_r μm

radiale Lagerluft

Δs_p μm
passungsbedingte Minderung der radialen
Lagerluft

 Δs_T μ I

temperaturbedingte Minderung der radialen Lagerluft.

Passungsbedingte Minderung der radialen Lagerluft

Die radiale Lagerluft verringert sich passungsbedingt durch:

- die Aufweitung des Innenrings
- die Einschnürung des Außenrings.

$$\Delta s_p = \Delta d + \Delta D$$

∆d um

Aufweitung des Innenrings

ΛD ur

Einschnürung des Außenrings.

Radiale Lagerluft und Betriebsspiel

Aufweitung des Innenrings bei Vollwellen:

$$\Delta d \approx 0.9 \cdot U \cdot d / F \approx 0.8 \cdot U$$

d mm

Bohrungsdurchmesser des Innenrings

U um

theoretisches Übermaß der Paßteile bei Festsitz

Das theoretische Übermaß kann bestimmt werden aus:

- den mittleren Abmaßen
- den oberen bzw. unteren Abmaßen der von der Gutseite her um 1/3 eingeengten Toleranzfelder der Passteile. Hiervon den Betrag abziehen, um den sich die Teile beim Zusammenfügen glätten

mm

Laufbahndurchmesser des Innenrings.

Einschnürung des Außenrings:

$$\Delta D \approx 0.8 \cdot U \cdot E/D \approx 0.7 \cdot U$$

F mm

Laufbahndurchmesser des Außenrings

D mm

Außendurchmesser des Außenrings.

Bei sehr dünnwandigen Gehäusen und Gehäusen aus Leichtmetall, Verminderung der radialen Lagerluft durch Einpressversuche bestimmen!

Temperaturbedingte Minderung der radialen Lagerluft

Die radiale Lagerluft ändert sich merklich durch ein größeres Temperaturgefälle zwischen dem Innen- und Außenring.

$$\Delta s_T = 0,011 \cdot d_M \cdot (\vartheta_{IB} - \vartheta_{AB})$$

 Δs_T |

temperaturbedingte Minderung der radialen Lagerluft

 d_{M} mm

mittlerer Lagerdurchmesser; $d_M = (d + D)/2$

θ_{IR} °C

Temperatur des Innenrings

9_{AR} °C

Temperatur des Außenrings.

Größere radiale Lagerluft für schnellanlaufende Wellen vorsehen, da hier kein ausreichender Temperaturausgleich zwischen Lager und Welle/Gehäuse stattfindet.

– ∆s_T kann dann deutlich größer sein als bei Dauerbetrieh!

3.3 Schmierung

Auszug aus INA-Katalogen

Schmierung und Wartung sind wichtig für die zuverlässige Funktion und eine lange Gebrauchsdauer der Wälzlager.

Aufgabe des Schmierstoffs

Der Schmierstoff soll:

- an den Kontaktflächen einen ausreichend tragfähigen Schmierfilm ausbilden
- bei Ölschmierung die Wärme ableiten
- bei Fettschmierung das Lager zusätzlich nach außen gegen feste und flüssige Verunreinigungen abdichten
- das Laufgeräusch dämpfen
- vor Korrosion schützen.

Schmierungsart

Wälzlager können mit Fett oder Öl geschmiert werden. Entscheidend für die Art der Schmierung und die Schmierstoffmenge sind:

- die Betriebsbedingungen
- die Bauform und Größe des Lagers
- die Anschlußskonstruktion
- die Schmierstofführung.

Legierte Schmierstoffe

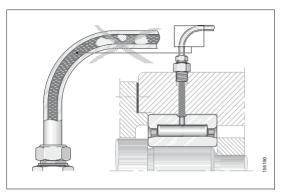
INA verwendet legierte Schmierstoffe. Diese enthalten:

- Wirkstoffe für den Korrosionsschutz zur Verbesserung der Altersbeständigkeit
- Additive, die bei ungünstigen Schmierverhättnissen verschleißmindernd wirken. Auf den beteiligten Oberflächen soll zu deren Schutz eine Reaktionsschicht entstehen.

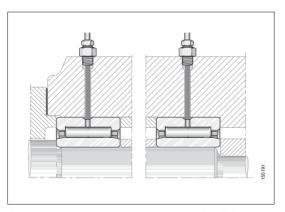
Diese Additiv-Packages können unter Umständen nicht in jedem Temperatur- und Lastbereich wirksam sein.

Verträglichkeit der Schmierstoffe prüfen:

- untereinander
- zu Korrosionsschutzmitteln
- zu Kunsstoffen
- (Elastomeren und Duroplasten)
- zu Leicht- und Buntmetallen
- zu Beschichtungen, Farben, Lacken
- zur Umwelt
- Toxizität und biologische Abbaubarkeit beachten.


Gestaltung der Schmierstoffleitungen

Zuführleitungen und Schmierbohrungen in den Gehäusen und Wellen (Bilder, Seite 350):


- direkt zur Schmierbohrung des Wälzlagers führen
- möglichst kurz halten
- für jedes Lager eine eigene Leitung vorsehen.

Auf befüllte Leitungen achten – eventuell entlüften

Schmierung

Schmierstoffleitungen

Anordnung der Leitungen bei mehreren Lagern auf einer Welle

Fettschmierung

Fett führt keine Wärme aus dem Lager ab. Die Betriebstemperatur soll +70 °C nicht überschreiten! Hier ist:

- die Temperaturbelastung des Schmierfetts am geringsten
- die Gebrauchsdauer des Fetts am höchsten

Schmierfette

Geeignet sind Schmierfette K nach DIN 51825-1 bis 4.

Schmierfette mit Fettschmierstoffen nur für Anwendungen im Misch/Grenzreibungsgebiet einsetzen!

Festschmierstoff-Partikelgröße von 5 μ m nicht überschreiten.

Fettschmierung

INA verwendet für die Erstbefettung von Wälzlagern folgende Fette:

INA	Bezeichn. nach DIN 51 825	Art des Fetts	Tempera- tur	NLGI ⁵⁾	Drehzahl- kennwert n · d _M min ⁻¹ mm	kinem. Visko- sität ⁶⁾ mm² s ⁻¹	Verhalten gegenüber Wasser nach DIN 51 807
SM031)	KP2N-25	Lithium- komplex- seifenfett	-30 ⁴⁾⁷⁾ bis +140	2	500 000	160	1–90
SM11 ²⁾	K2E-25	Lithium- seifenfett	-40 ⁴⁾⁷⁾ bis +80	2	500 000	14,5	1–90
SM16 ³⁾	K3K-30	Lithium- seifenfett	-30 ⁴⁾ bis +120	3	500 000	100	0–90
FA108	KSI3R-40	Natrium- komplexfett (Silikonöl- basis)	-40 bis +180	3	200 000	115	1–40
FA101T	_	Gelfett (Esteröl + Mineralöl)	-45 bis +150	2	_	30	_
SM23	KP2N-20	Barium komplex fett ⁴⁾	-20 bis +140	2/1	350 000	220	0/1–90

¹⁾ Standardfett für Nadel- und Zylinderrollenlager

Weitere Informationen: INA-Katalog 307/520.

²⁾ Standardfett für Hülsenfreiläufe

³⁾ Standardfett für Kugellager

⁴⁾ Schmierfette auf Minealölbasis

⁵⁾ NLGI-Klasse (Konsistenzkennzahl 1-4)

⁶⁾ Kinematische Viskosität bei 40 °C (Grundöl)

⁷⁾ Ermittelt nach IP 186/85

Kriterien für die Wahl des Schmierfetts

Gebrauchstemperaturbereich

Er muß dem Bereich der möglichen Temperaturen im Wälzlager entsprechen.

Die möglichen Betriebstemperaturen sollten den oberen und den unteren Grenzwert nicht erreichen:

- die höchste Betriebstemperatur soll 20 °C unter dem oberen Grenzwert liegen
- die niedrigste 20 °C über dem unteren Grenzwert liegen. Fette geben bei sehr tiefen Temperaturen wenig Grundöl ab. Als Folge kann hier Mangelschmierung auftreten

Art des Schmierfetts

Die Eigenschaften eines Fetts hängen ab:

- vom Grundöl
- der Viskosität des Grundölswichtig für den Drehzahlbereich
- dem Verdicker
 Scherfestigkeit wichtig für den Drehzahlbereich
- der Additivierung.

Konsistenz der Schmierfette

Schmierfette sind in Konsistenzklassen
– NLGI-Klassen – eingeteilt (DIN 51 818).
Für Wälzlager werden bevorzugt die Klassen

1, 2, 3 eingesetzt.

- Die verwendeten Fette sollen:
- bei hohen Temperaturen nicht zu weich (NLGI 1)
- bei tiefen Temperaturen nicht zu steif (NLGI 3) werden.

Schmierfett nach dem Drehzahlkennwert $n \cdot d_M$ für Fett wählen:

- für schnelllaufende Wälzlager oder bei kleinem Anlaufmoment Fette mit hohem Drehzahlkennwert nehmen.
- für langsamlaufende Lager Fette mit niedrigem Drehzahlkennwert verwenden.

Polyharnstoff-Fette können bei Scherbeanspruchung ihre Konsistenz ändern.

Fettschmierung

Verhalten gegenüber Wasser

Wasser im Schmierfett setzt die Gebrauchsdauer der Lager stark herab:

- das Verhalten von Schmierfetten gegenüber Wasser wird nach DIN 51 807 bewertet
- die Korrosionsschutzeigenschaften können nach DIN 51802 geprüft werden – Angaben in den Datenblättern der Fetthersteller.

Druckbelastbarkeit

- Für einen tragfähigen Schmierfilm muss die Viskosität bei Betriebstemperatur ausreichend hoch sein
- bei hohen Belastungen Schmierfette mit EP-Eigenschaften –"extreme pressure" – und hoher Grundölviskosität verwenden (KP-Fett nach DIN 51 502)
- Silikonschmierfette nur bei geringen Belastungen (P ≈ 3% C) einsetzen.

Das Lasttragevermögen bekannter Fette kann sich ändern, wenn bleihaltige EP-Zusätze entfallen. Deshalb:

- Fettwahl überprüfen
- beim Fetthersteller anfragen!

Mischbarkeit

Vorausetzungen:

- gleiche Grundölbasis
- übereinstimmender Verdickertyp
- ähnliche Grundölviskositäten
 nicht weiter auseinander als eine ISO-VG-Klasse
- gleiche Konsistenz NLGI Klasse. Unbedingt beim Fetthersteller anfragen!

Lagerfähigkeit

Schmierstoffe altern durch Umwelteinflüsse. Angaben der Schmierstoffhersteller einhalten!

INA setzt Schmierstoffe auf Mineralölbasis ein. Die Fette sind erfahrungsgemäß bis zu 3 Jahren lagerfähig. Bedindungen:

- umschlossener Raum Lagerraum
- Temperaturen zwischen 0 °C und +40 °C
 relative Luftfeuchtigkeit nicht über 65 %
- keine Einwirkung chemischer Agenzien Dämpfe, Gase, Flüssigkeiten
- Wälzlager abgedichtet.

Nach längerer Lagerung kann das Anlauf-Reibungsmoment befetteter Lager vorübergehend höher sein. Außerdem kann die Schmierfähigkeit des Fetts nachgelassen haben.

Schmierfette – auch vom gleichen Hersteller – können in ihren Eigenschaften streuen! INA haftet deshalb nicht für die Schmierstoffe und ihre Eigenschaften im Betrieb!

Schmierfristen

Genaue Schmierfrist durch Versuche unter Anwendungsbedingungen ermitteln:

- ausreichend langen Beobachtungszeitraum wählen
- Fettzustand in regelmäßigen Zeitabständen prüfen!

Richtwert

Ein Richtwert für die Nachschmierfrist t_{fR} kann näherungsweise bestimmt werden.

$$t_{fR} = t_f \cdot \ K_T \cdot \ K_P \cdot K_R \cdot K_U$$

t_{fR}

Richtwert für die Nachschmierfrist

t_f h

Grundschmierfrist

K_T, K_P, K_R, K_U – Korrekturfaktoren für Temperatur, Belastung, Oszillation, Umgebung

Grundschmierfrist

Die Grundschmierfrist t_f hängt vom Geschwindigkeitskennwert GKW ab (Bild. Seite 358):

- Frist ermitteln
- Voraussetzungen zur Berechnung nach Tabelle bestimmen
- Geschwindigkeitskennwert GKW ermitteln (Gleichung)

$$GKW = K_L \cdot \frac{270\ 000}{n \cdot d_M}$$

 K_{l}

Faktor der Lagerbauart (Tabelle)

min^{−1}

Betriebsdrehzahl bzw. äquivalente Drehzahl

d_M mm

mittlerer Lagerdurchmesser (d + D)/2.

Voraussetzungen für die Grundschmierfrist

	Bedingung
Lagertemperatur	bis +70 °C
Belastungsverhältnis	$C_0/P = 20$
Drehzahl und Belastung	konstant
Belastung in Hauptrichtung	Radiallager radial / Axiallager axial
Schmierfett	Lithiumseifenfett
Drehachse	horizontal bei Radiallager
Innenring	drehend
Umgebungseinflüsse	keine störenden

Fettschmierung

Faktor K_L – abhängig von der Lagerbauart

Lagerbauart	Lagerfaktor K _L
Nadelkränze, Nadellager	1,2
Nadelhülsen, Nadelbüchsen	0,85
Axial-Rillenkugellager	0,2
Stütz- und Kurvenrollen, mit Käfig/vollrollig	0,3
Stütz- und Kurvenrollen, vollnadelig	0,15
StützrollenPWTR, Kurvenrollen PWKR	1
Zylinderrollenlager, vollrollig	0,8
Axial-Nadel- und Axial-Zylinderrollenlager	0,08
Schrägkugellager	3,5
Zylinderrollenlager LSL, ZSL	1,5
Rillenkugellager	4,5
Axial-Rillenkugellager	0,2
Laufrollen/Zapfenlaufrollen, einreihig	3,3
Laufrollen/Zapfenlaufrollen, zweireihig	1,8

Bedingungen und Einschränkungen zur Berechnung der Schmierfristen

Kombinierte Wälzlager

Radial- und Axiallager getrennt berechnen – gültig für die jeweils kürzere Schmierfrist.

Drehender Außenring

Bei drehendem Außenring kann sich die Schmierfrist verkürzen – abhängig von der Drehzahl

Bei Stütz- und Kurvenrollen:

- dürfen keine Winkelfehler auftreten
- sind die kürzeren Schmierfristen im Lagerfaktor K₁ berücksichtigt.

Changierbetrieb

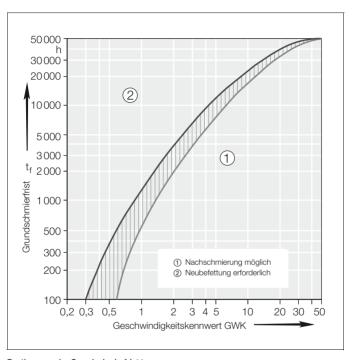
Bei regelmäßig wechselnden Bewegungen in Wellenrichtung verteilt sich ein Teil des Schmierfetts aus dem Wälzlager über den Gesamthub. Das verkürzt die Schmierfrist abhängig vom Hub.

Einschränkungen

Die Schmierfrist kann nicht nach dem beschriebenen Verfahren ermittelt werden:

- wenn das Schmierfett aus dem Wälzlager auslaufen kann
- das Grundöl übermäßig ausdampft
- Lager ohne Abdichtung
- Radiallager bei senkrechter oder stark geneigter Drehachse
- Axiallager bei waagrechter Drehachse
- wenn im Betrieb Luft durch das Wälzlager gesaugt wird – das Fett kann oxydieren
- für Hülsenfreiläufe.

Korrekturfaktoren zur Bestimmung der Nachschmierfrist


Temperaturfaktor K_T

Minderung für Lagertemperaturen über +70 °C (Bild, Seite 359).

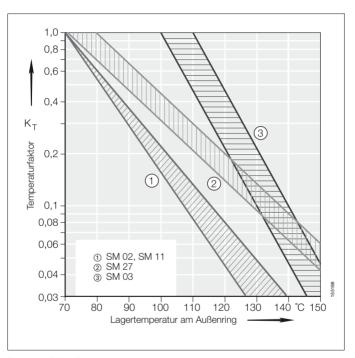

- Lthiumseifenfette auf Mineralölbasis
- Polyharnstoff-Schmierfett auf Mineralölbasis
- ③ Lithiumkomplexseifenfette auf Mineralölbasis

Diagramm für andere Schmierstoffe nicht anwenden, besonders bei abweichender Grundöl- und Verdickerbasis!

Fettschmierung

Bestimmung der Grundschmierfrist tf

Temperaturfaktor K_T

Fettschmierung

Belastungsfaktor Kp

Minderung für:

■ Belastungsverhältnisse C₀/P < 20 − Beanspruchung des Schmierfetts

Grundlage sind Lithiumseifenfette guter Qualität.

Oszillationsfaktor K_R

Oszillierende Bewegungen beanspruchen das Schmierfett höher als rotative.

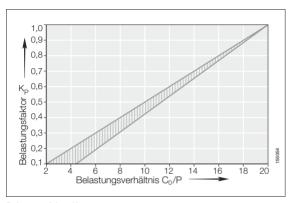
Um Tribokorrosion zu vermindern, Schmierfrist verkürzen!

Der Faktor KR wirkt sich aus:

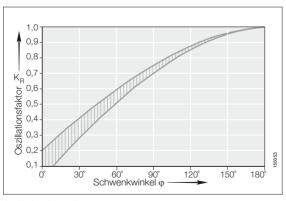
■ ab einem Schwenkwinkel <180°.</p>

Umgebungsfaktor Ku

Der Faktor berücksichtigt Einflüsse durch:


- FeuchtigkeitRüttelkräfte
- Rutterkrafte
 geringe Vibration
- (Ursache für Tribokorrosion)
- Stöße

Der Faktor berücksichtigt keine extremen Umgebungseinflüsse wie:


- Wasser
- aggressive Medien
- Schmutz
- radioactive Strahlung
- extreme Vibrationen, wie z.B. bei Rüttlern.

Umgebungsfaktor Ku

Umgebungseinfluss	K _U
gering	1
mittel	0.8
stark	0.5

Belastungsfaktor K_P

Oszillationsfaktor K_R

Fettschmierung

Fettgebrauchsdauer

Die Fettgebrauchsdauer gilt, wenn Wälzlager nicht nachgeschmiert werden können.

Bei den meisten Anwendungen ist der Richtwert erfahrungsgemäß:

$$T_{fG} = 2 \cdot t_{fR}.$$

t_{fG} I

Fettgebrauchsdauer

t_{fR} h

Schmierfrist.

Zur Betriebssicherheit das Fett nach spätestens 3 Jahren durch frisches Fett ersetzen!

Ist das Lager am Ende der Gebrauchsdauer noch betriebsfähig, kann es gereinigt und neu befettet werden

Fettvorat

Ein Fettvorrat kann die Fettgebrauchsdauer verlängern.

Bedingungen:

- Das Volumen des Fettvorrats soll dem Volumen des Lagers zwischen Innen- und Außenring entsprechen
 - Käfig und Wälzkörper nicht
- berücksichtigt

 das Fett im Vorratsraum muss mit dem Fett
- das Fett im Vorratsraum muss mit dem Fet der Laufbahn ständig in Kontakt sein

 Abdampfen des Basisöls durch
- konstruktive Maßnahmen verhindern, z. B. Dichtscheiben.

Größere Fettvorräte steigern die Fettgebrauchsdauer nicht proportional.

Nachschmierung

Bedingungen

- gleiches Schmierfett wie bei der Erstbefettungverwenden
 - bei anderen Fetten Mischbarkeit und Verträglichkeit der Fette prüfen
- Nachschmieren
 - bei betriebswarmem und drehendem Lager
 - vor dem Stillstand
 - vor längeren Betriebsunterbrechungen.

Menge

- abhängig von der Drehzahl
 - 20% bis 80% der Erstfettmenge
- Nachfetten, bis sich an den Dichtspalten ein frischer Fettkragen bildet
 - altes Schmierfett muss ungehindert aus dem Lager austreten können.

Vorteile der Ölschmierung

- aute Schmierstoffverteilung
- Wärmeabfuhr aus dem Lager
 - beeinflusst die Betriebstemperatur, die zulässige Drehzahl und die Belastbarkeit des Lagers
- guter Austausch des Schmierstoffs beim Nachschmieren

Schmieröle

Wälzlager werden mit legierten Schmierölen auf Mineral- bzw. Syntheseölbasis geschmiert. Betriebstemperaturen

- Legierte Mineralöle
 - Dauerbetrieb bis +130 °C
- Synthetische Öle
 - Dauerbetrieb bis +200 °C.

Maßgebend sind die Angaben der Schmierstoffhersteller!

Wahl des Schmieröls

In den Kontaktzonen zwischen Wälzkörper und Laufbahn ist ein tragfähiger Schmierfilm erforderlich.

Abhängig von der Betriebsdrehzahl muss das Schmieröl bei Betriebstemperatur:

■ mindestens die Sollviskosität v₁ haben.

Sollviskosität für Mineralöle

Der Richtwert v₁ hängt ab:

- vom mittleren Lagerdurchmesser d_M
- von der Drehzahl n.

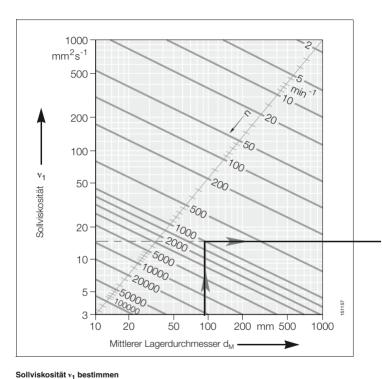
Er berücksichtigt:

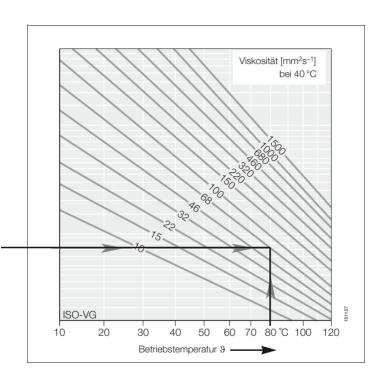
- Erkenntnisse der EHD-Theorie zur
- Schmierfilmbildung
- praktische Erfahrungen.

Sollviskosität v1 nach Beispiel bestimmen:

- v₁ einer Nennviskosität der ISO-VG zwischen 10 und 1500 zuordnen
- Mittelpunktviskosität nach DIN 51 519
 Zwischenwerte auf die nächstliegende
- Zwischenwerte auf die nächstliegende ISO-VG runden
- bedingt durch die Stufensprünge.

Verfahren nicht für synthetische Schmieröle einsetzen


unterschiedliches V/P- und V/T-Verhalten!


Einfluss der Temperatur auf die Viskosität

Mit steigender Temperatur fällt die Viskosität des Öls.

Bei der Wahl der Viskosität die untere Betriebstemperatur berücksichtigen:

 die steigende Viskosität verringert Fließvermögen des Schmierstoffs; die Leistungsverluste erhöhen sich!

Verträglichkeit

Vor dem Einsatz der Schmieröle ihr Verhalten prüfen gegenüber:

- Kunststoffen
- Elastomeren
- Bunt- und Leichtmetallen.

Unter dynamischer Beanspruchung und bei Betriebstemperatur prüfen!

 Syntheseöle grundsätzlich auf Verträglichkeit prüfen – beim Schmierstoffhersteller anfragen!

Mischbarkeit

Miteinander mischbar sind:

- Schmieröle auf Mineralölbasis und gleicher Klassifikation – z B. HI P
 - die Viskositäten sollen sich um höchstens eine ISO-VG-Klasse unterscheiden.

Syntheseöle grundsätzlich auf Mischbarkeit prüfen – beim Schmierstoffhersteller anfragen!

Druckbelastbarkeit

Schmieröle mit EP-Zusätzen verwenden:

Kennbuchstabe P nach DIN 51 502.

Diese Schmieröle einsetzen:

- wenn die Sollviskosität v₁ unterschritten wird
- bei axialbelasteten Radial-Zylinderrollenlagern
- bei Axial-Nadel- und Axial-Zylinderrollenlagern!
- Silikonöle nur bei geringen Belastungen verwenden
- $C_{0/P} > 20!$

Schmierverfahren

- Tropfölschmierung
- Ölabschmierung
 Tauch- oder Sumpfschmierung
- Ölumlaufschmierung
- Öl-Luftschmierung.

Ölnebelschmierung zur Entlastung der Umwelt durch Öl-Luftschmierung ersetzen.

Tropfölschmierung

Verwendbar für:

schnelllaufende Lager.

Die notwendige Ölmenge hängt ab von:

- der Lagergröße
 - der Lagerbauart
- der Betriebsdrehzahl
- der Belastung.

Richtwert

- zwischen 3 und 50 Tropfen/min je Wälzkörperlaufbahn
 - ein Tropfen wiegt ca. 0,025 g.

Überschüssiges Öl muss aus der Lagerung ablaufen können!

Ölbadschmierung für Radiallager

Zulässige Drehzahl ermitteln.

Ölstand:

 der Ölstand soll bis zur Mitte des untersten Wälzkörpers reichen. Liegt er darüber, ist bei hoher Umfangsgeschwindigkeit eine höhere Lagertemperatur – Planschverluste – möglich. Zusätzlich kann sich Ölschaum bilden.

Ölmenge:

im Gehäuse ausreichend bemessen, sonst sind sehr kurze Ölwechselintervalle notwendig.

Ölbadschmierung für Axiallager

Durch konstruktive Maßnahmen sicherstellen:

Ölzirkulation durch radiale Förderwirkung des Axialkranzes.

Erforderlicher Ölstand bis zum Innendurchmesser des Axialkranzes

Ölumlaufschmierung

Durch Ölumlaufschmierung wird das Öl rückgekühlt. Vorteil:

 das Öl führt Wärme aus dem Lager ab
 die Ölmenge zur Wärmeabfuhr hängt von den Kühlverhältnissen ab.

Die Sauberkeit des Öls beeinflusst die Lebensdauer der Lager. Deshalb:

- Ölfilter vorsehen
- Rückhalterate der Ölfilter berücksichtigen
 empfohlene Feinheit der Filter ≤25 μm.

Gestaltung der Anschlusskonstruktion:

- die Schmierbohrungen im Gehäuse oder in der Welle müssen mit denen der Wälzlager fluchten
- ausreichende Querschnitte für Ringnuten, Taschen o. ä. vorsehen
- das Schmieröl muss drucklos ablaufen
 verhindert Ölstau und zusätzliche Erwärmung des Öls.

Schmierölführung für Axiallager:

Öl grundsätzlich von innen nach außen führen

Ablaufquerschnitt – Riichtwerte bei Ölschmierung

Querschnitt der Ölablaufbohrung wesentlich größer ausführen als des Ölzulaufs.

Der Querschnitt hängt ab von:

- der Ölmenge
- der Viskosität.

$$A_{rab} = K_{ab} \cdot A_{ab}$$

Arab mm²

Ablaufquerschnitt unter Berücksichtigung der Viskosität

Kah

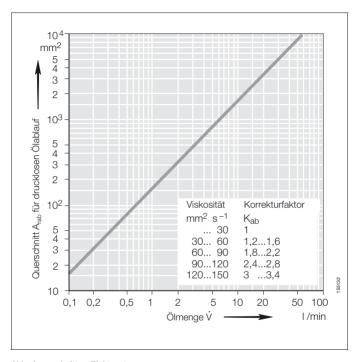
Korrekturfaktor Viskosität

Aab mm²

Ablaufquerschnitt.

Öl-Luftschmierung

Besonders geeignet für:


- schnelllaufende und gering belastete Radiallager
 - Kenndaten zur Auslegung der Anlage von den Herstellern der Schmiereinrichtungen anfordern

Funktion:

wasserfreie und gereinigte Druckluft führt das Öl dem Lager zu. Dadurch entsteht ein Überdruck. Dieser verhindert, dass Verunreinigungen – z. B. Schmutz – in das Lager eindringen.

Die Kühlwirkung der Druckluft ist gering.

Öl-Luftschmierung für Axiallager möglichst vermeiden!

Ablaufquerschnitte - Richtwerte

Wärmeabfuhr durch den Schmierstoff

Schmieröl führt Reibungswärme aus dem Lager ab. Berechnet werden können dazu:

- der Wärmestrom Q_i, der mit dem Schmierstoff abgeführt wird
- der notwendige Schmierstoff-Volumenstrom V₁

$$\dot{Q} = 10^{-6} \cdot \frac{\pi}{30} \cdot n \cdot (M_0 + M_1) + \dot{Q}_E$$

$$\dot{Q}_{L} = \dot{Q} - \dot{Q}_{c}$$

Überschlägige Berechnung:

$$V_{L} = \frac{\dot{Q}_{L}}{0.0286 \cdot \Delta \vartheta_{L}}$$

Ċ١

mit dem Schmierstoff abgeführter Wärmestrom

kW gesamter abgeführter Wärmestrom

ġs kW

über die Lagersitzflächen abgeführter Wärmestrom

Ċ۰

Wärmestrom bei eventueller Fremderwärmung

I/min V١

Schmierstoff-Volumenstrom

 $\Delta \vartheta_1$

Differenz der Öltemperaturen zwischen

Ab- und Zulauf.

Richtwerte für die Ölmenge zur Kühlung und Schmieruna

Ist die rechnerische Bestimmung nicht möglich, gelten Richtwerte bei einer Temperaturdifferenz von

 $\Delta \theta_1 = 10 \text{ K für die folgenden Fälle:}$

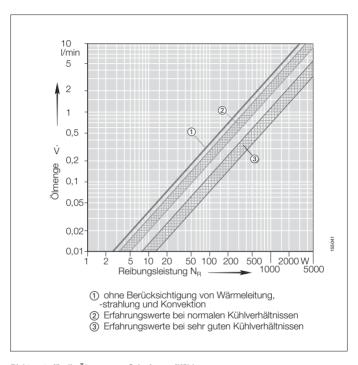
- ① ohne Berücksichtigung der Wärmeleitung. Wärmestrahlung, oder Konvektion
- ② Erfahrungswerte bei normalen Kühlverhältnissen
- 3 Erfahrungswerte bei sehr auten Kühlverhältnissen

Ölwechsel

Beim Einlaufvorgang verschmutzt das Öl häufig stark.

In diesem Fall das Öl nach dem Finlauf wechseln

Im allgemeinen genügt ein jährlicher Ölwechsel bei:


- Temperaturen im Lager unter 50 °C
- geringer Verschmutzung.

Frschwerter Betrieb

Bei erschwerten Bedingungen ist das Öl häufiger zu wechseln. Das gilt z. B. bei:

- höheren Temperaturen
- aeringen Ölmengen
- hoher Ölumlaufrate.

Die genauen Fristen für den Ölwechsel mit dem Ölhersteller abstimmen.

Richtwerte für die Ölmenge zur Schmierung/Kühlung

GLÜHFARBEN | ANLASSFARBEN

Temperatur in Celsius etwa um...

550°C

630°C

680°C

740°C

780°C

810°C

850°C

900°C

950°C

1000°C

1100°C

1200°C

≥ 1300°C

Temperatur in Celsius etwa um...

200°C

220°C

230°C

240°C

250°C

260°C

270°C

280°C

290°C

300°C

320°C

Hochlegierte Stähle tassen diese Antaffarben erst bei höheren Hitzegraden auftreien. Die Antafizeit beeinfluft die Anlaffarben in dem Sinne, daß längeres Anlassen bei niedriger Temperatur die gleiche Anlasfarbe ergibt, wie körzeres Antassen bei Nöheier fans