

Ball & Roller Bearings

JTEKT CORPORATION

				Коуо
1 Structures and types A 1 4 Selection of arrangement A 20 2 Outline of selection A 14 5 Selection of dimensions A 24 3 Selection of type A 16 6 Boundary dimensions A 46		10 Internal A 93 13 Materials A 122 16 Failures 11 Preload A 106 14 Shaft and A 125 A 144 12 Lubrication A 111 15 Handling A 133	Т	echnical section
$\begin{tabular}{ c c c c c } \hline $Open type $$ B 8 \\ $\left(\begin{array}{c} 68, 69, 160, 60 \\ 62, 63, 64 \end{array} \right) $ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline $\left(\begin{array}{c} $Z, RU \\ RD, RS \end{array} \right) $ \\ \hline \\$	Locating snap ring type \cdots B 32 $\begin{pmatrix} N \\ NR \end{pmatrix}$	Extra-small & miniature B 38 Double-row B 50 (flanged type B 44)		Deep groove ball
Single-row B 60 Matched pair B 92 (79, 70, 72, 73, 74) (DB, DF) ACH9, ACH0 (DB, DF)	Double-row B 124 (32, 33, 52, 53 (522RS, 532RS)	Four-point contact ··· B 130 [62Bl, 63Bl]		Angular contact ball
Open type ··· B 136 Sealed type ··· B 144 (12, 22) (13, 23) (222RS) (232RS)	Extended inner ring type B 148 [112, 113]	Adapter assemblies B 150		Self-aligning ball
Image: Null of the state	[HJ]	NN NNU Double-row B 194	ŝ	Cylindrical roller bearings
Metric series B 204 Inch series B 236 (329, 320, 330, 331, 302, 322 (332, 303, 303D, 313, 323, IS0)	TDO type B 280 (462, 463, 46T302, 46T322) (46T303, 46T303D, 46T323)	TDI type B 296 [452, 453]	ion table	Tapered roller bearings
Image: Weight of the state of the	Adapter assemblies B 330	Withdrawal sleeves B 338	specification	Spherical roller bearings
Single direction B 350 (511, 512, 513, 514 (532, 533, 534 (532U, 533U, 534U)	Double direction B 360 (522, 523, 524 (542, 543, 544 (542U, 543U, 544U)	B 368 [292, 293, 294]	earing	Thrust ball, Spherical thrust roller bearings
Needle roller and cage ass'y ··· B 388 Drawn cup type ··· B 402 Machined ri	ng type B 424 Thrust B 440	Stud type track rollers (cam followers) ··· B 450 Stud type track rollers (roller followers) ··· B 454 Stud type track rollers Stud type track r	â	Needle roller bearings
B 470 B 490 B 500 B 510	B 518 B 524	Ball bearings for units B 528		Ball bearing units
Split type ··· B 544 [SN, SSN, SD]	One-piece type B 570 [V]			Plummer blocks
(for support c self-lubricating clean ball bearings, linear ball bearings for vacuum • Kerries cupor this section ball bearings • Precision ba	machine tool spindles f axial loading)C 47 I screw support bearings unitsC 65	Full complement type cylindrical roller bearings for crane sheaves		Special purpose bearings
· Supplementary tables ······ D 1 – D 28			Su	pplementary tables

CAT. NO. B2001E-3

Koyo

Publication of Rolling Bearing Catalog

Today's technology-based society, in order to utilize the earth's limited resources effectively and protect the environment, must strive to develop new technologies and alternate energy sources, and in that connection it continues to pursue new targets in various fields. To achieve such targets, technically advanced and highly functional rolling bearings with significantly greater compactness, lighter weight, longer life and lower friction as well as higher reliability during use in special environments are sought.

This new-edition catalog is based on the results of wide-ranging technical studies and extensive R&D efforts and will enable the reader to select the optimal bearing for each application. In addition to standard bearings, this catalog provides information on a variety of bearings for specific purposes, such as ball bearing units, plummer blocks, and JTEKT EXSEV bearing series (bearings for extreme special environments).

JTEKT is confident that you will find this new catalog useful in the selection and use of rolling bearings. JTEKT is grateful for your patronage and look forward to continuing to serve you in the future.

★The contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions.

Reproduction of this catalog without written consent is strictly prohibited

Contents

8

Technical section

1	Rolling bearing structures and types
	1-1 StructureA 1
	1-2 Type A 1
2	Outline of bearing selection A 14
3	Selection of bearing type A 16
4	Selection of bearing arrangement A 20
5	Selection of bearing dimentions
	5-1 Bearing service life A 24
	5-2 Calculation of service life A 24
	0
	5-2 Calculation of service life A 24
	5-2 Calculation of service life A 245-3 Calculation of loads A 29
	 5-2 Calculation of service life A 24 5-3 Calculation of loads A 29 5-4 Dynamic equivalent load A 34 5-5 Basic static load rating

Boundary dimensions and 6 bearing numbers

- 6-1 Boundary dimensions A 46
- 6-2 Dimensions of snap ring grooves and locating snap rings...... A 47
- 6-3 Bearing number A 48

Bearing tolerances 7

- 7-1 Tolerances and tolerance classes for bearings..... A 52
- 7-2 Tolerance measuring method.. A 74

Limiting speed

8-1 Correction of limiting speed......A 78

- 8-2 Limiting speed for sealed ball bearings.....A 79
- 8-3 Considerations for high speedA 79 8-4 Frictional coefficient (refer.).....A 79

Bearing fits 9

9-1	Purpose of fitA 80
9-2	Tolerance and fit for shaft & housingA 80
9-3	Fit selectionA 81

9-4 Recommended fits A 84

10 Bearing internal clearance

10-1	Selection of
	internal clearanceA 93
10-2	Operating clearanceA 94

11 Preload

11-1	Purpose of preloadA	106
11-2	Method of preloadingA	106
11-3	Preload and rigidityA	107
11-4	Amount of preloadA	108

12 Bearing lubrication

12-	Purpose and method of lubricationA 111
12-	LubricantA 118

13 Bearing materials

- 13-1 Bearing rings and rolling elements materials A 122
- 13-2 Materials used for cages A 124

14 Shaft and housing design

14-1	Accuracy and roughness of shafts and housingsA 125
14-2	Mounting dimensionsA 126
14-3	Shaft designA 128
14-4	Sealing devicesA 129

15 Handling of bearings

15-1	General instructionsA 133
15-2	Storage of bearingsA 133
15-3	Bearing mountingA 133
15-4	Test runA 138
15-5	Bearing dismountingA 140
15-6	Maintenance and inspection of bearingsA 142
15-7	Methods of analyzing bearing failuresA 143

[Standard bearings]

Deep groove ball bearingsB	ł
Angular contact ball bearingsB 52	2
 Self-aligning ball bearingsB 134 	ł
Cylindrical roller bearingsB 154	ł
Tapered roller bearingsB 200)
Spherical roller bearingsB 302	2
Thrust ball bearingsB 348	3

Spherical thrust roller bearings	. B 366
Needle roller bearings	. B 374
Ball bearing units	. B 462
Plummer blocks	. B 540

[Special purpose bearings]

Ceramic & EXSEV bearing seriesC	1
• K-series super thin section ball bearings C	27
• Bearings for machine tool spindles (for support of axial loading)C	47
• Precision ball screw support bearings and bearing units	65
• Full complement type cylindrical roller bearings for crane sheavesC	71
• Rolling mill roll neck bearings C	81
Bearings for railway rolling stock axle journalsC	139
• Linear ball bearings C	149
Locknuts, lockwashers & lock plates C	163

Supplementary tables

1	Boundary dimensions of radial bearings D	1
2	Boundary dimensions of tapered roller bearingsD	5
3	Boundary dimensions of single direction thrust bearingsD	7
4	Boundary dimensions of double direction thrust ball bearingsD	9
5	Dimension of snap ring grooves and locating snap ringsD	11
6	Shaft tolerances D	15
7	Housing bore tolerancesD	17
8	Numerical values for standard tolerance grades ITD	19
9	Greek alphabet list D	20
10	Prefixes used with SI unitsD	20
11	SI units and conversion factors D	21
12	Inch/millimeter conversionD	25
13	Steel hardness conversion D	26
14	Surface roughness comparisonD	27
15	Viscosity conversionD	28

Koyo

1. Rolling bearing structures and types

1-1 Structure

Rolling bearings (bearings hereinafter) normally comprise bearing rings, rolling elements and a cage. (see Fig. 1-1)

Rolling elements are arranged between inner and outer rings with a cage, which retains the rolling elements in correct relative position, so they do not touch one another. With this structure, a smooth rolling motion is realized during operation.

Bearings are classified as follows, by the number of rows of rolling elements : single-row, double-row, or multi-row (triple- or four-row) bearings.

Deep groove ball bearing Tapered roller bearing

Thrust ball bearing

Note) In thrust bearings inner and outer rings and also called "shaft race" and "housing race" respectively. The race indicates the washer specified in JIS.

Fig. 1-1 Bearing structure

1) Bearing rings

The path of the rolling elements is called the raceway; and, the section of the bearing rings where the elements roll is called the raceway surface. In the case of ball bearings, since grooves are provided for the balls, they are also referred to as raceway grooves.

The inner ring is normally engaged with a shaft; and, the outer ring with a housing.

2) Rolling element

Rolling elements may be either balls or rollers. Many types of bearings with various shapes of rollers are available.

- Ball
- \square Cylindrical roller ($L_{\rm W} \leq 3 D_{\rm W}$)*
- Long cylindrical roller $(3D_w \le L_w \le 10D_w, D_w > 6 \text{ mm})^*$
- \blacksquare Needle roller (3 $D_{\rm W} \leq L_{\rm W} \leq 10D_{\rm W}, D_{\rm W} \leq 6 \text{ mm})^*$
- Tapered roller (tapered trapezoid)
- Convex roller (barrel shape)

* $(L_{\rm W}: \text{roller length} (\text{mm}))$

 $D_{\rm w}$: roller diameter (mm)

3) Cage

The cage guides the rolling elements along the bearing rings, retaining the rolling elements in correct relative position. There are various types of cages including pressed, machined, molded, and pin type cages.

Due to lower friction resistance than that found in full complement roller and ball bearings, bearings with a cage are more suitable for use under high speed rotation.

1-2 Type

The contact angle (α) is the angle formed by the direction of the load applied to the bearing rings and rolling elements, and a plan perpendicular to the shaft center, when the bearing is loaded.

Bearings are classified into two types in accordance with the contact angle (α).

- Radial bearings ($0^{\circ} \le \alpha \le 45^{\circ}$) ... designed to accommodate mainly
- radial load. • Thrust bearings ($45^\circ < \alpha \le 90^\circ$)
 - ... designed to accommodate mainly axial load.

Rolling bearings are classified in Fig. 1-2, and characteristics of each bearing type are described in Tables 1-1 to 1-13.

Fig. 1-2(1) Rolling bearings

Koyo

Fig. 1-2(2) Rolling bearings

Table 1-1 Deep groove ball bearings

Bearing size	e) Unit : mm	
Connotation	Bore diameter	Outside diameter
Miniature	-	Under 9
Extra-small	Under 10	9 or more
Small size	10 or more	80 or less
Medium size	-	80 - 180
Large size	-	180 - 800
Extra-large size	-	Over 800

Kovo

tors, front wheels of small size automobiles, differential pinion shafts Double-row : hydraulic pumps, roots blowers, air-compressors, transmissions, fuel injection pumps, printing equipment

Table 1-2 Angular contact ball bearings

Table 1-3 Four-point contact ball bearings

One-piece type Two-piece inner ring Two-piece outer ring

- Radial load and axial load in both directions can be accommodated.
- A four-point contact ball bearing can substitute for a face-to-face or back-to-back arrangement of angular contact ball bearings.
- Suitable for use under pure axial load or combined radial and axial load with heavy axial load.
- This type of bearing possesses a contact angle (α) determined in accordance with the axial load direction. This means that the bearing ring and balls contact each other at two points on the lines forming the contact angle.

[Recommended cage] Copper alloy machined cage

[Main applications]

Contact

angle

(α)

Load

center

Motorcycle : Transmission, driveshaft pinion-side Automobile : Steering, transmission

Two-piece

outer ring

- Spherical outer ring raceway allows selfalignment, accommodating shaft or housing deflection and misaligned mounting conditions.
- Tapered bore design can be mounted readily using an adapter.

Bearing

width (B)

 $(d_1 = d + \frac{1}{12} B)$

Lockwasher

Locknut

Adapter sleeve

Small end of

tapered bore

Adapter assembly

diameter

 (ϕd)

Large end of

tapered bore

diameter

 (ϕd_1)

Table 1-5 Cylindrical roller bearings

Kovo

Pressed cage

(snap type)

Pressed cage

Two-piece

inner ring

(staggered type)

Bore

diameter

 (ϕd)

Table 1-6 Machined ring needle roller bearings

In spite of their basic structure, which is the same as that of NU type cylindrical roller bearings, bearings with minimum ring sections offer space savings and greater resistance to radial load, by using needle rollers.

Bearings with no inner rings function using heat treated and ground shafts as their raceway surface.

[Recommended cage] Pressed steel cage

[Main applications] Automobile engines, transmissions, pumps, power shovel wheel drums, hoists, overhead traveling cranes, compressors

Stud type track roller (cam follower)

Yoke type track roller (roller follower)

Table 1-7 Tapered roller bearings

Single-row	Dou	ble-row	Four-row					
Flanged type	TDO type	TDI type	(Mainly used on rolling mill roll necks)					
Standard contact angle Inter mediate contact angle Steep contact angle 32900JR 30200JR 30200CR 30300DJ 32000JR 32200JR 32200CR 30300DJ 33000JR 32200JR 30300CR 31300JR 33100JR 30300JR 32300CR 32300CR 32300JR 32300JR 32300CR 32300CR	46200 46200A 46300 46300A (46T)	45200 45300 (45T)	37200 47200 47300 (47T) (4TR)					
 Tapered rollers assembled in the bearings are guided by the inner ring back face rib. The raceway surfaces of inner ring and outer ring and the rolling contact surface of rollers are designed so that the respective apexes converge at a point on the bearing center line. Single-row bearings can accommodate radial load and axial load in one direction, and double-row bearings can accommodate radial load in both directions. This type of bearing is suitable for use under heavy load or impact load. Bearings are classified into standard, intermediate and steep types, in accordance with their contact angle (<i>α</i>). The larger the contact angle is, the greater the bearing resistance to axial load. Since outer ring and inner ring assembly can be separated from each other, mounting is easy. Bearings designated by the suffix "J" and "JR" are interchangeable internationally. Items sized in inches are still widely used. 								
equipment,	ar wheels, transmi ol spindles, constru	issions, differential pir uction equipment, larg	nion					
			Bearing width					
Outer ring Same as contact angle			Roller large end face Inner ring back face rib					
Outer ring angle Pressed cage ~ (window type) Anti-rotation Lubrication groove		Outer ring small inside diameter Fro Back fac	e Front face					
Lubrication hole Overall width of inner ring spacer	0		Duter ring spacer with lubrication holes and lubrication groove uner ring front face rib					

With aligning

54200U

54300U

54400U

seat races

tapered bore

Machined

(prong type)

cage

RHA type

diameter (ϕd_1)

Lubrication

Outer ring

machined

guided

cage

groove

tapered bore

Lubrication

hole

(For shaker screen)

diameter (ϕd)

		-					
5	Single direction	n		Double direction			
With flat With spherical With aligning back faces back face seat race		With flat back faces	With spherical back faces				
		PP					
51100	_	_	_	_			
51200	53200	53200U	52200	54200			
51300	53300	53300U	52300	54300			
51400	53400	53400U	52400	54400			
 This type of bearing comprises washer-shaped rings with raceway groove and ball and cage assembly. Single direction bearin load in one direction, a 							
			ingo	accommodate avial			

Races to be mounted on shafts are called shaft races (or inner rings); and, races to be mounted into housings are housing races (or outer rings). Central races of double direction bearings are mounted on the shafts.

Table 1-9 Thrust ball bearings

pearings accommodate axial tion, and double direction bearings accommodate axial load in both directions. (Both of these bearings cannot accommodate radial loads.)

Since bearings with a spherical back face are self- aligning, it helps to compensate for mounting errors.

[Recommended cages] Pressed steel cage, copper alloy or phenolic resin machined cage, synthetic resin molded cage

[Main applications] Automobile king pins, machine tool spindles

Housing race back face chamfer

[Remark] The race indicates the washer specified in JIS.

Locknut

sleeve

Lock plate

Withdrawal

Pressed

cage

A

RH, RHR type

ring

Adapter

sleeve

Machined cage

separable

prong type

Lockwasher

Adapter

sleeve

(Shaft diameter \leq 180 mm) (Shaft diameter \geq 200 mm)

Locknut

Æ

R, RR type

(THR.....R)

This type of bearing comprises washer-shaped rings (shaft and housing race) and cylindrical roller and cage assembly. Crowned cylindrical rollers produce uniform

pressure distribution on roller/raceway contact surface.

- Axial load can be accommodated in one direction.
- Great axial load resistance and high axial rigidity are provided.

Table 1-11 Needle roller thrust bearings

Non-separable

(TVK)

Separable

(TPWS)

- machined thick race (WS). The non-separable type comprises needle roller
- and cage thrust assembly and a precision pressed race.
- Axial load can be accommodated in one direction.
- Due to the very small installation space required, this type contributes greatly to size reduction of application equipment.
- In many cases, needle roller and cage thrust assembly function by using the mounting surface of the application equipment, including shafts and housings, as its raceway surface.

Pressed steel cage, synthetic resin molded cage

Transmissions for automobiles, cultivators and machine tools

Table 1-12 Tapered roller thrust bearings

- This type of bearing comprises tapered rollers (with spherical large end), which are uniformly guided by ribs of the shaft and housing races.
- Both shaft and housing races and rollers have tapered surfaces whose apexes converge at a point on the bearing axis.
- Single direction bearings can accommodate axial load in one direction; and, double direction bearings can accommodate axial load in both directions.
- Double direction bearings are to be mounted such that their central race is placed on the shaft shoulder. Since this type is treated with a clearance fit, the central race must be fixed with a sleeve, etc.

[Recommended cages] Copper alloy machined cage [Main applications] Single direction : crane hooks, oil excavator swivels

Double direction : rolling mill roll necks

 Table 1-13
 Spherical thrust roller bearings

This type of bearing, comprising barrel-shaped convex rollers arranged at an angle with the axis, is self-aligning due to spherical housing race raceway; therefore, shaft inclination can be compensated for to a certain degree.

29300

29400

- Great axial load resistance is provided. This type can accommodate a small amount of radial load as well as heavy axial load.
- Normally, oil lubrication is employed.

Copper alloy machined cage

Hydroelectric generators, vertical motors, propeller shafts for ships, screw down speed reducers, jib cranes, coal mills, pushing machines, molding machines

2. Outline of bearing selection

Currently, as bearing design has become diversified, their application range is being increasingly extended. In order to select the most suitable bearings for an application, it is necessary to conduct a comprehensive study on both bearings and the equipment in which the bearings will be installed, including operating conditions, the performance required of the bearings, specifications of the other components to be installed along with the bearings, marketability, and cost performance, etc.

In selecting bearings, since the shaft diameter is usually determined beforehand, the prospective bearing type is chosen based upon installation space, intended arrangement, and according to the bore diameter required. Next, from the bearing specifications are determined the service life required when compared to that of the equipment in which it is used, along with a calculation of the actual service life from operational loads.

Internal specifications including bearing accuracy, internal clearance, cage, and lubricant are also selected, depending on the application.

For reference, general selection procedure and operating conditions are described in Fig. 2-1. There is no need to follow a specific order, since the goal is to select the right bearing to achieve optimum performance.

Special surface treatment
 Lubricant

(Reference) ceramic & **EXSEV** bearing series — C 1

— A 118

3. Selection of bearing type

In selecting bearings, the most important thing is to fully understand the operating conditions of the bearings.

The main factors to be considered are listed in Table 3-1, while bearing types are listed in Table 3-2.

Table 3-1 (1) Selection of bearing type

Iter	ns to be considered	Selection method	Reference page No.
1) Installation space	Bearing can be installed in target equipment	 When a shaft is designed, its rigidity and strength are considered essential; therefore, the shaft diameter, i.e., bore diameter, is deter- mined at start. For rolling bearings, since wide variety with dif- ferent dimensions are available, the most suit- able bearing type should be selected. (Fig. 3-1) 	A 46
2) Load	Load magnitude, type and direction which applied (Load resistance of bearing) is specified in terms of the basic load rating, and its value is specified in the bearing specification table.)	 Since various types of load are applied to bearings, load magnitude, types (radial or axial) and direction of application (both directions or single direction in the case of axial load), as well as vibration and impact must be considered in order to select the proper bearing. The following is the general order for radial resistance; (deep groove ball bearings < angular contact ball bearings < cylindrical roller bearings < tapered roller bearings < spherical roller bearings 	A 18 (Table 3-2) A 81
3) Rotational speed	Response to rotational speed of equipment in which bearings will be installed The limiting speed for bear- ing is expressed as allow- able speed, and this value is specified in the bearing specification table.	 Since the allowable speed differs greatly depend-ing not only upon bearing type but on bearing size, cage, accuracy, load and lubrication, all factors must be considered in selecting bearings. In general, the following bearings are the most widely used for high speed operation. (deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings) 	A 18 (Table 3-2) A 78
4) Running accuracy	Accurate rotation delivering required performance (Dimension accuracy and running accuracy of bearings are provided by JIS, etc.	 Performance required differs depending on equipment in which bearings are installed : for instance, machine tool spindles require high running accuracy, gas turbines require high speed rotation, and control equipment requires low friction. In such cases, bearings of tolerance class 5 or higher are required. The following are the most widely used bearings. (deep groove ball bearings, angular contact ball bearings, cylindrical roller bearings) 	A 18 (Table 3-2) A 52
5) Rigidity	Rigidity that delivers the bear- ing performance required When load is applied to a bearing, elastic deformation occurs at the point where its rolling elements contact the raceway surface. The higher the rigidity that bearings possess, the better they control elastic deforma- tion.	 In machine tool spindles and automobile final drives, bearing rigidity as well as rigidity of equipment itself must be enhanced. Elastic deformation occurs less in roller bearings than in ball bearings. Rigidity can be enhanced by providing preload. This method is suitable for use with angular contact ball bearings and tapered roller bearings. 	A 18 (Table 3-2) A 106

Iter	Table 3-1 (2)	Selection of bearing type Selection method	Reference page No.
6) Misalign- ment (aligning capability)	Operating conditions which cause misalignment (shaft deflection caused by load, inac- curacy of shaft and housing, mounting errors) can affect bearing performance (Allowable misalignment (in angle) for each bearing type is described in the section before the bearing specifica- tion table, to facilitate deter- mination of the self-aligning capability of bearings.	 Internal load caused by excessive misalignment damages bearings. Bearings designed to absorb such misalignment should be selected. The higher the self-aligning capability that bearings possess, the larger the angular misalignment that can be absorbed. The following is the general order of bearings when comparing allowable angular misalignment : <pre> (cylindrical roller bearings < tapered roller-bearings < deep groove ball bearings, angular contact ball bearings </pre> spherical roller-bearings description is the general order of the self-aligning ball bearings 	A 18 (Table 3-2)
7) Mounting and dismounting	Methods and frequency of mounting and dismounting required for periodic inspection	 Cylindrical roller bearings, needle roller bearings and tapered roller bearings, with separable inner and outer rings, are recommended for applications in which mounting and dismounting is conducted frequently. Use of sleeve eases the mounting of self-aligning ball bearings and spherical roller bearings with tapered bore. 	A 18 (Table 3-2)

Koyo

Fig. 3-1 Radial bearing dimension series

 Table 3-2
 Performance comparison of bearing type

		Deep groove ball bearing		r contact ba Matched pair or stack		Four-point contact ball bearing	Self- aligning ball bearing		Cylindrical m	Oller bearing	g NN · NNU	Needle roller bearing (machined ring type)	Tapered r Single- row	roller bearing Double-row, four-row	Spherical roller bearing	Thrust ba With flat back faces	All bearing With aligning seat race	Double direction angular con- tact thrust ball bearing	Cylindrical roller thrust bearing	Needle roller thrust bearing	Tapered roller thrust bearing	Spherical thrust roller bearing	Reference page No.
	Radial load	0	0	0	0	0	0	O	0	0	0	0	0	0	0	×	×	×	×	×	×		_
stance	Axial load	⊖	© ←	© ↔ *	 ↔ *	◎		×			×	×	© ←	⊜		○ ◆*	*	◎	© ↓	●	© ←	© ←	_
m	Combined load radial and axial	0	0	0	0	0		×			×	×	0	0		×	×	×	×	×	×		-
	Vibration or impact load							O	0	0	0	0	0	0	0				0	0	0	0	-
	h speed ptability	0	0	0	0	0		O	0	0	0	0	0	0	0			0					A16 A78
	gh curacy	0	0	0		0		O			0		0			0		0					A16, 52 A111
le	w noise vel/low rque	0						0															A16
	Rigidity			0		0		0	0	0	0	0	0	0				0	0	0	0		A16
Mis	alignment	0		×	×	×	0								0	×	0	×	×	×	×	0	A17 Description before specification table
out	er and er ring parability	×	×	×	×	*	×		-						×					*			_
ement	Fixed side		+		*			×	+		×	×	+										A20
ang	Free side																						A20
R	emarks		A pair of bearings mounted facing each other.	*DT arrange- ment is effective for one direction only.	*Filling slot type is effective for one direction only.	*Non- separable type is also available.							A pair of bearings mounted facing each other.			bearing effectiv	direction as are e for rections.			*Non-sep- arable type is also available.			_
	eference ige No.	A4 B4		A5 B52		A6 B52	A6 B134		A7 B1			 A8 B374	A B	9 200	A10 B302	A [.] B:	11 348	 C47	A12	A12 B374	A13	A13 B366	

 $\bigcirc \text{Excellent} \quad \bigcirc \text{Good} \quad \triangle \text{ Fair } \times \text{Unacceptable} \iff \text{Both directions} \iff \text{One direction only}$

Acceptable

Acceptable, but shaft shrinkage must be compensated for.

4. Selection of bearing arrangement

As bearing operational conditions vary depending on devices in which bearings are mounted, different performances are demanded of bearings. Normally, two or more bearings are used on one shaft. In many cases, in order to locate shaft positions in the axial direction, one bearing is mounted on the fixed side first, then the other bearing is mounted on the free side.

Table 4-1Bearings on fixed and free sides

\leq	Features	Recommended bearing type	Example No.
Fixed side bearing	 This bearing determines shaft axial position. This bearing can accommodate both radial and axial loads. Since axial load in both directions is imposed on this bearing, strength must be considered in selecting the bearing for this side. 	Deep groove ball bearing Matched pair or stack angular contact ball bearing Double-row angular contact ball bearing Self-aligning ball bearing Cylindrical roller bearing with rib (NUP and NH types) Double-row tapered roller bearing Spherical roller bearing	
Free side bearing	 This bearing is employed to compensate for expansion or shrinkage caused by operating temperature change and to allow ajustment of bearing position. Bearings which accommodate radial load only and whose inner and outer rings are separable are recommended as free side bearings. In general, if non-separable bearings are used on free side, clearance fit is provided between outer ring and housing to compensate for shaft movement through bearings. In some cases, clearance fit between shaft and inner ring is utilized. 	 Separable types Cylindrical roller bearing (NU and N types) Needle roller bearing (NA type, etc.) Non-separable types Deep groove ball bearing Matched pair angular contact ball bearing (Back-to-back arrangement) Double-row angular contact ball bearing Self-aligning ball bearing Double-row tapered roller bearing (TDO type) Spherical roller bearing 	Examples 1–11
When fixed and free sides are not distin- guished	 When bearing intervals are short and shaft shrink- age does not greatly affect bearing operation, a pair of angular contact ball bearings or tapered roller bearings is used in paired mounting to accommodate axial load. After mounting, the axial clearance is adjusted using nuts or shims. 	Deep groove ball bearing Angular contact ball bearing Self-aligning ball bearing Cylindrical roller bearing (NJ and NF types) Tapered roller bearing Spherical roller bearing	Examples 12–16
Bearings for verti- cal shafts	 Bearings which can accommodate both radial and axial loads should be used on fixed side. Heavy axial load can be accommodated using thrust bearings together with radial bearings. Bearings which can accommodate radial load only are used on free side, compensating for shaft movement. 	 Fixed side Matched pair angular contact ball bearing (Back-to-back arrangement) Double-row tapered roller bearing (TDO type) Thrust bearing + radial bearing 	Examples 17 and 18

Table 4-2 (1) Example bearing arrangements

Koyo

	Beering of	Table 4-2 (1)	Example bearing arrangements			
Example	Fixed side	rangement Free side	Recommended application	Application example		
Ex. 1			 Suitable for high-speed operation; used for various types of applications. Not recommended for applications that have center displacement between bearings or shaft deflection. 	Medium size motors, air blowers		
Ex. 2			 More suitable than Ex. 1 for operation under heavy load or impact load. Suitable also for high-speed operation. Due to separability, suitable for applications requiring interference of both inner and outer rings. Not recommended for applications that have center displacement between bearings or shaft deflection. 	Traction motors for rai way rolling stock		
Ex. 3			 Recommended for applications under heavier or greater impact load than those in Ex. 2. This arrangement requires high rigidity from fixed side bearings mounted back to back, with preload provided. Shaft and housing of accurate dimensions should be selected and mounted properly. 	Steel manufac- turing table rollers, lathe spindles		
Ex. 4			 This is recommended for operation at high speed or axial load lighter than in Ex. 3. This is recommended for applications requiring interference of both inner and outer rings. Some applications use double-row angular con- tact ball bearings on fixed side instead of matched pair angular contact ball bearings. 	Motors		
Ex. 5			 This is recommended for operations under relatively small axial load. This is recommended for applications requiring interference of both inner and outer rings. 	Paper manufacturing calender turing calender rollers, diesel locomotive axle journals		
Ex. 6			 This is recommended for operations at high speed and heavy radial load, as well as normal axial load. When deep groove ball bearings are used, clear- ance must be provided between outside diameter and housing, to prevent application of radial load. 	Diesel locomotive transmissions		
Ex. 7			 This arrangement is most widely employed. This arrangement can accommodate partial axial load as well as radial load. 	Pumps, automobile transmissions		

Bearing arrangement Application Example **Recommended application** Fixed side Free side example • This is recommended for operations with relatively Worm gear speed reducers heavy axial load in both directions. Some applications use matched pair angular con-Ex. 8 tact ball bearings on fixed side instead of doublerow angular contact ball bearings. • This is the optimum arrangement for applications Steel manufacturing table with possible mounting errors or shaft deflection. H roller speed Bearings in this arrangement can accommodate Ex. 9 reducers. partial axial load, as well as heavy radial load. overhead crane wheels • This is optimum arrangement for applications with General industrial possible mounting errors or shaft deflection. equipment Ease of mounting and dismounting, ensured by counter shafts 20/= use of adaptor, makes this arrangement suitable Ex. 10 for long shafts which are neither stepped nor threaded. > This arrangement is not recommended for applications requiring axial load capability. • This is the optimum arrangement for applications Steel manufacturwith possible mounting errors or shaft deflection. ing table roll-• This is recommended for operations under impact ers Ex. 11 load or radial load heavier than that in Ex. 10. This arrangement can accommodate partial axial load as well as radial load. Arrangement in which fixed and Application Recommended application free sides are not distinguished example • This arrangement is most popular when applied to Small motors. small equipment operating under light load. small speed reducers, When used with light preloading, thickness-Ex. 12 small pumps adjusted shim or spring is mounted on one side of outer ring. • This is suitable for applications in which rigidity is Machine tool spindles enhanced by preloading. This is frequently employed in applications requiring high speed operation under relatively large axial load. Back-to-back Back-to-back arrangement is suitable for Ex. 13 applications in which moment load affects operation. When preloading is required, care should be taken in preload adjustment. Face-to-face

Table 4-2 (2) Example bearing arrangements

Table 4-2 (3) Example bearing arrangements

Example	Arrangement in which fixed and free sides are not distinguished	Recommended application	Application example
Ex. 14	Back-to-back Face-to-face	 This is recommended for operation under impact load or axial load heavier than in Ex. 13. This is suitable for applications in which rigidity is enhanced by preloading. Back-to-back arrangement is suitable for applications in which moment load affects operation. When interference is required between inner ring and shaft, face-to-face arrangement simplifies mounting. This arrangement is effective for appli- cations in which mounting error is possible. When preloading is required, care should be taken in preload adjustment. 	Speed reducers, automobile wheels
Ex. 15		 This is recommended for applications requiring high speed and high accuracy of rotation under light load. This is suitable for applications in which rigidity is enhanced by preloading. Tandem arrangement and face-to-face arrangement are possible, as is back-to-back arrangement. 	Machine tool spindles
Ex. 16		 This arrangement provides resistance against heavy radial and impact loads. This is applicable when both inner and outer rings require interference. Care should be taken not to reduce axial internal clearance a critical amount during operation. 	Construction equipment final drive
А	pplication to vertical shafts	Recommended application	Application example
Ex. 17	Fixed side Free side	 This arrangement, using matched pair angular contact ball bearings on the fixed side and cylin- drical roller bearings on the free side, is suitable for high speed operation. 	Vertical motors, vertical pumps
Ex. 18	Free side	 This is recommended for operation at low speed and heavy load, in which axial load is heavier than radial load. Due to self-aligning capability, this is suitable for applications in which shaft runout or deflection occurs. 	Crane center shafts, vertical pumps

5. Selection of bearing dimensions

5-1 Bearing service life

When bearings rotate under load, material flakes from the surfaces of inner and outer rings or rolling elements by fatigue arising from repeated contact stress (ref. A 144).

This phenomenon is called flaking. The total number of bearing rotations until flaking occurs is regarded as the bearing "(fatigue) service life".

"(Fatigue) service life" differs greatly depending upon bearing structures, dimensions, materials, and processing methods. Since this phenomenon results from fatigue distribution in bearing materials themselves, differences in bearing service life should be statistically considered.

When a group of identical bearings are rotated under the same conditions, the total number of revolutions until 90 % of the bearings are left without flaking (i.e. a service life of 90 % reliability) is defined as the basic rating life. In operation at a constant speed, the basic rating life can be expressed in terms of time.

In actual operation, a bearing fails not only because of fatigue, but other factors as well, such as wear, seizure, creep, fretting, brinelling, cracking etc (ref. A 144, 16. Examples of bearing failures).

These bearing failures can be minimized by selecting the proper mounting method and lubricant, as well as the bearing most suitable for the application.

5-2 Calculation of service life

5-2-1 Basic dynamic load rating

The basic dynamic load rating is either pure radial (for radial bearings) or central axial load (for thrust bearings) of constant magnitude in a constant direction, under which the basic rating life of 1 million revolutions can be obtained, when the inner ring rotates while the outer ring is stationary, or vice versa. The basic dynamic load rating, which represents the capacity of a bearing under rolling fatigue, is specified as the basic dynamic radial load rating (C_r) for radial bearings, and basic dynamic axial load rating (C_a) for thrust bearings. These load ratings are listed in the specification table.

These values are prescribed by ISO 281/ 1990, and are subject to change by conformance to the latest ISO standards.

5-2-2 Basic rating life

The basic rating life in relation to the basic dynamic load rating and dynamic equivalent load can be expressed using equation (5-1).

It is convenient to express the basic rating life in terms of time, using equation (5-2), when a bearing is used for operation at a constant speed; and, in terms of traveling distance (km), using equation (5-3), when a bearing is used in railway rolling stock or automobiles.

(Total revolutions	$L_{10} = \left(\frac{C}{P}\right)^{p} \dots $
(Time)	$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p$ (5-2)
(Running) distance	$L_{10s} = \pi D L_{10}$ (5-3)

where :

L_{10}	: basic rating life	10 ⁶ revolutions
$L_{10\mathrm{h}}$: basic rating life	h
L_{10s}	: basic rating life	km
P	: dynamic equivalent lo	oad N
	(refer to p. A 34.)
C	: basic dynamic load ra	ating N
n	: rotational speed	\min^{-1}
p	: for ball bearings	
	for roller bearings	<i>p</i> = 10/3
D	: wheel or tire diamete	r mm

Accordingly, where the dynamic equivalent load is P, and rotational speed is n, equation (5-4) can be used to calculate the basic dynamic load rating C; the bearing size most suitable for a specified purpose can then be selected, referring to the bearing specification table.

The recommended bearing service life differs depending on the machines with which the bearing is used, as shown in Table 5-4, p. A 28.

[Reference]

The equations using a service life coefficient (f_h) and rotational speed coefficient (f_n) respectively, based on equation (5-2), are as follows :

 $L_{10h} = 500 f_h^p$ (5-5)

Coefficient of service life :

$$f_{\rm h} = f_{\rm n} \frac{C}{P} \qquad (5-6)$$

Coefficient of rotational speed :

For reference, the values of $f_{\rm n}$, $f_{\rm h}$, and $L_{10\rm h}$ can be easily obtained by employing the nomograph attached to this catalog, as an abbreviated method.

[Ball bearing]

Rotational speed	$f_n = 1.5$ n = 10	1.0 0.9 	0.8 0.7 	0.6 0.5	0.4 0.35 0.3	0.25 	0.2 0.190.18 0.17 0.16 0.15
Basic rat- ing life	$f_{\rm h}$ 0.6 \downarrow L_{10h} 100	0.7 0.8 0.9 1.0 		1.5 	2.0 2.5 3	0 3.5 4.0	5.0 6.0
[Roller bea	aring]						

Rotational f_n 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.35 0.6 0.55 0.5 0.45 0.4 0.3 0.2 0.19 0.18 speed 200 300 500 1 000 2 000 3 000 5 000 10.000 *f*h 0.62 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.5 3.0 3.5 4.0 4.5 4.9 Basic rating life 300 400 500 700 1000 2 000 3 000 200 5 000 10 000 20 000 30 000 50 000 100 000

[Reference] Rotational speed (n) and its coefficients (f_n) , and service life coefficient (f_h) and basic rating life (L_{10h})

5-2-3 Correction of basic dynamic load rating for high temperature use and dimension stabilizing treatment

In high temperature operation, bearing material hardness deteriorates, as material compositions are altered. As a result, the basic dynamic load rating is diminished. Once altered, material composition is not recovered, even if operating temperatures return to normal.

Therefore, for bearings used in high temperature operation, the basic dynamic load rating should be corrected by multiplying the basic dynamic load rating values specified in the bearing specification table by the temperature coefficient values in Table 5-1.

Table 5-1 Temperature coefficient values

Bearing temperature,	°C	125	150	175	200	250
Temperature coefficient		1	1	0.95	0.90	0.75

Since normal heat treatment is not effective in maintaining the original bearing size in extended operation at 120 °C or higher, dimension stabilizing treatment is necessary. Dimension stabilizing treatment codes and their effective temperature ranges are described in Table 5-2.

Since dimension stabilizing treatment diminishes material hardness, the basic dynamic load rating may be reduced for some types of bearings.

Table 5-2 Dimension stabilizing treatment

Dimension stabilizing treatment code	Effective temperature range
SO	Over 100°C, up to 150°C
S1	150°C 200°C
S2	200°C 250°C

5-2-4 Corrected rating life

The basic rating life (L_{10}) , expressed using equation (5-1), is (fatigue) life, whose estimate of reliability is 90 %. A certain application requires a service life whose reliability is more than 90 %.

Special materials help extend bearing life, and lubrication and other operating conditions may also affect bearing service life. The corrected rating life can be obtained from the basic rating life using equation (5-8).

 $L_{\rm na} = a_1 a_2 a_3 L_{10}$ (5-8)

where :

- $L_{\rm na}$: corrected rating life 10⁶ revolutions (estimated reliability (100–*n*) %: the probability of failure occurrence is expressed by *n*, taking bearing characteristics and operating conditions into consideration.
- L_{10} : basic rating life 10⁶ revolutions (estimated reliability 90 %)
- a_1 : reliability coefficient
- a_2 : bearing characteristic coefficient a_3 : operating condition coefficient a_3 : operating condition (2)

[Remark]

When bearing dimensions are to be selected given L_{na} greater than 90 % in reliability, the strength of shaft and housing must be considered.

(1) Reliability coefficient a_1

Table 5-3 describes reliability coefficient, a_1 , which is necessary to obtain the corrected rating life of reliability greater than 90 %.

Table 5-3Reliability coefficient a_1

Reliability, %	$L_{ m na}$	a_1
90	L_{10a}	1
95	$L_{5\mathrm{a}}$	0.62
96	$L_{ m 4a}$	0.53
97	L_{3a}	0.44
98	L_{2a}	0.33
99	L_{1a}	0.21

(2) Bearing characteristic coefficient a_2

The bearing characteristic in relation to bearing life may differ according to bearing materials (steel types and their quality), and may be altered by production process, design, etc. In such cases, the bearing life calculation can be corrected using the bearing characteristic coefficient a_2 .

JTEKT has employed vacuum-degassed bearing steel as JTEKT standard bearing material. It has a significant effect on bearing life extension which was verified through studies at JTEKT laboratory.

The basic dynamic load rating of bearings made of vacuum-degassed bearing steel is specified in the bearing specification table, taking the bearing characteristic coefficient as $a_2 = 1$.

For bearings made of special materials to extend fatigue life, the bearing characteristic coefficient is treated as $a_2 > 1$.

(3) Operating condition coefficient a_3

When bearings are used under operating conditions which directly affect their service life, including improper lubrication, the service life calculation can be corrected by using a_3 .

Under normal lubrication, the calculation can be performed with $a_3 = 1$; and, under favorable lubrication, with $a_3 > 1$.

In the following cases, the operating condition coefficient is treated as $a_3 < 1$:

• Operation using lubricant of low kinematic viscosity

Ball bearing $\dots 13 \text{ mm}^2/\text{s}$ or less Roller bearing $\dots 20 \text{ mm}^2/\text{s}$ or less

- Operation at very slow rotational speed (Product of rolling element pitch diameter and rotational speed is 10 000 or less.)
- Contamination of lubricant is expected
- Greater misalignment of inner and outer rings is present
- [Note] When bearing hardness is diminished by heat, the basic dynamic load rating calculation must be corrected (ref. Table 5-1).

[Remark]

When $a_2 > 1$ in employing a special material, if lubrication is not proper, $a_2 \times a_3$ is not always > 1. In such cases, if $a_3 < 1$, bearing characteristic coefficient is normally treated as $a_2 \le 1$.

5-2-5 Service life of bearing system comprising two or more bearings

Even for systems which comprise two or more bearings, if one bearing is damaged, the entire system malfunctions.

Kovo

Where all bearings used in an application are regarded as one system, the service life of the bearing system can be calculated using the following equation,

where :

L : rating life of system

 L_1, L_2, L_3 : rating life of each bearing *e* : constant

- $e = 10/9 \dots ball bearing$
- e = 9/8.....roller bearing
- The mean value is for a system

using both ball and roller bearings.

[Example]

When a shaft is supported by two roller bearings whose service lives are 50 000 hours and 30 000 hours respectively, the rating life of the bearing system supporting this shaft is calculated as follows, using equation (5-9) :

$$\frac{1}{L^{9/8}} = \frac{1}{50\ 000^{9/8}} + \frac{1}{30\ 000^{9/8}}$$
$$L \doteq 20\ 000\ h$$

The equation suggests that the rating life of these bearings as a system becomes shorter than that of the bearing with the shorter life. This fact is very important in estimating bearing service life for applications using two or more bearings.

As the above explanation shows, since a_2 and a_3 are inter-dependent, some calculations treat them as one coefficient, a_{23} .

5-2-6 Applications and recommended bearing service life

Since longer service life does not always contribute to economical operation, the most suitable service life for each application and operating conditions should be determined. For reference, Table 5-4 describes recommended service life in accordance with the

application, as empirically determined.

Table 5-4 Recommended bearing service life (reference)

Operating condition	Application	Recommended (h)
Short or intermittent operation	Household electric appliance, electric tools, agricultural equipment, heavy cargo hoisting equipment	4 000 - 8 000
Not extended duration, but stable operation required	Household air conditioner motors, construction equipment, conveyers, elevators	8 000 - 12 000
Intermittent but extended	Rolling mill roll necks, small motors, cranes	8 000 - 12 000
operation	Motors used in factories, general gears	12 000 - 20 000
	Machine tools, shaker screens, crushers	20 000 - 30 000
	Compressors, pumps, gears for essential use	40 000 - 60 000
Daily operation more than	Escalators	12 000 - 20 000
8 hr. or continuous extended operation	Centrifugal separators, air conditioners, air blowers, woodworking equipment, passenger coach axle journals	20 000 - 30 000
	Large motors, mine hoists, locomotive axle journals, railway rolling stock traction motors	40 000 - 60 000
	Paper manufacturing equipment	100 000 - 200 000
24 hr. operation (no failure allowed)	Water supply facilities, power stations, mine water discharge facilities	100 000 - 200 000

5-3 Calculation of loads

Loads affecting bearings includes force exerted by the weight of the object the bearings support, transmission force of devices such as gears and belts, loads generated in equipment during operation etc.

Seldom can these kinds of load be determined by simple calculation, because the load is not always constant.

In many cases, the load fluctuates, and it is difficult to determine the frequency and magnitude of the fluctuation.

Therefore, loads are normally obtained by multiplying theoretical values with various coefficients obtained empirically.

5-3-1 Load coefficient

Even if radial and axial loads are obtained through general dynamic calculation, the actual load becomes greater than the calculated value due to vibration and impact during operation.

In many cases, the load is obtained by multiplving theoretical values by the load coefficient.

Table 5-5 Values of load coefficient f_w

Operating condition	Application example	$f_{\rm W}$
Operation with little vibration or impact	Motors Machine tools Measuring instrument	1.0 – 1.2
Normal operation (slight impact)	Railway rolling stock Automobiles Paper manufacturing equipment Air blowers Compressors Agricultural equipment	1.2 – 2.0
Operation with severe vibration or impact	Rolling mills Crushers Construction equipment Shaker screens	2.0 - 3.0

$F = f_{\rm w} \cdot F_{\rm c} \dots (5-10)$
--

F : measured load

where :

F : measured load	Ν
$F_{\rm c}$: calculated load	Ν
$f_{\rm w}$: load coefficient (ref. Table 5-5)	

Kovo

5-3-2 Load generated through belt or chain transmission

In the case of belt transmission, the theoretical value of the load affecting the pullev shafts can be determined by obtaining the effective transmission force of the belt.

For actual operation, the load is obtained by multiplying this effective transmission force by the load coefficient (f_w) considering vibration and impact generated during operation, and the belt coefficient ($f_{\rm b}$) considering belt tension.

In the case of chain transmission, the load is determined using a coefficient equivalent to the belt coefficient.

This equation (5-11) is as follows ;

where :

- $F_{\rm b}$: estimated load affecting pulley shaft or sprocket shaft Ν M: torque affecting pulley or sprocket
 - $mN \cdot m$
- W: transmission force kW
- $D_{\rm p}$: pitch circle diameter of pulley or sprocket mm \min^{-1}
- n : rotational speed
- $f_{\rm w}$: load coefficient (ref. Table 5-5)
- $f_{\rm b}$: belt coefficient (ref. Table 5-6)

Table 5-6 Values of belt coefficient $f_{\rm b}$

Belt type	f b
Timing belt (with teeth)	1.3 – 2.0
V-belt	2.0 – 2.5
Flat belt (with tension pulley)	2.5 - 3.0
Flat belt	4.0 - 5.0
Chain	1.2 – 1.5

A 28

5-3-3 Load generated under gear transmission

(1) Loads affecting gear and gear coefficient In the case of gear transmission, loads transmitted by gearing are theoretically classified into three types: tangential load (K_t) , radial load (K_r) and axial load (K_a) .

Those loads can be calculated dynamically (using equations (a), (b) and (c), described in section (2)).

To determine the actual gear loads, these theoretical loads must be multiplied by coefficients considering vibration and impact during operation (f_w) (ref. Table 5-5) and the gear coefficient (f_g) (ref. Table 5-7) considering the finish treatment of gears.

Table 5-7Values of gear coefficient f_{σ}

Gear type	$f_{ m g}$
Precision gears (both pitch error and tooth shape error less than 0.02 mm)	1.0 – 1.1
Normal gears (both pitch error and tooth shape error less than 0.1 mm)	1.1 – 1.3

(2)	Calcu	lation	of load	on	gears
-----	-------	--------	---------	----	-------

ⓐ Tangential load (tangential	force) $K_{\rm t}$		
$ \begin{cases} \text{Spur gears, helical gears, double-he} \\ \text{straight bevel gears, spiral bevel ge} \\ K_{\text{t}} = \frac{2 M}{D_{\text{p}}} = \frac{19.1 \times 10^6 \text{ W}}{D_{\text{p}} n} \cdots \cdots \cdots$	-		
ⓐ∼ⓒ where :			
$K_{\rm t}$: gear tangential load	N		
$K_{ m r}$: gear radial load	N		
K _a : gear axial load N			
M : torque affecting gears $mN \cdot m$			
$D_{\rm p}$: gear pitch circle diameter mm			
W : transmitting force kW			
n : rotational speed \min^{-1}			
α : gear pressure angle deg			
β : gear helix (spiral) angle deg			
δ : bevel gear pitch angle	deg		
`~	'		

		\textcircled{b} Radial load (separating force) K_{r}	\odot Axial load (axial force) $K_{ m a}$
Spur gears	3	$K_{\rm r} = K_{\rm t} \tan \alpha$ (5-13)	0
Helical gea	ars	$K_{\rm r} = K_{\rm t} \frac{\tan \alpha}{\cos \beta} \cdots (5-14)$	$K_{\rm a} = K_{\rm t} \tan \beta$
Double-he gears	lical	$K_{\rm r} = K_{\rm t} \frac{\tan \alpha}{\cos \beta} \dots $	0
Straight ¹⁾	Drive side	$K_{\rm r1} = K_{\rm t} \tan \alpha \cos \delta_1 \cdots (5-16)$	$K_{\rm a1} = K_{\rm t} \tan \alpha \sin \delta_1$
bevel gears	Driven side	$K_{\rm r2} = K_{\rm t} \tan \alpha \cos \delta_2 \cdots (5-17)$	$K_{\mathrm{a2}} = K_{\mathrm{t}} \tan \alpha \sin \delta_2$ (5-22)
Spiral ^{1), 2)}	Drive	$K_{\rm r1} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \cos\delta_1 \pm \sin\beta \sin\delta_1 \right)$	$K_{a1} = \frac{K_{t}}{\cos\beta} \left(\tan\alpha \sin\delta_{1} \mp \sin\beta\cos\delta_{1} \right)$
	side	(5-18)	(5-23
bevel gears	Driven	$K_{\rm r2} = \frac{K_{\rm t}}{\cos\beta} \left(\tan\alpha \cos\delta_2 \mp \sin\beta\sin\delta_2 \right)$	$K_{ m a2} = rac{K_{ m t}}{\coseta} \left(\tanlpha \ \sin\delta_2 \pm \sineta \cos\delta_2 ight)$
	side	, (5-19)	,

driven side gears.

2) Symbols (+) and (-) denote the following ;

(Symbols in upper row : clockwise rotation accompanied by right-handed spiral) or counterclockwise rotation with left-handed spiral Symbols in lower row : counterclockwise rotation with right-handed spiral or clockwise rotation with left-handed spiral

[Remark] Rotating directions are described as viewed at the back of the apex of the pitch angle.

Driven side (left-handed helix) K_{t2} Drive side (left-handed helix)

Fig. 5-1 Load on spur gears

Fig. 5-2 Load on helical gears

Fig. 5-3 Load on straight bevel gears

K_{t1} Driven side counterclockwise rotation with right-handed spiral Drive side [clockwise rotation] with left-handed spiral

Clockwise rotation

Counterclockwise rotation

Koyo

Fig. 5-4 Load on spiral bevel gears

5-3-4 Load distribution on bearings

The load distribution affecting bearings can be calculated as follows: first, radial force components are calculated, then, the sum of vectors of the components is obtained in accordance with the load direction.

Calculation examples of radial load distribution are described in the following section.

> $F_{\rm rA} = \frac{b}{c}K$ $F_{\rm rB} = \frac{a}{c}K$

[Remark]

Bearings shown in Exs. 3 to 5 are affected by components of axial force when these bearings accommodate radial load, and axial load (K_a) which is transferred externally, i.e. from gears. For calculation of the axial load in this case, refer

to page A 34.

Description of signs in Examples 1 to 5

F_{rA} : radial load on bearing A	 N	$D_{\rm p}$: gear pitch circle diameter mm
$F_{ m rB}$: radial load on bearing B	Ν	 ⊙ : denotes load direction (upward
K : shaft load	Ν	perpendicular to paper surface)
$K_{ m t}, K_{ m r}, K_{ m a}$: gear load	Ν	\otimes : denotes load direction (downward
(ref. A 30)		perpendicular to paper surface)
`		

Kovo

Example 5 Simultaneous application of gear load and other load

Gears 1 and 2 are engaged with each other at angle θ . External load *F*, moment *M*, are applied to these gears at angles θ_1 and θ_2 .

• Perpendicular radial component force (upward and downward along diagram)

$$F_{\rm rAV} = \frac{b}{c} \left(K_{\rm r} \cos \theta + K_{\rm t} \sin \theta \right) - \frac{D_{\rm p}}{2c} K_{\rm a} \cos \theta + \frac{m}{c} F \cos \theta_1 - \frac{M}{c} \cos \theta_2$$
$$F_{\rm rBV} = \frac{a}{c} \left(K_{\rm r} \cos \theta + K_{\rm t} \sin \theta \right) + \frac{D_{\rm p}}{2c} K_{\rm a} \cos \theta + \frac{e}{c} F \cos \theta_1 + \frac{M}{c} \cos \theta_2$$

• Horizontal radial component force (upward and downward perpendicular to diagram)

$$F_{\rm rAH} = \frac{b}{c} \left(K_{\rm r} \sin \theta - K_{\rm t} \cos \theta \right) - \frac{D_{\rm P}}{2c} K_{\rm a} \sin \theta + \frac{m}{c} F \sin \theta_1 - \frac{M}{c} \sin \theta_2$$
$$F_{\rm rBH} = \frac{a}{c} \left(K_{\rm r} \sin \theta - K_{\rm t} \cos \theta \right) + \frac{D_{\rm P}}{2c} K_{\rm a} \sin \theta + \frac{e}{c} F \sin \theta_1 + \frac{M}{c} \sin \theta_2$$

Combined radial force

$$F_{\rm rA} = \sqrt{F_{\rm rAV}^2 + F_{\rm rAH}^2}$$

$$F_{\rm rB} = \sqrt{F_{\rm rBV}^2 + F_{\rm rBH}^2}$$
(5-29) (When θ , F , and M are zero, the same result as in Ex. 3 is obtained

Pitch circle

of gear 2

..... (5-26)

Gear 2

 $F_{\rm rA} = \sqrt{\left(\frac{b}{c}K_{\rm t}\right)^2 + \left(\frac{b}{c}K_{\rm r} - \frac{D_{\rm p}}{2c}K_{\rm a}\right)^2}$

 $F_{\rm rB} = \sqrt{\left(\frac{a}{c}K_{\rm t}\right)^2 + \left(\frac{a}{c}K_{\rm r} - \frac{D_{\rm p}}{2c}K_{\rm a}\right)^2}$

Ь

..... (5-28)

5-4 Dynamic equivalent load

Bearings are used under various operating conditions; however, in most cases, bearings receive radial and axial load combined, while the load magnitude fluctuates during operation.

Therefore, it is impossible to directly compare the actual load and basic dynamic load rating.

The two are compared by replacing the loads applied to the shaft center with one of a constant magnitude and in a specific direction, that yields the same bearing service life as under actual load and rotational speed.

This theoretical load is referred to as the dynamic equivalent load (P).

5-4-1 Calculation of dynamic equivalent load

Dynamic equivalent loads for radial bearings and thrust bearings ($\alpha \neq 90^{\circ}$) which receive a combined load of a constant magnitude in a specific direction can be calculated using the following equation,

 $P = XF_r + YF_2 \qquad (5-30)$ where : P: dynamic equivalent load Ν for radial bearings, $P_{\rm r}$: dynamic equivalent radial load for thrust bearings. $P_{\rm a}$: dynamic equivalent axial load F_r : radial load Ν F_a : axial load Ν X : radial load factor Y: axial load factor (values of X and Y are listed in the bearing specification table.)

When $F_a/F_r \le e$ for single-row radial bearings, it is taken that X = 1, and Y = 0. Hence, the dynamic equivalent load rating is $P_r = F_r$.

 $\left(\begin{array}{l} \mbox{Values of e, which designates the limit of F_a/F_r, are listed in the bearing specification table.} \right)$

■ For single-row angular contact ball bearings and tapered roller bearings, axial component forces (*F*_{ac}) are generated as shown in Fig. 5-5, therefore a pair of bearings is arranged face-to-face or back-to-back. The axial component force can be calculated using the following equation.

Table 5-8 describes the calculation of the dynamic equivalent load when radial loads and external axial loads (K_a) are applied to bearings.

Fig. 5-5 Axial component force

For thrust ball bearings with contact angle $\alpha = 90^{\circ}$, to which an axial load is applied, $P_{\rm a} = F_{\rm a}$.

Kovo

The dynamic equivalent load of spherical thrust roller bearing can be calculated using the following equation.

$$P_{\rm a} = F_{\rm a} + 1.2 F_{\rm r}$$
 (5-32)
where : $F_{\rm r}/F_{\rm a} \le 0.55$

Table 5-8	Dynamic equivalent load calculation : when a pair of single-row angular contact
	ball bearings or tapered roller bearings is arranged face-to-face or back-to-back.

Paired mounting		Loading condition	Bearing	Axial load	Dynamic equivalent load
Back-to-back arrangement Face-to-face arrangement	t	Loading condition	веатіпд	Axiai load	Dynamic equivalent load
		$rac{F_{ m rB}}{2V_{ m p}} + K_{ m a} \ge rac{F_{ m rA}}{2V_{ m a}}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} + K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left(\frac{F_{rB}}{2Y_{B}} + K_{a} \right)$ $P_{A} = F_{rA}, \text{ where } P_{A} \leq F_{rA}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{1}{2Y_{\rm B}} + \kappa_{\rm a} \leq \frac{1}{2Y_{\rm A}}$ Bearing B		-	$P_{\rm B} = F_{\rm rB}$
			Bearing A	-	$P_{\rm A} = F_{\rm rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Bearing B	$\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a}$	$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2Y_{\rm A}} - K_{\rm a} \right)$ $P_{\rm B} = F_{\rm rB}, \text{ where } P_{\rm B} < F_{\rm rB}$
		$\frac{F_{\rm rB}}{2Y_{\rm p}} \leq \frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}$	Bearing A	-	$P_{\rm A} = F_{\rm rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		b A	Bearing B		$P_{\rm B} = XF_{\rm rB} + Y_{\rm B} \left(\frac{F_{\rm rA}}{2Y_{\rm A}} + K_{\rm a}\right)$ $P_{\rm B} = F_{\rm rB}, \text{ where } P_{\rm B} \le F_{\rm rB}$
		$rac{F_{ m rB}}{2Y_{ m R}} > rac{F_{ m rA}}{2Y_{ m A}} + K_{ m a}$	Bearing A	$\frac{F_{\rm rB}}{2Y_{\rm B}} - K_{\rm a}$	$P_{A} = XF_{rA} + Y_{A} \left(\frac{F_{rB}}{2Y_{B}} - K_{a} \right)$ $P_{A} = F_{rA}, \text{ where } P_{A} \leq F_{rA}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F _{rB}	$2Y_{\rm B}$ $2Y_{\rm A}$ ^{-a}	Bearing B	_	$P_{\rm B} = F_{\rm rB}$

[Remarks] 1. These equations can be used when internal clearance and preload during operation are zero.

2. Radial load is treated as positive in the calculation, if it is applied in a direction opposite that shown in Fig. in Table 5-8.

5-4-2 Mean dynamic equivalent load

When load magnitude or direction varies, it is necessary to calculate the mean dynamic equivalent load, which provides the same length of bearing service life as that under the actual load fluctuation.

The mean dynamic equivalent load $(P_{\rm m})$ under different load fluctuations is described using Graphs (1) to (4).

As shown in Graph (5), the mean dynamic equivalent load under stationary and rotating load applied simultaneously, can be obtained using equation (5-37).

(1) Staged fluctuation	(2) Stageless fluctuation	(3) Fluctuation forming sine curve	(4) Fluctuation forming sine curve (upper half of sine curve)
P_{1} P_{2} P_{m} P_{n} P_{n} P_{n}	P P_{max} P_{max} P_{min} D $\Sigma n_i t_i$	$\begin{array}{c} P \\ P \\ P_{max} \\ P_{m} \\ P_{m} \\ 0 \\ \Sigma n_i t_i \\ \end{array}$	$P \qquad P_{max}$ $P_{m} \qquad P_{max}$ $0 \qquad \sum n_i t_i$
$P_{\rm m} = \sqrt[p]{\frac{P_{\rm 1}^{\ p} n_{\rm 1} t_{\rm 1} + P_{\rm 2}^{\ p} n_{\rm 2} t_{\rm 2} + \dots + P_{\rm n}^{\ p} n_{\rm n} t_{\rm n}}{n_{\rm 1} t_{\rm 1} + n_{\rm 2} t_{\rm 2} + \dots + n_{\rm n} t_{\rm n}}}$ (5-33)	$P_{\rm m} = \frac{P_{\rm min} + 2 P_{\rm max}}{3} \dots \dots (5-34)$	$P_{\rm m} = 0.68 P_{\rm max}$ (5-35)	$P_{\rm m} = 0.75 P_{\rm max}$ (5-36)

Symbols for Graphs (1) to (4)

$P_{\rm m}$: mean dynamic equivalent load	Ν
P_1	: dynamic equivalent load applied for t_1 hours at rotational speed n_1	Ν
P_2	: dynamic equivalent load applied for t_2 hours at rotational speed n_2	Ν
i E	: : :	
$P_{\rm n}$: dynamic equivalent load applied for $t_{ m n}$ hours at rotational speed $n_{ m n}$	Ν
$P_{\rm min}$	1 : minimum dynamic equivalent load	Ν
$P_{\rm ma}$	$_{\rm x}$: maximum dynamic equivalent load	Ν
Σn_i	t_i : total rotation in (t_1 to t_i) hours	
l p	: for ball bearings, $p = 3$	
1	for roller bearings, $p = 10/3$	

[Reference] Mean rotational speed $n_{\rm m}$ can be calculated using the following equation :

 $n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_{\rm m} t_{\rm m}}{t_1 + t_2 + \dots + t_{\rm m}}$

(5) Stationary load and rotating load acting simultaneously

 $P_{\rm m} = f_{\rm m} (P + P_{\rm u})$ (5-37)

where :

$P_{ m m}$: mean dynamic equivalent load	Ν
$f_{\rm m}$: coefficient (refer. Fig. 5-6)	
P : stationary load	Ν
$P_{\rm u}$: rotating load	Ν

Koyo

Fig. 5-6 Coefficient f_m

5-5 Basic static load rating and static equivalent load

5-5-1 Basic static load rating

Excessive static load or impact load even at very low rotation causes partial permanent deformation of the rolling element and raceway contacting surfaces. This permanent deformation increases with the load; if it exceeds a certain limit, smooth rotation will be hindered.

The basic static load rating is the static load which responds to the calculated contact stress shown below, at the contact center between the raceway and rolling elements which receive the maximum load.

- Self-aligning ball bearings --- 4 600 MPa
- Other ball bearings ------ 4 200 MPa
- Roller bearings ------ 4 000 MPa

The total extent of contact stress-caused permanent deformation on surfaces of rolling elements and raceway will be approximately 0.000 1 times greater than the rolling element diameter.

The basic static load rating for radial bearings is specified as the basic static radial load rating, and for thrust bearings, as the basic static axial load rating. These load ratings are listed in the bearing specification table, using C_{0r} and C_{0a} respectively.

These values are prescribed by ISO 78/1987 and are subject to change by conformance to the latest ISO standards.

5-5-2 Static equivalent load

The static equivalent load is a theoretical load calculated such that, during rotation at very low speed or when bearings are stationary, the same contact stress as that imposed under actual loading condition is generated at the contact center between raceway and rolling element to which the maximum load is applied.

For radial bearings, radial load passing through the bearing center is used for the calculation; for thrust bearings, axial load in a direction along the bearing axis is used.

The static equivalent load can be calculated using the following equations.

[Radial bearings]
The greater value obtained by the
following two equations is used.

$P_{0r} = X_0 F_r$	$+ Y_0 F_a$	 (5-38)
$P_{0r} = F_r$		 (5-39)

[Thrust bearings]

5-40)
.]
5-41)
Ν
Ν
Ν
Ν
n

5-5-3 Safety coefficient

The allowable static equivalent load for a bearing is determined by the basic static load rating of the bearing; however, bearing service life, which is affected by permanent deformation, differs in accordance with the performance required of the bearing and operating conditions.

Therefore, a safety coefficient is designated, based on empirical data, so as to ensure safety in relation to basic static load rating.

where :

$f_{\rm s}$: safety coefficient (ref. Table 5-9)	
C_0 : basic static load rating	Ν
P_0 : static equivalent load	Ν

Table 5-9 Values of safety coefficient f_s

		$f_{ m s}$ (min.)	
Operat	ing condition	Ball bearing	Roller bearing
With bearing rotation	When high accuracy is required	2	3
	Normal operation	1	1.5
	When impact load is applied	1.5	3
Without bear- ing rotation (occasional oscillation	Normal operation	0.5	1
	When impact load or uneven distribution load is applied	1	2

[Remark] For spherical thrust roller bearings, $f_s \ge 4$.

5-6 Allowable axial load for cylindrical roller bearings

Bearings whose inner and outer rings comprise either a rib or loose rib can accommodate a certain magnitude of axial load, as well as radial load. In such cases, axial load capacity is controlled by the condition of rollers, load capacity of rib or loose rib, lubrication, rotational speed etc.

For certain special uses, a design is available to accommodate very heavy axial loads. In general, axial loads allowable for cylindrical roller bearings can be calculated using the following equation, which are based on empirical data.

$$F_{\rm ap} = 9.8 f_{\rm a} \cdot f_{\rm b} \cdot f_{\rm p} \cdot d_{\rm m}^{2}$$
(5-43)

where :

- $F_{\rm ap}$: maximum allowable axial load Ν f_a : coefficient determined from
- loading condition (Table 5-10) $f_{\rm b}$: coefficient determined from
- bearing diameter series (Table 5-11) : coefficient for rib surface pressure $f_{\rm D}$
- (Fig. 5-7)
- $d_{\rm m}$: mean value of bore diameter d and outside diameter Dmm

$$\left(\frac{d+D}{2}\right)$$

Table 5-10 Values of coefficient determined from loading condition f_a

$f_{\rm a}$	
1	
2	
3	
	1 2

Table 5-11 Values of coefficient determined from bearing diameter series $f_{\rm b}$

Diameter series	fь
9	0.6
0	0.7
2	0.8
3	1.0
4	1.2

[Example 1] Bearing service life (time)	[Example 2] Bearing service life (time)
with 90 % reliability	with 96 % reliability
(Conditions)	(Conditions)
Deep groove ball bearing : 6308	Deep groove ball bearing : 6308
Radial load $F_r = 3500$ N	Radial load $F_r = 3500$ N
Axial load not applied $(F_a = 0)$	Axial load $F_a = 1000$ N
Rotational speed $n = 800 \text{ min}^{-1}$	Rotational speed $n = 800 \text{ min}^{-1}$
1 Basic dynamic load rating (C_r) is obtained from	The form the bearing specification table ;
() Basic dynamic load rating (C _r) is obtained from the bearing specification table. $C_r = 40.7 \text{ kN}$ (2) Dynamic equivalent radial load (P _r) is calculated using equation (5-30). $P_r = F_r = 3500 \text{ N}$ (3) Bearing sevice life (L _{10h}) is calculated using equation (5-2). $L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p$ $= \frac{10^6}{60 \times 800} \times \left(\frac{40.7 \times 10^3}{3500}\right)^3 = 32800 \text{ h}$	() From the bearing specification table ; • Basic load rating $(C_r, C_{0r}) f_0$ factor is obtained. $C_r = 40.7 \text{ kN}$ $C_{0r} = 24.0 \text{ kN}$ $f_0 = 13.2$ • Values <i>X</i> and <i>Y</i> are obtained by comparing value <i>e</i> , calculated from value $f_0 F_a / C_{0r}$ via proportional interpolation, with value $f_0 F_a / F_r$. $\frac{f_0 F_a}{C_{0r}} = \frac{13.2 \times 1000}{24.0 \times 10^3} = 0.550$ $e = 0.22 + (0.26 - 0.22) \times \frac{(0.550 - 0.345)}{(0.689 - 0.345)}$ = 0.24 $\frac{F_a}{F_r} = \frac{1000}{3500} = 0.29 > e$ The result is, X = 0.56 $Y = 1.99 - (1.99 - 1.71) \times \frac{(0.550 - 0.345)}{(0.689 - 0.345)}$ = 1.82 (2) Dynamic equivalent load (P_r) is obtained using equation (5-30). $P_r = XF_r + YF_a$ $= (0.56 \times 3500) + (1.82 \times 1000) = 3780 \text{ N}$ (3) Service life with 90 % reliability (L_{10h}) is obtained using equation (5-2). $L_{10h} = \frac{10^6}{60\pi} (\frac{C}{P})^p$ $= \frac{10^6}{60 \times 800} \times (\frac{40.7 \times 10^3}{3780})^3 \doteq 26000 \text{ h}$ (4) Service life with 96 % reliability (L_{4ah}) is obtained using equation (5-8). According to Table 5-3, $a_1 = 0.53$, $a_2 = 1$, $a_3 = 1$. $L_{4ah} = a_1 a_2 a_3 L_{10h} = 0.53 \times 1 \times 1 \times 26000$

Fig. 5-7 Relationship between coefficient for rib surface pressure f_p and value $d_m n$ $(n: rotational speed, min^{-1})$

[Example 3] Bearing service life (total revolution)	[Example 4] Bearing size selection
(Conditions)Bearing ABearing BTapered roller bearing Bearing A : 30207 JR Bearing B : 30209 JRBearing ABearing BRadial load $F_{rA} = 5 200 N$ $F_{rB} = 6 800 N$ Fraductorial formula fo	(Conditions) Deep groove ball bearing : 62 series Required service life : more than 10 000 h Radial load $F_r = 2 000 \text{ N}$ Axial load $F_a = 300 \text{ N}$ Rotational speed $n = 1 600 \text{ min}^{-1}$

1) From the bearing specification table, the following specifications are obtained.

	Basic dynamic load rating (C_r)	е	$X^{1)}$	$Y^{(1)}$
Bearing A	55.1 kN	0.37	0.4	1.60
Bearing B	67.2 kN	0.40	0.4	1.48

[Note] 1) Those values are used, where $F_a/F_r > e$. Where $F_a/F_r \leq e, X = 1, Y = 0$.

2 Axial load applied to shafts must be calculated, considering the fact that component force in the axial direction is generated when radial load is applied to tapered roller bearings. (ref. equation 5-31, Table 5-8)

$$\frac{F_{\rm rA}}{2 Y_{\rm A}} + K_{\rm a} = \frac{5200}{2 \times 1.60} + 1\,600 = 3\,225\,\,{\rm N}$$
$$\frac{F_{\rm rB}}{2 Y_{\rm B}} = \frac{6\,800}{2 \times 1.48} = 2\,297\,\,{\rm N}$$

Consequently, axial load $\frac{F_{rA}}{2V_{t}} + K_{a}$ is applied to bearing B.

(3) Dynamic equivalent load (P_r) is obtained from Table 5-8.

$$P_{\rm rA} = F_{\rm rA} = 5\,200\,\,{\rm N}$$
$$P_{\rm rB} = XF_{\rm rB} + Y_{\rm B}\,\left(\frac{F_{\rm rA}}{2\,\,Y_{\rm A}} + \,K_{\rm a}\right)$$
$$= 0.4 \times 6\,800 + \,1.48 \times 3\,225 = 7493\,{\rm N}$$

(4) Each bearing service life (L_{10}) is calculated using equation (5-1).

$$\begin{split} L_{10\text{A}} &= \left(\frac{C_{\text{rA}}}{P_{\text{rA}}}\right)^{10/3} = \left(\frac{55.1 \times 10^3}{5\,200}\right)^{10/3} \\ & \doteq \underline{2\,610 \times 10^6 \,\text{revolutions}} \\ L_{10\text{B}} &= \left(\frac{C_{\text{rB}}}{P_{\text{rB}}}\right)^{10/3} = \left(\frac{67.2 \times 10^3}{7\,493}\right)^{10/3} \\ & \doteq 1\,500 \times 10^6 \,\text{revolutions} \end{split}$$

(1) The dynamic equivalent load (P_r) is hypothetically calculated.

The resultant value, $F_a/F_r = 300/2\ 000 = 0.15$, is smaller than any other values of e in the bearing specification table.

Hence, JTEKT can consider that $P_r = F_r = 2000$ N. 2 The required basic dynamic load rating (C_r) is calculated according to equation (5-4)

$$C_{\rm r} = P_{\rm r} \left(L_{10\rm h} \times \frac{60n}{10^6} \right)^{1/p}$$

 $= 2000 \times (10000 \times \frac{60 \times 1600}{106})^{1/3}$ = 19730 N

③ Among those covered by the bearing specification table, the bearing of the 62 series with C_r exceeding 19730 N is 6206 R, with bore diameter for 30 mm. (4) The dynamic equivalent load obtained at step (1) is confirmed by obtaining value e for 6206 R. Where C_{0r} of 6206 R is 12.8 kN, and f_0 is 13.0 $f_0 F_a / C_{0r} = 13.0 \times 300/12\ 800 = 0.305$ Then, value *e* can be calculated using proportional interpolation. $e = 0.19 + (0.22 - 0.19) \times \frac{(0.305 - 0.172)}{(0.345 - 0.172)}$

= 0.21

As a result, it can be confirmed that

 $F_{\rm s}/F_{\rm r} = 0.15 \le e$. Hence, $P_r = F_r$.

[Example 7] Calculation of service life of spur gear shaft bearings

(Conditions)

lly machined)
$\alpha_1 = \alpha_2 = 20^{\circ}$
$D_{\mathrm{p1}}=$ 360 mm
D_{p2} = 180 mm
W = 150 kW
$n = 1 \ 000 \ \mathrm{min}^{-1}$

 Using equations (5-12) and (5-13), theoretical loads applied to gears (tangential load, *K*_t; radial load, *K*_r) are calculated.

[Gear 1]

$$K_{t1} = \frac{19.1 \times 10^6 W}{D_p n} = \frac{19.1 \times 10^6 \times 150}{360 \times 1000}$$

= 7 958 N

 $K_{
m r1}$ = $K_{
m t1}$ tan $lpha_1$ = 2 896 N

[Gear 2]

$$K_{t2} = \frac{19.1 \times 10^6 \times 150}{180 \times 1000} = 15\ 917\ N$$
$$K_{r2} = K_{t2} \tan \alpha_2 = 5\ 793\ N$$

(2) The radial load applied to the bearing is calculated, where the load coefficient is determined as $f_w = 1.5$ from Table 5-5, and the gear coefficient as $f_g = 1.2$ from Table 5-7.

[Bearing A]

• Load consisting of K_{t1} and K_{t2} is :

$$K_{tA} = f_w f_g \left(\frac{a_2}{c} K_{t1} + \frac{b_2}{c} K_{t2}\right)$$

= 1.5 × 1.2 × $\left(\frac{265}{360} \times 7\,958 + \frac{115}{360} \times 15\,917\right)$ = 19 697 N

• Load consisting of K_{r1} and K_{r2} is :

$$\begin{aligned} K_{\rm rA} &= f_{\rm w} f_{\rm g} \left(\frac{a_2}{c} K_{\rm r1} - \frac{b_2}{c} K_{\rm r2} \right) \\ &= 1.5 \times 1.2 \times \left(\frac{265}{360} \times 2\,896 - \frac{115}{360} \times 5\,793 \right) \\ &= 506 \,\,\mathrm{N} \end{aligned}$$

Operating condition: accompanied by impact Installation locations $a_1 = 95 \text{ mm}, a_2 = 265 \text{ mm},$ $b_1 = 245 \text{ mm}, b_2 = 115 \text{ mm},$

- $c = 360 \,\mathrm{mm}$
- Combining the loads of $K_{\rm tA}$ and $K_{\rm rA}$, the radial load ($F_{\rm rA}$) applied to bearing A can be calculated as follows :

$$F_{\rm rA} = \sqrt{K_{\rm tA}^2 + K_{\rm rA}^2}$$

= $\sqrt{19.697^2 + 506^2}$ = 19703 N

[Bearing B]

• Load consisting of K_{t1} and K_{t2} is :

$$\begin{aligned} K_{\rm tB} &= f_{\rm w} f_{\rm g} \left(\frac{a_1}{c} K_{\rm t1} + \frac{b_1}{c} K_{\rm t2} \right) \\ &= 1.5 \times 1.2 \times \left(\frac{95}{360} \times 7\,958 + \frac{245}{360} \times 15\,917 \right) = 23\,278 \; \mathrm{N} \end{aligned}$$

• Load consisting of K_{r1} and K_{r2} is :

$$K_{\rm rB} = f_{\rm w} f_{\rm g} \left(\frac{a_1}{c} K_{\rm r1} - \frac{b_1}{c} K_{\rm r2} \right)$$
$$= 1.5 \times 1.2 \times \left(\frac{95}{360} \times 2\,896 - \frac{245}{360} \times 5\,793 \right) = -5\,721\,\rm N$$

• The radial load (*F*_{rB}) applied to bearing B can be calculated using the same steps as with bearing A.

$$F_{\rm rB} = \sqrt{K_{\rm tB}^2 + K_{\rm rB}^2}$$
$$= \sqrt{23\,278^2 + (-5\,721)^2} = 23\,971\,\rm N$$

③ The following specifications can be obtained from the bearing specification table.

Where $F_a/F_r \le e$, X = 1, Y = 0.

When an axial load is not applied externally, if the radial load is applied to the tapered roller bearing, an axial component force is generated. Considering this fact, the axial load applied from the shaft and peripheral parts is to be calculated :

(Equation 5-31, Table 5-8)

$$\frac{F_{\rm rB}}{2 Y_{\rm B}} = \frac{23\,971}{2 \times 1.74} > \frac{F_{\rm rA}}{2 Y_{\rm A}} = \frac{19\,703}{2 \times 1.74}$$

According to the result, it is clear that the axial component force $(F_{\rm rB}/2Y_{\rm B})$ applied to bearing B is also applied to bearing A as an axial load applied from the shaft and peripheral parts.

(5) Using the values listed in Table 5-8, the dynamic equivalent load is calculated, where K_a = 0 :

$$P_{rA} = XF_{rA} + Y_A \frac{F_{rB}}{2 Y_B}$$

= 0.4 × 19703 × 1.74 × $\frac{23971}{2 × 1.74}$
= 19867 N
 $P_{rB} = F_{rB} = 23971$ N

(6) Using equation (5-2), the basic rating life of each bearing is calculated :

[Bearing A]

$$L_{10hA} = \frac{10^{6}}{60n} \left(\frac{C_{rA}}{P_{A}}\right)^{p}$$

= $\frac{10^{6}}{60 \times 1000} \times \left(\frac{146 \times 10^{3}}{19\ 867}\right)^{10/3}$
\Rightarrow 12\ 900\ h

[Bearing B]

$$\begin{split} L_{10\text{hB}} &= \frac{10^6}{60n} \left(\frac{C_{\text{rB}}}{P_{\text{B}}}\right)^p \\ &= \frac{10^6}{60 \times 1\,000} \, \times \, \left(\frac{176 \times 10^3}{23\,971}\right)^{10/3} \\ &\rightleftharpoons \underline{12\,800\,\text{h}} \end{split}$$

Using equation (5-9), the system service life (L_{10hS}) using a pair of bearings is :

Reference -

6. Boundary dimensions and bearing numbers

6-1 Boundary dimensions

Bearing boundary dimensions are dimensions required for bearing installation with shaft or housing, and as described in Fig. 6-1, include the bore diameter, outside diameter, width, height, and chamfer dimension.

These dimensions are standardized by the International Organization for Standardization (ISO 15). JIS B 1512 "rolling bearing boundary dimensions" is based on ISO.

These boundary dimensions are provided, classified into radial bearings (tapered roller bearings are provided in other tables) and thrust bearings.

Boundary dimensions of each bearing are listed in Appendixes at the back of this catalog. In these boundary dimension tables, the outside diameter, width, height, and chamfer dimensions related to bearing bore diameter numbers and bore diameters are listed in diameter series and dimension series.

Reference

- 1) Diameter series is a series of nominal bearing outside diameters provided for respective ranges of bearing bore diameter; and, a dimension series includes width and height as well as diameters.
- 2) Tapered roller bearing boundary dimensions listed in the Appendixes are adapted to conventional dimension series (widths and diameters). Tapered roller bearing boundary dimensions provided in JIS B 1512-2000 are new dimension series based on ISO 355 (ref. descriptions before the bearing specification table); for reference, the bearing specification table covers numeric codes used in these dimension series.

 $r_1 + r_1$

 T_1

Cross-section dimensions of radial bearings and thrust bearings expressed in dimension series can be compared using Figs. 6-2 and 6-3.

In this way, many dimension series are provided; however, not all dimensions are practically adapted.

Some of them were merely prescribed, given expected future use.

6-2 Dimensions of snap ring grooves and locating snap rings

JIS B 1509 "rolling bearing -radial bearing with locating snap ring-dimensions and tolerances" conforms to the dimensions of snap ring groove for fitting locating snap ring on the outside surface of bearing and the dimensions and tolerances of locating snap ring.

Fig. 6-3 Thrust bearing dimension series diagram (diameter series 5 omitted)

Fig. 6-2 Radial bearing dimension series diagram (diameter series 7 omitted)

Fig. 6-1 Bearing boundary dimensions

(Ex. 4)

320⁰⁵ J R P 6 X

ŤŤT –Ť

6-3 Bearing number

A bearing number is composed of a basic number and a supplementary code, denoting bearing specifications including bearing type, boundary dimensions, running accuracy, and internal clearance.

Bearing numbers of standard bearings corresponding to JIS B 1512 "rolling bearing boundary dimensions" are prescribed in JIS B 1513.

As well as these bearing numbers, JTEKT uses supplementary codes other than those provided by JIS.

Among basic numbers, bearing series codes are listed in Table 6-1, and the composition of bearing numbers is described in Table 6-2, showing the order of arrangement of the parts.

[Examples of bearing numbers]

(Ex. 2)

72 10 C DT P 5 -Tolerance class code (class 5) - Matched pair or stack code (tandem arrangement) Contact angle code (nominal contact angle, 15°) - Bore diameter number

(nominal bore diameter, 50 mm)

-Bearing series code single-row angular contact ball bearing of dimension series 02

(Ex. 3)

NU3 18 C3 P6

 Tolerance class code (class 6)

Internal clearance code (clearance C3)

Bore diameter number (nominal bore diameter, 90 mm)

Bearing series code (single-row cylindrical roller bearing) of dimension series 03

Tolerance class code (class 6X)
Internal design code
(high load capacity) Code denoting that boundary
dimensions and sub unit dimensions are based on ISO standards.
Bore diameter number (nominal bore diameter, 25 mm)
 Bearing series code (single-row tapered roller bearing of dimension series 20
(Ex. 5) 232/500 RH K C4
Internal clearance code (clearance C4)
Bearing ring shape code
(inner ring tapered bore (taper 1 : 12)
Internal design code
rollers, pressed cage
└──Bore diameter number (nominal bore diameter, 500 mm)
Bearing series code (spherical roller bearing of dimension series 32)
(Ex. 6)
512 15
Bore diameter number (nominal bore diameter, 75 mm)
└── Bearing series code (single direction thrust ball bearing)
of dimension series 12

	Bearing	Туре	Dimension series code			
Bearing type	series code	code	$\begin{array}{c} \text{Width} \\ \text{series}^{1)} \end{array}$	Diameter series		
	68	6	(1)	8		
	69	6	(1)	9		
Single-row	160 ²⁾	6	(0)	0		
deep groove	60	6	(1)	0		
ball bearing	62	6	(0)	2		
	63	6	(0)	3		
	64	6	(0)	4		
Double-row	42	4	(2)	2		
deep groove ball bearing	43	4	(2)	3		
(with filling slot)	79	7	(1)	9		
Single row	79			-		
Single-row angular	-	7	(1)	0		
contact	72	7	(0)	2		
ball bearing	73	7	(0)	3		
	74	7	(0)	4		
Double-row angular		(0)				
contact	32	(0)	3	2		
ball bearing (with filling slot)	33	(0)	3	3		
Double-row angular	52	5	(3)	2		
contact	53	5	(3)	3		
ball bearing			(0)			
	12	1	(0)	2		
	22	2	(2)	2		
Self-aligning	13	1	(0)	3		
ball bearing	23	2	(2)	3		
	112 ²⁾	1	(0) ³⁾	2		
	113 ²⁾	1	(0) ³⁾	3		
	NU 10	NU 4)	1	0		
	NU 2	NU 4)	(0)	2		
Single-row	NU 22	NU ⁴⁾	2	2		
cylindrical	NU 32	NU 4)	3	2		
roller bearing	NU 3	NU 4)	(0)	3		
	NU 23	NU ⁴⁾	2	3		
	NU 4	NU ⁴⁾	(0)	4		
Double-row			. ,			
cylindrical	NNU 49	NNU	4	9		
roller bearing	NN 30	NN	3	0		
Single-row	NA 48	NA	4	8		
needle	NA 49	NA	4	9		
roller bearing	NA 59	NA	5	9		
Double-row needle roller bearing	NA 69	NA	6	9		

Table 6-1Bearing series code

_ Dimension series code

Bearing

B	Bearing	Туре	Dimension series code		
Bearing type	series code	code	Width series	Diamete series	
	329	3	2	9	
	320	3	2	0	
	330	3	3	0	
	331	3	3	1	
Tapered	302	3	0	2	
roller bearing	322	3	2	2	
	332	3	3	2	
	303	3	0	3	
	313	3	1	3	
	323	3	2	3	
	239	2	3	9	
	230	2	3	0	
	240	2	4	0	
	231	2	3	1	
Spherical roller bearing	241	2	4	1	
Toller bearing	222	2	2	2	
	232	2	3	2	
	213 ²⁾	2	0	3	
	223	2	2	3	
0	511	5	1	1	
Single direction	512	5	1	2	
thrust	513	5	1	3	
ball bearing	514	5	1	4	
Single direction	532	5	3	2	
thrust ball bearing with spherical back	533	5	3	3	
face	534	5	3	4	
Double	522	5	2	2	
direction thrust	523	5	2	3	
ball bearing	524	5	2	4	
Double direction thrust	542	5	4	2	
ball bearing	543	5	4	3	
with spherical back faces	544	5	4	4	
Spherical	292	2	9	2	
thrust	293	2	9	3	
roller bearing	294	2	9	4	

Kovo

1) Width series codes in parentheses are omitted in bearing series codes.

2) These are bearing series codes customarily used.

3) Nominal outer ring width series (inner rings only are wide).

4) Besides NU type, NJ, NUP, N, NF, and NH are provided.

		Table 6-2	2 Bearing	number configu	iration										
		Basic numbe	r		Supplementa			code)		1		-		
Order of arrengement	Bearing serie code	s Bore diameter No.	Contact angle code	Internal design code, cage guide code	Shield/seal code	Ring shape co lubrication hole/groove c			rial code, ial treatment code	Matched pair or stack code	Internal clearance code, preload code		Cage material/ shape code	Tolerance code	Grease code
Bearing set 68 69 60 (For standa More diame /0.6 1 /1.5 9 00 01	Deep groove			GST Angul above provic J Taper width, inside R With of rollers RH With of and p RHA With of	ring of angul ineral, C2 clea ar contact ba with standar ded red roller beau , contact angle diameter cor convex asymm s and machine convex symm ressed cage	ed cage letric rollers letric rollers	l bearing d) cribed arance uter ring ng small	NY SG W W33 W33 Mate Cor not give F H	on cylindrical rol outside surface Lubrication hole on spherical roll outside surface erial code, specia de High carbon chr	n synthetic re le surface pro inner ring bo and lubricatio provided and lubricatio er bearing ou provided al treatment of ome bearing	ovided ore surface on groove uter ring on groove ter ring code	CT NA S L M H Spacer o +	Radial internal cle ance for electric motor bearing Non-interchangea bearing radial inte (C1NA to C5NA) Slight preload Light preload Medium preload Heavy preload Code Spacer wice the end of Inner and outer ris spacers provided Nuter ris provided	bearin (Cylind bearin ble cylindric rnal clearan (Preload fo contact ba (Preload fo contact ba lth (mm) is a each code. ng (De ba	rical roller ng al roller ce r angular Il bearing
02 03 04 /22 05 : 96 /500 /2500	22 be 25 ca : m 480 di 500 2500	ore diameters (earing in the bo ameter range (an be obtained ultiplying their ameter numbe	bre 04 to 96 by bore r by five.	(with a construction of the construction of th	no cage) pde th sides ZZ Fixed ZX Remo ZU RU Non-o RS	pe ball or rolle I shield ovable shield contact seal act seal	er bearing	SH S0 S1 S2 Mate DB DF	Up to 150 °C Up to 200 °C Up to 250 °C	Dimensio treatmen k code, cage rangement angement		/S +DP +IDP +ODP Cage ma // YS FT FY FW	Outer ring spacer Inner ring spacer Inner and outer rin spacers provided Inner ring spacer Outer ring spacer aterial/type code Steel sheet Stainless steel sh Phenol resin High-tensile brass (separable type)	provided [] provided [] provided s provided s provided r] eet	Cylindrical Cylindrical oller bearing, spherical oller bearing (Pressed (cage)
AC B C CA E B (omi C D DJ Internal des R Hig (De	gh load capac eep groove ba	∫ ball t n 17°] Tape 39" ∫ bear	indrical roller	RD 2F Ring shape or K Inner K30 Inner N Snap surfac NR Snap	ode, lubricat ring tapered l ring groove o ce provided ring groove a	tion hole/groc bore provided bore provided on outer ring or and locating sr de surface pro	(1 : 12) (1 : 30) utside	Q3 Inter C1 C2 CN C3 C4 C5 M1 t0 M6		e cage (Roller de, preload indard clearau nce indard clearau clearance for bearing undard Ra clearance do indard an	bearing) code nce (Radial internal clearance for radial bearing	MG FG FP Omitted P6 P6X P5 P4 P2 Grease 0 A2 AC B5	Polyamide Carbon steel Ce code (JIS) Class 0 Class 6 Class 6X Class 5 Class 4 Class 2		olded cage) type cage)

Koyo

7. Bearing tolerances

7-1 Tolerances and tolerance classes for bearings

Bearing tolerances and permissible values for the boundary dimensions and running accuracy of bearings are specified. These values are prescribed in JIS B 1514

"tolerances for rolling bearings." (These JIS standards are based on ISO standards.)

Bearing tolerances are standardized by classifying bearings into the following six classes (accuracy in tolerances becomes higher in the order described): 0, 6X, 6, 5, 4 and 2.

Class 0 bearings offer adequate performance for general applications; and, bearings of class 5 or higher are required for demanding applications and operating conditions including those described in Table 7-1.

These tolerances follow ISO standards, but some countries use different names for them. Tolerances for each bearing class, and organizations concerning bearings are listed in Table 7-2.

- Boundary dimension accuracy (items on shaft and housing mounting)
 - dimensions
 - Tolerances for bore diameter, outside diameter, ring width, assembled bearing width
 - Tolerances for set bore diameter and set outside diameter of rollers
 - Tolerance limits for chamfer dimensions
 - Permissible values for width variation
 - Tolerance and permissible values for tapered bore
- Running accuracy
 - (items on runout of rotating elements)
 - Permissible values for radial and axial runout of inner and outer rings
 - Permissible values for perpendicularity of inner ring face
 - Permissible values for perpendicularity of outer ring outside surface
 - Permissible values for thrust bearing raceway thickness

Accuracies for dimensions and running of each bearing type are listed in Tables 7-3 through 7-10; and, tolerances for tapered bore and limit values for chamfer dimensions of radial bearings are in Tables 7-11 and 7-12.

Table 7-1 High precision bearing applications

Required performance	Applications	Tolerance class
	Acoustic / visual equipment spindles (VTR, tape recorders)	P 5, P 4
	Radar / parabola antenna slewing shafts	P 4
High accuracy in runout is required for	Machine tool spindles	P 5, P 4, P 2, ABEC 9
rolling elements.	Computers, magnetic disc spindles	P 5, P 4, P 2, ABEC 9
3 1 1 1	Aluminum foil roll necks	P 5
	Multi-stage mill backing bearings	P 4
	Dental spindles	P 2, ABMA 5P, ABMA 7P
	Superchargers	P 5, P 4
	Jet engine spindles and accessories	P 5, P 4
High apped rotation	Centrifugal separators	P 5, P 4
High speed rotation	LNG pumps	P 5
	Turbo molecular pump spindles and touch-down	P 5, P 4
	Machine tool spindles	P 5, P 4, P 2, ABEC 9
	Tension reels	P 5, P 4
Low friction or	Control equipment (synchronous motors, servomotors, gyro gimbals)	P 4, ABMA 7P
low friction variation	Measuring instruments	P 5
is required.	Machine tool spindles	P 5, P 4, P 2, ABEC 9

Table 7-2	Bearing type	e and tolerance class
-----------	--------------	-----------------------

	F	Bearing	1 type	Applied standards				erance class			Tolerance
Di				Applied standalds	Olara C	-			Class 4	01	table
_	10		bearing		Class 0		Class 6	Class 5		Class 2	
Ang	gular co	ontact k	ball bearing	JIS B 1514-1	Class 0	-	Class 6	Class 5	Class 4	Class 2	
Sel	f-alignii	ng ball	bearing	_	Class 0	-	-	-	-	-	Table 7-3
Cyl	indrical	l roller	bearing		Class 0	-	Class 6	Class 5	Class 4	Class 2	
	edle rol achinec			JIS B 1536-1	Class 0	-	-	-	-	-	
			c series e-row)	JIS B 1514-1	Class 0	Class 6X	(Class 6)	Class 5	Class 4	Class 2	Table 7-5
Tap	oered er		c series lle or four-row)	BAS 1002	Class 0	-	-	-	-	-	Table 7-6
bea	ring	Inch series		ANSI/ABMA	Class 4	-	Class 2	Class 3	Class 0	Class 00	Table 7-7
			c series ries)		Class PK	-	Class PN	Class PC	Class PB	-	Table 7-8
Sph	nerical	(J-series)		JIS B 1514-1	Class 0	-	-	-	-	-	Table 7-3
Thr	ust bal	l bearir	ng		Class 0	-	Class 6	Class 5	Class 4	-	Table 7-9
Sph	nerical	thrust r	oller bearing	JIS B 1514-2	Class 0	-	-	-	-	-	Table 7-10
	cision l port be		ew		-	-	-	Class P5Z	Class P4Z	-	-
Dou con	uble dir itact thi	rection rust bal	angular II bearing	- JTEKT standards	-	-	-	Equivalent to class 5	Equivalent to class 4	-	-
			Radial bearing	ISO 492	Normal Class	Class 6X	Class 6	Class 5	Class 4	Class 2	-
rison	IS	0	Thrust bearing	ISO 199	Normal Class	-	Class 6	Class 5	Class 4	_	_
(Reference) Class comparison	Di Bi N	S	Radial and thrust bearings	DIN 620 BS 6107 NF E 22-335	Normal Class	Class 6X	Class 6	Class 5	Class 4	Class 2	_
ence) Cla			Radial bearing	ABMA std. 20	ABEC 1 RBEC 1	-	ABEC 3 RBEC 3	ABEC 5 RBEC 5	ABEC 7 -	ABEC 9 -	-
(Refere	AN AB	SI MA	Instrument ball bearing	ABMA std. 12	-	-	Class 3P	Class 5P Class 5T	Class 7P Class 7T	Class 9P	Table 7-4
Ta		Tapered roller bearing	ABMA std. 19	Class 4 Class K	-	Class 2 Class N	Class 3 Class C	Class 0 Class B	Class 00 Class A	Table 7-7	

(Beferen	ce) Standards and organizations concerned with bearings
	of orandardo and organizatione concerned with beamige
JIS	: Japanese Industrial Standard
BAS	: The Japan Bearing Industrial Association Standard
ISO	: International Organization for Standardization
ANSI	: American National Standards Institute, Inc.
ABMA	: American Bearing Manufactures Association
DIN	: Deutsches Institut für Normung
BS	: British Standards Institution
NF	: Association Francaise de Normalisation

7. Bearing tolerances

Table 7-3 (1) Radial bearing tolerances (tapered roller bearings excluded)

= JIS B 1514-1 = (1) Inner ring (bore diameter)

							(1	l) Inn	ier r	ing (b	ore di	iame	ter)		- 010 1	5 15	1	_																U	nit : µm				
N	omina	l bore		Sin	gle p	lane m	ean b	ore dia	amete	r devia	tion		Single b	ore			Single	plan	е	bor	e diam	eter v	variatio	on V_d	sp				Mean	bore d	liamet	er var	iation	Nomin	al bore				
di	amete d	er					Δ	d_{mp}					diamete	$\int_{ds^1} ds$		Diam	neter s	eries 7	, 8, 9	Dia	neter	series	s 0, 1	Diam	eter se	eries 2	, 3, 4	${\mathop{\rm Dia.}\limits^{1)}}_{\rm series}$			V_{dmp}			diame				-	
	mı	n	cl	ass 0	cl	ass 6	cla	ass 5	cla	ass 4	clas	s 2	class 4		class 2	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 0	class 6	class 5	class 4	class 2	class 0	class 6	class 5	class 4	class 2	n	ım	T			
0	ver	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper I	ower	upper lower	r upp	per lower		ma	ax.			ma	ax.			ma	ıx.		max.			max.			over	up to	Ť		-	
	-	0.6	0	- 8	0	- 7	0	- 5	0	- 4	0 -	2.5	0 - 4	C) – 2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	-	0.6			-	
	0.6	2.5	0	- 8	0	- 7	0	- 5	0	- 4	0 -	2.5	0 - 4	C) – 2.5	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	0.6	2.5	1		_ ↑ ,	
	2.5	10	0	- 8	0	- 7	0	- 5	0	- 4		2.5	0 - 4	C	-	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	2.5	10	ϕD	· +	$+ \phi d$	ļ
	10	18	0	- 8	0	- 7	0	- 5	0	- 4	0 -	2.5	0 - 4	C	. 2.0	10	9	5	4	8	7	4	3	6	5	4	3	2.5	6	5	3	2	1.5	10	18				
	18	30	0	- 10	0	- 8	0	- 6	0	- 5	0 -	2.5	0 - 5	5 C		13	10	6	5	10	8	5	4	8	6	5	4	2.5	8	6	3	2.5	1.5	18	30		<u> </u>	-	
	30	50	0	- 12	0	- 10	0	- 8	0	- 6	0 -	- 2.5	0 - 6	6 C) – 2.5	15	13	8	6	12	10	6	5	9	8	6	5	2.5	9	8	4	3	1.5	30	50	•			
	50	80	0	- 15	0	- 12	0	- 9	0	- 7	0 -	4	0 - 7	' C) -4	19	15	9	7	19	15	7	5	11	9	7	5	4	11	9	5	3.5	2	50	80	(Cylindrica	l bore	
	80	120	0	- 20	0	- 15	0	- 10	0	- 8	0 -	- 5	0 - 8	8 C) -5	25	19	10	8	25	19	8	6	15	11	8	6	5	15	11	5	4	2.5	80	120				
1	20	150	0	- 25	0	- 18	0	- 13	0	- 10	0 -	- 7	0 - 10) () -7	31	23	13	10	31	23	10	8	19	14	10	8	7	19	14	7	5	3.5	120	150		В		
1	50	180	0	- 25	0	- 18	0	- 13	0	- 10	0 -	7	0 - 10) () -7	31	23	13	10	31	23	10	8	19	14	10	8	7	19	14	7	5	3.5	150	180			-	
1	80	250	0	- 30	0	- 22	0	- 15	0	- 12	0 -	- 8	0 - 12	2 0) -8	38	28	15	12	38	28	12	9	23	17	12	9	8	23	17	8	6	4	180	250	T			
2	250	315	0	- 35	0	- 25	0	- 18	0	- 15	-	-	0 - 15	i –		44	31	18	15	44	31	14	11	26	19	14	11	-	26	19	9	8	-	250	315	Ť		1	
1	815	400	0	- 40	0	- 30	0	- 23	0	- 18	-	-	0 - 18	-		50	38	23	18	50	38	18	14	30	23	18	14	-	30	23	12	9	-	315	400			_	
4	100	500	0	- 45	0	- 35	0	-28	0	-23	-	-	0 - 23	-		56	44	28	23	56	44	21	17	34	26	21	17	-	34	26	14	12	-	400	500		Taper 1	<u>i</u> †	_
Ę	500	630	0	- 50	0	- 40	0	- 35	-	-	-	-		-		63	50	35	-	63	50	26	-	38	30	26	-	-	38	30	18	-	-	500	630	ϕD	or 1/30		l
6	630	800	0	- 75	0	- 50	0	- 45	-	-	-	-		-		94	63	45	-	94	63	34	-	56	38	34	-	-	56	38	23	-	-	630	800		01 30	•	
8	300	1 000	0	- 100	0	- 60	0	- 60	-	-	-	-		-		125	75	60	-	125	75	45	-	75	45	45	-	-	75	45	30	-	-	800	1 000			4	
1 (000	1 250	0	- 125	0	- 75	0	- 75	-	-	-	-		-		156	94	75	-	 156	94	56	-	94	56	56	-	-	94	56	38	-	-	1 000	1 250	+			
12	250	1 600	0	- 160	-	-	-	-	-	-	-	-		-		200	-	-	-	200	-	-	-	120	-	-	-	-	120	-	-	-	-	1 250	1 600	_	Tapered	bore	
16	600	2 000	0	- 200	-	-	-	-	-	-	-	-		-		250	-	-	-	250	-	-	-	150	-	-	-	-	150	-	-	-	-	1 600	2 000				

(2) Inner ring (running accuracy and width)

Nomi diam		bore r	e Radial runout of assembled bearing inner ring $K_{\rm ia}$ $S_{\rm d}$ $S_{\rm ia}$													Single inr	ner ri ⊿ _{Bs}	ng width		devi	ation				Sing	gle in		g wid	th devia	ation		Inn	er ring	width V _{Bs}	variat		diame	al bore ter d
	mm	ı	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	cla	ss 0	class 6	C	lass 5		cl	ass 4	cl	lass 2	cla	ISS (0 4)	cla	ss 6 4)	-	SS 5 4)	class	ses 4, 2	class 0	class 6	class 5	class 4	class 2		1m
over	r l i	up to		max. max. ma										<u> </u>	lower	upper lower	uppe	rlower	-	upper	lower	upper	lower	upper		upper		upper	lower	upper	lower			max.			over	up to
_		0.6	10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	10		0 0	- 40		0	- 40	0	- 40	-	_	-	_	0	- 250	0	- 250	12	12	5	2.5	1.5	_	0.6
0.	.6	2.5	10	5	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	40	0 - 4	0 0	- 40		0	- 40	0	- 40	_	_	_	_	0	- 250	0	- 250	12	12	5	2.5	1.5	0.6	2.5
2.		10	10	6	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	120	0 - 12		- 40		0	- 40	0	- 40	0	- 250	0	- 250	0	- 250	0	- 250	15	15	5	2.5	1.5	2.5	
10		18	10	7	4	2.5	1.5	7	3	1.5	7	3	1.5	0 -	100	0 - 12	_	- 80		0	- 80	0	- 80	0	- 250		- 250	0	- 250	0	- 250	20	20	5	2.5	1.5	10	18
18		30	13	8	4	3	2.5	8	4	1.5	8	4	2.5	0 -	400	0 - 12		- 120		0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	2.5	1.5	18	30
30		50	15	10	5	4	2.5	8	4	1.5	8	4	2.5	0 -	120	0 - 12	0 0	- 120		0	- 120	0	- 120	0	- 250	0	- 250	0	- 250	0	- 250	20	20	5	3	1.5	30	50
50		80	20	10	5	4	2.5	8	5	1.5	8	5	2.5	0 -	150	0 - 15	0 0	- 150		0	- 150	0	- 150	0	- 380	0	- 380	0	- 250	0	- 250	25	25	6	4	1.5	50	80
80		120	25	13	6	5	2.5	9	5	2.5	9	5	2.5	0 -	200	0 - 20	0 0	- 200		0	- 200	0	- 200	0	- 380	0	- 380	0	- 380	0	- 380	25	25	7	4	2.5	80	120
120		150	30	18	8	6	2.5	10	6	2.5	10	7	2.5	0 -	250	0 - 25	0 0	- 250		0	- 250	0	- 250	0	- 500	0	- 500	0	- 380	0	- 380	30	30	8	5	2.5	120	150
150		180	30	18	8	6	5	10	6	4	10	7	5	0 -	250	0 - 25	0 0	- 250		0	- 250	0	- 250	0	- 500	0	- 500	0	- 380	0	- 380	30	30	8	5	4	150	180
180		250	40	20	10	8	5	11	7	5	13	8	5	0 -	- 300	0 - 30	0 0	- 300		0	- 300	0	- 300	0	- 500	0	- 500	0	- 500	0	- 500	30	30	10	6	5	180	250
250		315	50	25	13	10	-	13	8	-	15	9	-	0 -	- 350	0 - 35	0 0	- 350		0	- 350	-	-	0	- 500	0	- 500	0	- 500	_	-	35	35	13	8	_	250	315
315		400	60	30	15	13	-	15	9	-	20	12	-	0 -	400	0 - 40	0 0	- 400		0	- 400	-	-	0	- 630	0	- 630	0	- 630	-	-	40	40	15	9	-	315	400
400		500	65	35	20	15	-	18	11	-	25	15	-	0 -	450	0 - 45	0 0	- 450		0	-450	-	-	_	-	_	_	-	_	_	_	50	45	18	11	_	400	500
500		630	70	40	25	_	-	25	-	-	30	-	-	0 -	- 500	0 - 50	0 0	- 500		-	-	-	-	_	-	_	_	-	_	_	_	60	50	20	-	_	500	630
630		800	80	50	30	-	-	30	-	-	35	-	-	0 -	- 750	0 - 75	0 0	- 750		-	-	-	-	-	-	-	-	-	-	-	-	70	60	23	-	-	630	800
800	1	000	90	60	40	_	-	40	-	-	45	-	-	0 -	1 000	0 -100	0 0	-1000		-	-	-	-	_	-	_	_	-	_	_	_	80	60	35	-	_	800	1 000
1 000	1	250	100	70	50	-	-	50	-	-	60	-	-	0 -	1 250	0 -125	0 0	- 1 250		-	-	-	-	_	-	_	_	-	_	_	_	100	60	45	-	_	1 000	1 250
1 250	1	600	120	-	-	-	-	-	-	-	-	-	-	0 -	1 600		-	-		-	-	-	-	-	-	-	-	-	-	-	-	120	-	-	-	-	1 250	1 600
1 600	2	2 000	140	-	-	-	-	-	-	-	-	-	-	0 -	2 000		-	-		-	-	-	-	-	-	-	-	-	-	-	-	140	-	-	-	-	1 600	2 000

 $S_{
m d}$: perpendicularity of inner ring face with respect to the bore $S_{
m ia}$: axial runout of assembled bearing inner ring

[Notes] 1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

2) These shall be applied to deep groove ball bearings and angular contact ball bearings.

3) These shall be appplied to individual bearing rings manufactured for matched pair or stack bearings.

A 55

4) Also applicable to the inner ring with tapered bore of $d \ge 50 \text{ mm}$.

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 7-3 (2) Radial bearing tolerances (tapered roller bearings excluded)

(3) Outer ring (outside diameter)

Nom	inal			Singl	e pl	ane me	ean c	outsid	de di	amet	er dev	viatio	on	s	ingle	outs	side		Si	ngle	plan	e		ou	tside d	iam	eter va	riat	ion V	Dsp				Shielded	sealed type	- 1	Mean	outsic	le		Nom	inal
outs		ia.		-				Δ_{Dm}	np					d		d_{Ds}	eviation	D	iamet	ter se	ries 7	7, 8, 9		Dia	meter	seri	es 0, 1	D	iamet	er se	eries 2	2, 3, 4	Dia. ¹⁾ series	Diamet	er series 0, 1, 2, 3, 4		diame	ter va V _{Dmp}		л		ide dia.
1	nm		cl	ass 0	0	lass 6		class	s 5	cla	iss 4	c	lass 2	cla	ass 4	5)	class 2	clas	is 0 ²⁾ cla	ass 6 ²⁾	class 5 ⁵⁾	class 4 ⁵	i i	class 0	class 6 ²	class	5 ⁵⁾ class 4	l ⁵⁾ cla	iss 0 ²⁾ cla	ISS 6 ²⁾	class 5 ⁵⁾	class 4 ⁵⁾					class 6 ²	class 5	class	4 class 2	2 1	mm
over	up	to	upper	lower	uppe	er lowe	r upp	per lo	ower	upper	lower	uppe	er lower	uppe	r lowe	ər u	oper lowe	r		ma	х.				m	ax.				ma	х.		max.	m	ax.			max.			over	up to
-		2.5	0	- 8	0		7 0) –	- 5	0	- 4	0	- 2.5	0	_	4	0 – 2.	5 1	10	9	5	4		8	7	4	4 3		6	5	4	3	2.5	10	9	6	5	3	2	1.5	-	2.5
2.	5	6	0	- 8	0	- '	7 0) –	- 5	0	- 4	0	- 2.5	0	-	4	0 - 2.	5 1	10	9	5	4		8	7	4	1 3		6	5	4	3	2.5	10	9	6	5	3	2	1.5	2.	i 6
6	1	18	0	- 8	0	- '	7 0) –	- 5	0	- 4	0	- 2.5	0	-	4	0 - 2.	5 1	10	9	5	4		8	7	4	1 З		6	5	4	3	2.5	10	9	6	5	3	2	1.5	6	18
18	3	30	0	- 9	0	- 6	B 0) –	- 6	0	- 5	0	- 4	0	-	5	0 - 4	1	12	10	6	5		9	8	Ę	5 4		7	6	5	4	4	12	10	7	6	3	2.5	2	18	30
30	5	50	0	- 11	0	- !	9 0) –	- 7	0	- 6	0	- 4	0	-	6	0 - 4	1	14	11	7	6		11	9	5	5 5		8	7	5	5	4	16	13	8	7	4	3	2	30	50
50	8	80	0	- 13	0	- 1	1 0) –	- 9	0	- 7	0	- 4	0	-	7	0 - 4	1	16	14	9	7		13	11	7	7 5		10	8	7	5	4	20	16	10	8	5	3.5	2	50	80
80	12	20	0	- 15	0	- 1;	3 0) –	- 10	0	- 8	0	- 5	0	-	8	0 - 5	1	19	16	10	8		19	16	8	3 6		11	10	8	6	5	26	20	11	10	5	4	2.5	80	120
120	15	50	0	- 18	0	- 1	5 0) –	11	0	- 9	0	- 5	0	-	9	0 - 5	2	23	19	11	9		23	19	8	3 7		14	11	8	7	5	30	25	14	11	6	5	2.5	120	150
150	18	80	0	- 25	0	- 18	8 0) –	13	0	- 10	0	- 7	0	- 1	0	0 - 7	3	31	23	13	10		31	23	10) 8		19	14	10	8	7	38	30	19	14	7	5	3.5	150	180
180	25	50	0	- 30	0	- 2	0 0) –	15	0	- 11	0	- 8	0	- 1	1	0 - 8	3	38	25	15	11		38	25	1.	I 8		23	15	11	8	8	-	-	23	15	8	6	4	180	250
250	31	15	0	- 35	0	- 2	5 0) –	18	0	- 13	0	- 8	0	- 1	3	0 - 8	4	44	31	18	13		44	31	14	10		26	19	14	10	8	-	-	26	19	9	7	4	250	315
315	40	00	0	- 40	0	- 2	в 0) –	20	0	- 15	0	- 10	0	- 1	5	0 - 10	5	50	35	20	15		50	35	15	5 11		30	21	15	11	10	-	-	30	21	10	8	5	315	400
400	50	00	0	- 45	0	- 3	3 0) –	- 23	0	- 17	-	-	0	- 1	7		5	56	41	23	17		56	41	17	7 13		34	25	17	13	-	-	-	34	25	12	9	-	400	500
500	63	30	0	- 50	0	- 3	вО) –	28	0	-20	-	-	0	-2	0		6	63	48	28	20		63	48	2	15		38	29	21	15	-	-	-	38	29	14	10	-	500	630
630	80	00	0	- 75	0	- 4	5 0) –	35	-	-	-	-	-	-			9	94	56	35	-		94	56	26	3 –		55	34	26	-	-	-	-	55	34	18	-	-	630	800
800	1 00	00	0	- 100	0	- 6	0 0) –	- 50	-	-	-	-	-	-			12	25	75	50	-		125	75	38	3 –		75	45	38	-	-	-	-	75	45	25	-	-	800	1 000
1 000	1 25	50	0	- 125	0	- 73	5 0) _	63	_	-	-	-	-	-			18	56	94	63	-		156	94	47	7 _		94	56	47	-	-	-	-	94	56	31	-	-	1 000	1 250
1 250	1 60	00	0	- 160	0	- 9	0 0) _	80	_	-	-	-	-	-			20	1 00	13	80	-		200	113	60) _	1	20	68	60	-	-	-	-	120	68	40	-	-	1 250	1 600
1 600	2 00	00	0	- 200	0	- 12	0 -	-	-	-	-	-	-	-	-			28	50 1	150	-	-		250	150	-	-	1	50	90	-	-	-	-	-	150	90	-	-	-	1 600	2 000
2 000	2 50	00	0	- 250	-	-	-	-	-	-	-	-	-	-	-			31	13	-	-	-		313	-	-	-	1	188	-	-	-	-	-	-	188	-	-	-	-	2 000	2 500

(4) Outer ring (running accuracy and width)

Unit : µm

Nomi	nal de dia.		al run ing ou			bled								Ring	width	variat	tion
	De dia.			K _{ea}	9			$S_{\mathrm{D}}{}^{4)}$			$S_{ea}^{(3)(4)}$		$\Delta cs^{3)}$		V_{Cs}	3) 5	
-	im	class 0	class 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	classes 0, 6, 5, 4, 2	classes 0, 6	class 5	class 4	class 2
over	up to			max.				max.			max.		upper lower		ma	x.	
-	2.5	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
2.5	6	15	8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
6			8	5	3	1.5	8	4	1.5	8	5	1.5			5	2.5	1.5
18	30	15	9	6	4	2.5	8	4	1.5	8	5	2.5			5	2.5	1.5
30	50	20	10	7	5	2.5	8	4	1.5	8	5	2.5			5	2.5	1.5
50	80	25	13	8	5	4	8	4	1.5	10	5	4	Shall	Shall	6	3	1.5
80	120	35	18	10	6	5	9	5	2.5	11	6	5	conform to the tol-	con- form to	8	4	2.5
120	150	40	20	11	7	5	10	5	2.5	13	7	5	erance	the tol-	8	5	2.5
150	180	45	23	13	8	5	10	5	2.5	14	8	5	$\varDelta_{B\mathrm{s}}$ on d	erance	8	5	2.5
180	250	50	25	15	10	7	11	7	4	15	10	7	of the	$V_{B\mathrm{s}}$ on	10	7	4
250	315	60	30	18	11	7	13	8	5	18	10	7	same	d of the	11	7	5
315	400	70	35	20	13	8	13	10	7	20	13	8	bearing	same	13	8	7
400	500	80	40	23	15	-	15	12	-	23	15	-		bear-	15	9	-
500	630	100	50	25	18	-	18	13	-	25	18	-		ing	18	11	-
630	800	120	60	30	-	-	20	-	-	30	-	-			20	-	-
800	1 000	140	75	40	-	-	23	-	-	40	-	-			23	-	-
1 000	1 250	160	85	45	-	-	30	-	-	45	-	-			30	-	-
1 250	1 600	190 220	95	60	-	-	45	-	-	60	-	-			45	-	-
1 600			110	-	-	-	-	-	-	-	-	-			-	-	-
2 000	2 000 2 500		-	-	-	-	-	-	-	-	-	-			-	-	

 $S_{\rm D}$ $\,$: perpendicularity of outer ring outside surface with respect to the face

 $S_{\rm D}$: proposition during of outer ring outer of assembled bearing outer ring $\varDelta_{\rm C_S}$: deviation of a single outer ring width

[Notes]

1) These shall be applied to bearings of diameter series 0, 1, 2, 3 and 4.

2) Shall be applied when locating snap ring is not fitted.

3) These shall be applied to deep groove ball bearings and angular contact ball bearings.

4) These shall not be applied to flanged bearings.

5) These shall not be applied to shielded bearings and sealed bearings.

[Remark]

Values in Italics are prescribed in JTEKT standards.

- d : nominal bore diameter
- D: nominal outside diameter B: nominal assembled bearing width

Kovo

Unit : µm

7. Bearing tolerances

(Refer.) Table 7-4 Tolerances for measuring instrument ball bearings (inch series) = ANSI/ABMA standards = (reference)

(1) Inner ring and outer ring width

bore	ninal e dia. d	Single mean diame	bore	e deviati			jle bo neter ⊿	devi	ation	diameter		Mean bor diameter V _d			l runout o nbled bea ring <i>K</i> _{ia}		asse	Il runout d embled be r ring S _{ia}			licularity e with res $S_{\rm d}$		Single in outer rin deviatio \varDelta_{Bs}	ng width	width	or outer variation V_{Bs} , V_{Cs}	Ĩ
n	d classes class 5P, 7P 9P		s	clas 5P,			lass 9P	classes 5P, 7P	class 9P	classes 5P, 7P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	class 5P	class 7P	class 9P	clas 5P, 7		class 5P	class 7P	class 9P		
over	up to	upper lo	upper lower upper low		wer l	upper	lower	uppe	r lower	ma	ax.	ma	ax.		max.			max.			max.		upper	lower		max.	
-	10	0 –	5.1	0 -	2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	0	- 25.4	5.1	2.5	1.3
10	18	0 –	5.1	0 –	2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	2.5	1.3	7.6	2.5	1.3	7.6	2.5	1.3	0	- 25.4	5.1	2.5	1.3
18	30	0 –	5.1	0 -	2.5	0	- 5.1	0	- 2.5	2.5	1.3	2.5	1.3	3.8	3.8	2.5	7.6	3.8	1.3	7.6	3.8	1.3	0	- 25.4	5.1	2.5	1.3

(2) Outer ring

Nominal	- 1	Single pla outside di deviation Δ_I	iameter			e outside eter deviat $ extsf{ }_{Ds}$				le plane ou eter variat V _{Dsp}			n outside neter varia V _{Dmp}		asse	al runou mbled b r ring K _{ea}			runout o mbled be ring $S_{\rm ea}$		ring out		ace with	Single ou flange ou diameter ⊿	tside		
outside o D mm		a. classes clas 5P, 7P 9F			class 5P, 7		9	ass 9P	5F	sses P, 7P	class 9P	5P	sses , 7P	class 9P	class	class	class	class	class	class	class	class	class	clas			ses
				Oper type	t	sealed type	ty	pen /pe	Open type	Shielded/ sealed type	Open type	Open type	Shielded/ sealed type	Open type	5P	7P	9P	5P	7P	9P	5P	7P	9P	5P,	7P	5P,	7P
over up	to u	pper lower	upper lowe	er upper lo	weru	pper lower	upper	r lower		max.			max.			max.			max.			max.		upper	lower	upper	lower
- 1	8	0 – 5.1	0 - 2.	5 0 -	5.1	+1 -6.1	0	- 2.5	2.5	5.1	1.3	2.5	5.1	1.3	5.1	3.8	1.3	7.6	5.1	1.3	7.6	3.8	1.3	0	- 25.4	0	- 50.8
18 3	0	0 – 5.1	0 - 3.	в 0 –	5.1	+1 -6.1	0	- 3.8	2.5	5.1	2	2.5	5.1	2	5.1	3.8	2.5	7.6	5.1	2.5	7.6	3.8	1.3	0	- 25.4	0	- 50.8
30 5	0	0 – 5.1	0 - 3.	в 0 –	5.1	+ 1 - 6.1	0	- 3.8	2.5	5.1	2	2.5	5.1	2	5.1	5.1	2.5	7.6	5.1	2.5	7.6	3.8	1.3	0	- 25.4	0	- 50.8

d : nominal bore diameter
 D : nominal outside diameter
 B : nominal assembled bearing width
 D₁: nominal outer ring flange outside diameter
 C₁: nominal outer ring flange width

Koyo

Unit : µm

Table 7-5 (1) Tolerances for metric series tapered roller bearings

= JIS B 1514-1 =

(1) Inner ring

										-																															
Nomi bore			Single plan liameter de	eviatio		e			le bo neter (re deviatio		•	•	e bore riatio		c	/lean liame variat	eter	Ð		a	sse	al run mbleo ng in	d									Single in	4		devi	ation			bor	
diam d	eter			dmp					Δ	ds			V_{dsp}				V_d						Kia				$S_{\rm d}$		S_{ii}	a					s					dia	meter d
mn	ı	classes 0, 6X	classes 6, 5	cla	ss 4	clas	ss 2	clas	s 4	class 2	class 0, 63	^{es} class	6 class 5	class 4 cl	ass 2 0	sses , 6X cla	ss 6 clas	is 5 clas	s 4 class	2	classi 0, 6)	clas	s 6 class	5 class	4 class	2 class 5	5 class 4	class 2	class 4 c	lass 2	class	0	class 6X	class	6 6	class	ses 5, 4	cl	ass 2	1	nm
over	up to	upper lower	upper lower	upper	lower	upper I	lower	upper le	ower	upper lowe	er		max.				ma	ax.					max	ς.			max		ma	x. u	oper lov	ver up	per lower	upper Iov	wer	upper	lower	upper	lower	over	up to
-	10	0 - 12	0 - 71)	0	- 5	0	- 4	0 -	- 5	0 - 4	12	2 –	5	4 2	2.5	9	-	5 4	1.5		15	5 -	5	3	2	7	3	1.5	3	2	0 –	120	0 - 50		-	0 -	200	0	- 200	-	10
10	18	0 - 12	0 - 7	0	- 5	0	- 4	0 -	- 5	0 - 4	12	2 7	5	4 2	2.5	9	5	5 4	1.5		1	5	7 5	3	2	7	3	1.5	3	2	0 –	120	0 - 50	0 –	120	0 -	200	0	- 200	10	18
18	30	0 - 12	0 - 8	0	- 6	0	- 4	0 -	- 6	0 - 4	12	2 8	6	5 2	2.5	9	6	5 4	1.5		18	3	3 5	3	2.5	8	4	1.5	4	2.5	0 –	120	0 - 50	0 –	120	0 -	200	0	- 200	18	30
30	50	0 - 12	0 - 10	0	- 8	0	- 5	0 -	- 8	0 - 5	1	2 10	8	6 3	3	9	8	5 5	2		20	0 1) 6	4	2.5	6 8	4	2	4	2.5	0 –	120	0 - 50	0 -	120	0 -	240	0	- 240	30	50
50	80	0 - 15	0 - 12	0	- 9	0	- 5	0 -	- 9	0 - 5	1	5 12	9	74	1 ·	11	9	6 5	2		2	5 1	7 0	4	3	8	5	2	4	3	0 –	150	0 - 50	0 –	150	0 -	300	0	- 300	50	80
80	120	0 - 20	0 - 15	0	- 10	0	- 6	0 -	- 10	0 - 6	2	0 15	11	8 5	5 .	15 1	1	8 5	2.5		30) 1:	3 8	5	3	9	5	2.5	5	3	0 –	200	0 - 50	0 –	200	0 -	400	0	- 400	80	120
120	180	0 - 25	0 - 18	0	- 13	0	- 7	0 -	- 13	0 - 7	2	5 18	14	10 7	7 .	19 1	4	9 7	3.5		3	5 1	3 11	6	4	10	6	3.5	7	4	0 –	250	0 - 50	0 -	250	0 -	500	0	- 500	120	180
180	250	0 - 30	0 - 22	0	- 15	0	- 8	0 -	- 15	0 - 8	3	0 22	17	11 7	7 2	23 1	6 1	1 8	4		50	2) 13	8	5	11	7	5	8	5	0 –	300	0 - 50	0 –	300	0 -	600	0	- 600	180	250
250	315	0 - 35	0 - 251)	0	- 18	0	- 8	0 -	- 18	0 - 8	3	5 25	19	12 8	3 2	26 1	9 1	3 9	5		60	3	13	9	6	13	8	5.5	9	6	0 –	350	0 - 50	0 –	350	0 -	700	0	- 700	250	315
315	400	0 - 40	0 - 301)	-	-	-	-	-	-		4	0 30	23	-	- (30 2	23 1	5 -			70) 3.	5 15	-	-	15	-	-	-	-	0 –	400	0 - 50	0 -	400	0 -	800 ²⁾	-	-	315	400
400	500	0 - 45	0 - 351)	-	-	-	-	_	-		4	5 35	28	-	- :	34 2	6 1	7 -	. _		8) 4	20	-	-	17	-	-	-	-	0 –	450	0 - 50	0 -	450	0 -	900 ²⁾	-	_	400	500
500	630	0 - 60	0 - 40 ¹⁾	-	-	_	-	_	-		6	0 40	35	_	_ 4	40 3	2 0	0 -	. _		90	5	25	-	-	20	-	-	-	-	0 –	500 -		0 –	500	0 -	1 100 ²⁾	-	_	500	630
630	800	0 - 75	0 - 501)	-	-	-	-	-	-		7	5 50	45	-	_ 4	45 3	8 2	5 -	. _		100	0 6	30	-	-	25	-	- 1	-	-	0 –	750 -		0 -	750	0 -	1 600 ²⁾	-	-	630	800
800	1 000	0 - 100	0 - 601)	_	_	_	-	_	-		10	0 60	60	_	- !	55 4	15 3	0 - 0	. _		115	5 7	5 37	-	-	30	_	-	_	_	0 - 1	000 -		0 -1	000	0 -	2 000 ²⁾	_	_	800	1 000
			- 50	_									1.5														-	-								-					

 $S_{\rm d}$: perpendicularity of inner ring face with respect to the bore

 S_{ia} : axial runout of assembled bearing inner ring

(2-1) Outer ring

Radial runout of Single plane mean outside Single outside Single plane Mean outside Single outer ring Nominal Nominal Nominal diameter deviation diameter deviation outside diameter assembled width deviation diameter variation outside outside bore Cbearing outer ring variation diameter diameter diameter Kea V_{Dmp} $S_{
m D}{}^{3)}$ $S_{\mathrm{ea}}{}^{3)}$ V_{Dsp} $\Delta c_{\rm s}$ $\Delta D_{\rm mp}$ ΔDs D Ddclasses 0.6X class 6 class 5 class 4 class 2 classes class 6 class 5 class 4 class 2 classes 0, 6X class 6 class 5 class 4 class 2 class 5 class 4 class 2 class 4 class 2 mm mm mm classes classes 0, 6X classes 6, 5 class 4 class 2 class 4 class 2 class 6X 0, 6, 5, 4, 2 upper lower over up to upper lower upper lower upper lower upper lower unner lowe over | up to over up to upper lower upper lower max max max max max В 4 1.5 10 0 - 100 18 0 12 0 -81 0 - 6 0 - 5 0 0 - 5 12 6 5 4 2.5 18 6 4 2.5 8 5 2.5 18 - 6 5 4 9 ϕD ϕd 18 30 0 12 4 2.5 18 6 4 2.5 8 4 1.5 5 2.5 18 30 10 18 0 12 0 -8 0 6 0 5 - 6 0 - 5 8 6 5 4 9 6 5 9 0 - 100 30 50 0 0 5 2.5 20 10 7 5 2.5 4 2 5 2.5 30 50 18 0 -9 0 - 5 0 - 5 14 7 4 11 7 8 30 0 - 100 14 0 _ 7 - 7 9 5 5 50 25 4 2.5 30 50 80 0 16 0 - 11 0 - 9 0 - 6 0 - 9 0 - 6 16 11 8 7 4 12 8 6 5 2.5 13 8 5 4 8 5 4 50 80 0 - 100 Shall 80 120 0 18 0 - 13 - 10 0 6 0 - 10 0 18 13 10 5 14 10 5 3 35 18 10 6 5 9 5 3 6 5 80 120 50 80 0 - 100 0 - 6 8 7 comform 120 150 0 0 - 11 20 11 5 15 40 20 11 7 5 10 5 3.5 7 5 120 150 80 120 - 100 20 0 - 15 0 - 11 0 - 7 0 - 7 15 8 11 8 6 3.5 0 to the 150 180 - 13 45 23 13 10 5 4 150 180 120 180 0 25 0 -18 0 0 - 13 0 - 7 25 18 14 10 19 14 9 7 4 8 5 8 5 0 - 100 0 d: nominal bore tolerance diameter 180 250 0 30 0 - 20 - 15 - 8 0 - 15 0 - 8 30 20 15 8 23 15 8 5 50 25 15 10 7 11 7 5 10 7 180 250 180 250 0 - 100 $\Delta B_{\rm Bs}$ on 0 11 10 0 d of the D : nominal outside 250 315 0 35 0 -25 0 - 18 0 - 9 0 - 18 0 _ 9 35 25 19 14 8 26 19 13 9 5 60 30 18 11 7 13 8 6 10 7 250 315 250 315 0 - 100 same diameter 315 400 0 0 - 28 - 20 0 - 10 0 - 20 - 10 40 28 22 15 10 30 21 10 6 70 35 20 13 8 13 10 7 13 8 315 400 315 400 0 - 100 40 0 14 Ω bearing B: nominal inner ring 3326 34 2517 400 500 0 45 $0 - 33^{1}$ 45 17 80 40 24 400 500 400 500 0 - 100 _ _ width _ C : nominal outer ring 500 630 0 _ 50 0 - 381 _ 60 38 30 38 2920 100 50 30 _ _ 20 _ 500 630 500 630 _ _ width 630 800 0 - 75 0 45¹ 80 4538 55 3425 120 60 36 25 630 800 630 800 _ T: nominal assembled 0 50 75 140 75 43 800 1 000 - 100 0 -60¹ _ 100 60 4530 _ _ 30 800 1 000 800 1 000 _ bearing width 1 000 1 250 0 - 125 $0 - 80^{1}$ 130 75 65 90 5638 160 85 52 38 1 000 1 250 _ _ _ 1 250 1 600 0 - 160 0 - 1001) 170 90 90 100 68 50 180 95 62 50 1 250 1 600 _

[Notes] 1) Class 6 values are prescribed in JTEKT standards.

2) These shall be applied to bearings of tolerance class 5.

These shall not be applied to flanged bearings.

[Remark] Values in Italics are prescribed in JTEKT standards.

A 60

 $S_{\rm D}$: perpendicularity of outer ring outside surface with respect to the face

 S_{ea} : axial runout of assembled bearing outer ring

(2-2) Outer ring

Unit : µm

Unit : µm

Koyo

Unit : um
Table 7-5 (2) Tolerances for metric series tapered roller bearings

(3) Assembled bearing width and effective width

Unit : µm

	nal bore			Act	ual be	aring	width	deviat	tion				-			tive in			
diame	d d		$ ightarrow T_{ m s}$							sub-unit width deviation \Box_{T1s}									
m	nm	class 0 class 6X		s 6X	class 6		classe	classes 5, 4		class 2		ss O	class 6X		classes 5, 4		class 2		
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
-	10	+ 200	0	+ 100	0	-	-	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
10	18	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
18	30	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
30	50	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
50	80	+ 200	0	+ 100	0	+ 200	0	+ 200 ·	- 200	+ 200	- 200	+ 100	0	+ 50	0	+ 100	- 100	+ 100	- 100
80	120	+ 200	- 200	+ 100	0	+ 200	- 200	+ 200 ·	- 200	+ 200	- 200	+ 100	- 100	+ 50	0	+ 100	- 100	+ 100	- 100
120	180	+ 350	- 250	+ 150	0	+ 350	- 250	+ 350 ·	- 250	+ 200	- 250	+ 150	- 150	+ 50	0	+ 150	- 150	+ 100	- 100
180	250	+ 350	- 250	+ 150	0	+ 350	- 250	+ 350 ·	- 250	+ 200	- 300	+ 150	- 150	+ 50	0	+ 150	- 150	+ 100	- 150
250	315	+ 350	- 250	+ 200	0	+ 350	-250	+ 350 ·	- 250	+ 200	- 300	+ 150	- 150	+ 100	0	+ 150	- 150	+ 100	- 150
315	400	+ 400	- 400	+ 200	0	+400	-400	+ 400 ·	$-400^{1)}$	-	-	+ 200	- 200	+ 100	0	+ 200	$-200^{1)}$	-	-
400	500	+ 450	- 450	+ 200	0	+400	-400	+ 450 ·	$-450^{1)}$	-	-	+ 225	- 225	+ 100	0	+ 225	$-225^{1)}$	-	-
500	630	+ 500	- 500	-	-	+ 500	-500	+ 500 ·	$-500^{1)}$	-	-	-	-	-	-	-	-	-	-
630	800	+ 600	- 600	-	-	+ 600	- 600	+ 600 ·	$-600^{1)}$	-	-	-	-	-	-	-	-	-	-
800	1 000	+ 750	- 750	-	-	+ 750	- 750	+ 750 ·	- 750 ¹⁾	-	-	-	-	-	-	-	-	-	-

Т

Nomin diamet	al bore ter	Actual effective outer ring width deviation									
C	d	Δ_{T2s}									
m	m	clas	ss O	clas	s 6X	classes 5, 4	class 2				
over	up to	upper	lower	upper	lower	upper lower	upper	lower			
_	10	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
10	18	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
18	30	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
30	50	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
50	80	+ 100	0	+ 50	0	+ 100 - 100	+ 100	- 100			
80	120	+ 100	- 100	+ 50	0	+ 100 - 100	+ 100	- 100			
120	180	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150			
180	250	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150			
250	315	+ 200	- 100	+ 100	0	+ 200 - 100	+ 100	- 150			
315	400	+ 200	- 200	+ 100	0	$+200 - 200^{1)}$	-	-			
400	500	+ 225	- 225	+ 100	0	$+ 225 - 225^{1)}$	-	-			
500	630	-	-	-	-		-	-			
630	800	-	-	-	-		-	-			
800	1 000	-	-	-	-		-	-			

[Note] 1) These shall be applied to bearings of tolerance class 5. [Remark] Values in Italics are prescribed in JTEKT standards.

	outer ring	
$-\phi d$		-
	Master inner sub-unit ¢ d	

 T_1

Master

Table 7-6Tolerances for metric series double-row and four-row
tapered roller bearings (class 0)= BAS 1002 =

(1) Inner ring, outer ring width and overall width

Unit : μm

Koyo

Nominal bore		Single pl	ane mean	neter diameter diameter			Single ou	iter ring			l inner rings/ idth deviation		
diame	ter d	bore diameter deviation				or inner ring deviation			Doubl	le-row	Four-row		
mm		\varDelta_{dmp}		V_{dsp}	V_{dmp}	$K_{\rm ia}$	\varDelta_{Bs} , \varDelta_{Cs}		Δ	$T_{\rm S}$	$\Delta_{T_{\rm S}}$, $\Delta_{W_{\rm S}}$		
over	up to	upper	lower	max.	max.	max.	upper	lower	upper	lower	upper	lower	
30	50	0	- 12	12	9	20	0	- 120	+ 240	- 240	-	-	
50	80	0	- 15	15	11	25	0	- 150	+ 300	- 300	-	-	
80	120	0	- 20	20	15	30	0	- 200	+ 400	- 400	+ 500	- 500	
120	180	0	- 25	25	19	35	0	- 250	+ 500	- 500	+ 600	- 600	
180	250	0	- 30	30	23	50	0	- 300	+ 600	- 600	+ 750	- 750	
250	315	0	- 35	35	26	60	0	- 350	+ 700	- 700	+ 900	- 900	
315	400	0	- 40	40	30	70	0	- 400	+ 800	- 800	+ 1 000	- 1 000	
400	500	0	- 45	45	34	80	0	- 450	+ 900	- 900	+ 1 200	- 1 200	
500	630	0	- 60	60	40	90	0	- 500	+ 1 000	$- 1 \ 000$	+ 1 200	- 1 200	
630	800	0	- 75	75	45	100	0	- 750	+ 1 500	- 1 500	-	-	
800	1 000	0	- 100	100	55	115	0	- 1 000	+ 1 500	- 1 500	-	-	

 $\overline{K_{\mathrm{ia}}}$: radial runout of assembled bearing inner ring

(2) Outer ring Unit : μm

				8		
diamet	Nominal outside diameter D mm		ane mean liameter	Single plane outside diameter variation V_{Dsp}	Mean out- side diameter variation V_{Dmp}	K _{ea}
over	over up to		lower	max.	max.	max.
50	80	upper 0	- 16	16	12	25
		-	-			
80	120	0	- 18	18	14	35
120	150	0	- 20	20	15	40
150	180	0	- 25	25	19	45
180	250	0	- 30	30	23	50
250	315	0	- 35	35	26	60
315	400	0	- 40	40	30	70
400	500	0	- 45	45	34	80
500	630	0	- 50	60	38	100
630	800	0	- 75	80	55	120
800	1 000	0	- 100	100	75	140
1 000	1 250	0	- 125	130	90	160
1 250	1 600	0	- 160	170	100	180

Kea : radial runout of assembled bearing outer ring

- d : nominal bore diameter
- D : nominal outside diameter
- *B* : nominal double inner ring width
 - C : nominal double outer ring width
- *T*, *W* : nominal overall width of outer rings (inner rings)

d	: nominal bore diamet	er
---	-----------------------	----

- T : nominal assembled bearing width
- T_1 : nominal effective width of inner sub-unit
- T_2 : nominal effective width of outer ring

Table 7-7 Tolerances and permissible values for inch series tapered roller bearings = ANSI/ABMA 19 =

(1) Inner ring Ut												it : µm	
Applied	Nominal bore diameter			Deviation of a single bore diameter $arsigma_{ m ds}$									
bearing	<i>d</i> , mm (1/25.4)		class 4		clas	class 2		ss 3	class 0		class 00		
type	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
	-	76.2 (3.0)	+ 13	0	+ 13	0	+13	0	+ 13	0	+ 8	0	
	76.2 (3.0)	266.7 (10.5)	+ 25	0	+ 25	0	+13	0	+13	0	+ 8	0	
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+ 25	0	+13	0	+ 13	0	+ 8	0	
All types	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	+ 25	0	-	-	-	-	
typeo	609.6 (24.0)	914.4 (36.0)	+ 76	0	-	-	+ 38	0	-	-	-	-	
	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	-	-	+ 51	0	-	-	-	-	
	1 219.2 (48.0)	-	+ 127	0	-	-	+76	0	-	-	-	-	

	(2) Outer ring Unit : µm												
Applied bearing type	Nominal outside diameter D , mm (1/25.4)		Deviation of a single outside diameter ⊿ Ds class 4 class 2 class 3 class 0 class 00										
	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	
	-	266.7 (10.5)	+ 25	0	+ 25	0	+13	0	+ 13	0	+ 8	0	
	266.7 (10.5)	304.8 (12.0)	+ 25	0	+ 25	0	+13	0	+ 13	0	+ 8	0	
All	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	+ 25	0	-	-	-	-	
types	609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 76	0	+ 38	0	-	-	-	-	
	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	-	-	+ 51	0	-	-	-	-	
	1 219.2 (48.0)	-	+ 127	0	-	-	+76	0	-	-	-	-	

(3)	Radial runout	of assembled	bearing inner	ring/outer ring
(0)	maulai i unout	or assembled	building miller	i mg/outor i mg

Unit : µm

Applied	Nominal outs	ide diameter	Radial runout of inner ring/outer ring K_{ia} , K_{ea}								
bearing type	D, mm	(1/25.4)	class 4	class 2	class 3	class 0	class 00				
	over	up to	max.	max.	max.	max.	max.				
	-	266.7 (10.5)	51	38	8	4	2				
	266.7 (10.5)	304.8 (12.0)	51	38	8	4	2				
All	304.8 (12.0)	609.6 (24.0)	51	38	18	-	-				
types	609.6 (24.0)	914.4 (36.0)	76	51	51	-	-				
	914.4 (36.0)	1 219.2 (48.0)	76	-	76	-	-				
	1 219.2 (48.0)	-	76	-	76	-	-				

(4) Assembled bearing width and overall width	
---	--

Applied	Nominal bo	re diameter	Nominal outs	side diameter	Deviation of the actual bearing width and overall width of inner rings/outer rings \varDelta $_{T\rm s}$, \varDelta $_{W\rm s}$								
bearing	d, mm	(1/25.4)	D, mm	(1/25.4)	class 4		class 2		class 3		classes 0,00		
type	over	up to	over	up to	upper	lower	upper	lower	upper	lower	upper	lower	
	-	101.6 (4.0)	-	-	+ 203	0	+ 203	0	+ 203	- 203	+ 203	- 203	
	101.6 (4.0)	266.7 (10.5)			+ 356	- 254	+ 203	0	+ 203	- 203	+ 203	- 203	
Cingle row	266.7 (10.5)	304.8 (12.0)	-	-	+ 356	- 254	+ 203	0	+ 203	- 203	+ 203	$- 203^{(1)}$	
Single-row	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-	-	+ 381	- 381	+ 203	- 203	-	-	
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-	-	+ 381	- 381	+ 381	- 381	-	-	
	609.6 (24.0)		-	-	+ 381	- 381	-	-	+ 381	- 381	-	-	
	-	101.6 (4.0)	-	-	+ 406	0	+ 406	0	+ 406	- 406	+ 406	- 406	
	101.6 (4.0)	266.7 (10.5)	-	-	+ 711	- 508	+ 406	- 203	+ 406	- 406	+ 406	- 406	
Double-row	266.7 (10.5)	304.8 (12.0)	-	-	+ 711	- 508	+ 406	- 203	+ 406	- 406	+ 406	$- 406^{1)}$	
Double-IOW	304.8 (12.0)	609.6 (24.0)	-	508.0 (20.0)	-	-	+ 762	- 762	+ 406	- 406	-	-	
	304.8 (12.0)	609.6 (24.0)	508.0 (20.0)	-	-	-	+ 762	- 762	+ 762	- 762	-	-	
	609.6 (24.0)		-	-	+ 762	- 762	-	-	+ 762	- 762	-	-	
Double-row	-	127.0 (5.0)	-	-	-	-	+ 254	0	+ 254	0	-	-	
(TNA type)	127.0 (5.0)		-	-	-	-	+ 762	0	+ 762	0	-	-	
Four-row	Total dimen	sional range	-	-	+1 524	-1 524	+1 524	-1 524	+1 524	-1 524	+1 524	-1 524	

[Note] 1) These shall be applied to bearings of class 0.

d : nominal bore diameter

D : nominal outside diameter

T, W: nominal assembled bearing width and nominal overall width of outer rings (inner rings)

Unit : µm

7. Bearing tolerances

Table 7-8 Tolerances for metric J series tapered roller bearings $^{1)}$

(1) Bore diameter and width of inner ring and assembled bearing width

Nomin diamet	al bore ter		Devi	ation	of a sin ⊿	gle bo ds	re dian	neter			Devia	ition o	fasing ⊿	•	er ring	width			Dev	iation o	f the ac		aring v	vidth		Nominal diameter	
m	d m	class	s PK	clas	s PN	class	s PC	clas	s PB	class	s PK	clas	s PN	clas	s PC	clas	s PB	class	PK	class	s PN	class	B PC	class	B PB	n	d 1m
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	over	up to
10	18	0	- 12	0	- 12	0	- 7	0	- 5	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	10	18
18	30	0	- 12	0	- 12	0	- 8	0	- 6	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	18	30
30	50	0	- 12	0	- 12	0	- 10	0	- 8	0	- 100	0	- 50	0	- 200	0	- 200	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	30	50
50	80	0	- 15	0	- 15	0	- 12	0	- 9	0	- 150	0	- 50	0	- 300	0	- 300	+ 200	0	+ 100	0	+ 200	- 200	+ 200	- 200	50	80
80	120	0	- 20	0	- 20	0	- 15	0	- 10	0	- 150	0	- 50	0	- 300	0	- 300	+ 200	- 200	+ 100	0	+ 200	- 200	+ 200	- 200	80	120
120	180	0	- 25	0	- 25	0	- 18	0	- 13	0	- 200	0	- 50	0	- 300	0	- 300	+ 350	- 250	+ 150	0	+ 350	- 250	+ 200	- 250	120	180
180	250	0	- 30	0	- 30	0	- 22	0	- 15	0	- 200	0	- 50	0	- 350	0	- 350	+ 350	- 250	+ 150	0	+ 350	- 250	+ 200	- 300	180	250
250	315	0	- 35	0	- 35	0	- 22	0	- 15	0	- 200	0	- 50	0	- 350	0	- 350	+ 350	- 250	+ 200	0	+ 350	- 300	+ 200	- 300	250	315

(2) Outside diameter and width of outer ring and radial runout of assembled bearing inner ring/ outer ring

A 66

Nomina diamete			Devia	tion o	fasing ⊿	le outs	ide dia	meter			Devia	ition o	fasino ⊿	g le out _{Cs}	er ring	width		Radia		ner ring/oute	r ring	diameter	
l m) m	clas	s PK	clas	s PN	clas	s PC	class	s PB	class	s PK	clas	s PN	clas	s PC	clas	s PB	class PK	class PN	class PC	class PB	-	D 1m
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	max.	max.	max.	max.	over	up to
18	30	0	- 12	0	- 12	0	- 8	0	- 6	0	- 150	0	- 100	0	- 150	0	- 150	18	18	5	3	18	30
30	50	0	- 14	0	- 14	0	- 9	0	- 7	0	- 150	0	- 100	0	- 150	0	- 150	20	20	6	3	30	50
50	80	0	- 16	0	- 16	0	- 11	0	- 9	0	- 150	0	- 100	0	- 150	0	- 150	25	25	6	4	50	80
80	120	0	- 18	0	- 18	0	- 13	0	- 10	0	- 200	0	- 100	0	- 200	0	- 200	35	35	6	4	80	120
120	150	0	- 20	0	- 20	0	- 15	0	- 11	0	- 200	0	- 100	0	- 200	0	- 200	40	40	7	4	120	150
150	180	0	- 25	0	- 25	0	- 18	0	- 13	0	- 200	0	- 100	0	- 250	0	- 250	45	45	8	4	150	180
180	250	0	- 30	0	- 30	0	- 20	0	- 15	0	- 250	0	- 100	0	- 250	0	- 250	50	50	10	5	180	250
250	315	0	- 35	0	- 35	0	- 25	0	- 18	0	- 250	0	- 100	0	- 300	0	- 300	60	60	11	5	250	315
315	400	0	- 40	0	- 40	0	- 28	-	-	0	- 250	0	- 100	0	- 300	-	-	70	70	13	-	315	400

[Note] 1) Bearings with supplementary code "J" attached at the front of bearing number

Ex. JHM720249/JHM720210, and the like

 ϕD

 $d\,$: nominal bore diameter

 \boldsymbol{D} : nominal outside diameter

B: nominal inner ring width

C: nominal outer ring width

T: nominal assembled bearing width

Koyo

Unit : µm

Unit : μm

7. Bearing tolerances

Table 7-9Tolerances for thrust ball bearings= JIS B 1514-2 =(1)Shaft race and central race

				(1) 5114	it face a	ina centi	arrace				01
Nominal diamete or centra	r of shaft	Single pla	ne mean bo $arDelta_{dmp}$ o	ore diameter r $arDelta_{d2mp}$	r deviation	diameter	ane bore variation or V_{d2sp}	Ra fac	ce thickne	ay to back ss variation	on
	d_2 , mm	classe	s 0, 6, 5	cla	ss 4	classes 0, 6, 5	class 4	class 0	class 6	class 5	class 4
over	up to	upper	lower	upper	lower	ma	ax.		ma	ax.	
-	18	0	- 8	0	- 7	6	5	10	5	3	2
18	30	0	- 10	0	- 8	8	6	10	5	3	2
30	50	0	- 12	0	- 10	9	8	10	6	3	2
50	80	0	- 15	0	- 12	11	9	10	7	4	3
80	120	0	- 20	0	- 15	15	11	15	8	4	3
120	180	0	- 25	0	- 18	19	14	15	9	5	4
180	250	0	- 30	0	- 22	23	17	20	10	5	4
250	315	0	- 35	0	- 25	26	19	25	13	7	5
315	400	0	- 40	0	- 30	30	23	30	15	7	5
400	500	0	- 45	0	- 35	34	26	30	18	9	6
500	630	0	- 50	0	- 40	38	30	35	21	11	7
630	800	0	- 75	0	- 50	55	40	40	25	13	8
800	1 000	0	- 100	-	-	75	-	45	30	15	-
1 000	1 250	0	- 125	-	-	95	-	50	35	18	-

[Notes] 1) Double direction thrust ball bearings shall be included in *d* of single direction thrust ball bearings of the same diameter series and nominal outside diameter.

2) Applies only to thrust ball bearings and cylindrical roller thrust bearings with 90° contact angle.

(2) Housing race

Unit : μm

					-			
diameter	r D		le plane leter dev ⊿ ₁		itside	variation	diameter	Race raceway to back face thickness variation $S_{\rm e}^{112)}$
m	m	classes	s 0, 6, 5	cla	ss 4	classes 0, 6, 5	class 4	classes 0, 6, 5, 4
over	up to	upper	lower	upper	lower	m	ax.	max.
10	18	0	- 11	0	- 7	8	5	
18	30	0	- 13	0	- 8	10	6	
30	50	0	- 16	0	- 9	12	7	
50	80	0	- 19	0	- 11	14	8	
80	120	0	- 22	0	- 13	17	10	
120	180	0	- 25	0	- 15	19	11	
180	250	0	- 30	0	- 20	23	15	Shall conform to
250	315	0	- 35	0	- 25	26	19	the tolerance S_i on d or d_2 of the
315	400	0	- 40	0	- 28	30	21	same bearing
400	500	0	- 45	0	- 33	34	25]
500	630	0	- 50	0	- 38	38	29	
630	800	0	- 75	0	- 45	55	34	
800	1 000	0	- 100	0	- 60	75	45	1
1 000	1 250	0	- 125	-	-	95	-	
1 250	1 600	0	- 160	-	-	120	-	

[Notes] 1) These shall be applied to race with flat back face only.

 Applies only to thrust ball bearings and cylindrical roller thrust bearings with 90° contact angle.

φd

Unit : um

- d : shaft race nominal bore diameter
- d_2 : central race nominal bore diameter
- D : housing race nominal outside diameter
- B : central race nominal height
- *T* : nominal bearing height (single direction)
- T_1 , T_2 : nominal bearing height (double direction)

(3) Bearing height and central race height	Unit : μm
--	----------------

		Single c	lirection			Double	direction		
diamet	d	bearing hei	f the actual ght Ts	bearing hei	of the actual $ght_{1s}^{(1)}$	bearing hei	f the actual ght 12s		of a single the height $B_{\rm Bs}^{(1)}$
		clas	ss O	clas	ss O	clas	ss O	clas	ss O
over	up to	upper lower $0 - 75$		upper	lower	upper	lower	upper	lower
-	30	0	- 75	+ 50	- 150	0	- 75	0	- 50
30	50	0	- 100	+ 75	-200	0	- 100	0	- 75
50	80	0	- 125	+ 100	-250	0	- 125	0	- 100
80	120	0	- 150	+ 125	- 300	0	- 150	0	- 125
120	180	0	- 175	+ 150	- 350	0	- 175	0	- 150
180	250	0	-200	+ 175	- 400	0	-200	0	- 175
250	315	0	-225	+ 200	- 450	0	- 225	0	- 200
315	400	0	- 300	+ 250	- 600	0	- 300	0	-250

[Note] 1) Double direction thrust ball bearings shall be included in *d* of single direction thrust ball bearings of the same diameter series and nominal outside diameter.

[Remark] Values in Italics are prescribed in JTEKT standards.

Table 7-10 Tolerances for spherical thrust roller bearings (class 0) = JIS B 1514-2 =

			(1)) Shaft race		Unit : µn			
Nominal bo	ore diameter		ne mean bore	Single plane bore		Refer.			
(d	diameter d	eviation	diameter variation		Actual bearing	height deviation		
m	im	Δ	dmp	V_{dsp}	$S_{ m d}$	4	1 _{Ts}		
over	up to	upper	lower	max.	max.	upper	lower		
50	80	0 - 15		11	25	+ 150	- 150		
80	120	0	- 20	15	25	+ 200	-200		
120	180	0	- 25	19	30	+250	-250		
180	250	0	- 30	23	30	+ 300	- 300		
250	315	0	- 35	26	35	+ 350	-350		
315	400	0	- 40	30	40	+ 400	-400		
400	500	0	- 45	34	45	+450	-450		

 $S_{\rm d}$: perpendicularity of inner ring face with respect to the bore [Remark] Values in Italics are prescribed in JTEKT standards.

(2) Housing race Single plane mean outside diameter deviation Nominal outside diameter D, mm \mathcal{I}_{Dmp} over up to upper lower 120 180 0 - 25 180 250 0 - 30 0 250 315 - 35 315 400 0 - 40 0 400 500 - 45 500 630 0 - 50 630 800 0 - 75 800 1 000 0 - 100

Kovo

d : shaft race nominal bore diameter
 D : housing race nominal outside diameter
 T : nominal bearing height

Theoretical tapered bore

(1) Basically tapered bore (taper 1:12) Unit : µm

Nomin diame		Δ	lmp	Δ_{d1mp}	-⊿ _{dmp}	${V_{d}}_{ m sp}{}^{1)}$
over	up to	upper	lower	upper	lower	max.
-	10	+ 22	0	+ 15	0	9
10	18	+ 27	0	+ 18	0	11
18	30	+ 33	0	+ 21	0	13
30	50	+ 39	0	+ 25	0	16
50	80	+ 46	0	+ 30	0	19
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+ 110	0	+ 70	0	70
630	800	+ 125	0	+ 80	0	-
800	1 000	+ 140	0	+ 90	0	-
1 000	1 250	+ 165	0	+ 105	0	-
1 250	1 600	+ 195	0	+ 125	0	-

(2) Basically tapered bore (taper 1:30) Unit : µm

Tapered bore with single plane

mean bore diameter deviation

Nomin diamet d, 1		Δ.	lmp	⊿ _{d1mp}	-⊿ _{dmp}	$V_{dsp}{}^{(1)}$
over	up to	upper	lower	upper	lower	max.
-	50	+ 15	0	+ 30	0	19
50	80	+ 15	0	+ 30	0	19
80	120	+ 20	0	+ 35	0	22
120	180	+ 25	0	+ 40	0	40
180	250	+ 30	0	+ 46	0	46
250	315	+ 35	0	+ 52	0	52
315	400	+ 40	0	+ 57	0	57
400	500	+ 45	0	+ 63	0	63
500	630	+ 50	0	+ 70	0	70

[Note] 1) These shall be applied to all radial planes with tapered bore, not be applied to bearings of diameter series 7, 8. [Remark] 1) Symbols of quantity d_1 : reference diameter at theoretical large end of tapered bore

$$d_1 = d + \frac{1}{12}B$$
 or $d_1 = d + \frac{1}{30}B$

 \varDelta_{dmp} : single plane mean bore diameter deviation at theoretical small end of tapered bore

- $\varDelta_{d1\mathrm{mp}}$: single plane mean bore diameter deviation at theoretical large end of tapered bore
- V_{dsp} : single plane bore diameter variation (a tolerance for the diameter variation given by a maximum value applying in any radial plane of the bore)
- B : nominal inner ring width

 $\alpha:\frac{1}{2}$ of nominal tapered angle of tapered bore

(tapered ratio 1/12)	(tapered ratio 1/30)
α=2°23′9.4″	$\alpha = 0^{\circ}57'17.4''$
= 2.385 94°	= 0.954 84°
= 0.041 643 rad	= 0.016 665 rad

 Table 7-12
 Tolerances and permissible values for flanged radial ball bearings
 (1) Tolerances on flange outside diameters

Unit : µm

Koyo

Nominal outer ring fla	inge outside diameter	Deviation of single outer ring flange outside diameter, $\mathcal{\varDelta}_{D1s}$								
(m	÷	Locatin	g flange	Non-locat	ing flange					
over	up to	upper	lower	upper	lower					
-	6	0	- 36	+ 220	- 36					
6	10	0	- 36	+ 220	- 36					
10	18	0	- 43	+ 270	- 43					
18	30	0	- 52	+ 330	- 52					
30	50	0	- 62	+ 390	- 62					
50	80	0	- 74	+ 460	- 74					

(2) Tolerances and permissible values on flange widths and permissible values of running accuracies relating to flanges Unit : µm

Nom outs diam <i>L</i> (m	ide neter	Deviatio single o flange w $ extsf{d}_C$	uter ring ridth	Variatior flange w	ng	with r	ndicular espect to groove I gs and a t ball be	the flar Siball	nge back			outer	ring fla	nge bao S_{ea1} ball	Tapered roller bearings			
(111)	classes 0	, 6, 5, 4, 2	classes 0, 6	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	class 5	class 4	class 2	class 4	class 2
over	up to	upper lower		max.					max.			max.		max.			max.	
-	2.5	Shall con-		Shall con-	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
2.5	6	form to	the	form to the	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
6	18	tolerar		tolerance V_{Bs} on d of	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	3	7	4
18	30		Δ_{Bs} on d of the same	the same	5	2.5	1.5	8	4	1.5	8	4	1.5	11	7	4	7	4
30	50	class and	class and	5	2.5	1.5	8	4	1.5	8	4	2	11	7	4	7	4	
50	80		the bearing	6	3	1.5	8	4	1.5	8	4	2.5	14	7	6	7	6	

[Note] 1) These shall be applied to groove ball bearings, i.e. deep groove ball bearing and angular contact ball bearing etc.

d : nominal bore diameter

- D : nominal outside diameter
- B : nominal assembled bearing width
- D1 : nominal outer ring flange outside diameter
- C_1 : nominal outer ring flange width

Table 7-13 Permissible values for chamfer dimensions = JIS B 1514-3 =

Unit : mm

(1) Radial bearing

(tapered roller bearings excluded)

	Nominal bo	re diameter		
r _{min} or	0	l m	r _{max} o	$r_{1 \max}$
$r_{1 \min}$	over	up to	Radial direction	Axial direction
0.05	-	-	0.1	0.2
0.08	-	-	0.16	0.3
0.1	-	-	0.2	0.4
0.15	-	-	0.3	0.6
0.2	-	-	0.5	0.8
0.3	-	40	0.6	1
0.0	40	-	0.8	1
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
I	50	-	1.9	3
1.1	-	120	2	3.5
1.1	120	-	2.5	4
1.5	-	120	2.3	4
1.5	120	-	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	-	3.8	6
0.1	-	280	4	6.5
2.1	280	-	4.5	7
	-	100	3.8	6
2.5	100	280	4.5	6
	280	-	5	7
	-	280	5	8
3	280	-	5.5	8
4	-	-	6.5	9
5	-	-	8	10
6	-	-	10	13
7.5	-	-	12.5	17
9.5	-	-	15	19
12	-	-	18	24
15	-	-	21	30
19	-	_	25	38

[Remarks]

- 1. Value of r max or r1 max in the axial direction of bearings with nominal width lower than 2 mm shall be the same as the value in radial direction.
- 2. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

thrust	groove side) and cylindrical roller bearings (separe thrust collar and loose rib side) Unit : m				
$r_{1 \min}$	Nominal b nominal or d of		r1 max		
	over	up to	Radial direction	Axial direction	
0.2	-	-	0.5	0.5	
0.3	-	40	0.6	0.8	
0.0	40	-	0.8	0.8	
0.5	-	40	1	1.5	
	40	-	1.3	1.5	
0.6	-	40	1	1.5	
	40	-	1.3	1.5	
1	-	50	1.5	2.2	
	50	-	1.9	2.2	
1.1	-	120	2	2.7	
	120	-	2.5	2.7	
1.5	-	120	2.3	3.5	
	120	-	3	3.5	
•	-	80	3	4	
2	80	220	3.5	4	
	220	-	3.8	4	
2.1	-	280	4	4.5	
	280	-	4.5	4.5	
0.5	-	100	3.8	5	
2.5	100	280	4.5	5	
	280	-	5	5	
3	-	280	5	5.5	
	280	-	5.5	5.5	
4	-	-	6.5	6.5	
5	-	-	8	8	
6	-	-	10	10	

(2) Radial bearings with locating snap ring (snap ring

shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{1 \min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(3) Cylindrical roller bearings (non-rib side) and angular contact ball bearings

(front face side) Unit : mm

$r_{1 \min}$	Nominal bore dia. or nominal outside dia. d or D		$r_{1 \max}$	
	over	up to	Radial direction	Axial direction
0.1	-	-	0.2	0.4
0.15	-	-	0.3	0.6
0.2	-	-	0.5	0.8
0.3	-	40	0.6	1
0.3	40	-	0.8	1
0.6	-	40	1	2
0.0	40	-	1.3	2
1	-	50	1.5	3
	50	-	1.9	3
1.1	-	120	2	3.5
1.1	120	-	2.5	4
1.5	-	120	2.3	4
1.5	120	-	3	5
	-	80	3	4.5
2	80	220	3.5	5
	220	-	3.8	6

[Remark] There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of $r_{1 \min}$ which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(4) Metric series tapered roller bearing

(5) Thrust bearing

 r_{\min} or $r_{1\min}$

0.05

0.08

	-			Unit : mm	
r _{min} or	Nominal bore dia. or nominal outside dia. ¹⁾ d or D , mm		r_{\max} or $r_{1\max}$		
$r_{1 \min}$	over	up to	Radial direction	Axial direction	
0.3	-	40	0.7	1.4	
0.5	40	-	0.9	1.6	
0.6	-	40	1.1	1.7	
0.0	40	-	1.3	2	
1	-	50	1.6	2.5	
1	50	-	1.9	3	
	-	120	2.3	3	
1.5	120	250	2.8	3.5	
	250	-	3.5	4	
	-	120	2.8	4	
2	120	250	3.5	4.5	
	250	-	4	5	
	-	120	3.5	5	
2.5	120	250	4	5.5	
	250	-	4.5	6	
	-	120	4	5.5	
3	120	250	4.5	6.5	
3	250	400	5	7	
	400	-	5.5	7.5	
	-	120	5	7	
4	120	250	5.5	7.5	
4	250	400	6	8	
	400	-	6.5	8.5	
5	-	180	6.5	8	
5	180	-	7.5	9	
6	-	180	7.5	10	
U	180	-	9	11	
7.5	-	-	12.5	17	
9.5	-	-	15	19	

[Note] 1) Inner ring shall be included in division d, and outer ring, in division D.

[Remarks]

1. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts the inner ring back face and bore, or the outer ring back face and outside surface.

2. Values in Italics are provided in JTEKT standards.

Or <i>r</i> 1	

(\underline{A}) : r_{\min} or $r_{1\min}$	
$(\mathbb{B}: r_{\max} \text{ or } r_{1 \max})$	/

0.1	0.2
0.15	0.3
0.2	0.5
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8
6	10
7.5	12.5
9.5	15
12	18
15	21
19	25
[Remark] There shall be no	specification for the accur

Kovo

Unit : mm

 r_{\max} or $r_{1\max}$

Radial and axial direction

0.1

0.16

curacy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or $r_{1\min}$ which contacts with the shaft or central race back face and bore, or the housing race back face and outside surface.

7-2 Tolerance measuring method (reference)

The details on measuring methods for bearings are prescribed in JIS B 1515. This section outlines measuring methods for dimensional and running accuracy.

Dimensional accuracy (1)

Kovo

A 76

8. Limiting speed

The rotational speed of a bearing is normally affected by friction heat generated in the bearing. If the heat exceeds a certain amount, seizure or other failures occur. thus causing rotation to be discontinued.

The limiting speed is the highest speed at which a bearing can continuously operate without generating such critical heat.

The limiting speed differs depending on various factors including bearing type, dimensions and their accuracy, lubrication, lubricant type and amount, shapes of cages and materials and load conditions, etc.

The limiting speed determined under grease lubrication and oil lubrication (oil bath) for each bearing type are listed in the bearing specification table.

These speeds are applied when bearings of standard design are rotated under normal load conditions (approximately, $C/P \ge 13$, $F_{\rm o}/F_{\rm r} \leq 0.25$).

0.9 0.8

0.6

 f_1 0.7

Each lubricant has superior performance in use, according to type.

Some are not suitable for high speed ; when bearing rotational speed exceeds 80 % of catalog specification, consult with JTEKT.

8-1 Correction of limiting speed

When the load condition is C/P < 13, i.e. the dynamic equivalent load P exceeds approximately 8 % of basic dynamic load rating C, or when a combined load in which the axial load is greater than 25 % of radial load is applied, the limiting speed should be corrected by using equation (8-1):

 $n_{\rm a} = f_1 \cdot f_2 \cdot n \quad (8-1)$

where :

- $n_{\rm a}$: corrected limiting speed min⁻¹ f_1 : correction coefficient determined
- from the load magnitude (Fig. 8-1) f_2 : correction coefficient determined
- from combined load (Fig. 8-2) n: limiting speed under normal load
 - condition min^{-1} (values in the bearing specification table)

Ν

- C: basic dynamic load rating
- P: dynamic equivalent load Ν
- F_r : radial load Ν Ν
- F_{a} : axial load

Fig. 8-1 Values of correction coefficient f_1 of load magnitude

0.54 5 6 7 8 9 10 11 12 13 14 15

 $\frac{C}{P}$

Fig. 8-2 Values of correction coefficient f_2 of combined load

8-2 Limiting speed for sealed ball bearings

The limiting speed of ball bearings with a contact seal (RS. RK type) are determined by the rubbing speed at which the seal contacts the inner ring. These allowable rubbing speeds differ depending on seal rubber materials: and. for ball bearings with the Kovo standard contact type seal (NBR), a rubbing speed of 15 m/s is utilized.

8-3 **Considerations for high speed**

When bearings are used for high speed, especially when the rotation speed approaches the limiting speed or exceeds it, the following should be considered :

(for further information on high speed, consult with JTEKT)

- (1) Use of high precision bearings
- (2) Study of proper internal clearance Reduction in internal clearance caused by temperature increase should be considered.
- (3) Selection of proper cage type and materials

For high speed, copper alloy or phenolic resin machined cages are suitable. Synthetic resin molded cages for high speed are also available.

(4) Selection of proper lubrication Suitable lubrication for high speed should be selected jet lubrication, oil mist lubrication and oil air lubrication. etc.

8-4 Frictional coefficient (reference)

The frictional moment of rolling bearings can be easily compared with that of plain bearings. The frictional moment of rolling bearings can be obtained from their bore diameter, using the following equation :

$M = \mu P \frac{d}{2}$	

$N \cdot m$
Ν
mm

The friction coefficient is greatly dependent on bearing type, bearing load, rotation speed and lubrication, etc.

Reference values for the friction coefficient during stable operation under normal operating conditions are listed in Table 8-1.

For plain bearings, the value is normally 0.01 to 0.02 : but, for certain cases, it is 0.1 to 0.2.

Table 8-1 Friction coefficient μ

Bearing type	Friction coefficient μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Self-aligning ball bearing	0.000 8 - 0.001 2
Cylindrical roller bearing	0.000 8 - 0.001 2
Full complement type needle roller bearing	0.002 5 - 0.003 5
Needle roller and cage assembly	0.002 0 - 0.003 0
Tapered roller bearing	0.001 7 – 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5
Thrust ball bearing	0.001 0 - 0.001 5
Spherical thrust roller bearing	0.002 0 - 0.002 5

9. Bearing fits

The purpose of fit is to securely fix the inner or outer ring to the shaft or housing, to preclude detrimental circumferential sliding on the fitting surface.

Such detrimental sliding (referred to as "creep") will cause abnormal heat generation. wear of the fitting surface, infiltration of abrasion metal particles into the bearing, vibration, and many other harmful effects, which cause a deterioration of bearing functions.

Therefore, it is necessary to fix the bearing ring which is rotating under load to the shaft or housing with interference.

9-2 Tolerance and fit for shaft & housing

For metric series bearings, tolerances for the shaft diameter and housing bore diameter are standardized in JIS B 0401-1 and 0401-2 "ISO system of limits and fits - Part 1 and Part 2" (based on ISO 286; shown in Appendixes at the back of this catalogue). Bearing fits on the shaft and housing are determined based on the tolerances specified in the above standard.

Fig. 9-1 shows the relationship between tolerances for shaft and housing bore diameters and fits for bearings of class 0 tolerance.

9-3 Fit selection

In selecting the proper fit, careful consideration should be given to bearing operating conditions. Major specific considerations are :

- Load characteristics and magnitude Temperature distribution in operating
- Bearing internal clearance
- Surface finish, material and thickness of
- shaft and housing
- Mounting and dismounting methods
- Necessity to compensate for shaft thermal expansion at the fitting surface
- Bearing type and size

In view of these considerations, the following paragraphs explain the details of the important factors in fit selection.

Kovo

1) Load characteristics

Load characteristics are classified into three types : rotating inner ring load; rotating outer ring load and indeterminate direction load. Table 9-1 tabulates the relationship between these characteristics and fit.

Fig. 9-1 Relationship between tolerances for shaft/housing bore diameters and fits (bearings of class 0 tolerance)

Table 9-1 Load characteristics and fit	Table 9-1	Load	characteristics	and	fits
--	-----------	------	-----------------	-----	------

Rotation pattern	Direction of load	ection of load Loading conditions		Fit	
notation pattern	Direction of load	Loading conditions	Inner ring & shaft	Outer ring & housing	Typical application
Inner ring : rotating Outer ring : stationary	Stationary	Rotating inner ring load	Interference fit necessary	Clearance fit acceptable	Spur gear boxes, motors
Inner ring : stationary Outer ring : rotating	Rotating with outer ring	Stationary outer ring load	(k, m, n, p, r)	(F, G, H, JS)	Greatly unbal- anced wheels
Inner ring : stationary Outer ring : rotating	Stationary	Stationary inner ring load	Clearance fit acceptable	Interference fit necessary	Running wheels & pulleys with stationary shaft
Inner ring : rotating Outer ring : stationary	Rotating (with inner ring)	Rotating outer ring load	(f, g, h, js)	(K, M, N, P)	Shaker screens (unbalanced vibration)
Indeterminate	Rotating or stationary	Indeterminate direction load	Interference fit	Interference fit	Cranks

2) Effect of load magnitude

When a radial load is applied, the inner ring will expand slightly. Since this expansion enlarges the circumference of the bore minutely, the initial interference is reduced. The reduction can be calculated by the

following equations :

[In the case of
$$F_r \le 0.25 C_0$$
]
 $\varDelta_{dF} = 0.08 \sqrt{\frac{d}{B} \cdot F_r} \times 10^{-3} \dots (9-1)$
[In the case of $F_r > 0.25 C_0$]
 $\varDelta_{dF} = 0.02 \frac{F_r}{B} \times 10^{-3} \dots (9-2)$

where:

- Δ_{dF} : reduction of inner ring interference mm
- d: nominal bore diameter of bearing mm $\mathbf{m}\mathbf{m}$
- B : nominal inner ring width
- F_r : radial load
- C_0 : basic static load rating

Consequently, when the radial load, exceeds the C_0 value by more than 25 %, greater interference is needed.

Much greater interference is needed, when impact loads are expected.

3) Effect of fitting surface roughness

The effective interference obtained after fitting differs from calculated interference due to plastic deformation of the ring fitting surface. When the inner ring is fitted, the effective interference, subject to the effect of the fitting surface finish, can be approximated by the following equations :

[In the case of a ground shaft]

$\varDelta_{deff} \doteq \frac{d}{d+2}$	- <i>A</i> _d (9-3)
---	---------------------------	------

[In the case of a turned shaft]

 $\Delta_{\text{deff}} \doteq \frac{d}{d+3} \, \Delta_d \, \dots \, (9-4)$

where:

\varDelta_{deff} : effective interference	$\mathbf{m}\mathbf{m}$
Δ_d : calculated interference	$\mathbf{m}\mathbf{m}$
d : nominal bore diameter of bearing	$\rm mm$

4) Effect of temperature

A bearing generally has an operating temperature, higher than the ambient temperature. When the inner ring operates under load, its temperature generally becomes higher than that of the shaft and the effective interference decreases due to the greater thermal expansion of the inner ring.

If the assumed temperature difference between the bearing inside and surrounding housing is Δ_t , the temperature difference at the fitting surfaces of the inner ring and shaft will be approximately (0.10 to 0.15) $\times \Delta_{t}$.

The reduction of interference (Δ_{dt}) due to temperature difference is then expressed as follows :

$\varDelta_{dt} = (0.10 \text{ to } 0.15) \varDelta_t \cdot \alpha \cdot d$

 $= 0.0015 \, \varDelta_{\rm t} \cdot d \times 10^{-3} \, \dots \, (9-5)$

where:

Ν

Ν

\varDelta_{dt} : reduction of interference due to)
temperature difference	mm
$arDelta_{ m t}$: temperature difference between	n
the inside of the bearing and th	е
surrounding housing	$^{\circ}\!\!C$
α : linear expansion coefficient of	
bearing steel ($= 12.5 \times 10^{-6}$)	1/°C
d : nominal bore diameter of bearing	mm
•	

Consequently, when a bearing is higher in temperature than the shaft, greater interference is required.

However, a difference in temperature or in the coefficient of expansion may sometimes increase the interference between outer ring and housing. Therefore, when clearance is provided to accommodate shaft thermal expansion, care should be taken.

5) Maximum stress due to fit

When a bearing is fitted with interference, the bearing ring will expand or contract, generating internal stress.

Should this stress be excessive, the bearing ring may fracture.

The maximum bearing fitting-generated stress is determined by the equation in Table 9-2.

In general, to avoid fracture, it is best to adjust the maximum interference to less than 1/1 000 of the shaft diameter, or the maximum stress (σ), determined by the equation in Table 9-2. should be less than 120 MPa.

6) Other considerations

When a high degree of accuracy is required, the tolerance of the shaft and housing must be improved. Since the housing is generally less easy to machine precisely than the shaft, it is advisable to use a clearance fit on the outer rina.

Kovo

With hollow shafts or thin section housings. greater than normal interference is needed.

With split housings, on the other hand, smaller interference with outer ring is needed. When the housing is made of aluminum or other light metal alloy, relatively greater than normal interference is needed. In such a case, consult with JTEKT.

Table 9-2 Maximum fitting-generated stress in bearings

Shaft & inner ring	Housing bore & outer ring
(In the case of hollow shaft)	(In the case of $D_{\rm h} \neq \infty$)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{deff}}{d} \cdot \frac{\left(1 - \frac{d_0^2}{d^2}\right) \left(1 + \frac{d^2}{D_i^2}\right)}{\left(1 - \frac{d_0^2}{D_i^2}\right)}$	$\sigma = E \cdot \frac{\Delta_{Deff}}{D} \cdot \frac{\left(1 - \frac{D^2}{D_h^2}\right)}{\left(1 - \frac{D_e^2}{D_h^2}\right)}$
(In the case of solid shaft)	(In the case of $D_{\rm h}$ = ∞)
$\sigma = \frac{E}{2} \cdot \frac{\Delta_{\text{deff}}}{d} \cdot \left(1 + \frac{d^2}{D_i^2}\right)$	$\sigma = E \cdot rac{\Delta_{Deff}}{D}$
where : σ: maximum stress	MPa $D_{\rm e}$: raceway contact diameter of outer ring mm

d: nominal bore diameter (shaft diameter) D_{i} : raceway contact diameter of inner ring ball bearing $\dots D_i \doteq 0.2 \quad (D+4d)$ roller bearing $\cdots D_i \doteq 0.25 (D + 3 d)$

 Δ_{deff} : effective interference of inner ring

 d_0 : bore diameter of hollow shaft

ball bearing $\dots D_e = 0.2 \quad (4D+d)$ coller bearing $\cdots D_e \doteq 0.25 (3D + d)$ $\mathbf{m}\mathbf{m}$ D: nominal outside diameter $\mathbf{m}\mathbf{m}$ (bore diameter of housing) mm ΔD_{eff} : effective interference of outer ring mm $D_{\rm h}$: outside diameter of housing mm $\mathbf{m}\mathbf{m}$ $2.08 \times 10^5 \text{ MPa}$ E: young's modulus $\mathbf{m}\mathbf{m}$

[Remark] The above equations are applicable when the shaft and housing are steel. When other materials are used. JTEKT should be consulted.

9-4 Recommended fits

As described in Section 9-3, the characteristics / magnitude of the bearing load, temperature, mounting / dismounting methods and other conditions must be considered to choose proper fits. Past experience is also valuable. Table 9-3 shows standard fits for the metric series bearings; Tables 9-4 to 9-8 tabulate the most typical and recommended fits for different bearings types.

Table 9-3 Standard fits for metric series bearings 1)

(1) Fits for bore diameter ²⁾ of radial bearings

Class of bearing	Rotati	Rotating inner ring load or indeterminate direction load Stationary inner									
Class of Dealing				Clas	s of sha	ift tolera	nce rang	je			
Classes 0, 6X, 6	r 6	p 6	n 6	m 6 m 5	k 6 k 5	js 6 js 5	h 5	h 6 h 5	g 6 g 5	f 6	
Class 5	-	-	-	m 5	k 4	js 4	h 4	h 5	-	-	
Fit		Inte	erference	ə fit		Transition fit				Clearance fit	

(2) Fits for outside diameter ²⁾ of radial bearings

Class of bearing	Stat	tionary o	uter ring	load	Indeterminate direction load or rotating outer ring load				
Class of bearing			Cla	ss of hou	ising bore	e tolerand	e range		
Classes 0, 6X, 6	G 7	H 7 H 6	JS 7 JS 6	-	JS 7 JS 6	K 7 K 6	M 7 M 6	N 7 N 6	P 7
Class 5	-	H 5	JS 5	K 5	-	K 5	M 5	-	-
Fit	Cleara	ance fit			Transition fit				Interference fit

(3) Fits for bore diameter ²⁾ of thrust bearings

	Control	wiel lead	Combined load (in the case of spherical thrust roller bearing)					
Class of bearing	Central axial load (generally for thrust bearings)		Rotatin indeter	Stationary shaft race load				
		(Class of shaft t					
Classes 0, 6	js 6	h 6	n 6	m 6	k 6	js 6		
Fit	Trans	ition fit		Transition fit				

(4) Fits for outside diameter ²⁾ of thrust bearings

		Control	avial load	Combined load (in the case of spherical thrust roller bearing)							
Class o	f bearing	Central axial load (generally for thrust bearings)			housing rad	Rotating housing race load					
		Class of housing bore tolerance range									
Class	es 0, 6	-	H 8	G 7	Η 7	JS 7	K 7	M 7			
F	Fit	Clearance fit Transition fit									

[Notes] 1) Bearings specified in JIS B 1512

2) Follow JIS B 1514-1 and 1514-2 for tolerance.

 Table 9-4 (1)
 Recommended shaft fits for radial bearings (classes 0, 6X, 6)

Co	pnditions $^{1)}$			Tapere roller t t dian	bearing ed bearing neter (bearing	, 	Class of shaft tolerance range	Remarks	Applications (for refer- ence)
								ses 0, 6X, 6)	
	Light load or fluctuating load $\left(\frac{P_{\rm r}}{C_{\rm r}} \le 0.06\right)$	- 18 100 -	18 100 200 –	- - 40 140	- 40 140 200			h 5 js 6 k 6 m 6	For applications requir- ing high accuracy, js 5,k 5 and m 5 should be used in place of js 6, k 6 and m 6.	Electric appliances, machine tools, pumps, blowers, carriers etc.
Rotating inner ring load or indeterminate direction load	Normal load $\left(0.06 < \frac{P_r}{C_r} \le 0.12\right)$	- 18 100 140 200 - -	18 100 140 200 280 - -	- 40 100 140 200 -	- 40 100 140 200 400 -	- 40 65 100 140 280	- 40 65 100 140 280 500	js 5 k 5 m 5 n 6 p 6 r 6	For single-row tapered roller bearings and angu- lar contact ball bearings, k 5 and m 5 may be replaced by k 6 and m 6, because internal clear- ance reduction due to fit need not be considered.	Electric motors, turbines, internal combustion engines, wood- working machines etc.
	Heavy load or impact load $\left(\frac{P_r}{C_r} > 0.12\right)$		- - -	50 140 200	140 200 –	50 100 140	100 140 200	n 6 p 6 r 6	Bearings with larger internal clearance than standard are required.	Railway rolling stock axle journals, traction motors
Stationary inner ring load	Inner ring needs to move smoothly on shaft.		All	shaft	diamet	ers		g 6	For applications requir- ing high accuracy, g 5 should be used. For large size bearing, f 6 may be used for easier movement.	Stationary shaft wheels
Static inner	Inner ring does not need to move smoothly on shaft.		All shaft diameters		h 6	For applications requir- ing high accuracy, h 5 should be used.	Tension pulleys, rope sheaves etc.			
Centra	al axial load only				diamet			js 6	-	
	Tapered	bore b	earing	(class	0) (wit	h adapi	ter or w	vithdrawal slee	eve)	_
	All loads		All	shaft	diamet	ers		h 9/IT 5 ²⁾	For transmission shafts, h 10/IT 7 $^{2)}$ may be applied.	

[Notes] 1) Light, normal, and heavy loads refer to those with dynamic equivalent radial loads (P_r) of 6 % or lower, over 6 % up to 12 % inclusive, and over 12 % respectively in relation to the basic dynamic radial load rating (C_r) of the bearing concerned.

2) IT 5 and IT 7 mean that shaft roundness tolerance, cylindricity tolerance, and other errors in terms of shape should be within the tolerance range of IT 5 and IT 7, respectively. For numerical values for standard tolerance grades IT 5 and IT 7, refer to supplementary table at end of this catalog.

[Remark] This table is applicable to solid steel shafts.

Table 9-4 (2) Recommended housing fits for radial bearings (classes 0, 6X, 6)

	Co	onditions					
Housing	Load	d type etc. $^{1)}$	Outer ring axial displacement ²⁾	Class of hous- ing bore toler- ance range	Remarks	Applications (for reference)	
		All load types		Η 7	G 7 may be applied when a large size bearing is used, or if the temperature differ- ence is large between the outer ring and housing.	Ordinary bearing devices, railway rolling stock axle boxes, power transmission equip- ment etc.	
One-piece or split type		Light or normal load	Easily displaceable	H 8	-		
spirt type	Stationary outer ring load	High temperature at shaft and inner ring	at shaft and inner		G 7	F 7 may be applied when a large size bearing is used, or if the temperature differ- ence is large between the outer ring and housing.	Drying cylinders etc.
		Light or normal load, requiring	Not displaceable in principle	K 6	Mainly applied to roller bearings.		
		high running accuracy	Displaceable	JS 6	Mainly applied to ball bearings.		
		Requiring low-noise rotation	Easily displaceable	H 6	-		
		Light or normal load	Normally displaceable	JS 7	For applications requiring high	Electric motors, pumps,	
One-piece	Indeterminate direction load	Normal or heavy load	Not displaceable in principle	K 7	accuracy, JS 6 and K 6 should be used in place of JS 7 and K 7.	crankshaft main bearings etc.	
type		High impact load	Not displaceable	M 7	-	Traction motors etc.	
		Light or fluctuating load		M 7	_	Conveyor rollers, ropeways, tension pulleys etc.	
	Rotating	Normal or heavy load	Not	N 7	Mainly applied to ball bearings.	Wheel hubs with ball bearings etc.	
	outer ring load	Thin section housing, heavy or high impact load	displaceable	Ρ7	Mainly applied to roller bearings.	Wheel hubs with roller bearings, bearings for large end of connecting rods etc.	

[Notes] 1) Loads are classified as stated in Note 1) to Table 9-4 (1).

 Indicating distinction between applications of non-separable bearings permitting and not permitting axial displacement of the outer rings.

[Remarks] 1. This table is applicable to cast iron or steel housings.

If only central axial load is applied to the bearing, select such tolerance range class as to provide clearance in the radial direction for outer ring.

Table 9-5 (1)Recommended shaft fits for precision extra-small/miniature
ball bearings (d < 10 mm)

Unit : µm

Loa	d type	Bearing mea tolerance dian		Single plane mean bore diameter deviation Δ_{dmp}		iameter ional ce	$\mathbf{Fit}^{1)}$	Applications		
			upper	lower	upper	lower				
	Middle/high	ABMA 5P	0	- 5.1	+ 2.5	- 2.5	7.6T – 2.5L	Gyro rotors,		
	speed	JIS class 5	0	- 5	+ 2.5	- 2.5	7.5T – 2.5L	air cleaners,		
	Light or		ABMA 7P	0	- 5.1	+ 2.5 - 2.5	5 – 2.5	7.6T – 2.5L	electric tools,	
Rotating inner	normal load	JIS class 4	0	- 4	+ 2.5	- 2.5	6.5T – 2.5L	encoders		
ring load		ABMA 5P	0	- 5.1	-2.5 -7.5	25 75	2.6T – 7.5L	Gyro gimbals,		
5	Low speed	JIS class 5	0	- 5	-2.5 -7.5		2.5T – 7.5L	synchronizers,		
	Light load	ABMA 7P	0	- 5.1	- 2.5	0.5 7.5	25 75	- 2.5 - 7.5	2.6T – 7.5L	servomotors,
		JIS class 4	0	- 4	-2.5	1.5	1.5T – 7.5L	floppy disc spindles		
:		ABMA 5P	0	- 5.1	- 2.5	- 7.5	2.6T – 7.5L			
Rotating outer	high speed	JIS class 5	0	- 5	-2.5	- 7.5	2.5T – 7.5L	Pinch rolls, tape guide rollers,		
ring load		ABMA 7P	0	- 5.1	-25	-75	2.6T – 7.5L	linear actuators		
0	Ű,	JIS class 4	0	- 4	- 2.5 - 7.5		1.5T – 7.5L			

[Note] 1) Symbols T and L means interference and clearance respectively.

Table 9-5 (2)Recommended housing fits for precision extra-small/miniature
ball bearings ($D \leq 30 \text{ mm}$)

Unit : µm

Loa	d type	Bearing tolerance class	Single p mean ou diamete deviatio	ıtside r	diamet dimens	Housing bore diameter dimensional tolerance		Applications
			upper	lower	upper	lower		
	Middle/high	ABMA 5P ABMA 7P	0	- 5.1	+ 5	0	0 – 10.1L	Gyro rotors,
	speed Light or	JIS class 52)	0 0	- 5 - 6	+ 5	0	0-10 L 0-11 L	air cleaners, electric tools,
Rotating inner	normal load	JIS class 42)	0 0	- 4 - 5	+ 5	0	0-9L 0-10L	encoders
ring load		ABMA 5P ABMA 7P	0	- 5.1	+ 2.5	- 2.5	2.5T – 7.6L	Gyro gimbals,
	Low speed	JIS class 52)	0 0	- 5 - 6	+ 2.5	- 2.5	2.5T – 7.5L 2.5T – 8.5L	synchronizers, servomotors,
	3	JIS class 42)	0 0	- 4 -5	+ 2.5	- 2.5	2.5T – 6.5L 2.5T – 7.5L	floppy disc spindles
	Low to	ABMA 5P ABMA 7P	0	- 5.1	+ 2.5	- 2.5	2.5T – 7.6L	
Rotating outer ring load	high speed	JIS class 52)	0 0	- 5 - 6	+ 2.5	- 2.5	2.5T – 7.5L 2.5T – 8.5L	Pinch rolls, tape guide rollers
3	Light load	JIS class 42)	0 0	- 4 - 5	+ 2.5	- 2.5	2.5T – 6.5L 2.5T – 7.5L	

[Notes] 1) Symbols T and L means interference and clearance respectively.

2) In the columns "single plane mean outside diameter deviation" and "fit" upper row values are applied in the case of $D \leq 18$ mm, lower row values in the case of $18 < D \leq 30$ mm.

Table 9-6 (1)Recommended shaft fits for metric J series tapered roller bearingsBearing tolerance : class PK, class PN

Load type		Nominal bore diameter d mm		Class of shaft tolerance range	Remarks
		over	up to		
	Normal load	10	120	m 6	
Rotating	Normanioau	120	500	n 6	
inner ring	Heavy load Impact load High speed rotation	10	120	n 6	
load		120	180	р 6	Generally, bearing internal clearance
1040		180	250	r 6	should be larger than standard.
		250	500	r 7	
Rotating	Normal load without impact	80	315	h 6 or g 6	
outer ring	Heavy load	10	120	n 6	
load	,	120	180	p 6	Generally, bearing internal clearance
IUau	Impact load High speed rotation	180	250	r 6	should be larger than standard.
	Fight speed folation	250	500	r 7	

Bearing tolerance : class PC, class PB

Load type		Nominal bore diameter d mm		Class of toleranc (bearing tole		Remarks
		over	up to	PC	PB	
	Spindles of precision machine tools	10 315	315 500	k 5 k 5	k 5 –	
Rotating inner ring load	Heavy load Impact load High speed rotation	10 18 50 80 120 180 250 315	18 50 80 120 180 250 315 500	m 6 m 5 n 5 p 4 r 4 r 5 r 5	m 5 m 5 n 4 p 4 r 4 r 4 r 4	Generally, bearing internal clearance should be larger than standard.
Rotating outer ring load	Spindles of precision machine tools	10 315	315 500	k 5 k 5	k 5 _	

Table 9-6 (2)Recommended housing fits for metric J series tapered roller bearingsBearing tolerance : class PK, class PN

L	Load type		outside r m up to	Class of housing bore diameter tolerance range	Remarks
	Used for free or fixed side	18 315	315 400	G 7 F 6	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction)	18	400	J 7	Outer ring is displaceable in axial direction.
	Position of outer ring is not adjustable (in axial direction)	18	400	Ρ7	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction)	18 120 180	120 180 400	R 7	Outer ring is fixed in axial direction.

Bearing tolerance : class PC, class PB

Lc	Load type		r D m		sing bore erance range erance class)	Remarks	
		over	up to	PC	PB		
	Used for free side	18	315	G 5	G 5	Outer ring is easily displace-	
		315	500	G 5	-	able in axial direction.	
	Used for fixed side	18	315	H 5	H 4	Outer ring is displaceable in	
	Used for fixed side	315	500	H 5	-	axial direction.	
		18	120	K 5	K 5		
Rotating	Position of outer ring is adjustable (in axial direction)	120	180	JS 6	JS 6		
inner ring		180	250	JS 6	JS 5		
load		250	315	K 5	JS 5		
		315	500	K 5	-	Outer ring is fixed in	
	Position of					axial direction.	
	outer ring is	18	315	N 5	M 5		
	not adjustable	315	500	N 5	-		
	(in axial direction)						
Rotating	Position of	18	250	N 6	N 5		
outer ring	outer ring is	250	315	N 5	N 5	Outer ring is fixed in	
load	not adjustable	315	500	N 5	_	axial direction.	
1040	(in axial direction)	515	500		_		

Table 9-7 (1)Recommended shaft fits for inch series tapered roller bearingsBearing tolerance : class 4, class 2

Loa	Load type		Nominal bore diameter d mm (1/25.4)			Dimensional tolerance of shaft diameter μm		Remarks
		over	up to	upper	lower	upper	lower	
		-	76.2 (3.0)	+ 13	0	+ 38	+ 25	
	Normal load	76.2 (3.0)	304.8 (12.0)	+ 25	0	+ 64	+ 38	
	Normai load	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 127	+ 76	
Rotating inner ring		609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 190	+ 114	
load	Heavy load	-	76.2 (3.0)	+ 13	0	Should b	e such	Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 25	0		age inter-	internal clearance
	High speed	304.8 (12.0)	609.6 (24.0)	+ 51	0	ference stands at		should be larger
	rotation	609.6 (24.0)	914.4 (36.0)	+ 76	0	0.000 5 \times d (mm) than	than standard.	
		-	76.2 (3.0)	+ 13	0	+ 13	0	
	Normal load without	76.2 (3.0)	304.8 (12.0)	+ 25	0	+ 25	0	
	impact	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 51	0	
		609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 76	0	
		-	76.2 (3.0)	+ 13	0	0	- 13	
Rotating outer ring	Normal load without	76.2 (3.0)	304.8 (12.0)	+ 25	0	0	- 25	Inner ring is displaceable in
load	impact	304.8 (12.0)	609.6 (24.0)	+ 51	0	0	- 51	axial direction.
		609.6 (24.0)	914.4 (36.0)	+ 76	0	0	- 76	
	Heavy load	-	76.2 (3.0)	+ 13	0	Should b	e such	Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 25	0	that average inter- ference stands at should be la		internal clearance
	High speed	304.8 (12.0)	609.6 (24.0)	+ 51	0			should be larger
	rotation	609.6 (24.0)	914.4 (36.0)	+ 76	0	0.000 5 ×	(mm)	than standard.

Bearing tolerance : class 3, class 0¹⁾

Load type		Nominal bore diameter d mm (1/25.4)		Deviation of a single bore diameter Δd_s , μm		Dimensional tolerance of shaft diameter µm		Remarks
		over	up to	upper	lower	upper	lower	
	Spindles of	-	76.2 (3.0)	+ 13	0	+ 30	+ 18	
	precision	76.2 (3.0)	304.8 (12.0)	+ 13	0	+ 30	+ 18	
	machine	304.8 (12.0)	609.6 (24.0)	+ 25	0	+ 64	+ 38	
Rotating inner ring	tools	609.6 (24.0)	914.4 (36.0)	+ 38	0	+ 102	+ 64	
load	Heavy load	-	76.2 (3.0)	+ 13	0	Should be such		Generally, bearing
	Impact load	76.2 (3.0)	304.8 (12.0)	+ 13	0		age inter-	internal clearance
	High speed	304.8 (12.0)	609.6 (24.0)	+ 25	0	ference s		should be larger
	rotation	609.6 (24.0)	914.4 (36.0)	+ 38	0	0.000 5 ×	d (mm)	than standard.
	Spindles of	-	76.2 (3.0)	+ 13	0	+ 30	+ 18	
Rotating outer ring	precision	76.2 (3.0)	304.8 (12.0)	+ 13	0	+ 30	+ 18	
load	machine	304.8 (12.0)	609.6 (24.0)	+ 25	0	+ 64	+ 38	
	tools	609.6 (24.0)	914.4 (36.0)	+ 38	0	+ 102	+ 64	

[Note] 1) Class 0 bearing : $d \leq$ 304.8 mm

Table 9-7 (2)	Recommended housing fits for inch series tapered roller bearings
Bearing tolerance	class 4, class 2

Koyo

Load type		Nomina diamete 1 mm (1	Deviation of a single outside diameter \varDelta_{Ds} , μm		Dimensional tolerance of housing bore diameter µm		Remarks	
		over	up to	upper	lower	upper	lower	
	Used for free or fixed side.	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	+ 76 + 76 + 76 +152 +229	+ 51 + 51 + 51 +102 +152	Outer ring is easily displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjust- able (in axial direction).	- 76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	+ 25 + 25 + 51 + 76 +127	0 0 + 25 + 51	Outer ring is displaceable in axial direction.
F o is a (i	Position of outer ring is not adjustable (in axial direction).	- 76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction).	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0)	76.2 (3.0) 127.0 (5.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 25 + 25 + 25 + 51 + 76	0 0 0 0	- 13 - 25 - 25 - 25 - 25 - 25	- 38 - 51 - 51 - 76 -102	Outer ring is fixed in axial direction.

Bearing tolerance : class 3, class 0¹⁾

Loa	Load type		Nominal outside diameter D mm (1/25.4)			Dimensional tolerance of housing bore diameter µm		Remarks
		over	up to	upper	lower	upper	lower	
	Used for free side.	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 38 + 38 + 64 + 89	+ 25 + 25 + 38 + 51	Outer ring is easily displaceable in axial direction.
	Used for fixed side.	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 25 + 25 + 51 + 76	+ 13 + 13 + 25 + 38	Outer ring is displaceable in axial direction.
Rotating inner ring load	Position of outer ring is adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	+ 13 + 25 + 25 + 38	0 0 0 0	Outor ring is fixed in
	Position of outer ring is not adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	0 0 0 0	- 13 - 25 - 25 - 38	 Outer ring is fixed in axial direction.
Rotating outer ring load	Position of outer ring is not adjustable (in axial direction).	- 152.4 (6.0) 304.8 (12.0) 609.6 (24.0)	152.4 (6.0) 304.8 (12.0) 609.6 (24.0) 914.4 (36.0)	+ 13 + 13 + 25 + 38	0 0 0 0	- 13 - 13 - 13 - 13 - 13	- 25 - 38 - 38 - 51	Outer ring is fixed in axial direction.

[Note] 1) Class 0 bearing : $D \leq 304.8 \text{ mm}$

Table 9-8 (1) Recommended shaft fits for thrust bearings (classes 0, 6)

Load type Central axial load (generally for thrust bearings)		Shaft dian	neter, mm	Class of shaft tolerance	Remarks	
		over	up to	range	nemarks	
		All shaft diameters		js 6	h 6 may also be used.	
Combined load	race load		diameters	js 6	-	
(spherical thrust roller bearing	Rotating shaft race load or indeterminate direction load	_ 200 400	200 400 -	k 6 m 6 n 6	js 6, k 6 and m 6 may be used in place of k 6, m 6 and n 6, respectively.	

Table 9-8 (2) Recommended housing fits for thrust bearings (classes 0, 6)

Loa	ad type	Class of housing bore diameter tolerance range	Remarks			
Central axial load (generally for thrust bearings)		_	Select such tolerance range class as provides clearance in the radial direction for housing race.			
(generally for th	ilust bearings)	H 8	In case of thrust ball bearings requiring high accuracy.			
Combined load	Stationary housing race load	H 7	-			
(spherical thrust roller bearing	Indeterminate direction load or	K 7	In case of application under normal operating conditions.			
	rotating housing race load	M 7	In case of comparably large radial load.			

[Remark] This table is applicable to cast iron or steel housings.

10. Bearing internal clearance

Bearing internal clearance is defined as the total distance either inner or outer ring can be moved when the other ring is fixed.

If movement is in the radial direction, it is called radial internal clearance; if in the axial direction, axial internal clearance. (Fig. 10-1)

Bearing performance depends greatly upon internal clearance during operation (also referred to as operating clearance); inappropriate clearance results in short rolling fatigue life and generation of heat, noise or vibration.

Radial internal clearance Axial internal clearance

Fig. 10-1 Bearing internal clearance

In measuring internal clearance, a specified load is generally applied in order to obtain stable measurement values.

Consequently, measured clearance values will be larger than the original clearance by the amount of elastic deformation due to the load applied for measurement.

As far as roller bearings are concerned, however, the amount of elastic deformation is negligible.

Clearance prior to mounting is generally defined as the original clearance.

10-1 Selection of internal clearance

Kovo

The term "residual clearance" is defined as the original clearance decreased owing to expansion or contraction of a raceway due to fitting, when the bearing is mounted in the shaft and housing.

The term "effective clearance" is defined as the residual clearance decreased owing to dimensional change arising from temperature differentials within the bearing.

The term "operating clearance" is defined as the internal clearance present while a bearing mounted in a machine is rotating under a certain load, or, the effective clearance increased due to elastic deformation arising from bearing loads.

As illustrated in Fig. 10-2, bearing fatigue life is longest when the operating clearance is slightly negative.

However, as the operating clearance becomes more negative, the fatigue life shortens remarkably.

Thus it is recommended that bearing internal clearance be selected such that the operating clearance is slightly positive.

Operating clearance (µm)

Fig. 10-2 Relationship between operating clearance and fatigue life

It is important to take specific operating conditions into consideration and select a clearance suitable for the conditions.

For example, when high rigidity is required, or when the noise must be minimized, the operating clearance must be reduced. On the other hand, when high operating temperature is expected, the operating clearance must be increased.

10-2 Operating clearance

Table 10-1 shows how to determine the operating clearance when the shaft and housing are made of steel. Tables 10-2 to 10-10 show standard values for bearing internal clearance before mounting. Table 10-11 shows examples of clearance selection excluding CN clearance.

Table 10-1 How to determine operating clearance

In Table 10-1,

				_
S	: operating clearance	mm	$\varDelta_{\mathit{Deff}}$: effective interference of outer ring	m
S_{\circ}	: clearance before mounting	mm	$D_{ m h}$: outside diameter of housing	m
$S_{ m f}$: decrease of clearance due to fitting	mm	$D_{ m e}$: outer ring raceway contact diameter	n
$S_{ m fi}$: expansion of inner ring raceway contact diameter	mm	ball bearing $\cdots D_e \doteq 0.2(4 D + d)$ roller bearing $\cdots D_e \doteq 0.25(3 D + d)$	
${m S}_{ m fo}$: contraction of outer ring raceway contact diameter	mm	D : nominal outside diameter	'n
$S_{ m t1}$: decrease of clearance due to temperature differentials between inner and outer rings	mm	$lpha~$: linear expansion coefficient of bearing steel (12.5 $ imes$ 10 $^{-6}$)	1/
${m S}_{ m t2}$: decrease of clearance due to temper- ature rise of the rolling elements	mm	$D_{ m w}$: average diameter of rolling elements (ball bearing $D_{ m w} \doteq 0.3(D-d)$)	m)
$S_{ m w}$: increase of clearance due to load	mm	roller bearing $\cdots D_{\mathrm{w}} \doteq 0.25(D-d)$	J
Δ_{deff}	: effective interference of inner ring	mm	$t_{ m i}$: temperature rise of the inner ring	
d	: nominal bore diameter (shaft diameter)	mm	$t_{\rm e}$: temperature rise of the outer ring $t_{\rm w}$: temperature rise of rolling elements	
d_0	: bore diameter of hollow shaft	mm	$\iota_{\rm w}$. Temperature rise of rolling elements	
$D_{ m i}$: inner ring raceway contact diameter (ball bearing $\cdots D_i \doteq 0.2(D + 4 d)$ roller bearing $\cdots D_i \doteq 0.25(D + 3 d)$	mm)		

Bearings are sometimes used with a non-steel shaft or housing.

In the automotive industry, a statistical method is often incorporated for selection of clearance. In these cases, or when other special operating conditions are involved, JTEKT should be consulted.

Kovo

mm

mm

mm

mm

1/°C

 $\mathbf{m}\mathbf{m}$

°C

°C

°C

Г. K.		
- K	V A	١٢,
	<u> </u>	· · · /
		-

Unit : µm

 Table 10-2
 Radial internal clearance of deep groove ball bearings (cylindrical bore)

nit	um

Nominal bo	re diameter					Clea	rance				
<i>d</i> , r	nm	С	2	С	Ν	С	3	С	4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
2.5	6	0	7	2	13	8	23	14	29	20	37
6	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
120	140	2	23	18	48	41	81	71	114	105	160
140	160	2	23	18	53	46	91	81	130	120	180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460

[Remarks] 1. For measured clearance, the increase of radial internal clearance caused by the measurement load should be added to the values in the above table for correction. Amounts for correction are as shown below. Of the amounts for clearance correction in the C 2 column, the smaller is applied to the minimum clearance, the larger to the maximum clearance.

2. Values in Italics are prescribed in JTEKT standards.

Nominal	bore	Measurement load	Amounts of clearance correction, μm									
diameter	<i>d</i> , mm		C 2	CN	C 3	C 4	C 5					
over	up to	Ν	02	CN	03	04	0.0					
2.5	18	24.5	3 – 4	4	4	4	4					
18	50	49	4 – 5	5	6	6	6					
50	280	147	6 - 8	8	9	9	9					

Table 10-3 Radial internal clearance of extra-small/miniature ball bearings Unit : µm

Clearance code	M 1		M 2		M 3		M 4		М	5	M 6	
Clearance code	min.	max.										
Clearance	0	5	3	8	5	10	8	13	13	20	20	28

[Remark] For measured clearance, the following amounts should be added for correction.

Measu	rement load, N	Amounts of clearance correction, µ								
Extra-small ball bearing	Miniature ball bearing	M1	M2	M3	M4	M5	M6			
	2.3	1	1	1	1	1	1			

Extra-small ball bearing : 9 mm or larger in outside diameter and under 10 mm in bore diameter Miniature ball bearing : under 9 mm in outside diameter

Table 10-4	Axial internal clearance of matched pair angular contact
	hall bearings (measurement clearance) $^{1)}$

	al bore	C	ontact a	ngle : 1	5°			С	ontact a	ngle : 3	0 °		
diame <i>d</i> , 1	ter mm	С	2	С	N	С	2	С	N	С	3	C 4	
over	up to	min.	max.	min.	max.	min.	max.	min.	min. max.		max.	min.	max.
_	10	13	33	33	53	3	14	10	30	30	50	50	70
10	18	15	35	35	55	3	16	10	30	30	50	50	70
18	24	20	40	45	65	3	20	20	40	40	60	60	80
24	30	20	40	45	65	3	20	20	40	40	60	60	80
30	40	20	40	45	65	3	20	25	45	45	65	70	90
40	50	20	40	50	70	3	20	30	50	50	70	75	95
50	65	30	55	65	90	9	27	35	60	60	85	90	115
65	80	30	55	70	95	10	28	40	65	70	95	110	135
80	100	35	60	85	110	10	30	50	75	80	105	130	155
100	120	40	65	100	125	12	37	65	90	100	125	150	175
120	140	45	75	110	140	15	40	75	105	120	150	180	210
140	160	45	75	125	155	15	40	80	110	130	160	210	240
160	180	50	80	140	170	15	45	95	125	140	170	235	265
180	200	50	80	160	190	20	50	110	140	170	200	275	305

	al bore			С	ontact a	ngle : 4	0 °		
diame d, 1	nm	с	2	с	N	с	3	С	4
over	up to	min.	min. max.		max.	min.	min. max.		max.
-	10	2	10	6	18	16	30	26	40
10	18	2	12	7	21	18	32	28	44
18	24	2	12	12	26	20	40	30	50
24	30	2	14	12	26	20	40	40	60
30	40	2	14	12	26	25	45	45	65
40	50	2	14	12	30	30	50	50	70
50	65	5	17	17	35	35	60	60	85
65	80	6	18	18	40	40	65	70	95
80	100	6	20	20	45	55	80	85	110
100	120	6	25	25	50	60	85	100	125
120	140	7	30	30	60	75	105	125	155
140	160	7	30	35	65	85	115	140	170
160	180	7	31	45	75	100	130	155	185
180	200	7	37	60	90	110	140	170	200

[Note] 1) Including increase of clearance caused by measurement load.

Table 10-5 Radial internal clearance of double-row angular contact ball bearings

Unit : µm

Nominal bo	re diameter			Clea	rance		
<i>d</i> , 1	nm	C	D2	CI	DN	С	D3
over	up to	min.	max.	min.	max.	min.	max.
2.5	10	0	7	2	10	8	18
10	18	0	7	2	11	9	19
18	24	0	8	2	11	10	21
24	30	0	8	2	13	10	23
30	40	0	9	3	14	11	24
40	50	0	10	4	16	13	27
50	65	0	11	6	20	15	30
65	80	0	12	7	22	18	33
80	100	0	12	8	24	22	38
100	120	0	13	9	25	24	42
120	140	0	15	10	26	25	44
140	160	0	16	11	28	26	46
160	180	0	17	12	30	27	47
180	200	0	18	14	32	28	48

Remark] Regarding deep groove ball earings and matched pair and ouble-row angular contact ball earings, equations of the relaonship between radial internal earance and axial internal earance are shown on page 105.

Table 10-6	Radial interna	l clearance of	f self-aligning	ball bearings
-------------------	----------------	----------------	-----------------	---------------

Unit : µm

Koyo

																				. · μ		
	nina mete	al bore		0	Cylind	rical I	bore l	bearin	ig clea	aranc	е				Таре	red bo	ore be	earing	l cleai	rance		
		nm	С	2	С	Ν	С	3	С	4	С	5	С	2	С	Ν	С	3	С	4	С	5
0\	er	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
	2.5	6	1	8	5	15	10	20	15	25	21	33	-	-	-	-	-	-	-	-	-	-
	6	10	2	9	6	17	12	25	19	33	27	42	-	-	-	-	-	-	-	-	-	-
	10	14	2	10	6	19	13	26	21	35	30	48	-	-	-	-	-	-	-	-	-	-
	14	18	3	12	8	21	15	28	23	37	32	50	-	-	-	-	-	-	-	-	-	-
	18	24	4	14	10	23	17	30	25	39	34	52	7	17	13	26	20	33	28	42	37	55
:	24	30	5	16	11	24	19	35	29	46	40	58	9	20	15	28	23	39	33	50	44	62
;	30	40	6	18	13	29	23	40	34	53	46	66	12	24	19	35	29	46	40	59	52	72
4	10	50	6	19	14	31	25	44	37	57	50	71	14	27	22	39	33	52	45	65	58	79
ļ	50	65	7	21	16	36	30	50	45	69	62	88	18	32	27	47	41	61	56	80	73	99
(65	80	8	24	18	40	35	60	54	83	76	108	23	39	35	57	50	75	69	98	91	123
1	30	100	9	27	22	48	42	70	64	96	89	124	29	47	42	68	62	90	84	116	109	144
1	00	120	10	31	25	56	50	83	75	114	105	145	35	56	50	81	75	108	100	139	130	170
12	20	140	10	38	30	68	60	100	90	135	125	175	40	68	60	98	90	130	120	165	155	205
14	10	160	15	44	35	80	70	120	110	161	150	210	45	74	65	110	100	150	140	191	180	240

Table 10-7 Radial internal clearance of electric motor bearings

1) Deep groove ball bearing Unit : μm

2) Cylindrical roller bearing Unit : µm

,	,	0									
		Clear	Clearance			Clearance					
Nominal bore diameter d, mm					Nominal bore diameter		ngeability	Non-interchangeability			
		СМ		<i>d</i> , 1	d, mm		СТ		CM		
over	up to	min.	max.	over	up to	min.	max.	min.	max.		
10 ¹⁾	18	4	11	24	40	15	35	15	30		
18	30	5	12	40	50	20	40	20	35		
30	50	9	17	50	65	25	45	25	40		
50	80	12	22	65	80	30	50	30	45		
80	120	18	30	80	100	35	60	35	55		
120	160	24	38	100	120	35	65	35	60		
[Note] 1) 10 mm is included.			120	140	40	70	40	65			
[Remark] To adjust for change of clearance due			140	160	50	85	50	80			
t	to measuring	load, use c	orrection	160	180	60	95	60	90		

[Re to measuring load, use correction values shown in Table 10-2.

> [Note] "Interchangeability" means interchangeable only among products (sub-units) of the same manufacturer ; not with others.

105

65

100

65

A 98

180

200

Table 10-8 Radial internal clearance of cylindrical roller bearings and machined ring needle roller bearings

			(2) Tapered bore bearing Unit : µm												
	al bore					N	on-inter	rchang	eable c	learan	се				
diame		C 9	NA ¹⁾	C 1	NA	C 2	C 2 NA C N NA		C 3	NA	C 4	NA	C 5	NA	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
12	14	5	10	-	-	-	-	-	-	-	_	-	-	-	_
14	24	5	10	10	20	20	30	35	45	45	55	55	65	75	85
24	30	5	10	10	25	25	35	40	50	50	60	60	70	80	95
		_													
30	40	5	12	12	25	25	40	45	55	55	70	70	80	95	110
40	50	5	15	15	30	30	45	50	65	65	80	80	95	110	125
50	65	5	15	15	35	35	50	55	75	75	90	90	110	130	150
65	80	10	20	20	40	40	60	70	90	90	110	110	130	150	170
80	100	10	25	25	45	45	70	80	105	105	125	125	150	180	205
100	120	10	25	25	50	50	80	95	120	120	145	145	170	205	230
		10	20	20	00		00		120	120	110	110	170	200	200
120	140	15	30	30	60	60	90	105	135	135	160	160	190	230	260
140	160	15	35	35	65	65	100	115	150	150	180	180	215	260	295
160	180	15	35	35	75	75	110	125	165	165	200	200	240	285	320
180	200	20	40	40	80	80	120	140	180	180	220	220	260	315	355
200	225	20	45	45	90	90	135	155	200	200	240	240	285	350	395
225	250	25	50	50	100	100	150	170	215	215	265	265	315	380	430
250	280	25	55	55	110	110	165	185	240	240	295	295	350	420	475
280	315	30	60	60	120	120	180	205	265	265	325	325	385	470	530
315	355	30	65	65	135	135	200	225	295	295	360	360	430	520	585
055	400	05	75	75	150	150	005	055	000	220	405	405	400	5.05	660
355	400	35	75 95	75	150	150	225	255	330 270	330	405	405	480 540	585	660 725
400 450	450 500	45 50	85 95	85 05	170	170 190	255 285	285 315	370 410	370 410	455 505	455 505	540 600	650 720	735
450	500	50	95	95	190	190	285	315	410	410	505	505	600	/20	815
										1		1		1	

Koyo

[Note] 1) Clearance C 9 NA is applied to tapered bore cylindrical roller bearings of JIS tolerance classes 5 and 4.

Table 10-9 Radial internal clearance of spherical roller bearings

				(1) C	lindrica	l bore b	earing				Unit : µm
Nomin diamet	al bore					Clea	rance				
	mm	С	C 2		N	C	3	C	; 4	C	5
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
14	18	10	20	20	35	35	45	45	60	60	75
18	24	10	20	20	35	35	45	45	60	60	75
24	30	15	25	25	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	180	180	225
100	120	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1 000
560	630	170	310	310	480	480	650	650	850	850	1 100
630	710	190	350	350	530	530	700	700	920	920	1 190
710	800	210	390	390	580	580	770	770	1 010	1 010	1 300
800	900	230	430	430	650	650	860	860	1 120	1 120	1 440
900	1 000	260	480	480	710	710	930	930	1 220	1 220	1 570

			(2) Tapered bore bearing Unit : µm									
	al bore					Clea	rance					
diameter d, mm		C 2		С	N	C	3	С	4	С	5	
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	
			-				-					
18	24	15	25	25	35	35	45	45	60	60	75	
24	30	20	30	30	40	40	55	55	75	75	95	
30	40	25	35	35	50	50	65	65	85	85	105	
40	50	30	45	45	60	60	80	80	100	100	130	
50	65	40	55	55	75	75	95	95	120	120	160	
65	80	50	70	70	95	95	120	120	150	150	200	
80	100	55	80	80	110	110	140	140	180	180	230	
100	120	65	100	100	135	135	170	170	220	220	280	
120	140	80	120	120	160	160	200	200	260	260	330	
140	160	90	130	130	180	180	230	230	300	300	380	
160	180	100	140	140	200	200	260	260	340	340	430	
180	200	110	160	160	220	220	290	290	370	370	470	
200	225	120	180	180	250	250	320	320	410	410	520	
225	250	140	200	200	270	270	350	350	450	450	570	
250	280	150	220	220	300	300	390	390	490	490	620	
280	315	170	240	240	330	330	430	430	540	540	680	
315	355	190	270	270	360	360	470	470	590	590	740	
355	400	210	300	300	400	400	520	520	650	650	820	
400	450	230	330	330	440	440	570	570	720	720	910	
450	500	260	370	370	490	490	630	630	790	790	1 000	
500	560	290	410	410	540	540	680	680	870	870	1 100	
560	630	320	460	460	600	600	760	760	980	980	1 230	
630	710	350	510	510	670	670	850	850	1 090	1 090	1 360	
710	800	390	570	570	750	750	960	960	1 220	1 220	1 500	
800	900	440	640	640	840	840	1 070	1 070	1 370	1 370	1 690	
900	1 000	490	710	710	930	930	1 190	1 190	1 520	1 520	1 860	

. Koyo

 Table 10-10
 Radial internal clearance of double/four-row and matched pair tapered roller bearings (cylindrical bore)

Unit : µm

Nominal bore diameter						Clear	rance				
diamet d, r		С	1	С	2	С	Ν	С	3	C	4
over	up to	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
14	18	0	10	10	20	20	30	30	40	40	50
18	24	0	10	10	20	20	30	30	40	40	55
24	30	0	10	10	20	20	30	30	45	45	60
30	40	0	12	12	25	25	40	40	55	55	75
40	50	0	15	15	30	30	45	45	60	60	80
50	65	0	15	15	30	30	50	50	70	70	90
65	80	0	20	20	40	40	60	60	80	80	110
80	100	0	20	20	45	45	70	70	100	100	130
100	120	0	25	25	50	50	80	80	110	110	150
120	140	0	30	30	60	60	90	90	120	120	170
140	160	0	30	30	65	65	100	100	140	140	190
160	180	0	35	35	70	70	110	110	150	150	210
180	200	0	40	40	80	80	120	120	170	170	230
200	225	0	40	40	90	90	140	140	190	190	260
225	250	0	50	50	100	100	150	150	210	210	290
250	280	0	50	50	110	110	170	170	230	230	320
280	315	0	60	60	120	120	180	180	250	250	350
315	355	0	70	70	140	140	210	210	280	280	390
355	400	0	70	70	150	150	230	230	310	310	440
400	450	0	80	80	170	170	260	260	350	350	490
450	500	0	90	90	190	190	290	290	390	390	540
500	560	0	100	100	210	210	320	320	430	430	590
560	630	0	110	110	230	230	350	350	480	480	660
630	710	0	130	130	260	260	400	400	540	540	740
710	800	0	140	140	290	290	450	450	610	610	830
800	900	0	160	160	330	330	500	500	670	670	920

Table 10-11 Examples of non-standard clearance selection

Service conditions	Applications	Examples of clearance selection
In the case of heavy/impact load,	Railway rolling stock axle jour-	C 3
large interference	nals	03
In the case of vibration/impact load,	Shaker screens,	C 3, C 4
interference fit both for inner/outer rings	railway rolling stock traction motors,	C 4
Interference in both for inner/outer rings	tractor final reduction gears	C 4
When shaft deflection is large	Automobile rear wheels	C 5
When shaft and inner ring are bested	Dryers of paper making machines,	C 3, C 4
When shaft and inner ring are heated	table rollers of rolling mills	C 3
When clearance fit both for inner/outer rings	Roll necks of rolling mills	C 2
When noise/vibration during rotation is	Micro-motors	C 1, C 2, CM
to be lowered		
When clearance after mounting is to be adjusted in order to reduce shaft runout	Lathe spindles	C 9 NA, C 1 NA

[Reference] Relationship between radial internal clearance and axial internal clearance

[Deep groove ball bearing]	$\Delta_{\rm a} = \sqrt{\Delta_{\rm r} (4m_{\rm o} - \Delta_{\rm r})}$ (10-1)
[Double-row angular contact ball bearing]	$\Delta_{\rm a} = 2\sqrt{m_{\rm o}^2 - (m_{\rm o} \cos \alpha - \frac{\Delta_{\rm r}}{2})^2} - 2m_{\rm o} \sin \alpha $ (10-2)
[Matched pair angular contact ball bearing]	$\Delta_{\rm a} = 2m_{\rm o}\sin\alpha - 2\sqrt{m_{\rm o}^2 - (m_{\rm o}\cos\alpha + \frac{\Delta_{\rm r}}{2})^2}$ (10-3)
[Double/four-row and matched pair tapered roller bearing]	$\Delta_{\rm a} = \Delta_{\rm r} \cot \alpha = \frac{1.5}{e} \Delta_{\rm r} \cdots $

A 105

where :

Δ_{a} : axial internal clearance mm							
\varDelta_{r} : radial internal clearance mm							
$m_{\rm o} = r_{\rm e} + r_{\rm i} - D_{\rm w}$							
$(r_{ m e})$: outer ring raceway groove radius mr							
$r_{ m e}$: outer ring raceway groove radius mm $r_{ m i}$: inner ring raceway groove radius mm							
$D_{ m w}$: ball diameter	mm						

 α : nominal contact angle

e: limit value of F_a/F_r

(shown in the bearing specification table.)

Koyo

11. Preload

Generally, bearings are operated with a certain amount of proper clearance allowed. For some applications, however, bearings are mounted with axial load of such magnitude that the clearance will be negative.

The axial load, referred to as "preload," is often applied to angular contact ball bearings and tapered roller bearings.

11-1 Purpose of preload

- To improve running accuracy by reducing runout of shaft, as well as to heighten position accuracy in radial and axial directions.
 (Bearings for machine tool spindles and measuring instruments)
- To improve gear engagement accuracy by increasing bearing rigidity.
- (Bearings for automobile final reduction gears)
 To reduce smearing by eliminating sliding in irregular rotation, self-rotation, and aroundthe-raceway revolution of rolling elements.
 (For high rotation-speed angular contact ball bearings)
- To minimize abnormal noise due to vibration or resonance.
- (For small electric motor bearings)
 To keep rolling elements in the right position relative to the raceway.
- (For thrust ball bearings and spherical thrust roller bearings used on horizontal shafts)

11-2 Method of preloading

The preload can be done either by the position preloading or the constant pressure preloading; typical examples are given in Table 11-1.

Comparison between position and constant pressure preloadings

- With the same amount of preloading, the position preloading produces smaller displacement in the axial direction, and thus is liable to bring about higher rigidity.
- The constant pressure preloading produces stable preloading, or little fluctuation in the amount of preload, since the spring can absorb the load fluctuation and shaft expansion/contraction caused by temperature difference between the shaft and housing during operation.
- The position preloading can apply a larger preload.

Consequently, the position preloading is more suitable for applications requiring high rigidity, while the constant pressure preloading is more suitable for high rotational speed, vibration prevention in the axial direction, and thrust bearings used on horizontal shafts.

11-3 Preload and rigidity

For angular contact ball bearings and tapered roller bearings, the "back-to-back" arrangement is generally used to apply preload for higher rigidity.

This is because shaft rigidity is improved by the longer distance between load centers in the back-to-back arrangement.

Fig. 11-1 shows the relationship between preload given via position preloading and rigidity expressed by displacement in the axial direction of the back-to-back bearing.

- P : amount of preload (load)
- T : axial load from outside
- $T_{\rm A}$: axial load applied to Bearing A
- $T_{\rm B}$: axial load applied to Bearing B
- $\delta_{\mathrm{a}}\,$: displacement of matched pair bearing
- $\delta_{\mathrm{aA}}\,$: displacement of Bearing A
- δ_{aB} : displacement of Bearing B
- 2 $\delta_{\rm ao}$: clearance between inner rings before preloading

Displacement curve

 $\delta_{\rm a}$

Axial load

Displacement curve

of bearing B

in position preloading

of bearing A

ν

(T)

Fig. 11-1 Preloading diagram

Displacement in axial direction

Ρ

 δ_{aB}

 δ_{aA}

 δ_{a0}

 $T_{\rm A}$

T

In Fig. 11-1, when preload *P* is applied (inner ring is tightened toward the axial direction), bearings A and B are displaced by δ_{ao} respectively, and the clearance between inner rings diminishes from $2\delta_{ao}$ to zero.

Kovo

The displacement when axial load T is applied to these matched pair bearings from the outside can be determined as $\delta_{\rm a}$.

[For reference]

How to determine δ_a in Fig. 11-1

①Determine the displacement curve of bearing A.

- ②Determine the displacement curve of bearing B. ...Symmetrical curve in relation to horizontal axis intersecting vertical line of preload P at point x.
- (3)With the load from outside defined as T, determine line segment x - y on the horizontal line passing through point x. Displace segment x - y in parallel along the displacement curve of bearing B. Determine point y' at which to intersect displacement curve of bearing A.

(4) δ_a can be determined as the distance between line segments x' - y' and x - y.

Fig. 11-2 shows the relationship between preload and rigidity in the constant pressure preloading using the same matched pair bearings as in Fig. 11-1.

In this case, since the spring rigidity can be ignored, the matched pair bearing shows almost the same rigidity as a separate bearing with preload P applied in advance.

Table 11-1 Method of preloading

11. Preload

The amount of preload should be determined. to avoid an adverse effect on bearing life, temperature rise, friction torque, or other performance characteristic. in view of the bearing application.

Decrease of preload due to wear-in, accuracy of the shaft and housing, mounting conditions. and lubrication should also be fully considered in determining preload.

11-4-1 Preload amount of matched pair angular contact ball bearings

Table 11-2 shows recommended preload for matched pair angular contact ball bearings of JIS class 5 or higher used for machine tool spindles or other higher precision applications.

JTEKT offers four types of standard preload: slight preload (S), light preload (L), medium preload (M), and heavy preload (H), so that preload can be selected properly and easily for various applications.

Generally, light or medium preload is recommended for grinder spindles, and medium or heavy preload for spindles of lathes and milling machines.

Table 11-3 shows recommended fits of highprecision matched pair angular contact ball bearings used with light or medium preload applied.

Table 11-3 Recommended fits for high-precision matched pair angular contact ball bearings with preload applied

(1) Dimensional tolerance of shaft Unit : um (2) Dimensional tolerance of housing bore Unit : µm

Kovo

Shaft diameter mm		Inner ring	Outer ring rotation		
		Tolerance of shaft diameter	Interference between shaft and inner ring (matching	Tolerance of shaft diameter	
over	up to		adjustment		
6	10	- 2 - 6	0 – 2	- 0 - 4	
10	18	- 2 - 7	0 – 2	- 0 - 5	
18	30	- 2 - 8	0 – 2.5	- 6	
30	50	- 2 - 9	0 – 2.5	- 7	
50	80	- 2 - 10	0 – 3	- 8	
80	120	- 2 - 12	0 - 4	0 - 10	
120	180	- 2 -14	0 – 5	0 - 12	

	Housing bore diameter		Inn	er ring rotat	ion	Outer ring rotation	
			Tolerance of housing bo	-	Clearance ¹⁾ between	Tolerance of housing	
		m	Fixed-side	Free-side	housing and outer	bore diameter	
	over	up to	bearing	bearing	ring		
	18	30	± 4.5	+ 9 0	2-6	- 6 - 12	
	30	50	± 5.5	+ 11 0	2-6	- 6 -13	
	50	80	± 6.5	+ 13 0	3 - 8	- 8 - 16	
	80	120	± 7.5	+ 15 0	3-9	- 9 -19	
	120	180	± 9	+ 18 0	4 – 12	- 11 - 23	
	180	250	± 10	+ 20 0	5 – 15	- 13 - 27	
	250	315	± 11.5	+ 23 0	6 – 18	- 16 - 32	

[Note] 1) Matching adjustment means to measure of bore diameter the bearing and match it to the measured shaft diameter

[Note] 1) Lower value is desirable for fixed side: higher value for free side

Table 11-2 Standard preload of high-precision matched pair angular contact ball bearings

[S : slight preload, L : light preload, M : medium preload, H : heavy preload] Unit : N Bore 7900 C 7000 C 7200 C ACT 000 ACT 000 B Bore diameter diameter S М L М н s Т М н L М н s М н Μ L Μ No. L No. _ _ _ _ 1 270 1 570 1 080 1 770 1 080 1 180 540 1 180 2 0 6 0 1 180 1 0 3 0 1 370 635 1 370 2 450 735 1 470 685 1 270 1 570 785 1 470 2 940 1 670 1 420 1 770 1 520 1 0 9 0 835 1 670 3 3 3 0 1 860 490 1 080 2 060 1 0 30 2 0 10 1 270 1 860 3 720 2 060 1 1 3 0 1 180 2 1 5 0 1 370 2 1 5 0 3 920 1 180 2 350 1 1 3 0 1080 2110 635 1 370 2 3 5 0 1 470 1 080 2 450 4 310 685 1 370 2 750 1 370 1 270 2 500 735 1 570 2 550 1 770 1 270 2 940 4 900 785 1 570 2 940 1 420 1 320 2 600 785 1 670 2 840 1 960 1 470 3 2 3 0 5 390 785 1770 3 4 3 0 1 860 1 770 3 380 880 1770 3 1 4 0 1 080 2 060 1 670 3 4 3 0 5 880 1 960 3 920 1 960 1 860 3 530 540 1 180 2 150 1 910 3 680 880 1 960 3 530 1 860 3 920 6 370 2 150 4 4 1 0 1 030 2 010 7 060 2 150 3 920 1 270 2 350 2 060 4 310 1 080 2 350 4 900 1 180 2 250 2 150 3 770 1 080 2 380 4 4 1 0 1 470 2 550 4 900 7 840 1 180 2 4 5 0 5 290 1 320 2 600 2 450 4 760 2 250 1 180 2 650 4 900 685 1 670 2 840 2 450 5 390 8 820 1 270 2 840 5 490 1 420 2 800 2 550 5 100 1 180 1 370 3 140 5 390 1 770 3 1 4 0 2 750 5 880 9 3 1 0 1 470 3 140 5 880 1 770 3 380 3 2 3 0 6 2 3 0 1 270 1 470 3 430 5 880 785 1 960 3 920 2 940 6 370 9 800 1 570 3 430 6 370 2 010 3 920 3 720 7 210 735 1 470 1 770 3 920 6 860 835 2150 4410 3 330 6 860 10 300 1 770 3 720 6 860 2 500 4 850 4 660 8 920 1 570 2 150 4 410 7 840 880 2 350 4 900 3 630 7 350 10 800 1 960 4 120 7 840 2 500 4 850 4 660 8 920 880 1 810 2 450 4 900 8 820 980 2 450 5 390 3 920 7 840 11 800 645 2 150 4 410 8 330 3 090 6 030 5 730 11 100

A 108

11-4-2 Amount of preload for thrust ball bearings

When a thrust ball bearing is rotated at high speed, balls slide on raceway due to centrifugal force and the gvro moment, which often causes the raceway to suffer from smearing or other defects.

11. Preload

To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load determined by the following equation.

When an axial load from the outside is lower than 0.001 3 C_{0a} , there is no adverse effect on the bearing, as long as lubrication is satisfactory.

Generally, deep groove and angular contact ball bearings are recommended for applications when a portion of rotation under axial load is present at high speed.

11-4-3 Amount of preload for spherical thrust roller bearings

Spherical thrust roller bearings sometimes suffer from scuffing, smearing, or other defects due to sliding which occurs between the roller and raceway surface in operation.

To eliminate such sliding, it is necessary to mount the bearing without clearance, and apply an axial load (preload) larger than the minimum necessary axial load.

Of the two values determined by the two equations below, the higher should be defined as the minimum necessary axial load.

• Spherical thrust roller bearing (the higher value determined by the two equations should be taken.)

 $F_{a\min} = \frac{C_{0a}}{2\ 000}$ (11-2)

where :

$F_{ m a\ min}$: minimum necessary axial load	Ν
n : rotational speed	\min^{-1}
$C_{0\mathrm{a}}$: static axial load rating	Ν
$F_{ m r}$: radial load	Ν

12. Bearing lubrication

12-1 Purpose and method of lubrication

Lubrication is one of the most important factors determining bearing performance. The suitability of the lubricant and lubrication method have a dominant influence on bearing life.

Functions of lubrication :

- To lubricate each part of the bearing, and to reduce friction and wear
- To carry away heat generated inside bearing due to friction and other causes
- To cover rolling contact surface with the proper oil film in order to prolong bearing fatique life
- To prevent corrosion and contamination by dirt

Bearing lubrication is classified broadly into two categories: grease lubrication and oil lubrication. Table 12-1 makes a general comparison between the two.

Table 12-1 Comparison between grease and oil lubrication

ltem	Grease	Oil
· Sealing device	Easy	Slightly complicated and special care required for mainte- nance
 Lubricating ability 	Good	Excellent
 Rotation speed 	Low/medium speed	Applicable at high speed as well
 Replacement of lubricant 	Slightly troublesome	Easy
 Life of lubricant 	Relatively short	Long
· Cooling effect	No cooling effect	Good (circulation is necessary)
 Filtration of dirt 	Difficult	Easy

12-1-1 Grease lubrication

Grease lubrication is widely applied since there is no need for replenishment over a long period once grease is filled, and a relatively simple structure can suffice for the lubricant sealing device.

There are two methods of grease lubrication. One is the closed lubrication method, in which grease is filled in advance into shielded/sealed bearing; the other is the feeding method, in which the bearing and housing are filled with grease in proper quantities at first, and refilled at a regular interval via replenishment or replacement.

Devices with numerous grease inlets sometimes employ the centralized lubricating method, in which the inlets are connected via piping and supplied with grease collectively.

Kovo

1) Amount of grease

In general, grease should fill approximately one-third to one-half the inside space, though this varies according to structure and inside space of housing.

It must be borne in mind that excessive grease will generate heat when churned, and will consequently alter, deteriorate, or soften.

When the bearing is operated at low speed. however, the inside space is sometimes filled with grease to two-thirds to full, in order to preclude infiltration of contaminants.

2) Replenishment/replacement of grease

The method of replenishing/replacing grease depends largely on the lubrication method. Whichever method may be utilized, care should be taken to use clean grease and to keep dirt or other foreign matter out of the housing.

In addition, it is desirable to refill with grease of the same brand as that filled at the start.

When grease is refilled, new grease must be injected inside bearing.

Fig. 12-1 gives one example of a feeding method.

Fig. 12-1 Example of grease feeding method (using grease sector)

In the example, the inside of the housing is divided by grease sectors. Grease fills one sector, then flows into the bearing.

On the other hand, grease flowing back from the inside is forced out of the bearing by the centrifugal force of the grease valve.

When the grease valve is not used, it is necessary to enlarge the housing space on the discharge side to store old grease. The housing is uncovered and the stored old

[A]

Interval $t_{
m f}$, m h

2 000 -

600 -

300 -

out accordingly. grease is removed at regular intervals. [C] 20 000 10 000 8 000 6 000

[Notes] 1) [A] : radial ball bearing

- [B] : cylindrical roller bearing, needle roller bearing
- [C] : tapered roller bearing, spherical roller bearing, thrust ball bearing

Rotational speed, min⁻¹ 2) Temperature correction

When the bearing operating temperature exceeds 70° C, $t_{\rm f}$ ', obtained by multiplying $t_{\rm f}$ by correction coefficient a , found on the scale below, should be applied as the feeding interval. $t_{\rm f}' = t_{\rm f} \times a$

3) Grease feeding interval

In normal operation, grease life should be

regarded roughly as shown in Fig. 12-2, and

replenishment/replacement should be carried

Temperature correction coefficient a

Bearing operating temperature $T \circ C$ Fig. 12-2 Grease feeding interval

4) Grease life in shielded/sealed ball bearing

Grease life can be estimated by the following equation when a single-row deep groove ball bearing is filled with grease and sealed with shields or seals.

$\log L = 6.10 - 4.40 imes 10^{-6} d_{ m m} n - 2.50 \left(rac{P_{ m r}}{C_{ m r}} - 0.05 ight)$ -	- (0.021 – 1.80 × 10 ⁻⁸ $d_{ m m}n$) T … (12-1)
where :	
L : grease life	h
$d_{\rm m} = \frac{D+d}{2}$ (D : outside diameter, d : bore diameter)	mm
<i>n</i> : rotational speed	\min^{-1}
$P_{ m r}$: dynamic equivalent radial load	Ν
$C_{ m r}$: basic dynamic radial load rating	Ν
T : operating temperature of bearing	°C

The conditions for applying equation (12-1) are as follows :

When $d_{\rm m}n > 500 \times 10^3$, please contact with JTEKT.

a) Operating temperature of bearing : $T \circ C$ Applicable when $T \leq 120$ when $T \leq 50$, T = 50When T > 120, please contact with JTEKT.

b) Value of $d_m n$

Applicable when $d_{\rm m}n \leq 500 \times 10^3$

when $d_{\mathrm{m}}n < 125 \times 10^3$,

 $d_{\rm m}n = 125 \times 10^3$

Applicable when $\frac{P_{\rm r}}{C_{\rm r}} \leq 0.2$ $\left(\begin{array}{c} \text{when } \frac{P_{\rm r}}{C_{\rm r}} \! < \! 0.05 \, , \\ \frac{P_{\rm r}}{C_{\rm r}} \! = \! 0.05 \end{array}\right)$

c) Load condition : $\frac{P_r}{C_r}$

When $\frac{P_{\rm r}}{C}$ > 0.2 , please contact with JTEKT.

Kovo

A 113

12. Bearing lubrication

12-1-2 Oil lubrication

Oil lubrication is usable even at high speed rotation and somewhat high temperature, and is effective in reducing bearing vibration and noise.

Thus oil lubrication is used in many cases where grease lubrication does not work.

Table 12-2 shows major types and methods of oil lubrication.

				twice as thick as the oil supply pip too much lubricant from gathering Required amount of oil : see Rem
① Oil bath	 Table 12-2 Type and method of oil lubrication Simplest method of bearing immersion in oil for operation. Suitable for low/medium speed. Oil level gauge should be furnished to adjust the amount of oil. (In the case of horizontal shaft) About 50 % of the lowest rolling element should be immersed. (In the case of vertical shaft) About 70 to 80 % of the bearing should be immersed. It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. 	on	َق Oil jet Iubrication	 This method uses a nozzle to jet of sure (0.1 to 0.5MPa), and is highl Suitable for high speed and heavy Generally, the nozzle (diameter 0. to 10 mm from the side of a beari When a large amount of heat is ge should be used. Since a large amount of oil is supption method, old should be dischar to prevent excessive residual oil. Required amount of oil : see Rem
② Oil drip	 Oil is dripped with an oiling device, and the inside of the housing is filled with oil mist by the action of rotating parts. This method has a cooling effect. Applicable at relatively high speed and up to medium load. In general, 5 to 6 drops of oil are utilized per minute. (It is difficult to adjust the dripping in 1mL/h or smaller amounts.) It is necessary to prevent too much oil from being accumulated at the bottom of housing. 		6 Oil mist Iubrication (spray Iubrication)	 This method employs an oil mist gerator to produce dry mist (air coring oil in the form of mist). The drimist is continuously sent to the oil plier, where the mist is turned into wet mist (sticky oil drops) by a no. set up on the housing or bearing, is then sprayed onto bearing. Required amount of mist : see Rema
3 Oil splash	 This type of lubrication method makes use of a gear or simple flinger attached to shaft in order to splash oil. This method can supply oil for bearings located away from the oil tank. Usable up to relatively high speed. It is necessary to keep oil level within a certain range. It is better to use a magnetic plug to prevent wear iron particles from dispersing in oil. It is also advisable to set up a shield or baffle board to prevent contaminants from entering the bearing. 			(Example of grinding machine)

(4)

Forced oil

Kovo

of oil

Remark 1 Required oil supply in forced oil circulation ; oil jet lubrication methods

 $G = \frac{1.88 \times 10^{-4} \mu \cdot d \cdot n \cdot P}{60 \ c \cdot r \cdot \Delta T}$

where :

 $\begin{array}{c} G: \mbox{required oil supply} & \mbox{L/min} \\ \mu: \mbox{friction coefficient (see table at right)} \\ d: \mbox{nominal bore diameter} & \mbox{mm} \\ n: \mbox{rotational speed} & \mbox{min}^{-1} \\ P: \mbox{dynamic equivalent load of bearing} & \mbox{N} \\ c: \mbox{specific heat of oil} & \mbox{1.88-2.09kJ/kg·K} \\ r: \mbox{density of oil} & \mbox{g/cm}^3 \\ \mathcal{I}_T: \mbox{temperature rise of oil} & \mbox{K} \end{array}$

The values obtained by the above equation show quantities of oil required to carry away all the generated heat, with heat release not taken into consideration.

In reality, the oil supplied is generally half to two-thirds of the calculated value.

Heat release varies widely according to the application and operating conditions.

Values of friction coefficient μ

Bearing type	μ
Deep groove ball bearing	0.001 0 - 0.001 5
Angular contact ball bearing	0.001 2 - 0.002 0
Cylindrical roller bearing	0.000 8 - 0.001 2
Tapered roller bearing	0.001 7 – 0.002 5
Spherical roller bearing	0.002 0 - 0.002 5

To determine the optimum oil supply, it is advised to start operating with two-thirds of the calculated value, and then reduce the oil gradually while measuring the operating temperature of bearing, as well as the supplied and discharged oil.

Remark 2 Notes on oil mist lubrication

1) Required amount of mist (mist pressure : 5 kPa)

(In the case of a bearing)	$Q = \frac{0.11dR}{1\ 000}$
$\begin{pmatrix} \text{In the case of two oil} \\ \text{seals combined} \end{pmatrix}$	$Q = \frac{0.028d_1}{1\ 000}$

where :

- Q : required amount of mist L/min
- d : nominal bore diameter $\,$ mm
- R : number of rolling element rows

mm

 d_1 : inside diameter of oil seal

In the case of high speed ($d_m n \ge 400 \times 10^3$), it is necessary to increase the amount of oil and heighten the mist pressure.

2) Piping diameter and design of lubrication hole/groove

When the flow rate of mist in piping exceeds 5 m/s, oil mist suddenly condenses into an oil liquid.

Consequently, the piping diameter and dimensions of the lubrication hole/groove in the housing should be designed to keep the flow rate of mist, obtained by the following equation, from exceeding 5 m/s.

$$V = \frac{0.167Q}{A} \le 5$$

where :

V	: flow rate of mist	m/s
Q	: amount of mist	L/min
A	: sectional area of piping or	
	lubrication groove	cm^2

3) Mist oil

Oil used in oil mist lubrication should meet the following requirements.

- ability to turn into mist
- has high extreme pressure resistance
- good heat/oxidation stability
- rust-resistant
- unlikely to generate sludge
- superior demulsifier

Oil mist lubrication has a number of advantages for high speed rotation bearings. Its performance, however, is largely affected by surrounding structures and bearing operating conditions.

If contemplating the use of this method, please contact with JTEKT for advice based on JTEKT long experience with oil mist lubrication.

12-2 Lubricant

12-2-1 Grease

Grease is made by mixing and dispersing a solid of high oil-affinity (called a thickener) with lubricant oil (as a base), and transforming it into a semi-solid state.

As well, a variety of additives can be added to improve specific performance.

(1) Base oil

Mineral oil is usually used as the base oil for grease. When low temperature fluidity, high temperature stability, or other special performance is required, diester oil, silicon oil, polyglycolic oil, fluorinated oil, or other synthetic oil is often used.

Generally, grease with a low viscosity base oil is suitable for applications at low temperature or high rotation speed; grease with high viscosity base oils are suitable for applications at high temperature or under heavy load.

(2) Thickener

Most greases use a metallic soap base such as lithium, sodium, or calcium as thickeners. For some applications, however, non-soap base thickeners (inorganic substances such as bentone, silica gel, and organic substances such as urea compounds, fluorine compounds) are also used.

In general, the mechanical stability, bearing operating temperature range, water resistance, and other characteristics of grease are determined by the thickener.

- (Lithium soap base grease)
- Superior in heat resistance, water resistance and mechanical stability.
- (Calcium soap base grease) Superior in water resistance; inferior in heat
- resistance. (Sodium soap base grease)
- Superior in heat resistance; inferior in water
- resistance.
- (Non-soap base grease)
- Superior in heat resistance.

(3) Additives

Various additives are selectively used to serve the respective purposes of grease applications.

Extreme pressure agents

When bearings must tolerate heavy or impact loads.

Oxidation inhibitors
 When grease is not refilled for a long period.
 Structure stabilizers, rust preventives, and corrosion inhibitors are also used.

(4) Consistency

Consistency, which indicates grease hardness, is expressed as a figure obtained, in accordance with ASTM (JIS), by multiplication by 10 the depth (in mm) to which the coneshaped metallic plunger penetrates into the grease at 25°C by deadweight in 5 seconds. The softer the grease, the higher the figure.

Table 12-4 shows the relationships between the NLGI scales and ASTM (JIS) penetration indexes, service conditions of grease. (NLGI : National Lubricating Grease Institute)

Table 12-4 Grease consistency

Kovo

NLGI scale	ASTM (JIS) penetration index (25°C, 60 mixing operations)	Service conditions/ applications
0	355 – 385	For centralized lubricating
1	310 – 340	For centralized lubricating, at low temperature
2	265 – 295	For general use
3	220 – 250	For general use, at high temperature
4	175 – 205	For special applications

(5) Mixing of different greases

Since mixing of different greases changes their properties, greases of different brands should not be mixed.

If mixing cannot be avoided, greases containing the same thickener should be used. Even if the mixed greases contain the same thickener, however, mixing may still produce adverse effects, due to difference in additives or other factors.

Thus it is necessary to check the effects of a mixture in advance, through testing or other methods.

	Lithium grease		Calcium grease (cup grease)	Sodium grease (fiber grease)	Complex base grease Non-soap ba		on-soap base grea	se			
Thickener		Lithium soap		Calcium soap	Sodium soap	Lithium complex soap	Calcium complex soap	Bentone	Urea compounds	Fluorine compounds	Thickener
Base oil	Mineral oil	Synthetic oil (diester oil)	Synthetic oil (silicon oil)	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral/ synthetic oil	Synthetic oil	Base oil
Dropping point (°C)	170 to 190	170 to 230	220 to 260	80 to 100	160 to 180	250 or higher	200 to 280	-	240 or higher	250 or higher	Dropping point (°C)
Operating tempera- ture range (°C)	- 30 to + 120	- 50 to + 130	- 50 to + 180	- 10 to + 70	0 to + 110	- 30 to + 150	- 10 to + 130	- 10 to + 150	- 30 to + 150	-40 to + 250	Operating tempera- ture range (°C)
Rotation speed range	Medium to high	High	Low to medium	Low to medium	Low to high	Low to high	Low to medium	Medium to high	Low to high	Low to medium	Rotation speed range
Mechanical stability	Excellent	Good to excellent	Good	Fair to good	Good to excellent	Good to excellent	Good	Good	Good to excellent	Good	Mechanical stability
Water resistance	Good	Good	Good	Good	Bad	Good to excellent	Good	Good	Good to excellent	Good	Water resistance
Pressure resistance	Good	Fair	Bad to fair	Fair	Good to excellent	Good	Good	Good to excellent	Good to excellent	Good	Pressure resistance
Remarks	Most widely usable for various rolling bearings.	Superior low tem- perature and fric- tion characteristics. Suitable for bear- ings for measuring instruments and extra-small ball bearings for small electric motors.	Superior high and low temperature characteristics.	Suitable for appli- cations at low rotation speed and under light load. Not applicable at high temperature.	Liable to emulsify in the presence of water. Used at relatively high temperature.	Superior mechanical stability and heat resistance. Used at relatively high temperature.	Superior pressure resistance when extreme pressure agent is added. Used in bearings for rolling mills.	Suitable for applications at high temperature and under relatively heavy load.	Superior water resistance, oxidation stability, and heat stability. Suitable for applications at high temperature and high speed.	Superior chemical resistance and solvent resistance. Usable at up to 250 °C.	Remarks

Table 12-3 Characteristics of respective greases

12-2-2 Lubricating oil

For lubrication, bearings usually employ highly refined mineral oils, which have superior oxidation stability, rust-preventive effect, and high film strength.

With bearing diversification, however, various synthetic oils have been put into use.

Table 12-5Characteristics of lubricating oils

Type of	Highly	Major synthetic oils						
lubricating oil	refined mineral oil	Diester oil	Silicon oil	Polyglycolic oil	Polyphenyl ether oil	Fluorinated oil		
Operating temperature range (°C)	- 40 to + 220	- 55 to + 150	- 70 to + 350	- 30 to + 150	0 to + 330	- 20 to + 300		
Lubricity	Excellent	Excellent	Fair	Good	Good	Excellent		
Oxidation stability	Good	Good	Fair	Fair	Excellent	Excellent		
Radioactivity resistance Bad		Bad	Bad to fair	Bad	Excellent	_		

[Selection of lubricating oil]

The most important criterion in selecting a lubricating oil is whether the oil provides proper viscosity at the bearing operating temperature. Standard values of proper kinematic viscosity can be obtained through selection by bearing type according to Table 12-6 first, then through selection by bearing operating conditions according to Table 12-7.

When lubricating oil viscosity is too low, the oil film will be insufficient. On the other hand, when the viscosity is too high, heat will be generated due to viscous resistance.

In general, the heavier the load and the higher the operating temperature, the higher the lubricating oil viscosity should be ; whereas, the higher the rotation speed, the lower the viscosity should be.

Fig. 12-3 illustrates the relationship between lubricating oil viscosity and temperature.

Table 12-6 Proper kinematic viscosity by bearing type

These synthetic oils contain various additives

(oxidation inhibitors, rust preventives, antifoam-

ing agents, etc.) to improve specific properties.

Table 12-5 shows the characteristics of

applications in JIS and MIL.

Mineral lubricating oils are classified by

lubricating oils.

Bearing type	Proper kinematic viscosity at operating temperature
Ball bearing Cylindrical roller bearing	$13 \mathrm{mm}^2$ / s or higher
Tapered roller bearing Spherical roller bearing	$20 \mathrm{mm}^2$ / s or higher
Spherical thrust roller bearing	$32 \mathrm{mm}^2$ / s or higher

Operating	$d_{ m m} n$ value	Proper kinematic viscosity (expressed in the ISO viscosity grade or th						
temperature		Light/norr	nal load	Heavy/impact load				
-30 to $0^\circ\mathrm{C}$	All rotation speeds	ISO VG 15, 22, 46	(Refrigerating machine oil)					
	300 000 or lower	ISO VG 46	(Bearing oil Turbine oil	ISO VG 68 SAE 30	(Bearing oil Turbine oil			
0 to 60°C	300 000 to 600 000	ISO VG 32	(Bearing oil Turbine oil	ISO VG 68	(Bearing oil (Turbine oil)			
	600 000 or higher	ISO VG 7, 10, 22	(Bearing oil)					
	300 000 or lower	ISO VG 68	(Bearing oil)	ISO VG 68, 100 SAE 30	(Bearing oil)			
60 to $100^{\circ}\mathrm{C}$	300 000 to 600 000	ISO VG 32, 46	(Bearing oil Turbine oil	ISO VG 68	(Bearing oil Turbine oil			
	600 000 or higher	ISO VG 22, 32, 46	Bearing oil Turbine oil Machine oil					
100 to 150°C	300 000 or lower	ISO VG 68, 100 SAE 30, 40	(Bearing oil)	ISO VG 100 to 460 Bearing Gear oil				
100 to 150 C	300 000 to 600 000	ISO VG 68 SAE 30	(Bearing oil Turbine oil	ISO VG 68, 100 SAE 30, 40	(Bearing oil)			

 Table 12-7
 Proper kinematic viscosities by bearing operating conditions

[Remarks] 1. $d_{\rm m}n = \frac{D+d}{2} \times n \cdots \{D : \text{nominal outside diameter (nm)}, d : \text{nominal bore diameter (nm)}, n : \text{rotational speed (nin⁻¹)}\}$

 Refer to refrigerating machine oil (JIS K 2211), turbine oil (JIS K 2213), gear oil (JIS K 2219), machine oil (JIS K 2238) and bearing oil (JIS K 2239).

3. Please contact with JTEKT if the bearing operating temperature is under $-30^{\circ}C$ or over $150^{\circ}C$.

Fig. 12-3 Relationship between lubricating oil viscosity and temperature (viscosity index :100)

13. Bearing materials

Bearing materials include steel for bearing rings and rolling elements, as well as steel sheet, steel, copper alloy and synthetic resins for cages.

These bearing materials should possess the following characteristics :

 High elasticity, durable under high partial contact stress. High strength against rolling contact fatigue due to large repetitive contact load. 	}	Bearing rings Rolling elements
 Strong hardness High abrasion resistance 	2	Bearing

5) High toughness against

impact load

6) Excellent dimensional stability J Cages

13-1 Bearing rings and rolling elements materials

1) High carbon chromium bearing steel

High carbon chromium bearing steel specified in JIS is used as a general material in bearing rings (inner rings, outer rings) and rolling elements (balls, rollers).

Their chemical composition classified by steel type is given in Table 13-1.

Among these steel types, SUJ 2 is generally used. SUJ 3, which contains additional Mn and Si, possesses high hardenability and is commonly used for thick section bearings.

SUJ 5 has increased hardenability, because it was developed by adding Mo to SUJ 3.

For small and medium size bearings, SUJ 2 and SUJ 3 are used, and for large size and extra-large size bearings with thick sections, SUJ 5 is widely used.

Generally, these materials are processed into the specified shape and then undergo hardening and annealing treatment until they attain a hardness of 57 to 64 HRC. 2) Case carburizing bearing steel (case hardened steel)

When a bearing receives heavy impact loads, the surface of the bearing should be hard and the inside soft.

Such materials should possess a proper amount of carbon, dense structure, and carburizing case depth on their surface, while having proper hardness and fine structure internally.

For this purpose, chromium steel and nickel-chromium-molybdenum steel are used as materials.

Typical steel materials are shown in Table 13-2.

These materials also undergo vacuum degassing in order to reduce non-metallic inclusions and oxygen content which leads to higher reliability.

3) Others

For special applications, the following materials are used, according to operational conditions.

- (When very high reliability is required) • high refining steel ··· developed by JTEKT • vacuum arc remelted steel • electro slag remelted steel
- (When heat resistance is required) • high speed steel for high temperature bearings ··· refer to Table 13-3
- (When high corrosion resistance is required) • stainless steel ··· refer to Table 13-4

(When high heat, corrosion, and chemical resistance are required) · ceramics

Table 13-1 Chemical composition of high carbon chromium bearing steel

Standard	Code	Chemical composition (%)							
Standard	Coue	С	Si	Mn	Р	S	Cr	Мо	
	SUJ 2	0.95 – 1.10	0.15 – 0.35	Not more than 0.50	National	Not more	1.30 – 1.60	Not more than 0.08	
JIS G 4805	SUJ 3	0.95 – 1.10	0.40 - 0.70	0.90 – 1.15	Not more than 0.025	than 0.025		0.90 - 1.20	Not more than 0.08
	SUJ 5	0.95 - 1.10	0.40 - 0.70	0.90 - 1.15			0.90 - 1.20	0.10 - 0.25	
SAE J 404	52100	0.98 - 1.10	0.15 - 0.35	0.25 - 0.45	Not more than 0.025	Not more than 0.025	1.30 - 1.60	Not more than 0.06	

[Remark] As for bearings which are induction hardened, carbon steel with a high carbon content of 0.55 to 0.65 % is used in addition to those listed in this table.

Table 13-2 Chemical composition of case carburizing bearing steel

Standard	Code			Ch	emical con	position (%)		
Stanuaru	Code	С	Si	Mn	Р	S	Ni	Cr	Мо
	SCr 415	0.13 – 0.18	0.15 – 0.35	0.60 – 0.85	Not more	Not more	-	0.90 – 1.20	_
	SCr 420	0.18 – 0.23	0.15 – 0.35	0.60 – 0.85	than 0.030	than 0.030	-	0.90 – 1.20	-
JIS G 4053	SCM 420	0.18 – 0.23	0.15 – 0.35	0.60 – 0.85	Not more than 0.030	Not more than 0.030	-	0.90 – 1.20	0.15 – 0.30
010 0 4000	SNCM 220	0.17 – 0.23	0.15 – 0.35	0.60 – 0.90	Not more than 0.030	Not more than 0.030	0.40 – 0.70	0.40 – 0.65	0.15 – 0.30
	SNCM 420	0.17 – 0.23	0.15 – 0.35	0.40 – 0.70			1.60 – 2.00	0.40 – 0.65	0.15 – 0.30
	SNCM 815	0.12 – 0.18	0.15 – 0.35	0.30 – 0.60	Not more than 0.030	Not more than 0.030	4.00 – 4.50	0.70 – 1.00	0.15 – 0.30
	5120	0.17 – 0.22	0.15 – 0.35	0.70 – 0.90	Not more than 0.035	Not more than 0.040	-	0.70 – 0.90	-
SAE J 404	8620	0.18 – 0.23	0.15 – 0.35	0.70 – 0.90	Not more than 0.035	Not more than 0.040	0.40 – 0.70	0.40 – 0.60	0.15 – 0.25
	4320	0.17 – 0.22	0.15 – 0.30	0.45 – 0.65	Not more than 0.025	Not more than 0.025	1.65 – 2.00	0.40 - 0.60	0.20 – 0.30

Table 13-3 Chemical composition of high speed steel for high temperature bearings

Standard	Code					Chem	ical com	npositio	n (%)				
Stanuaru		С	Si	Mn	Р	S	Cr	Мо	v	Ni	Cu	Co	W
AISI	M 50	0.77– 0.85	Not more than 0.25	Not more than 0.35	Not more than 0.015	Not more than 0.015	3.75– 4.25	4.00- 4.50	0.90- 1.10	Not more than 0.10	Not more than 0.10	Not more than 0.25	Not more than 0.25

Table 13-4 Chemical composition of stainless steel

Standard	Code	Chemical composition (%)							
		С	Si	Mn	Р	S	Cr	Мо	
JIS G 4303	SUS 440 C	0.95 – 1.20	Not more than 1.00	Not more than 1.00		Not more than 0.030	16.00 – 18.00	Not more than 0.75	

13-2 Materials used for cages

Since the characteristics of materials used for cages greatly influence the performance and reliability of rolling bearings, the choice of materials is of great importance.

It is necessary to select cage materials in accordance with required shape, ease of lubrication, strength, and abrasion resistance. Typical materials used for metallic cages are shown in Tables 13-5 and 13-6.

In addition, phenolic resin machined cages and other synthetic resin molded cages are often used.

Materials typically used for molded cages are polyacetal, polyamide (Nylon 6.6, Nylon 4.6), and polymer containing fluorine, which are strengthened with glass and carbon fibers.

Table 13-5 Chemical compositions of pressed cage steel sheet (A) and machined cage carbon steel (B)

	Standard	Code			Chemical composition (%)						
	Stanuaru	Coue	С	Si	Mn	Р	S	Ni	Cr		
	JIS G 3141	SPCC	Not more than 0.12	-	Not more than 0.50	Not more than 0.040	Not more than 0.045	-	-		
(A)	JIS G 3131	SPHC	Not more than 0.15	-	Not more than 0.60	Not more than 0.050	Not more than 0.050	_	-		
(~)	BAS 361	SPB 2	0.13 – 0.20	Not more than 0.04	0.25 - 0.60	Not more than 0.030	Not more than 0.030	_	-		
	JIS G 4305	SUS 304	Not more than 0.08	Not more than 1.00	Not more than 2.00	Not more than 0.045	Not more than 0.030	8.00 - 10.50	18.00 - 20.00		
(B)	JIS G 4051	S 25 C	0.22 - 0.28	0.15 – 0.35	0.30 - 0.60	Not more than 0.030	Not more than 0.035	_	-		

 Table 13-6
 Chemical composition of high-tensile brass casting of machined cages (%)

Standard	Code	Cu	Zn	Mn	Fe	AI	Sn	Ni	Pb	Si
JIS H 5120	CAC 301 (HBsC*)	55 – 60	33 – 42	0.1 – 0.5	0.5 – 1.5	0.5 – 1.5	Not more than 1.0	Not more than 1.0	Not more than 0.4	Not more than 0.1

A 124

* : Material with HBsC is used.

14. Shaft and housing design

In designing the shaft and housing, the following should be taken into consideration.

- Shafts should be thick and short. (in order to reduce distortion including bending)
- Housings should possess sufficient rigidity. (in order to reduce distortion caused by load)
- [Note] · For light alloy housings, rigidity may be provided by inserting a steel bushing.

Fig. 14-1 Example of light alloy housing

- The fitting surface of the shaft and housing should be finished in order to acquire the required accuracy and roughness. The shoulder end-face should be finished in order to be perpendicular to the shaft center or housing bore surface. (refer to Table 14-1)
- 4) The fillet radius (*r*_a) should be smaller than chamfer dimension of the bearing.
 - (refer to Tables 14-2, 14-3) [Notes] · Generally it should be finished so

as to form a simple circular arc. (refer to Fig. 14-2)

 When the shaft is given a ground finish, a recess may be provided.

(Fig. 14-3)

Fig. 14-2 Fillet Fig. 14-3 Grinding radius undercut

5) The shoulder height (*h*) should be smaller than the outside diameter of inner ring and larger than bore diameter of outer ring so that the bearing is easily dismounted. (refer to Fig. 14-2 and Table 14-2)

Kovo

6) If the fillet radius must be larger than the bearing chamfer, or if the shaft/housing shoulder must be low/high, insert a spacer between the inner ring and shaft shoulder as shown in Fig. 14-4, or between the outer ring and the housing shoulder.

Fig. 14-4 Example of shaft with spacer

- 7) Screw threads and lock nuts should be completely perpendicular to shaft axis. It is desirable that the tightening direction of threads and lock nuts be opposite to the shaft rotating direction.
- 8) When split housings are used, the surfaces where the housings meet should be finished smoothly and provided with a recess at the inner ends of the surfaces that meet.

Fig. 14-5 Recesses on meeting surfaces

14-1 Accuracy and roughness of shafts and housings

The fitting surface of the shaft and housing may be finished by turning or fine boring when the bearing is used under general operating conditions. However, if the conditions require minimum vibration and noise, or if the bearing is used under severe operating conditions, a ground finish is required.

Recommended accuracy and roughness of shafts and housings under general conditions are given in Table 14-1.

Table 14-1 Recommended accuracy and roughness of shafts and housings

Item	Bearing class	Shaft	Housing bore
Roundness	classes 0, 6	IT 3 – IT 4	IT 4 – IT 5
tolerance	classes 5, 4	IT 2 – IT 3	IT 2 – IT 3
Cylindrical	classes 0, 6	IT 3 – IT 4	IT 4 – IT 5
form tolerance	classes 5, 4	IT 2 – IT 3	IT 2 – IT 3
Shoulder	classes 0, 6	IT 3	IT 3 – IT 4
runout tolerance	classes 5, 4	IT 3	IT 3
Roughness of fitting surfaces Ra	Small size bearings Large size bearings		1.6 a 3.2 a

[Remark] Refer to the figures listed in the attached table when the basic tolerance IT is required.

14-2 Mounting dimensions

Mounting dimensions mean the necessary dimensions to mount bearings on shafts or housings, which include the fillet radius or shoulder diameters.

Standard values are shown in Table 14-2. (The mounting related dimensions of each bearing are given in the bearing specification table.) The grinding undercut dimensions for ground shafts are given in Table 14-3.

For thrust bearings, the mounting dimensions should be carefully determined such that bearing race will be perpendicular to the support and the supporting area will be wide enough.

For thrust ball bearings, the shaft shoulder diameter d_a should be larger than pitch diameter of ball set, while the shoulder diameter of housing D_a should be smaller than the pitch diameter of ball set. (Fig. 14-6)

For thrust roller bearings, the housing/shaft diameter D_a/d_a should cover the lengths of both rollers. (Fig. 14-7)

Fig. 14-6 Thrust ball bearings

Fig. 14-7 Spherical thrust roller bearings

Table 14-2 Shaft/housing fillet radius and shoulder height of radial bearings

[Notes]

- 1) Shoulder heights greater than those specified in the Table are required to accommodate heavy axial loads.
- 2) Used when an axial load is small These values are not recommended for tapered roller bearings, angular contact ball bearings, or spherical roller bearings.

[Remark]

Fillet radius can be applied to thrust bearings.

Unit : mm Shaft and housing Chamfer dimension of Shoulder height Fillet inner ring or h_{\min} radius outer ring General 1) Special ²⁾ r_{\min} $r_{\rm a max}$ cases cases 0.05 0.05 0.3 0.3 0.08 0.08 0.3 0.3 0.4 0.1 0.1 0.4 0.15 0.15 0.6 0.6 0.2 0.8 0.8 0.2 0.3 0.3 1.25 1 0.5 0.5 1.75 1.5 0.6 0.6 2.25 2 0.8 0.8 2.75 2.5 2.75 2.5 1 1 3.5 3.25 1.1 1 1.5 1.5 4.25 4 2 2 5 4.5 2.1 2 6 5.5 2.5 2 6 5.5 3 2.5 6.5 7 9 4 3 8 5 Δ 11 10 6 5 14 12 7.5 6 18 16 9.5 8 22 20 24 12 10 27 12 32 15 29 19 15 42 38

Table 14-3 Grinding undercut dimensions for ground shafts

Unit : mm

Chamfer dimen- sion of inner ring	Grinding undercut dimensions				
$r_{\rm min}$	t	$r_{ m g}$	b		
1	0.2	1.3	2		
1.1	0.3	1.5	2.4		
1.5	0.4	2	3.2		
2	0.5	2.5	4		
2.1	0.5	2.5	4		
3	0.5	3	4.7		
4	0.5	4	5.9		
5	0.6	5	7.4		
6	0.6	6	8.6		
7.5	0.6	7	10		

14-3 Shaft design

When bearings are mounted on shafts, locating method should be carefully determined. Shaft design examples for cylindrical bore bearings are given in Table 14-4, and those for bearings with a tapered bore in Table 14-5.

Table 14-4 Mounting designs for cylindrical bore bearings

Table 14-5 Mounting designs for bearings with tapered bore

(d) Adapter assembly	(e) Withdrawal sleeve	(f) Shaft locknut	(g) Split ring			
The simplest method for axial positioning is just to attach an adapter sleeve to the shaft and tighten the locknuts. To prevent locknut loosening, lock-washer (not more than 180 mm in shaft diameter) or lock plate (not less than 200 mm in shaft diameter) are used.	The locknut (above) or end plate (below) fixes the bearing with a withdrawal sleeve, which makes it easy to dismount the bear- ing.	The shaft is threaded in the same way as shown in Fig. (a). The bearing is located by tightening locknut.	A split ring with threaded outside diameter is inserted into groove on the tapered shaft. A key is often used to prevent the locknut and split ring from loosening.			

14-4 Sealing devices

Sealing devices not only prevent foreign matter (dirt, water, metal powder) from entering, but prevent lubricant inside from leaking. If the sealing device fails to function satisfactorily, foreign matter or leakage will cause bearing damage as a result of malfunction or seizure.

Therefore, it is necessary to design or choose the most suitable sealing devices as well as to choose the proper lubricating measures according to operating conditions.

Sealing devices may be divided into non-contact and contact types according to their structure.

They should satisfy the following conditions :

Free from excessive friction

(heat generation) • Easy maintenance (especially ease of mounting and dismounting)

• As low cost as possible

14-4-1 Non-contact type sealing devices

Kovo

A non-contact type sealing device, which includes oil groove, flinger (slinger), and labyrinth, eliminates friction because it does not have a contact point with the shaft.

These devices utilize narrow clearance and centrifugal force and are especially suitable for operation at high rotation speed and high temperature.

Table 14-6 (1)Non-contact type
sealing devices

- This kind of seal having more than three grooves at the narrow clearance between the shaft and housing cover, is usually accompanied by other sealing devices except when it is used with grease lubrication at low rotation speed.
- Preventing entrance of contaminants can be improved by filling the groove with calcium grease (cup grease) having a consistency of 150 to 200.
- The clearance between the shaft and housing cover should be as narrow as possible.
 Recommended clearances are as follows.
 Shaft diameter of less than 50mm
 0.25 0.4mm

 \cdot Shaft diameter of over 50mm

······ 0.5 – 1 mm

- Recommended dimensions for the oil groove are as follows.
 Width 2 – 5mm
- · Depth 4 5mm

14-4-2 Contact type sealing devices

This type provides a sealing effect by means

of the contact of its end with the shaft and are

manufactured from synthetic rubber, synthetic

resin. or felt.

Kovo

The synthetic rubber oil seal is most popular. 1) Oil seals Many types and sizes of oil seals, as a fin- ished part, have been standardized. JTEKT produces various oil seals. The names and functions of each oil seal part		The contact with rotating shaft. The contact surface of the sealing edge with the shaft should always filled with lubricant, so as to maintain an oil film therein.
are shown in Fig. 14-8 and Table 14-7. Table	Sealing lip and	Provides proper pressure on
14-8 provides a representative example.	spring	the sealing edge to maintain
		stable contact. Spring pro-
		vides proper pressure on the lip and maintains such pres-
Outside surface		sure for a long time.
Case	Outside sur-	Fixes the oil seal to the hous-
Spring	face	ing and prevents fluid leak- age through the fitting surface.
Sealing edge		Comes encased in metal cased type or rubber covered type.
(auxiliary lip)	Case	Strengthens seal.
	Minor lip	Prevents entry of contami-
	(auxiliary lip)	nants.
Fig. 14-8 Names of oil seal parts		In many cases, the space between the seal- ing lip and minor lip is filled with grease.

Table 14-8 Typical oil seal types

		With case		With inner case	Without case		
Without	Vithout spring With sprin			g	With spring		
					C		
IM (JIS GM)	MH (JIS G)	HMS (JIS SM) MHS	S(JISS) CRS	HMSH (JIS SA)	MS		
					-		
HMA	MHA	HMSA (JIS DM) MH	SA (JIS D) CRSA	HMSAH (JIS DA)			
 The oil seals shown in the lower row contain the minor lip (auxiliary lip). Special types of seals such as the mud resistance seal, pressure resistance seal and outer seal for rotating housings can be provided to serve under various operating conditions. By providing a slit on to oil seals, it is possible attach them from other points than the shaft experiment. 							

Oil seals without minor lips are mounted in different directions according to their operating conditions (shown in Fig. 14-9).

Fig. 14-9 Direction of sealing lips and their purpose

When the seal is used in a dirty operating environment, or penetration of water is expected, it is advisable to have two oil seals combined or to have the space between the two sealing lips be filled with grease.

(shown in Fig. 14-10)

operating environment

Respective seal materials possess different properties. Accordingly, as shown in Table 14-9. allowable lip speed and operating temperature differ depending on the materials. Therefore, by selecting proper materials, oil seals can be used for sealing not only lubricants but also chemicals including alcohol, acids, alkali, etc.

Table 14-9 Allowable lip speed and operating temperature range of oil seals

Seal material	Allowable lip speed (m/s)	Operating tempera- ture range (°C)
NBR	15	- 40 to + 120
Acrylic rubber	25	- 30 to + 150
Silicone rubber	32	- 50 to + 170
Fluoro rubber	32	- 20 to + 180

To ensure the maximum sealing effect of the oil seal, the shaft materials, surface roughness and hardness should be carefully chosen.

Table 14-10 shows the recommended shaft conditions.

Table 14-10 Recommended shaft conditions

Material	Machine structure steel, low alloy steel and stainless steel			
Surface hardness	For low speed : harder than 30 HRC For high speed : harder than 50 HRC			
Surface roughness (Ra)	0.2 – 0.6a A surface which is exces- sively rough may cause oil leakage or abrasion ; whereas an excessively fine surface may cause sealing lip seizure, preventing the oil film from forming. Sur- face must also be free of spiral grinding marks.			

2) Felt seals and others

Although felt seals have been used conventionally, it is recommended to replace them with rubber oil seals because the use of felt seals are limited to the following conditions.

- Light dust protection
- Allowable lip speed : not higher than 5m/s

Contact type sealing devices include mechanical seals. O-rings and packings other than those described herein.

JTEKT manufactures various oil seals ranging from those illustrated in Table14-8 to special seals for automobiles, large seals for rolling mills, mud resistance seals, pressure resistance seals, outer seals for rotating housings and O-rings. For details, refer to JTEKT separate catalog "Oil seals & O-rings" (CAT. NO. R2001E).

15. Handling of bearings

15-1 General instructions

Since rolling bearings are more precisely made than other machine parts, careful handling is absolutely necessary.

- 1) Keep bearings and the operating environment clean.
- 2) Handle carefully.

Bearings can be cracked and brinelled easily by strong impact if handled roughly.

- 3) Handle using the proper tools.
- 4) Keep bearings well protected from rust. Do not handle bearings in high humidity. Operators should wear gloves in order not to soil bearings with perspiration from their

hands. 5) Bearings should be handled by experienced

- or well trained operators.
- 6) Set bearing operation standards and follow them.
 - · Storage of bearings
 - · Cleaning of bearings and their adjoining parts.
 - · Inspection of dimensions of adjoining parts and finish conditions
 - Mounting
 - · Inspection after mounting
 - · Dismounting
 - · Maintenance and inspection (periodical inspection)
 - · Replenishment of lubricants

15-2 Storage of bearings

In shipping bearings, since they are covered with proper anti-corrosion oil and are wrapped in antitarnish paper, the quality of the bearings is guaranteed as long as the wrapping paper is not damaged.

If bearings are to be stored for a long time, it is advisable that the bearings be stored on shelves set higher than 30 cm from the floor, at a humidity less than 65 %, and at a temperature around 20°C.

Avoid storage in places exposed directly to the sun's rays or placing boxes of bearings against cold walls.

15-3 Bearing mounting

15-3-1 Recommended preparation prior to mounting

1) Preparation of bearings

Wait until just before mounting before removing the bearings from their packaging to prevent contamination and rust.

Since the anti-corrosion oil covering bearings is a highly capable lubricant, the oil should not be cleaned off if the bearings are pre-lubricated, or when the bearings are used for normal operation. However, if the bearings are used in measuring instruments or at high rotation speed, the anti-corrosion oil should be removed using a clean detergent oil. After removal of the anti-corrosion oil, bearings should not be left for a long time because they rust easily.

Kovo

2) Inspection of shafts and housings

Clean up the shaft and housing to check whether it has flaws or burrs as a result of machining.

Be very careful to completely remove lapping agents (SiC, Al₂O₃, etc.), casting sands, and chips from inside the housing.

Next, check that the dimensions, forms, and finish conditions of the shaft and the housing are accurate to those specified on the drawing.

The shaft diameter and housing bore diameter should be measured at the several points as shown in Figs. 15-1 and 15-2.

Fig. 15-1 Measuring points on shaft diameter

Fig. 15-2 Measuring points on housing bore diameter

Furthermore, fillet radius of shaft and housing, and the squareness of shoulders should be checked

When using shaft and housing which have passed inspection, it is advisable to apply machine oil to each fitting surface just before mounting.
15-3-2 Bearing mounting

Mounting procedures depend on the type and fitting conditions of bearings.

For general bearings in which the shaft rotates, an interference fit is applied to inner rings, while a clearance fit is applied to outer rings.

For bearings in which the outer rings rotate, an interference fit is applied to the outer rings. Interference fitting is roughly classified as shown here. The detailed mounting processes are described in Tables 15-1 to 15-3.

Reference Force is necessary to press fit or remove bearings.

The force necessary to press fit or remove inner rings of bearings differs depending on the finish of shafts and how much interference the bearings allow. The standard values can be obtained by using the following equations.

In equations (15-1) and (15-2),

 $K_{\rm a}$: force necessary for press fit or removal Ν Δ_{deff} : effective interference mm

- $f_{\rm k}$: resistance coefficient
 - Coefficient taking into consideration friction between shafts and inner rings ... refer to the table on the right
- B : nominal inner ring width
- d : nominal inner ring bore diameter mm
- $D_{\rm i}$: average outside diameter of inner ring mm
- d_0 : hollow shaft bore diameter

Value of resistance coefficient f_k

Kovo

 \mathbb{X}

Mounting fixture

Mounting

fixture

Conditions	$f_{\rm k}$
 Press fitting bearings on to cylindri- cal shafts 	4
 Removing bearings from cylindrical shafts 	6
 Press fitting bearings on to tapered shafts or tapered sleeves 	5.5
 Removing bearings from tapered shafts or tapered sleeves 	4.5
 Press fitting tapered sleeves between shafts and bearings 	10
 Removing tapered sleeves from the space between shafts and bearings 	11

Table 15-1 Press fit of bearings with cylindrical bores

 $\mathbf{m}\mathbf{m}$

 $\mathbf{m}\mathbf{m}$

Table 15-2 Shrink fit of cylindrical bore bearings

Bore diameter d (mm)

250

315

180

Fig. 15-3 Heating temperature and expansion of inner rings

120

Expansion of bore diameter (μm)

50 80

[Remarks]

- 1. Thick solid lines show the maximum interference value between bearings (class 0) and shafts (r 6, p 6, n 6, m 5, k 5, j 5) at normal temperature.
- Therefore, the heating temperature should be selected to gain a larger "expansion of the bore diameter" than the maximum interference values.
 - When fitting class 0 bearings having a 90 mm bore diameter to m 5 shafts, this figure shows that heating temperature should be 40 °C higher than room temperature to produce expansion larger than the maximum interference value of 48 µm.
 - However, taking cooling during mounting into consideration, the temperature should be set 20 to 30 °C higher than the temperature initially required.

(a) Mounting on tapered shafts

(b) Mounting by use of an adapter sleeve

(c) Mounting by use of a withdrawal sleeve

(d) Measuring clearances

- Descriptions

 When mounting bearings directly on tapered shafts, provide oil holes and grooves on the shaft and inject high pressure oil into the space between the fitting surfaces (oil injection). Such oil injection can reduce tightening torque of locknut by lessening friction between the fitting surfaces.
 - When exact positioning is required in mounting a bearing on a shaft with no shoulder, use a clamp to help determine the position of the bearing.

Locating bearing by use of a clamp

When mounting bearings on shafts, locknuts are generally used. Special spanners are used to tighten them.

Bearings can also be mounted using hydraulic nuts.

When mounting tapered bore spherical roller bearings, the reduction in the radial internal clearance which gradually occurs during operation should be taken into consideration as well as the push-in depth described in Table 15-4.

Clearance reduction can be measured by a thickness gage. First, stabilize the roller in the proper position and then insert the gage into the space between the rollers and the outer ring. Be careful that the clearance between both roller rows and the outer rings is roughly the same $(e \doteq e^{r})$. Since the clearance may differ at different measuring points, take measurements at several positions.

When mounting self-aligning ball bearings, leave enough clearance to allow easy aligning of the outer ring.

diame		Reduction of radial internal		Axia	Axial displacement, mm				uired residual cl	earance, µm
	d clearance μm		clearance μm 1/12 taper 1/30 taper		taper	CN	C 3	C 4		
over	up to	min.	max.	min.	max.	min.	max.	clearance	clearance	clearance
24	30	15	20	0.27	0.35	-	-	10	20	35
30	40	20	25	0.32	0.4	-	-	15	25	40
40	50	25	35	0.4	0.5	-	-	20	30	45
50	65	30	40	0.45	0.6	-	-	25	35	55
65	80	35	50	0.55	0.75	-	-	35	40	70
80	100	40	55	0.65	0.85	-	-	40	50	85
100	120	55	70	0.85	1.05	2.15	2.65	45	65	100
120	140	65	90	1.0	1.2	2.5	3.0	55	80	110
140	160	75	100	1.1	1.35	2.75	3.4	55	90	130
160	180	80	110	1.2	1.5	3.0	3.8	60	100	150
180	200	90	120	1.4	1.7	3.5	4.3	70	110	170
200	225	100	130	1.55	1.85	3.85	4.6	80	120	190
225	250	110	140	1.7	2.05	4.25	5.1	90	130	210
250	280	120	160	1.8	2.3	4.5	5.75	100	140	230
280	315	130	180	2.0	2.5	5.0	6.25	110	150	250
315	355	150	200	2.3	2.8	5.75	7.0	120	170	270
355	400	170	220	2.5	3.1	6.25	7.75	130	190	300
400	450	190	240	2.8	3.4	7.0	8.5	140	210	330
450	500	210	270	3.1	3.8	7.75	9.5	160	230	360
500	560	240	310	3.5	4.3	8.75	10.8	170	260	370
560	630	260	350	3.9	4.8	9.75	12.0	200	300	410
630	710	300	390	4.3	5.3	10.8	13.3	210	320	460
710	800	340	430	4.8	6.0	12.0	15.0	230	370	530
800	900	370	500	5.3	6.7	13.3	16.8	270	410	570
900	1000	410	550	5.9	7.4	14.8	18.5	300	450	640

 Table 15-4
 Mounting tapered bore spherical roller bearings

[Remark] The values for reduction of radial internal clearance listed above are values obtained when mounting bearings with CN clearance on solid shafts. In mounting bearings with C 3 clearance, the maximum value listed above should be taken as the standard

15-4 Test run

A trial operation is conducted to insure that the bearings are properly mounted.

In the case of compact machines, rotation may be checked by manual operation at first.

If no abnormalities, such as those described below, are observed, then further trial operation proceeds using a power source.

- Knocking … due to flaws or insertion of foreign matter on rolling contact surfaces.
- Excessive torque (heavy) ···· due to friction on sealing devices, too small clearances, and mounting errors.

• Uneven running torque ··· due to improper mounting and mounting errors.

For machines too large to allow manual operation, idle running is performed by turning off the power source immediately after turning it on. Before starting power operation, it must be confirmed that bearings rotate smoothly without any abnormal vibration and noise.

Power operation should be started under no load and at low speed, then the speed is gradually increased until the designed speed is reached.

During power operation, check the noise, increase in temperature and vibration. If any of the abnormalities listed in Tables 15-

5 and 15-6 are found, operation must be

stopped, and inspection for defects immediately conducted.

Kovo

The bearings should be dismounted if necessary.

Table 15-5	Bearing noise	s, causes, and	countermeasures
------------	---------------	----------------	-----------------

	Ν	loise types	Causes	Countermeasures		
Cyclic	Flaw noise (similar to noise when punching a rivet) Brinelling noise (Unclear siren-like noise)		Flaw on raceway Rust on raceway Brinelling on raceway	Improve mounting procedure, cleaning method and rust preventive method. Replace bearing.		
	Flaking n	oise (similar to a large hammering noise)	Flaking on raceway	Replace bearing.		
	Dirt noise (an irregular sandy noise.)		Insertion of foreign matter	Improve cleaning method, sealing device. Use clean lubricant. Replace bearing.		
	Fitting noise (drumming or hammering noise)		Improper fitting or excessive bearing clearance	Review fitting and clearance conditions. Provide preload. Improve mounting accuracy.		
Not cyclic	Flaw noise, rust noise, flaking noise		Flaws, rust and flaking on rolling elements	Replace bearing.		
	Squeak noise often heard in cylindrical roller bearings with grease lubrication, espe- cially in winter or at low temperatures		should be selected.	nproper lubrication, a proper lubricant erious damage will not be caused by an ed continuously.		
Others	s Abnormally large metallic sound		Abnormal load Incorrect mounting Insufficient amount of or improper lubricant	Review fitting, clearance. Adjust preload. Improve accuracy in processing and mounting shafts and housings. Improve sealing device. Refill lubricant. Select proper lubricant.		

Table 15-6 Causes and countermeasures

for abnormal temperature rise

Causes	Countermeasures
Too much lubricant	Reduce lubricant amount. Use grease of lower consistency.
Insufficient lubricant	Refill lubricant.
Improper lubricant	Select proper lubricant.
Abnormal load	Review fitting and clearance con- ditions and adjust preload.
Improper mounting (excessive friction	Improve accuracy in processing and mounting shaft and housing. Review fitting. Improve sealing device.

Normally, listening rods are employed for bearing noise inspections.

The instrument detecting abnormalities through sound vibration and the Diagnosis System utilizing acoustic emission for abnormality detection are also applicable.

In general, bearing temperature can be estimated from housing temperature, but the most accurate method is to measure the temperature of outer rings directly via lubrication holes.

Normally, bearing temperature begins to rise gradually when operation is just starting; and, unless the bearing has some abnormality, the temperature stabilizes within one or two hours.

Therefore, a rapid rise in temperature or unusually high temperature indicates some abnormality.

15. Handling of bearings

15-5 Bearing dismounting

After dismounting bearings, handling of the bearings and the various methods available for this should be considered.

If the bearing is to be disposed of, any simple method such as torch cutting can be employed. If the bearing is to be reused or checked for the causes of its failure, the same amount of care as in mounting should be taken in dismounting so as not to damage the bearing and other parts.

Since bearings with interference fits are easily damaged during dismounting, measures to prevent damage during dismounting must be incorporated into the design.

It is recommended that dismounting devices be designed and manufactured, if necessary,

It is useful for discovering the causes of failures when the conditions of bearings, including mounting direction and location, are recorded prior to dismounting.

Dismounting method

Tables 15-7 to 15-9 describe dismounting methods for interference fit bearings intended for reuse or for failure analysis.

The force necessary to remove bearings can be calculated using the equations given on page A 134.

Table 15-7 Dismounting of cylindrical bore bearings

- Non-separable bearings should be treated carefully during dismounting so as to minimize external force, which affects their rolling elements.
- The easiest way to remove bearings is by using a press as shown in Fig. (a). It is recommended that the fixture be prepared so that the inner ring can receive the removal force.
- Figs. (b) and (c) show a dismounting method in which special tools are employed. In both cases, the jaws of the tool should firmly hold the side of
- Fig. (d) shows an example of removal by use of an induction heater : this method can be adapted to both mounting and dismounting of the inner rings of NU and NJ type cylindrical roller bearings. The heater can be used for heating and expanding inner rings in a short

Table 15-8 Dismounting tapered bore bearings Descriptions

• Fig. (a) shows the dismounting of an inner ring by means of driving wedges into notches at the back of the labyrinth. Fig. (b) shows dismounting by means of feeding high pressure oil to the fitting surfaces. In both cases, it is recommended that a stopper (ex. shaft nuts) be provided to prevent bearings from suddenly dropping out.

Kovo

- For bearings with an adapter sleeve, the following two methods are suitable. As shown in Fig. (c), fix bearings with clamps, loosen locknuts, then hammer off the adapter sleeve. This method is mainly used for small size bearings. Fig. (d) shows the method using hydraulic nuts.
- Small size bearings with withdrawal sleeves can be removed by tightening locknuts as shown in Fig. (e). For large size bearings, provide several bolt holes on locknuts as shown in Fig. (f), and tighten bolts. The bearings can then be removed as easily as small size bearings.
- Fig. (g) shows the method using hvdraulic nuts.

Table 15-9 Dismounting of outer rings

Outer ring dismou	Outer ring dismounting methods				
		• To dismount outer rings with interfer- ence fits, it is recommended that notches or bolt holes be provided on the shoulder of the housings.			
(a) Notchs for dismounting	(b) Bolt holes and bolts for dismounting				

15-6 Maintenance and inspection 1

Periodic and thorough maintenance and inspection are indispensable to drawing full performance from bearings and lengthening their useful life.

of bearings

Besides, prevention of accidents and down time by early detection of failures through maintenance and inspection greatly contributes to the enhancement of productivity and profitability.

15-6-1 Cleaning

Before dismounting a bearing for inspection, record the physical condition of the bearing, including taking photographs.

Cleaning should be done after checking the amount of remaining lubricant and collecting lubricant as a sample for examination.

 A dirty bearing should be cleaned using two cleaning processes, such as rough cleaning and finish cleaning.
 It is recommended that a net be set on the

bottom of cleaning containers.
In rough cleaning, use brushes to remove grease and dirt. Bearings should be han-

- grease and dirt. Bearings should be handled carefully. Note that raceway surfaces may be damaged by foreign matter, if bearings are rotated in cleaning oil.
- During finish cleaning, clean bearings carefully by rotating them slowly in cleaning oil.

In general, neutral water-free light oil or kerosene is used to clean bearings, a warm alkali solution can also be used if necessary. In any case, it is essential to keep oil clean by filtering it prior to cleaning.

Apply anti-corrosion oil or rust preventive grease on bearings immediately after cleaning.

15-6-2 Inspection and analysis

Before determining that dismounted bearings will be reused, the accuracy of their dimensions and running, internal clearance, fitting surfaces, raceways, rolling contact surfaces, cages and seals must be carefully examined, so as to confirm that no abnormality is present.

It is desirable for skilled persons who have sufficient knowledge of bearings to make decisions on the reuse of bearings.

Criteria for reuse differs according to the performance and importance of machines and inspection frequency.

If the following defects are found, replace the bearing with a new one.

- Cracks and chips in bearing components
 Flaking on the raceway surfaces and the
- rolling contact surfaces • Other failures of a serious degree
- Other failures of a serious degree described in the following section "16. Examples of bearing failures."

15-7 Methods of analyzing bearing failures

It is important for enhancing productivity and profitability, as well as for accident prevention that abnormalities in bearings are detected during operation.

Representative detection methods are described in the following section.

1) Noise checking

Since the detection of abnormalities in bearings from noises requires ample experience, sufficient training must be given to inspectors. Given this, it is recommended that specific persons be assigned to this work in order to gain this experience.

Attaching hearing aids or listening rods on housings is effective for detecting bearing noise.

2) Checking of operating temperature

Since this method utilizes change in operating temperature, its application is limited to relatively stable operations.

For detection, operating temperatures must be continuously recorded.

If abnormalities occur in bearings, operating temperature not only increase but also change irregularly.

It is recommended that this method be employed together with noise checking.

3) Lubricant checking

This method detects abnormalities from the foreign matter, including dirt and metallic powder, in lubricants collected as samples.

This method is recommended for inspection of bearings which cannot be checked by close visual inspection, and large size bearings. Kovo

Koyo

16. Examples of bearing failures

 Table 16-1 (1)
 Bearing failures, causes and countermeasures

Failures	Characteristics	Damages	Causes	Countermeasures
1 Flaking		Flaking occurring at an inc stage	ipient · Too small internal clearance · Improper or insufficient lubricant · Too much load · Rust	Provide proper internal clearance. Select proper lubricating method or lubricant.
		Flaking on one side of radi bearing raceway	al · Extraordinarily large axial load	Fitting between outer ring on the free side and housing should be changed to clearance fit.
	(A-6961)	Symmetrical flaking along ference of raceway	circum- · Inaccurate housing roundness	Correct processing accuracy of housing bore. Especially for split housings, care should be taken to ensure processing accuracy.
	Flaking is a phenomenon when material is [Reference] Pitting	Slanted flaking on the radia bearing raceway	al ball · Improper mounting · Shaft deflection · Inaccuracy of the shaft and	Correct centering. Widen bearing internal clearance. Correct squareness of shaft or
	removed in flakes from a surface layer of the bearing raceways or rolling elements due to rolling fatigue. This charge and the tributed	Flaking occurring near the the raceway or rolling cont surface of roller bearings		housing shoulder.
	This phenomenon is generally attributed the raceway surface. to the approaching end of bearing service life. However, if flaking occurs at early stages of bearing service life, it is necessary to determine causes and adopt countermea- sures.	Flaking on the raceway su the same interval as rolling element spacing		Improve mounting procedure. Provide rust prevention treatment before long cessation of operation.
2 Cracking, chipping		Cracking in outer ring or in	ner ring • Excessive interference • Excessive fillet on shaft or housing • Heavy impact load • Advanced flaking or seizure	 Select proper fit. Adjust fillet on the shaft or in the housing to smaller than that of the bearing chamfer dimension. Re-examine load conditions.
		Cracking on rolling elemen	ts · Heavy impact load · Advanced flaking	Improve mounting and handling procedure. Re-examine load conditions.
	(A-635	Cracking on the rib	Impact on rib during mounting Excessive axial impact load	Improve mounting procedure. Re-examine load conditions.
3 Brinelling, nicks	Brinelling is a small surface indentation generated either on the raceway through plastic deformation at the contact point between the raceway and rolling elements, or on the rolling surfaces from	Brinelling on the raceway of contact surface	or rolling · Entry of foreign matter	Clean bearing and its peripheral parts. Improve sealing devices.
	insertion of foreign matter, when heavy load is applied while the bearing is stationary or rotating at a low rotation speed.	Brinelling on the raceway s at the same interval as the rolling element spacing		Improve mounting procedure. Improve machine handling.
	(Brinelling) · Nicks are those indentations produced directly by rough handling such as hammering.	Nicks on the raceway or ro contact surface	Iling · Careless handling	Improve mounting and handling procedure.

Table 16-1 (2) Bearing failures, causes and countermeasures

Failures	(Characteristics	Damages	Causes	Countermeasures
4 Pear skin, discoloration		(Discoloration) (Discoloration) (Discoloration)	Indentation similar to pear skin on the raceway and rolling contact surface.	Entry of minute foreign matter	Clean the bearing and its peripheral parts. Improve sealing device.
	(Discoloration)		Discoloration of the raceway, surface rolling contact surface, rib face, and cage riding land.	Too small bearing internal clear- ance Improper or insufficient lubricant Quality deterioration of lubricant due to aging, etc.	Provide proper internal clearance. Select proper lubricating method or lubricant.
5 Scratches, scuffing		Scratches are relatively shallow marks generated by sliding contact, in the same direction as the sliding. This is not accompanied by apparent melting of material.	Scratches on raceway or rolling contact surface	 Insufficient lubricant at initial operation Careless handling 	 Apply lubricant to the raceway and rolling contact surface when mounting. Improve mounting procedure.
	(Scuffing)	 Scuffing refers to marks, the surface of which are partially melted due to higher contact pressure and therefore a greater heat effect. Generally, scuffing may be regarded as a serious case of scratches. 	Scuffing on rib face and roller end face	Improper or insufficient lubricant Improper mounting Excessive axial load	 Select proper lubricating method or lubricant. Correct centering of axial direc- tion.
6 Smearing	(H-640)	Smearing is a phenomenon in which a cluster of minute seizures cover the rolling contact surface. Since smearing is caused by high temperature due to friction, the surface of the material usually melts partially ; and, the smeared surfaces appear very rough in many cases.	Smearing on raceway or rolling contact surface	 Improper or insufficient lubricant Slipping of the rolling elements This occurs due to the break down of lubricant film when an abnormal self rotation causes slip of the rolling elements on the raceway. 	 Select proper lubricating method or lubricant. Provide proper preload.
7 Rust, corrosion		 Rust is a film of oxides, or hydroxides, or carbonates formed on a metal surface due to chemical reaction. Corrosion is a phenomenon in which a metal surface is eroded by acid or alkali solutions through chemical reaction (electrochemical reaction such as chemical combination and battery formation); resulting in oxidation or dissolution. 	Rust partially or completely cover- ing the bearing surface.	Improper storage condition Dew formation in atmosphere	 Improve bearing storage conditions. Improve sealing devices. Provide rust preventive treatment before long cessation of operation.
	(A-71:	(It often occurs when sulfur or chloride con- tained in the lubricant additives is dissolved at high temperature.	Rust and corrosion at the same interval as rolling element spacing	Contamination by water or corro- sive matter	Improve sealing devices.
8 Electric pitting	(A-662)	When an electric current passes through a bearing while in operation, it can generate sparks between the raceway and rolling elements through a very thin oil film, resulting in melting of the surface metal in this area. This phenomenon appears to be pitting at first sight. (The resultant flaw is referred to as a pit.) When the pit is magnified, it appears as a hole like a crater, indicating that the material melted when it was sparking. In some cases, the rolling surface becomes corru- gated by pitting.	Pitting or a corrugated surface failure on raceway and rolling contact surface The bearings must be replaced, if the corrugated texture is found by scratch- ing the surface with a finger- nail or if pitting can be observed by visual inspection.	Sparks generated when electric current passes through bearings	 Providing a bypass which prevents current from passing through bearings. Insulation of bearings.

. Koyo

Failures	Characteristics	 Damages	Causes	Countermeasures
9 Wear	Normally, wear of bearing is observed on sliding contact surfaces such as roller end faces and rib faces, cage pockets, the guide surface of cages and cage riding lands. Wear is not directly related to material fatigue.	Wear on the contact surfaces (roller end faces, rib faces, cage pockets)	Improper or insufficient lubricant	 Select proper lubricating method or lubricant. Improve sealing device. Clean the bearing and its peripheral parts.
	Wear caused by foreign matter and corrosion can affect not only sliding surfaces but rolling surfaces.	Wear on raceways and rolling contact surfaces	 Entry of foreign matter Improper or insufficient lubricant 	
10 Fretting	Fretting occurs to bearings which are subject to vibration while in stationary condition or which are exposed to minute vibration. It is characterized by rust-colored wear particles. Since fretting on the raceways often appears or imites to bring it is comparison colled	Rust-colored wear particles generated on the fitting surface (fretting corrosion)	Insufficient interference	Provide greater interference Apply lubricant to the fitting surface
	similar to brinelling, it is sometimes called "falsebrinelling".	Brinelling on the raceway surface at the same interval as rolling element spacing (false brinelling)	 Vibration and oscillation when bearings are stationary. 	 Improve fixing method of the shaft and housing. Provide preload to bearing.
11 Creeping	Creeping is a phenomenon in which bearing rings move relative to the shaft or housing during operation.	Wear, discoloration and scuffing, caused by slipping on the fitting surfaces	Insufficient interference Insufficient tightening of sleeve	 Provide greater interference. Proper tightening of sleeve.
12 Damage to cages	Since cages are made of low hardness materials, external pressure and contact with other parts can easily produce flaws and distortion. In some cases, these are aggravated and become chipping and cracks. Large chipping and cracks are often accompanied by deformation, which may reduce the accuracy of the cage itself and may hinder the smooth move- ment of rolling elements.	Flaws, distortion, chipping, crack- ing and excessive wear in cages. Loose or damaged rivets.	 Extraordinary vibration, impact, moment Improper or insufficient lubricant Improper mounting (misalign- ment) Dents made during mounting 	 Re-examine load conditions. Select proper lubricating method or lubricant. Minimize mounting deviation. Re-examine cage types. Improve mounting.
13 Seizure	A phenomenon caused by abnormal heating in bearings.	Discoloration, distortion and melting together	 Too small internal clearance Improper or insufficient lubricant Excessive load Aggravated by other bearing flaws 	 Provide proper internal clearance. Select proper lubricating method or lubricant. Re-examine bearing type. Earlier discovery of bearing flaws.

Table 16-1 (3) Bearing failures, causes and countermeasures

Bearing specification tables

Contents

Standard bearings

Deep groove ball bearings B	4
Single-row	
Open type B	8
Shielded/sealed type B	20
Snap ring groove/locating snap ring type B	32
Extra-small, miniature ball bearings	
Open/shielded/sealed type B	38
Flanged type (open/shielded type) B	44
Double-row B	50

Angular contact ball bearings B 52

Single-row B 60
Matched pair B 92
Double-row B 124
Four-point contact ball bearings B 130

Self-aligning ball bearings B	134
Open type B	136
Sealed type B	144
Extended inner ring type B	148
Adapter assemblies for self-aligning ball bearings $\hdots \ B$	150

B 154

Cylindrical roller bearings

-,····································	-	
Single-row	В	158
Thrust collars	В	184
Double-row	В	194
Tapered roller bearings	В	200
Single-row		
Metric series	В	204
Inch series	В	236
Double-row		
TDO type	В	280
TDI type	В	296

Spherical roller bearings B	302
Spherical roller bearings B	306
Adapter assemblies for spherical roller bearings B	330
Withdrawal sleeves for spherical roller bearings B	338

Thrust ball bearings	В	348
Single direction	В	350
Double direction	В	360

.

Spherical thrust roller bearings B 366

Needle roller bearings B 374
Needle roller and cage assemblies B 388
Drawn cup type B 402
Machined ring type B 424
Thrust B 440
Stud type track rollers (cam followers) B 450
Yoke type track rollers (roller followers) B 454
(Miniature one-way clutches) B 458

Ball bearing units	В	462
Pillow block type		
With set screws	В	470
With adapter	В	476
Thick section	В	480
Light duty	В	482
"Compact" series	В	484
Stainless-series	В	486
Pressed steel	В	488
Square-flanged type	В	490
Square-flanged type with spigot joint	В	496
Rhombic-flanged type	В	500
Light duty	В	504
"Compact" series	В	506
Stainless-series	В	508

(Ball bearing units)

Round-flanged type with spigot joint B 510
Pressed steel round-flanged type B 514
Pressed steel rhombic-flanged type B 516
Take-up type B 518
Cartridge type B 524
Ball bearings for units
Cylindrical bore type (with set screws) B 528
Tapered bore type (with adapter) B 534
Cylindrical bore type (with eccentric locking collar) B 538

Plummer blocks	В	540
Split type		
Standard	В	544
Flat bottom	В	552
Flat bottom (different/large bore type)	В	558
Large size	В	564
One-piece type	В	570

Special purpose bearings

Ceramic & EXSEV bearing series C	1
Vacuum environment C	9
Clean environment C	13
Ceramic bearings C	17
Hybrid ceramic bearings C	21
Linear ball bearings for vacuum C	25

K-series super thin section

ball bearings	С	27
Deep groove type		
Angular contact type	С	35
Four-point contact type		
Sealed type	С	45

Bearings for machine tool spindles

(for support of axial loading) C	47
Double direction	
angular contact thrust ball bearings C	53

Matched pair angular contact ball bearings C 59

Precision ball screw support bearings

and bearing units C	65
Support bearingsC	67
Support bearing unitsC	69

Full complement type cylindrical roller

bearings for crane sheaves C	71
Shielded type C	73
Open type C	77

Rolling mill roll neck bearings C 81

Four-row cylindrical roller bearings C 8	5
Four-row tapered roller bearings C 103	3
Sealed type four-row tapered roller bearings C 122	7

Bearings for railway

rolling stock axle journals C 1	39
Cylindrical roller bearings C 1	43
Sealed type cylindrical roller bearings C 1	45
Sealed type tapered roller bearings	
(ABU bearing)C 1	47
Linear ball bearings C 1	49
Linear ball bearings C 1	53
Flanged type C 1	59
Accessories C 1	63
Locknuts C 1	65
Lockwashers C 1	71
Lock plates C 1	73

Kovo

Deep groove ball bearings

Deep groove ball bearings are available in a variety of sizes, and are the most popular of all rolling bearings. This type of bearing supports radial load and a certain degree of axial load in both directions simultaneously.

- Shielded / sealed type
 - Simplifies sealing structure of applications.
 - Greasing is not necessary because bearings are pre-lubricated.
 - Table 1 on the next page lists major shielded and sealed bearing types and compares their performance.
- With locating snap ring
- Bearings with a locating snap ring can be fit to the housing easily, as the locating snap ring facilitates axial positioning.
- Extra-small ball bearings and miniature ball bearings
 - The open type is widely used. Also available are the shielded/sealed type and the flanged type; the latter is easily positioned in the axial direction.

Kova

Bore diameter 10 – 500 mm

Shielded/sealed type

Bore diameter 10 – 220 mm

With snap ring groove With locating snap ring

Bore diameter 10 - 130 mm

	7		
K		$\mathbf{\nabla}$	0
_		1	_

1.55

1.45

1.31

1.15

1.04

1.00

Tak	ole 1 Compari	son of shielded	and sealed bea	aring performa	ince
	Shielded		Sea	aled	
Туре	Non-contact type	Non-contact type	Contac	ct type	Extremely light contact type
	ZZ type	2RU type	2RS type	2RK type	2RD type
Character- istics					
\backslash	(a) ¹⁾ (b)	(c)	(d) ²⁾ (e)	(f)	(g)
Friction torque	Small	Small	Large	Large	Small
High speed performance	Good	Good	Limited becau	use of contact	Good
Grease sealing property	Good	Better than ZZ type	Better than 2RU type for low-speed applications	Excellent	Excellent
Dirt resistance	Good	Better than ZZ type	Better than 2RU type	Excellent	Excellent
Water resistance	ter resistance Economical		Good	Excellent	Better than ZZ and 2RU types
Operating temperature ³⁾	– 30 to	+110°C	– 30 to	+100°C	- 30 to +110°C

[Notes] 1) Illustration (a) of the ZZ type shows the relatively small size bearing.

2) Illustration (d) of the 2RS type shows the relatively small size bearing.

3) The operating temperature range listed is for the standard type. It can be widened by using a different type of grease or sealing material. Consult with JTEKT for details.

Handling instructions

- The shielded/sealed type deep groove ball bearing and the deep groove ball bearing with a locating snap ring are designed for use with the inner ring rotating. Consult with JTEKT on use with the outer ring rotating.
- 2) When the axial load is large, make the shaft shoulder and housing shoulder larger than usual. (Referring to the specification table, make the mounting dimension d_a larger and make D_a smaller.)

Boundary dimensions	The dimensions of standard seri For extra-small and miniature ba with those described above.					spec	ified togethe					
Tolerances	As specified in JIS B 1514-1. (re	efer to Tabl	e 7-3 or	n pp. A	54 – A 57.	.)						
Radial internal clearance	 Deep groove ball bearings (except extra-small ball bearings and miniature ball bearings)											
Recommended fits	 Bearings of classes 0 and 6 Precision extra-small ball bear 		niniature	ball be	earings		pp. A 85, 86 -5 on p. A 87					
Standard cages	 Polyamide molded cage (supplementary code : 	A	oplicat	tion o	f standa	rd o	cages					
	FG, MG)	Bearing series	ries Molded cage		Pressed cage		Machined cage					
	 Pressed steel cage (supplementary code : //) 	68	683 -	- 689	-		-					
	Copper alloy machined	69		- 699	-		-					
	cage	60		- 609	-		-					
	(supplementary code : FY)	62 63		- 629 - 639	-		_					
								68 -		6800 - 6838		6840 - 68/600
	[Remark]	69	-	-	6900 - 6	918	6920 - 6980					
	For certain applications,	160	-	-	16001 - 16		16030 - 16072					
	stainless steel sheet	60		- 6009	6010 - 6		6036 - 6084					
	pressed cages (YS)	62		- 6208	6209 - 6		6232 - 6248					
	may also be used.	63		- 6306	6307 - 6		6330 - 6340					
		64		-	6403 - 6	-	-					
		42 43		-	4200 - 4 4302 - 4		-					
						010						
Allowable misalignment	0.002 3 - 0.003 4 rad (8' - 12')											
Equivalent radial load (Single/double-row)	Dynamic equivalent radial load $P_{\rm r} = XF_{\rm r} + YF_{\rm a}$	$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F}{F}$	$\frac{\frac{a}{r_r}}{Y} \leq \theta$		$\frac{\frac{F_{a}}{F_{r}} > e}{X \qquad Y}$					
	(refer to the table on the)											

1.03

1.38

2.07

3.45

5.17

6.89

Static equivalent radial

 $P_{0r} = 0.6F_r + 0.5F_a$

(when the value of)

 $P_{0r} < F_r, P_{0r} = F_r$

load

0.28

0.30

0.34

0.38

0.42

0.44

1

Factor f_0 is shown in the bearing dimension table.

0

0.56

Single-row deep groove ball bearings open type

d **10** ~ (**20**) mm

Boun	dary d		sions	Basic loa		Factor	Limiting (mi			Mount	ing dime (mm)	nsions	(Refer.)
	(m)	m)		(K	N)			n *)	Bearing No.	,			Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.		$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	(kg)
10	19	5	0.3	1.70	0.84	14.8	37 000	43 000	6800	12	17	0.3	0.005
	22	6	0.3	2.70	1.25	14.0	34 000	41 000	6900	12	20	0.3	0.010
	26	8	0.3	4.55	1.95	12.3	31 000	36 000	6000	12	24	0.3	0.019
	30	9	0.6	5.10	2.40	13.2	24 000	29 000	6200	14	26	0.6	0.032
	35	11	0.6	8.10	3.45	11.2	22 000	27 000	6300	14	31	0.6	0.053
12	21	5	0.3	1.90	1.05	15.3	33 000	39 000	6801	14	19	0.3	0.006
	24	6	0.3	2.90	1.45	14.5	31 000	36 000	6901	14	22	0.3	0.01
	28	7	0.3	5.10	2.40	13.2	27 000	32 000	16001	14	26	0.3	0.024
	28	8	0.3	5.10	2.40	13.2	27 000	32 000	6001	14	26	0.3	0.02
	32	10	0.6	6.80	3.05	12.3	22 000	27 000	6201	16	28	0.6	0.03
	37	12	1	9.70	4.20	11.1	20 000	25 000	6301	17	32	1	0.06
15	24	5	0.3	2.10	1.25	15.8	28 000	33 000	6802	17	22	0.3	0.00
	28	7	0.3	4.30	2.25	14.3	26 000	30 000	6902	17	26	0.3	0.01
	32	8	0.3	5.60	2.85	13.9	23 000	28 000	16002	17	30	0.3	0.02
	32	9	0.3	5.60	2.85	13.9	23 000	27 000	6002	17	30	0.3	0.03
	35	11	0.6	7.65	3.75	13.2	20 000	24 000	6202	19	31	0.6	0.04
	42	13	1	11.4	5.45	12.3	17 000	20 000	6302	20	37	1	0.08
17	26	5	0.3	2.60	1.55	15.7	26 000	30 000	6803	19	24	0.3	0.00
	30	7	0.3	4.60	2.55	14.7	23 000	28 000	6903	19	28	0.3	0.01
	35	8	0.3	6.00	3.25	14.4	21 000	25 000	16003	19	33	0.3	0.03
	35	10	0.3	6.00	3.25	14.4	21 000	25 000	6003	19	33	0.3	0.03
	40	12	0.6	9.55	4.80	13.2	17 000	21 000	6203	21	36	0.6	0.06
	47	14	1	13.6	6.65	12.4	15 000	18 000	6303	22	42	1	0.11
	47	14	1	15.6	7.60	12.0	15 000	18 000	6303R	22	42	1	0.12
	62	17	1.1	20.7	9.85	11.6	13 000	15 000	6403	23.5	55.5	1	0.27
20	32	7	0.3	4.00	2.45	15.5	21 000	25 000	6804	22	30	0.3	0.01
	37	9	0.3	6.35	3.70	14.7	19 000	23 000	6904	22	35	0.3	0.03
	42	8	0.3	7.95	4.50	14.4	17 000	21 000	16004	22	40	0.3	0.05

d (20) ~ (30) mm

Bour	dary o (m		sions	Basic loa		Factor		n^{-1}	Bearing No.	Mount	ing dime (mm)	nsions	Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Dearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
20	42	12	0.6	9.40	5.05	13.9	17 000	21 000	6004	24	38	0.6	0.069
	42	12	0.6	11.5	5.85	13.0	18 000	21 000	6004R	24	38	0.6	0.073
	47	14	1	12.8	6.65	13.2	15 000	17 000	6204	25	42	1	0.106
	47	14	1	15.6	7.60	12.0	15 000	18 000	6204R	25	42	1	0.114
	52	15	1.1	15.9	7.85	12.3	14 000	17 000	6304	26.5	45.5	1	0.144
	52	15	1.1	18.1	8.95	12.0	14 000	16 000	6304R	26.5	45.5	1	0.151
	72	19	1.1	31.0	15.2	11.1	11 000	13 000	6404	26.5	65.5	1	0.400
22	44	12	0.6	9.40	5.15	14.1	17 000	20 000	60/22	26	40	0.6	0.073
	50	14	1	12.8	6.65	13.2	15 000	17 000	62/22	27	45	1	0.118
	56	16	1.1	18.5	9.40	12.6	13 000	15 000	63/22	28.5	49.5	1	0.20
25	37	7	0.3	4.30	2.95	16.0	18 000	21 000	6805	27	35	0.3	0.02
	42	9	0.3	7.00	4.55	15.4	16 000	19 000	6905	27	40	0.3	0.04
	47	8	0.3	8.85	5.60	15.1	15 000	18 000	16005	27	45	0.3	0.06
	47	12	0.6	10.1	5.85	14.5	15 000	18 000	6005	29	43	0.6	0.080
	52	15	1	14.0	7.85	13.9	13 000	15 000	6205	30	47	1	0.12
	52	15	1	17.6	9.30	12.8	13 000	16 000	6205R	30	47	1	0.13
	62	17	1.1	20.6	11.3	13.2	11 000	13 000	6305	31.5	55.5	1	0.23
	62	17	1.1	26.2	13.4	11.9	11 000	14 000	6305R	31.5	55.5	1	0.25
	80	21	1.5	36.1	19.4	12.2	9 100	11 000	6405	33	72	1.5	0.53
28	52	12	0.6	12.4	7.40	14.5	14 000	16 000	60/28	32	48	0.6	0.09
	58	16	1	17.9	9.75	13.4	12 000	14 000	62/28	33	53	1	0.17
	68	18	1.1	23.5	13.1	13.3	10 000	12 000	63/28	34.5	61.5	1	0.32
30	42	7	0.3	4.55	3.40	16.4	15 000	18 000	6806	32	40	0.3	0.02
	47	9	0.3	7.25	5.00	15.8	14 000	17 000	6906	32	45	0.3	0.04
	55	9	0.3	11.2	7.35	15.2	13 000	15 000	16006	32	53	0.3	0.08
	55	13	1	13.2	8.25	14.7	13 000	15 000	6006	35	50	1	0.11
	62	16	1	19.5	11.3	13.9	11 000	13 000	6206	35	57	1	0.19
	62	16	1	23.4	12.8	13.0	11 000	13 000	6206R	35	57	1	0.21

Koyo

Single-row deep groove ball bearings - open type

d (**30**) ~ (**45**) mm

Boui	ndary d		sions	Basic loa		Factor	Limiting (mi			Mount	ing dime (mm)	nsions	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
30	72	19	1.1	26.7	15.0	13.3	9 600	12 000	6306	36.5	65.5	1	0.34
	72	19	1.1	33.4	17.7	12.0	9 800	12 000	6306R	36.5	65.5	1	0.37
	90	23	1.5	43.4	23.9	12.3	8 100	9 700	6406	38	82	1.5	0.73
32	58	13	1	15.0	9.15	14.5	12 000	14 000	60/32	37	53	1	0.12
	65	17	1	23.5	13.1	13.3	10 000	12 000	62/32	37	60	1	0.22
	75	20	1.1	30.1	16.2	12.7	9 300	11 000	63/32	38.5	68.5	1	0.43
35	47	7	0.3	4.75	3.85	16.5	13 000	16 000	6807	37	45	0.3	0.03
	55	10	0.6	10.9	7.75	15.7	12 000	14 000	6907	39	51	0.6	0.07
	62	9	0.3	12.2	8.85	15.7	11 000	13 000	16007	37	60	0.3	0.1
	62	14	1	15.9	10.3	14.9	11 000	13 000	6007	40	58	1	0.1
	72	17	1.1	25.7	15.4	13.9	9 200	11 000	6207	41.5	65.5	1	0.2
	72	17	1.1	31.0	17.5	12.9	9 300	11 000	6207R	41.5	65.5	1	0.30
	80	21	1.5	33.4	19.3	13.2	8 500	10 000	6307	43	72	1.5	0.45
	80	21	1.5	40.0	21.7	12.1	8 700	10 000	6307R	43	72	1.5	0.49
	100	25	1.5	55.0	31.0	12.2	7 200	8 600	6407	43	92	1.5	0.95
40	52	7	0.3	4.95	4.20	16.3	12 000	14 000	6808	42	50	0.3	0.0
	62	12	0.6	13.7	9.95	15.6	11 000	13 000	6908	44	58	0.6	0.1
	68	9	0.3	12.6	9.65	16.0	9 800	12 000	16008	42	66	0.3	0.12
	68	15	1	16.7	11.5	15.2	10 000	12 000	6008	45	63	1	0.19
	80	18	1.1	29.1	17.8	14.0	8 300	10 000	6208	46.5	73.5	1	0.3
	90	23	1.5	40.7	24.0	13.2	7 700	9 200	6308	48	82	1.5	0.6
	110	27	2	63.7	36.6	12.3	6 600	7 900	6408	49	101	2	1.23
45	58	7	0.3	6.20	5.40	16.3	11 000	13 000	6809	47	56	0.3	0.04
	68	12	0.6	14.1	10.9	15.9	9 700	11 000	6909	49	64	0.6	0.1
	75	10	0.6	15.5	12.3	16.0	8 900	10 000	16009	49	71	0.6	0.1
	75	16	1	21.0	15.1	15.3	9 200	11 000	6009	50	70	1	0.2
	85	19	1.1	32.7	20.3	14.0	7 700	9 200	6209	51.5	78.5	1	0.40
	100	25	1.5	48.9	29.5	13.3	6 800	8 100	6309	53	92	1.5	0.83

Limiting speeds Boundary dimensions Basic load ratings Factor Mounting dimensions (Refer.) (kN) (\min^{-1}) (mm)(mm) Mass Bearing No. Grease d_{a} $D_{\rm a}$ r $r_{\rm a}$ dDВ $C_{\rm r}$ C_{0r} f_0 Oil lub. (kg) min. lub. min. max. max. **45** 120 29 45.1 12.2 6409 2 2 77.2 6 000 7 200 54 111 1.53 50 65 7 0.3 6.60 6.10 16.1 9 600 11 000 6810 52 63 0.3 0.052 12 72 6910 54 68 0.6 14.5 11.7 16.1 9 000 11 000 0.6 0.133 80 10 16.0 13.3 8 200 16010 54 76 0.6 16.2 9 700 0.6 0.180 80 16 8 400 9 900 6010 55 0.261 1 21.8 16.6 15.6 75 1 90 20 1.1 35.1 23.3 14.4 7 100 8 500 6210 56.5 83.5 1 0.463 7 100 90 20 1.1 40.4 25.5 13.9 8 600 6210R 56.5 83.5 1 0.487 110 27 2 62.0 38.3 13.2 6 100 7 300 6310 59 101 2 1.07 130 31 2.1 83.0 49.5 12.5 5 500 6 600 6410 61 119 2 1.88 55 72 9 0.3 8.80 8.10 16.2 8 700 10 000 6811 57 70 0.3 0.083 13 60 80 16.2 8 100 9 600 6911 75 0.185 1 16.6 14.1 1 90 11 0.6 19.3 16.3 16.2 7 400 8 800 16011 59 86 0.6 0.260 90 18 28.3 21.2 15.3 7 600 8 900 6011 61.5 83.5 1 0.385 1.1 100 21 6211 63 1.5 43.4 29.4 14.4 6 300 7 600 92 1.5 0.607 120 29 45.0 6311 2 71.6 13.2 5 600 6 700 64 111 2 1.37 140 33 6411 2 2.1 100 62.3 12.2 5 000 6 000 66 129 2.29 10 60 78 0.3 11.5 10.6 16.3 8 000 9 400 6812 62 76 0.3 0.104 85 13 20.2 6912 65 1 17.3 16.2 7 500 8 900 80 1 0.192 64 95 11 0.6 19.8 17.6 16.4 6 900 8 100 16012 91 0.6 0.280 95 18 1.1 29.4 23.2 15.6 7 100 8 400 6012 66.5 88.5 1 0.415 22 110 1.5 52.4 36.2 14.4 5 700 6 900 6212 68 102 1.5 0.783 130 31 2.1 81.9 52.2 13.2 6312 71 119 2 1.70 5 200 6 200 150 35 2.1 110 70.8 12.4 4 600 5 500 6412 71 139 2 2.77 65 85 10 0.6 11.9 11.5 16.2 7 300 8 600 6813 69 81 0.6 0.126 90 13 17.4 16.1 16.6 7 100 8 400 6913 70 85 0.211 1 1 100 11 0.6 17.1 16.0 16.5 6 600 7 800 16013 69 96 0.6 0.300 6013 100 18 30.5 25.2 15.8 6 600 7 800 71.5 93.5 1 0.435 1.1

[Remark] Standard cage types used for the above bearings are described earlier in this section.

Koyo

d (45) ~ (65) mm

Single-row deep groove ball bearings - open type

d (65) ~ (85) mm

Bour	ndary d		sions		ad ratings	Factor	Limiting (mi	speeds		Mount	ting dime	nsions	(Refer.)
	(m:	m)		(1	cN)			n -)	Bearing No.	,	(mm)		Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.		$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
65	120	23	1.5	57.2	40.1	14.4	5 400	6 400	6213	73	112	1.5	0.990
	140	33	2.1	92.7	59.9	13.2	4 800	5 800	6313	76	129	2	2.08
	160	37	2.1	118	79.2	12.4	4 300	5 200	6413	76	149	2	3.30
70	90	10	0.6	12.1	11.9	16.1	6 800	8 100	6814	74	86	0.6	0.134
	100	16	1	23.7	21.2	16.3	6 400	7 600	6914	75	95	1	0.342
	110	13	0.6	30.1	25.6	16.0	6 100	7 200	16014	74	106	0.6	0.433
	110	20	1.1	38.1	30.9	15.6	6 100	7 200	6014	76.5	103.5	1	0.60
	125	24	1.5	62.2	44.1	14.5	5 100	6 100	6214	78	117	1.5	1.07
	150	35	2.1	104	68.2	13.2	4 500	5 400	6314	81	139	2	2.52
	180	42	3	144	104	12.2	3 900	4 600	6414	83	167	2.5	4.83
75	95	10	0.6	12.5	12.9	16.0	6 400	7 600	6815	79	91	0.6	0.14
	105	16	1	24.4	22.6	16.5	6 100	7 200	6915	80	100	1	0.36
	115	13	0.6	27.5	25.3	16.4	5 700	6 700	16015	79	111	0.6	0.45
	115	20	1.1	39.6	33.5	15.8	5 700	6 800	6015	81.5	108.5	1	0.63
	130	25	1.5	67.4	48.3	14.5	4 800	5 800	6215	83	122	1.5	1.18
	160	37	2.1	113	77.2	13.2	4 200	5 000	6315	86	149	2	3.02
	190	45	3	154	115	12.3	3 600	4 400	6415	88	177	2.5	5.87
80	100	10	0.6	12.7	13.3	16.0	6 100	7 200	6816	84	96	0.6	0.15
	110	16	1	25.0	24.0	16.6	5 700	6 800	6916	85	105	1	0.38
	125	14	0.6	31.7	29.7	16.4	5 200	6 100	16016	84	121	0.6	0.59
	125	22	1.1	47.6	39.8	15.6	5 300	6 300	6016	86.5	118.5	1	0.85
	140	26	2	72.7	53.0	14.6	4 500	5 400	6216	89	131	2	1.40
	170	39	2.1	123	86.7	13.3	3 900	4 700	6316	91	159	2	3.59
	200	48	3	164	125	12.3	3 400	4 100	6416	93	187	2.5	6.84
85	110	13	1	18.7	19.0	16.2	5 600	6 600	6817	90	105	1	0.26
	120	18	1.1	31.9	29.6	16.4	5 300	6 300	6917	91.5	113.5	1	0.53
	130	14	0.6	32.6	31.7	16.5	4 900	5 800	16017	89	126	0.6	0.62

[Remark] Standard cage types used for the above bearings are described earlier in this section.

d (85) ~ 105 mm

Bou	ndary c		ions		ad ratings	Factor		(speeds) n^{-1}		Mount	ting dime	nsions	(Refer.) Mass
d	D	В	<i>r</i> min.	Cr	C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
85	130	22	1.1	49.5	43.1	15.8	5 000	5 900	6017	91.5	123.5	1	0.890
	150	28	2	84.0	61.9	14.5	4 200	5 000	6217	94	141	2	1.79
	180	41	3	133	96.8	13.3	3 700	4 400	6317	98	167	2.5	4.23
	210	52	4	173	136	12.3	3 300	3 900	6417	101	194	3	8.07
90	115	13	1	19.0	19.7	16.1	5 300	6 300	6818	95	110	1	0.279
	125	18	1.1	32.8	31.6	16.5	5 100	6 000	6918	96.5	118.5	1	0.565
	140	16	1	39.9	37.0	16.3	4 700	5 600	16018	95	135	1	0.848
	140	24	1.5	58.2	49.7	15.6	4 700	5 600	6018	98	132	1.5	1.16
	160	30	2	96.1	71.5	14.5	3 900	4 700	6218	99	151	2	2.15
	190	43	3	143	107	13.3	3 500	4 200	6318	103	177	2.5	4.91
	225	54	4	184	149	12.5	3 100	3 700	6418	106	209	3	9.78
95	130	18	1.1	33.7	33.5	16.6	4 800	5 700	6919	101.5	123.5	1	0.705
	145	16	1	41.2	39.6	16.4	4 500	5 300	16019	100	140	1	0.885
	145	24	1.5	60.4	53.9	15.8	4 400	5 200	6019	103	137	1.5	1.21
	170	32	2.1	109	81.9	14.4	3 700	4 400	6219	106	159	2	2.62
	200	45	3	153	119	13.3	3 300	4 000	6319	108	187	2.5	5.67
100	125	13	1	19.6	21.2	16.0	4 800	5 700	6820	105	120	1	0.309
	140	20	1.1	45.0	41.9	16.2	4 500	5 300	6920	106.5	133.5	1	0.960
	150	16	1	42.4	42.1	16.5	4 300	5 100	16020	105	145	1	0.910
	150	24	1.5	60.2	54.2	15.9	4 300	5 100	6020	108	142	1.5	1.25
	180	34	2.1	122	93.1	14.4	3 500	4 200	6220	111	169	2	3.14
	215	47	3	173	141	13.2	3 000	3 600	6320	113	202	2.5	7.00
105	145	20	1.1	46.5	44.8	16.4	4 300	5 100	6921	111.5	138.5	1	1.00
	160	18	1	41.9	42.2	16.5	4 100	4 800	16021	110	155	1	1.20
	160	26	2	72.3	65.8	15.8	4 000	4 700	6021	114	151	2	1.59
	190	36	2.1	133	105	14.4	3 300	3 900	6221	116	179	2	3.70
	225	49	3	184	153	13.2	2 900	3 500	6321	118	212	2.5	8.05

Single-row deep groove ball bearings open type

d 110 ~ (150) mm

Bou	ndary d		sions		ad ratings	Factor		speeds		Moun	ting dime	nsions	(Refer.)
	(m:	m)		(1	(N)		(mi	n^{-1})	Bearing No.		(mm)		Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Dearing 110.	d _a min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
110	140	16	1	28.1	30.7	16.1	4 300	5 100	6822	115	135	1	0.606
	150	20	1.1	47.9	47.8	16.4	4 100	4 900	6922	116.5	143.5	1	1.04
	170	19	1	57.5	56.7	16.3	3 800	4 500	16022	115	165	1	1.46
	170	28	2	82.0	73.0	15.6	3 800	4 500	6022	119	161	2	1.96
	200	38	2.1	144	117	14.4	3 100	3 700	6222	121	189	2	4.36
	240	50	3	205	180	13.2	2 700	3 200	6322	123	227	2.5	9.54
120	150	16	1	29.0	33.0	16.0	4 000	4 700	6824	125	145	1	0.655
	165	22	1.1	57.2	56.9	16.4	3 800	4 400	6924	126.5	158.5	1	1.41
	180	19	1	63.2	63.3	16.4	3 600	4 200	16024	125	175	1	1.80
	180	28	2	85.0	79.3	15.9	3 600	4 200	6024	129	171	2	2.07
	215	40	2.1	155	131	14.4	2 900	3 400	6224	131	204	2	5.15
	260	55	3	207	185	13.5	2 500	3 000	6324	133	247	2.5	12.5
130	165	18	1.1	36.9	41.2	16.1	3 600	4 300	6826	136.5	158.5	1	0.939
	180	24	1.5	65.2	67.4	16.3	3 400	4 100	6926	138	172	1.5	1.86
	200	22	1.1	71.3	74.8	11.2	3 000	3 600	16026	136.5	193.5	1	2.69
	200	33	2	106	101	15.8	3 200	3 800	6026	139	191	2	3.16
	230	40	3	167	146	14.5	2 700	3 200	6226	143	217	2.5	5.82
	280	58	4	229	214	13.6	2 300	2 700	6326	146	264	3	15.1
140	175	18	1.1	38.2	44.4	16.0	3 400	4 000	6828	146.5	168.5	1	1.00
	190	24	1.5	71.3	74.8	16.5	3 200	3 800	6928	148	182	1.5	1.98
	210	22	1.1	65.8	71.1	16.5	2 900	3 400	16028	146.5	203.5	1	2.86
	210	33	2	110	109	15.9	3 000	3 600	6028	149	201	2	3.55
	250	42	3	166	150	14.8	2 400	2 900	6228	153	237	2.5	7.45
	300	62	4	253	246	13.6	2 100	2 500	6328	156	284	3	19.4
150	190	20	1.1	47.8	54.9	16.1	3 100	3 700	6830	156.5	183.5	1	1.40
	210	28	2	93.4	94.3	16.2	2 900	3 400	6930	159	201	2	3.05
	225	24	1.1	91.2	99.3	16.6	2 700	3 100	16030	156.5	218.5	1	3.58
	225	35	2.1	125	126	16.0	2 800	3 300	6030	161	214	2	4.22

d (150) ~ (200) mm

Bou	ndary d		sions		ad ratings	Factor	(min ⁻¹)		Bearing No.		ting dime (mm)	nsions	Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Dearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
150	270	45	3	176	168	15.1	2 200	2 700	6230	163	257	2.5	9.41
	320	65	4	275	284	13.9	1 900	2 300	6330	166	304	3	26.2
160	200	20	1.1	48.4	56.9	16.1	2 900	3 400	6832	166.5	193.5	1	1.45
	220	28	2	96.1	101	16.4	2 700	3 200	6932	169	211	2	3.20
	240	25	1.5	98.8	108	16.5	2 600	3 100	16032	168	232	1.5	4.25
	240	38	2.1	136	135	15.9	2 600	3 000	6032	171	229	2	5.22
	290	48	3	185	186	15.4	2 100	2 500	6232	173	277	2.5	14.3
	340	68	4	278	286	13.9	1 800	2 200	6332	176	324	3	29.0
170	215	22	1.1	59.8	70.5	16.1	2 700	3 200	6834	176.5	208.5	1	1.90
	230	28	2	98.8	108	16.5	2 600	3 100	6934	179	221	2	3.35
	260	28	1.5	114	127	16.5	2 300	2 700	16034	178	252	1.5	5.75
	260	42	2.1	161	161	15.8	2 400	2 800	6034	181	249	2	6.80
	310	52	4	212	223	15.3	1 900	2 300	6234	186	294	3	17.5
	360	72	4	326	355	13.6	1 700	2 000	6334	186	344	3	38.6
180	225	22	1.1	60.7	73.1	16.1	2 600	3 000	6836	186.5	218.5	1	2.00
	250	33	2	123	129	16.3	2 400	2 800	6936	189	241	2	4.90
	280	31	2	135	148	16.4	2 100	2 500	16036	189	271	2	7.55
	280	46	2.1	182	194	15.8	2 200	2 600	6036	191	269	2	10.3
	320	52	4	227	241	15.1	1 800	2 200	6236	196	304	3	18.3
	380	75	4	354	407	13.9	1 600	1 900	6336	196	364	3	44.7
190	240	24	1.5	73.1	88.1	16.1	2 400	2 800	6838	198	232	1.5	2.60
	260	33	2	126	138	16.4	2 300	2 700	6938	199	251	2	5.20
	290	31	2	139	158	16.6	2 000	2 400	16038	199	281	2	7.85
	290	46	2.1	188	201	15.8	2 100	2 500	6038	201	279	2	10.8
	340	55	4	255	281	15.0	1 700	2 000	6238	206	324	3	23.0
	400	78	5	355	415	14.1	1 500	1 800	6338	210	380	4	51.5
200	250	24	1.5	78.0	93.6	16.1	2 300	2 700	6840	208	242	1.5	2.70

Koyo

Single-row deep groove ball bearings - open type

d (200) ~ (280) mm

Bou	ndary ((m	dimens m)	sions		ad ratings ∝N)	Factor	Limiting (mi			Mour	ting dime (mm)	nsions	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
200	280	38	2.1	157	168	16.2	2 100	2 500	6940	211	269	2	7.30
	310	34	2	161	180	16.4	1 900	2 300	16040	209	301	2	10.1
	310	51	2.1	217	243	15.6	1 900	2 300	6040	211	299	2	14.0
	360	58	4	269	311	15.2	1 600	1 900	6240	216	344	3	28.2
	420	80	5	411	506	14.0	1 300	1 600	6340	220	400	4	58.0
220	270	24	1.5	80.7	101	16.0	2 000	2 400	6844	228	262	1.5	3.00
	300	38	2.1	160	180	16.4	1 900	2 200	6944	231	289	2	7.90
	340	37	2.1	180	217	16.5	1 700	2 000	16044	231	329	2	13.2
	340	56	3	235	271	15.6	1 700	2 000	6044	233	327	2.5	18.3
	400	65	4	311	376	15.1	1 400	1 700	6244	236	384	3	37.0
	460	88	5	433	539	13.8	1 200	1 500	6344	240	440	4	71.6
240	300	28	2	108	135	16.1	1 800	2 100	6848	249	291	2	4.50
	320	38	2.1	164	192	16.5	1 700	2 000	6948	251	309	2	8.50
	360	37	2.1	184	228	16.5	1 600	1 800	16048	251	349	2	14.1
	360	56	3	244	296	15.9	1 600	1 900	6048	253	347	2.5	19.7
	440	72	4	340	431	15.2	1 200	1 500	6248	256	424	3	51.0
	500	95	5	470	624	14.2	1 100	1 300	6348	260	480	4	93.3
260	320	28	2	112	146	16.0	1 700	2 000	6852	269	311	2	4.80
	360	46	2.1	213	263	16.3	1 500	1 800	6952	271	349	2	14.4
	400	44	3	236	310	16.4	1 400	1 600	16052	273	387	2.5	21.6
	400	65	4	291	377	15.8	1 400	1 700	6052	276	384	3	29.3
	480	80	5	402	541	15.1	1 100	1 300	6252	280	460	4	68.2
	540	102	6	531	741	14.2	990	1 200	6352	284	516	5	116
280	350	33	2	143	183	16.1	1 500	1 800	6856	289	341	2	7.40
	380	46	2.1	219	283	16.5	1 400	1 700	6956	291	369	2	15.1
	420	44	3	242	331	14.7	1 300	1 500	16056	293	407	2.5	22.9
	420	65	4	302	408	16.0	1 300	1 500	6056	296	404	3	31.0
	500	80	5	423	599	15.3	1 000	1 200	6256	300	480	4	71.8

d (280) ~ (380) mm

Bou		dimens m)	sions		load ratings (kN)	Factor		s speeds n^{-1})	Bearing No.	Moun	ting dime (mm)	nsions	(Refer.) Mass
d	D	В	r min.	C_{r}	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Dearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
280	580	108	6	568	845	14.5	880	1 100	6356	304	556	5	145
300	380	38	2.1	179	230	16.2	1 400	1 600	6860	311	369	2	10.5
	420	56	3	276	377	16.2	1 300	1 500	6960	313	407	2.5	24.1
	460	50	4	284	405	16.4	1 100	1 400	16060	316	447	3	32.2
	460	74	4	355	482	15.6	1 200	1 400	6060	316	444	3	44.0
	540	85	5	441	663	15.6	880	1 100	6260	320	520	4	89.5
	620	109	7.5	593	886	14.4	810	970	6360	332	588	6	169
320	400	38	2.1	182	239	16.1	1 300	1 500	6864	331	389	2	11.0
	440	56	3	285	404	16.4	1 200	1 400	6964	333	427	2.5	25.5
	480	50	4	292	432	16.5	1 100	1 300	16064	336	467	3	33.9
	480	74	4	352	487	15.7	1 100	1 300	6064	336	464	3	46.0
	580	92	5	489	744	15.4	840	1 000	6264	340	560	4	113
	670	112	7.5	634	1 010	14.8	720	870	6364	352	638	6	207
340	420	38	2.1	185	249	16.1	1 200	1 400	6868	351	409	2	11.5
	460	56	3	282	407	16.5	1 100	1 300	6968	353	447	2.5	26.8
	520	57	4	335	512	16.4	980	1 200	16068	356	507	3	46.8
	520	82	5	441	661	15.6	980	1 200	6068	360	500	4	61.8
	620	92	6	511	817	15.6	760	910	6268	364	596	5	131
	710	118	7.5	704	1 160	14.7	660	790	6368	372	678	6	238
360	440	38	2.1	192	268	16.0	1 100	1 300	6872	371	429	2	12.0
	480	56	3	289	432	16.5	1 000	1 200	6972	373	467	2.5	28.2
	540	57	4	345	546	16.5	900	1 100	16072	376	527	3	49.0
	540	82	5	438	668	15.7	920	1 100	6072	380	520	4	64.7
	650	95	6	557	904	15.4	700	840	6272	384	626	5	144
380	480	46	2.1	244	359	16.2	980	1 200	6876	391	469	2	20.0
	520	65	4	352	552	16.4	920	1 100	6976	396	504	3	40.8
	560	82	5	457	725	15.9	860	1 000	6076	400	540	4	67.6

Koyo

Single-row deep groove ball bearings open type

d (380) ~ 500 mm

Bou	ndary	dimens m)	sions	Basic	load ratings (kN)	Factor	Limiting (mi	speeds		Mour	ting dime	nsions	(Refer.)
d	D	B	r min.	C_{r}	(KIN) C_{0r}	f_0	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	(IIIII) D _a max.	$r_{ m a}$ max.	Mass (kg)
380	680	95	6	584	990	15.6	650	780	6276	404	656	5	162
400	500	46	2.1	249	374	16.1	920	1 100	6880	411	489	2	20.5
	540	65	4	362	588	16.5	860	1 000	6980	416	524	3	42.7
	600	63	5	358	587	16.5	780	920	16080	420	580	4	65.0
	600	90	5	508	824	15.7	780	920	6080	420	580	4	87.7
	720	103	6	628	1 080	15.5	590	710	6280	424	696	5	197
420	520	46	2.1	253	389	16.1	860	1 000	6884	431	509	2	21.5
	560	65	4	359	588	16.5	810	950	6984	436	544	3	43.5
	620	63	5	367	617	16.4	740	870	16084	440	600	4	69.9
	620	90	5	530	894	15.8	740	870	6084	440	600	4	91.2
440	540	46	2.1	257	404	16.0	810	950	6888	451	529	2	22.5
	600	74	4	396	676	16.4	740	870	6988	456	584	3	61.3
	650	67	5	407	710	16.5	680	810	16088	460	630	4	81.7
460	580	56	3	314	517	16.2	740	870	6892	473	567	2.5	35.0
	620	74	4	407	711	16.5	690	820	6992	476	604	3	61.7
	680	71	5	431	767	16.5	630	750	16092	480	660	4	91.2
480	600	56	3	321	539	16.1	690	820	6896	493	587	2.5	36.5
	650	78	5	432	768	16.5	640	760	6996	500	630	4	72.5
	700	71	5	444	807	16.5	600	710	16096	500	680	4	98.5
500	620	56	3	327	561	16.1	650	770	68/500	513	607	2.5	37.5
	670	78	5	444	807	16.5	610	720	69/500	520	650	4	75.2
	720	71	5	455	846	16.4	560	660	160/500	520	700	4	102
	720	100	6	600	1 100	16.0	570	670	60/500	524	696	5	128

[Remark] Standard cage types used for the above bearings are described earlier in this section.

Koyo

Boun	dary d	limens m)	ions	Basic load (kN		Factor		Limiting spe Grease lub.	eds (min ⁻¹)	Oil lub.			Bearing No.			(n	dimensio nm)	ns.	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	fo	Z, ZZ RU, 2RU	(RD, 2RD)	(RS, 2RS)	(Z)	Shielded	Non-contact sealed	Extremely light contact sealed	Contact sealed	min.	l _a max.	$D_{ m a}$ max.	$r_{ m a}$ max.	Open type (kg)
10	19	5	0.3	1.70	0.84	14.8	37 000	_	22 000	43 000	6800 ZZ	6800 2RU	_	6800 2RS	12	12	17	0.3	0.005
	22	6	0.3	2.70	1.25	14.0	34 000	_	21 000	41 000	6900 ZZ	6900 2RU	—	6900 2RS	12	12.5	20	0.3	0.010
	26	8	0.3	4.55	1.95	12.3	31 000	28 000	19 000	36 000	6000 ZZ	6000 2RU	6000 2RD	6000 2RS	12	13	24	0.3	0.019
	30	9	0.6	5.10	2.40	13.2	24 000	22 000	16 000	29 000	6200 ZZ	6200 2RU	6200 2RD	6200 2RS	14	15	26	0.6	0.032
	35	11	0.6	8.10	3.45	11.2	22 000	20 000	16 000	27 000	6300 ZZ	6300 2RU	6300 2RD	6300 2RS	14	16	31	0.6	0.053
12	21	5	0.3	1.90	1.05	15.3	33 000	30 000	20 000	39 000	6801 ZZ	6801 2RU	6801 2RD	6801 2RS	14	14	19	0.3	0.006
	24	6	0.3	2.90	1.45	14.5	31 000	28 000	18 000	36 000	6901 ZZ	6901 2RU	6901 2RD	6901 2RS	14	14	22	0.3	0.011
	28	8	0.3	5.10	2.40	13.2	27 000	24 000	17 000	32 000	6001 ZZ	6001 2RU	6001 2RD	6001 2RS	14	15	26	0.3	0.022
	32	10	0.6	6.80	3.05	12.3	22 000	20 000	15 000	27 000	6201 ZZ	6201 2RU	6201 2RD	6201 2RS	16	16.5	28	0.6	0.037
	37	12	1	9.70	4.20	11.1	20 000	18 000	15 000	25 000	6301 ZZ	6301 2RU	6301 2RD	6301 2RS	17	17.5	32	1	0.060
15	24	5	0.3	2.10	1.25	15.8	28 000	_	16 000	33 000	6802 ZZ	6802 2RU	_	6802 2RS	17	17	22	0.3	0.007
	28	7	0.3	4.30	2.25	14.3	26 000	23 000	15 000	30 000	6902 ZZ	6902 2RU	6902 2RD	6902 2RS	17	18	26	0.3	0.017
	32	9	0.3	5.60	2.85	13.9	23 000	21 000	14 000	27 000	6002 ZZ	6002 2RU	6002 2RD	6002 2RS	17	18.5	30	0.3	0.030
	35	11	0.6	7.65	3.75	13.2	20 000	18 000	13 000	24 000	6202 ZZ	6202 2RU	6202 2RD	6202 2RS	19	19.5	31	0.6	0.045
	42	13	1	11.4	5.45	12.3	17 000	15 000	12 000	20 000	6302 ZZ	6302 2RU	6302 2RD	6302 2RS	20	21.5	37	1	0.082
17	26	5	0.3	2.60	1.55	15.7	26 000	—	14 000	30 000	6803 ZZ	6803 2RU	_	6803 2RS	19	19	24	0.3	0.008
	30	7	0.3	4.60	2.55	14.7	23 000	21 000	13 000	28 000	6903 ZZ	6903 2RU	6903 2RD	6903 2RS	19	19.5	28	0.3	0.018
	35	10	0.3	6.00	3.25	14.4	21 000	19 000	12 000	25 000	6003 ZZ	6003 2RU	6003 2RD	6003 2RS	19	21	33	0.3	0.039
	40	12	0.6	9.55	4.80	13.2	17 000	15 000	12 000	21 000	6203 ZZ	6203 2RU	6203 2RD	6203 2RS	21	22	36	0.6	0.065
	47	14	1	13.6	6.65	12.4	15 000	14 000	10 000	18 000	6303 ZZ	6303 2RU	6303 2RD	6303 2RS	22	24.3	42	1	0.115
20	32	7	0.3	4.00	2.45	15.5	21 000	_	12 000	25 000	6804 ZZ	6804 2RU	_	6804 2RS	22	22.5	30	0.3	0.018
	37	9	0.3	6.35	3.70	14.7	19 000	17 000	11 000	23 000	6904 ZZ	6904 2RU	6904 2RD	6904 2RS	22	23.5	35	0.3	0.036
	42	12	0.6	9.40	5.05	13.9	17 000	15 000	10 000	21 000	6004 ZZ	6004 2RU	6004 2RD	6004 2RS	24	25	38	0.6	0.069
	47	14	1	12.8	6.65	13.2	15 000	14 000	9 700	17 000	6204 ZZ	6204 2RU	6204 2RD	6204 2RS	25	26.5	42	1	0.106
	52	15	1.1	15.9	7.85	12.3	14 000	13 000	9 500	17 000	6304 ZZ	6304 2RU	6304 2RD	6304 2RS	26.5	27	45.5	1	0.144
22	44	12	0.6	9.40	5.15	14.1	17 000	15 000	9 900	20 000	60/22 ZZ	60/22 2RU	60/22 2RD	60/22 2RS	26	26.5	40	0.6	0.073
	50	14	1	12.8	6.65	13.2	15 000	14 000	9 700	17 000	62/22 ZZ	62/22 2RU	62/22 2RD	62/22 2RS	27	27	45	1	0.118

Non-contact sealed

Koyo

Bou		dimens m)	sions	Basic loa	d ratings N)	Factor		-imiting spe Grease lub.	eeds (min ⁻¹) Oil lub.			Bearing No.			(n	dimensio nm)	ons.	(Refer.) Mass
d	D	В	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0	Z, ZZ RU, 2RU	(RD, 2RD)	(RS, 2RS)	(Z)	Shielded	Non-contact sealed	Extremely light contact sealed	Contact sealed	min.	l _a max.	$D_{ m a}$ max.	$r_{ m a}$ max.	Open type (kg)
22	56	16	1.1	18.5	9.40	12.6	13 000	12 000	8 600	15 000	63/22 ZZ	63/22 2RU	63/22 2RD	63/22 2RS	28.5	29	49.5	1	0.201
25	37	7	0.3	4.30	2.95	16.0	18 000		10 000	21 000	6805 ZZ	6805 2RU		6805 2RS	27	27.5	35	0.3	0.022
	42	9	0.3	7.00	4.55	15.4	16 000	14 000	9 300	19 000	6905 ZZ	6905 2RU	6905 2RD	6905 2RS	27	29	40	0.3	0.041
	47	12	0.6	10.1	5.85	14.5	15 000	14 000	9 000	18 000	6005 ZZ	6005 2RU	6005 2RD	6005 2RS	29	29.5	43	0.6	0.080
	52	15	1	14.0	7.85	13.9	13 000	12 000	8 400	15 000	6205 ZZ	6205 2RU	6205 2RD	6205 2RS	30	31.5	47	1	0.128
	62	17	1.1	20.6	11.3	13.2	11 000	9 900	7 500	13 000	6305 ZZ	6305 2RU	6305 2RD	6305 2RS	31.5	34	55.5	1	0.232
28	52	12	0.6	12.4	7.40	14.5	14 000	13 000	8 100	16 000	60/28 ZZ	60/28 2RU	60/28 2RD	60/28 2RS1	32	33	48	0.6	0.097
	58	16	1	17.9	9.75	13.4	12 000	11 000	7 600	14 000	62/28 ZZ	62/28 2RU	62/28 2RD	62/28 2RS	33	35	53	1	0.173
	68	18	1.1	23.5	13.1	13.3	10 000	9 000	6 900	12 000	63/28 ZZ	63/28 2RU	63/28 2RD	63/28 2RS	34.5	37.5	61.5	1	0.328
30	42 47 55	7 9 13	0.3 0.3 1	4.55 7.25 13.2	3.40 5.00 8.25	16.4 15.8 14.7	15 000 14 000 13 000	 13 000 12 000	8 600 8 200 7 500	18 000 17 000 15 000	6806 ZZ 6906 ZZ 6006 ZZ	6806 2RU 6906 2RU 6006 2RU	6906 2RD 6006 2RD	6806 2RS 6906 2RS 6006 2RS	32 32 35	32.5 33 36	40 45 50	0.3 0.3 1	0.026 0.045 0.116
	62	16	1	19.5	11.3	13.9	11 000	9 900	7 000	13 000	6206 ZZ	6206 2RU	6206 2RD	6206 2RS	35	37.5	57	1	0.199
	72	19	1.1	26.7	15.0	13.3	9 600	8 600	6 400	12 000	6306 ZZ	6306 2RU	6306 2RD	6306 2RS	36.5	40	65.5	1	0.346
32	58	13	1	15.0	9.15	14.5	12 000	11 000	7 200	14 000	60/32 ZZ	60/32 2RU	60/32 2RD	60/32 2RS	37	38	53	1	0.127
	65	17	1	23.5	13.1	13.3	10 000	9 000	6 900	12 000	62/32 ZZ	62/32 2RU	62/32 2RD	62/32 2RS	37	38.5	60	1	0.228
	75	20	1.1	30.1	16.2	12.7	9 300	8 400	6 400	11 000	63/32 ZZ	63/32 2RU	63/32 2RD	63/32 2RS	38.5	41	68.5	1	0.437
35	47 55 62	7 10 14	0.3 0.6 1	4.75 10.9 15.9	3.85 7.75 10.3	16.5 15.7 14.9	13 000 12 000 11 000	 11 000 9 900	7 400 6 800 6 500	16 000 14 000 13 000	6807 ZZ 6907 ZZ 6007 ZZ	6807 2RU 6907 2RU 6007 2RU	6907 2RD 6007 2RD	6807 2RS 6907 2RS 6007 2RS	37 39 40	37.5 40 42	45 51 58	0.3 0.6 1	0.030 0.073 0.155
	72	17	1.1	25.7	15.4	13.9	9 200	8 300	6 000	11 000	6207 ZZ	6207 2RU	6207 2RD	6207 2RS	41.5	43.5	65.5	1	0.288
	80	21	1.5	33.4	19.3	13.2	8 500	7 700	5 700	10 000	6307 ZZ	6307 2RU	6307 2RD	6307 2RS	43	46	72	1.5	0.457
40	52	7	0.3	4.95	4.20	16.3	12 000	11 000	6 700	14 000	6808 ZZ	6808 2RU	6808 2RD	6808 2RS	42	42	50	0.3	0.033
	62	12	0.6	13.7	9.95	15.6	11 000	9 900	6 100	13 000	6908 ZZ	6908 2RU	6908 2RD	6908 2RS	44	44.5	58	0.6	0.112
	68	15	1	16.7	11.5	15.2	10 000	9 000	5 800	12 000	6008 ZZ	6008 2RU	6008 2RD	6008 2RS	45	46.5	63	1	0.192
	80	18	1.1	29.1	17.8	14.0	8 300	7 500	5 400	10 000	6208 ZZ	6208 2RU	6208 2RD	6208 2RS	46.5	49	73.5	1	0.366
	90	23	1.5	40.7	24.0	13.2	7 700	6 900	5 100	9 200	6308 ZZ	6308 2RU	6308 2RD	6308 2RS	48	51.5	82	1.5	0.633

[Remark] Standard cage types used for the above bearings are described earlier in this section.

B 23

Koyo

Bou	indary (r	dime nm)	ensio	ns	Basic load		Factor		Limiting spe Grease lub.	eds (min ⁻¹)) Oil lub.			Bearing No.			(m	dimensio nm)	ns.	(Refer.) Mass
d	D	В		r min.	$C_{ m r}$	C_{0r}	f_0	(Z, ZZ RU, 2RU)	(RD, 2RD)	(RS, 2RS)	(Z)	Shielded	Non-contact sealed	Extremely light contact sealed	Contact sealed	c min.	l _a max.	$D_{ m a}$ max.	r _a max.	Open type (kg)
45	58 68 75	1	12	0.3 0.6 1	6.20 14.1 21.0	5.40 10.9 15.1	16.3 15.9 15.3	11 000 9 700 9 200	9 900 8 700 8 300	5 900 5 500 5 300	13 000 11 000 11 000	6809 ZZ 6909 ZZ 6009 ZZ	6809 2RU 6909 2RU 6009 2RU	6809 2RD 6909 2RD 6009 2RD	6809 2RS 6909 2RS 6009 2RS	47 49 50	47 50 51.5	56 64 70	0.3 0.6 1	0.040 0.132 0.245
	85 100			1.1 1.5	32.7 48.9	20.3 29.5	14.0 13.3	7 700 6 800	6 900 6 100	5 100 4 500	9 200 8 100	6209 ZZ 6309 ZZ	6209 2RU 6309 2RU	6209 2RD 6309 2RD	6209 2RS 6309 2RS	51.5 53	53.5 59.5	78.5 92	1 1.5	0.407 0.833
50	65 72 80 90 110	1 1 2	12 16 20	0.3 0.6 1 1.1 2	6.60 14.5 21.8 35.1 62.0	6.10 11.7 16.6 23.3 38.3	16.1 16.1 15.6 14.4 13.2	9 600 9 000 8 400 7 100 6 100	8 600 7 600 6 400 5 500	5 200 5 000 4 800 4 600 4 100	11 000 11 000 9 900 8 500 7 300	6810 ZZ 6910 ZZ 6010 ZZ 6210 ZZ 6310 ZZ	6810 2RU 6910 2RU 6010 2RU 6210 2RU 6310 2RU	6810 2RD 6010 2RD 6210 2RD 6310 2RD	6810 2RS 6010 2RS 6210 2RS 6310 2RS	52 54 55 56.5 59	53 55.5 57 59 66.5	63 68 75 83.5 101	0.3 0.6 1 1 2	0.052 0.133 0.261 0.463 1.07
55	72 80 90 100 120	1	9 13 18 21	0.3 1 1.1 1.5 2	8.80 16.6 28.3 43.4 71.6	8.10 14.1 21.2 29.4 45.0	16.2 16.2 15.3 14.4 13.2	8 700 8 100 7 600 6 300 5 600	7 800 7 300 6 800 5 700	4 100 4 500 4 300 4 100 3 700	10 000 9 600 8 900 7 600 6 700	6811 ZZ 6911 ZZ 6011 ZZ 6211 ZZ 6311 ZZ	6811 2RU 6911 2RU 6011 2RU 6211 2RU 6311 2RU	6811 2RD 6911 2RD 6011 2RD 6211 2RD	6911 2RS 6011 2RS 6211 2RS 6311 2RS	53 57 60 61.5 63 64	58.5 60.5 62 66 74.5	70 75 83.5 92 111	0.3 1 1.5 2	0.083 0.185 0.385 0.607 1.37
60	78 85 95 110 130	1	13 18 22	0.3 1 1.1 1.5 2.1	11.5 20.2 29.4 52.4 81.9	10.6 17.3 23.2 36.2 52.2	16.3 16.2 15.6 14.4 13.2	8 000 7 500 7 100 5 700 5 200	7 200 5 100 	 4 000 3 700 3 500	9 400 8 900 8 400 6 900 6 200	6812 ZZ 6912 ZZ 6012 ZZ 6212 ZZ 6312 ZZ	6812 2RU 6912 2RU 6012 2RU 6212 2RU 6312 2RU	6812 2RD 	6012 2RS 6212 2RS 6312 2RS	62 65 66.5 68 71	63 66 68.5 72.5 80	76 80 88.5 102 119	0.3 1 1 1.5 2	0.104 0.192 0.415 0.783 1.70
65	85 90 100 120 140	1	13 18 23	0.6 1 1.1 1.5 2.1	11.9 17.4 30.5 57.2 92.7	11.5 16.1 25.2 40.1 59.9	16.2 16.6 15.8 14.4 13.2	7 300 7 100 6 600 5 400 4 800	6 600 6 400 	 3 900 3 700 3 500 3 200	8 600 8 400 7 800 6 400 5 800	6813 ZZ 6913 ZZ 6013 ZZ 6213 ZZ 6313 ZZ	6813 2RU 6913 2RU 6013 2RU 6213 2RU 6313 2RU	6813 2RD 6913 2RD 	6913 2RS 6013 2RS 6213 2RS 6313 2RS	69 70 71.5 73 76	69 71 74.5 79 86	81 85 93.5 112 129	0.6 1 1 1.5 2	0.126 0.211 0.435 0.990 2.08
70	90 100	1	10	0.6 1	12.1 23.7	11.9 21.2	16.1 16.3	6 800 6 400	6 100 5 800		8 100 7 600	6814 ZZ 6914 ZZ	6814 2RU 6914 2RU	6814 2RD 6914 2RD	6914 2RS	74 75	74 76.5	86 95	0.6	0.134

Non-contact sealed

Koyo

Bou	ndary d		ions		ad ratings	Factor		Limiting spe Grease lub.	eeds (min ⁻¹)	Oil lub.			Bearing No.		М	0	dimensio nm)	ns.	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	(Z, ZZ RU, 2RU)	(RD, 2RD)	(RS, 2RS)	(Z)	Shielded	Non-contact sealed	Extremely light contact sealed	Contact sealed	min.	d _a max.	$D_{ m a}$ max.	$r_{ m a}$ max.	Open type (kg)
70	110 125 150	20 24 35	1.1 1.5 2.1	38.1 62.2 104	30.9 44.1 68.2	15.6 14.5 13.2	6 100 5 100 4 500		3 500 3 300 3 000	7 200 6 100 5 400	6014 ZZ 6214 ZZ 6314 ZZ	6014 2RU 6214 2RU 6314 2RU		6014 2RS 6214 2RS 6314 2RS	76.5 78 81	79.5 84 92	103.5 117 139	1 1.5 2	0.602 1.07 2.52
75	95 105 115 130 160	10 16 20 25 37	0.6 1 1.1 1.5 2.1	12.5 24.4 39.6 67.4 113	12.9 22.6 33.5 48.3 77.2	16.0 16.5 15.8 14.5 13.2	6 400 6 100 5 700 4 800 4 200	5 800 	 3 300 3 100 2 800	7 600 7 200 6 800 5 800 5 000	6815 ZZ 6915 ZZ 6015 ZZ 6215 ZZ 6315 ZZ	6815 2RU 6915 2RU 6015 2RU 6215 2RU 6315 2RU	6815 2RD 	 6015 2RS 6215 2RS 6315 2RS	79 80 81.5 83 86	79 82.5 84.5 88.5 97.5	91 100 108.5 122 149	0.6 1 1 1.5 2	0.142 0.363 0.638 1.18 3.02
80	100 110 125 140	10 16 22 26	0.6 1 1.1 2	12.7 25.0 47.6 72.7	13.3 24.0 39.8 53.0	16.0 16.6 15.6 14.6	6 100 5 700 5 300 4 500	5 500 5 100 —	3 200 3 100 2 900	7 200 6 800 6 300 5 400	6816 ZZ 6916 ZZ 6016 ZZ 6216 ZZ	6816 2RU 6916 2RU 6016 2RU 6216 2RU	6816 2RD 6916 2RD —	6916 2RS 6016 2RS 6016 2RS 6216 2RS	84 85 86.5 89	84 86.5 90 93	96 105 118.5 131	0.6 1 1 2	0.150 0.382 0.850 1.40
85	170 110 120 130	39 13 18 22	2.1 1 1.1 1.1	123 18.7 31.9 49.5	86.7 19.0 29.6 43.1	13.3 16.2 16.4 15.8	3 900 5 600 5 300 5 000	5 000 4 800	2 700 3 000 2 900	4 700 6 600 6 300 5 900	6316 ZZ 6817 ZZ 6917 ZZ 6017 ZZ	6316 2RU 6817 2RU 6917 2RU 6017 2RU	6817 2RD 6917 2RD	6316 2RS 6917 2RS 6017 2RS	91 90 91.5 91.5	105 90.5 92.5 96.5	159 105 113.5 123.5	2 1 1 1	3.59 0.266 0.535 0.890
	150 180	28 41	2 3	84.0 133	61.9 96.8	14.5 13.3	4 200 3 700	_	2 700 2 500	5 000 4 400	6217 ZZ 6317 ZZX	6217 2RU 6317 2RU	_	6217 2RS 6317 2RS	94 98	102 111	141 167	2 2.5	1.79 4.23
90	115 125 140 160	13 18 24 30	1 1.1 1.5 2	19.0 32.8 58.2 96.1	19.7 31.6 49.7 71.5	16.1 16.5 15.6 14.5	5 300 5 100 4 700 3 900	4 800 4 600 	2 800 2 700 2 600	6 300 6 000 5 600 4 700	6818 ZZ 6918 ZZ 6018 ZZ 6218 ZZ	6818 2RU 6918 2RU 6018 2RU 6218 2RU	6818 2RD 6918 2RD 	6918 2RS 6018 2RS 6218 2RS	95 96.5 98 99	95.5 97.5 100.5 108.5	110 118.5 132 151	1 1 1.5 2	0.279 0.565 1.16 2.15
95	190	43	3	143 33.7	107 33.5	13.3	3 500 4 800	4 300	2 400	4 200	6318 ZZX	6318 2RU		6318 2RS	103	117	177	2.5	4.91
	145 170 200	24 32 45	1.5 2.1 3	60.4 109 153	53.9 81.9 119	15.8 14.4 13.3	4 400 3 700 3 300		2 500 2 400 2 200	5 200 4 400 4 000	6019 ZZX 6219 ZZX 6319 ZZX	6019 2RU 6219 2RU 6319 2RU		6019 2RS 6219 2RS 6319 2RS	103 106 108	107.5 113 122	137 159 187	1.5 2 2.5	1.21 2.62 5.67

Single-row deep groove ball bearings shielded type

Koyo

Bou	ndary c		ions		ad ratings	Factor			eeds (min ⁻¹)				Bearing No.		М	0	dimensio	ns.	(Refer.) Mass
d	(m: D	m) B	r min.		xN) C _{0r}	fo	(Z, ZZ RU, 2RU)	Grease lub. (RD, 2RD)	(RS, 2RS)	Oil lub. (Z)	Shielded	lon-contact sealed	Extremely light contact sealed	Contact sealed	min.	(n d _a max.	nm) D _a max.	$r_{ m a}$ max.	Open type (kg)
100	125 140 150	13 20 24	1 1.1 1.5	19.6 45.0 60.2	21.2 41.9 54.2	16.0 16.2 15.9	4 800 4 500 4 300	4 300 	 2 500	5 700 5 300 5 100	6920-1 ZZ 692	320 2RU 920-1 2RU 920 2RU	6820 2RD		105 106.5 108	105.5 110.5 112	120 133.5 142	1 1 1.5	0.309 0.960 1.25
	180 215	34 47	2.1 3	122 173	93.1 141	14.4 13.2	3 500 3 000	_	2 300 2 100	4 200 3 600		220 2RU 320 2RU		6220 2RS 6320 2RS	111 113	122 131	169 202	2 2.5	3.14 7.00
105	145 160 190	20 26 36	1.1 2 2.1	46.5 72.3 133	44.8 65.8 105	16.4 15.8 14.4	4 300 4 000 3 300	 	2 400 2 300 2 200	5 100 4 700 3 900	6021 ZZX 600 6221 ZZX 622	921-1 2RU 921 2RU 921 2RU 921 2RU	 	6921-1 2RS 6021 2RS 6221 2RS	111.5 114 116	115 119 127	138.5 151 179	1 2 2	1.00 1.59 3.70
110	225 140 150 170	49 16 20 28	3 1 1.1 2	184 28.1 47.9 82.0	153 30.7 47.8 73.0	13.2 16.1 16.4 15.6	2 900 4 300 4 100 3 800	3 900 —	2 000 2 200	3 500 5 100 4 900 4 500	6822 ZZ 683 6922 ZZ 693	321 2RU 322 2RU 322 2RU 322 2RU 322 2RU		6321 2RS	118 115 116.5 119	136 116.5 119.5 123	212 135 143.5 161	2.5 1 1 2	8.05 0.606 1.04 1.96
	200 240	38 50	2.1 3	144 205	117 180	14.4 13.2	3 100 2 700	_	2 000 1 900	3 700 3 200		222 2RU 322 2RU	_	6222 2RS 6322 2RS	121 123	136.5 146.5	189 227	2 2.5	4.36 9.54
120	150 165 180	16 22 28	1 1.1 2	29.0 57.2 85.0	33.0 56.9 79.3	16.0 16.4 15.9	4 000 3 800 3 600		 2 100	4 700 4 400 4 200	6924 ZZ 693 6024 ZZX 603	824 2RU 924 2RU 924 2RU	 	 6024 2RS	125 126.5 129	128.5 131.5 136	145 158.5 171	1 1 2	0.655 1.41 2.07
	215 260	40 55	2.1 3	155 207	131 185	14.4 13.5	2 900 2 500	_	1 900	3 400 3 000	6224 ZZX 622 6324 ZZX	224 2RU	_	6224 2RS	131 133	144 158	204 247	2 2.5	5.15 12.5
130	165 180 200	18 24 33	1.1 1.5 2	36.9 65.2 106	41.2 67.4 101	16.1 16.3 15.8	3 600 3 400 3 200	 	 1 900	4 300 4 100 3 800	6926-1 ZZ 692	826 2RU 926-1 2RU 926 2RU		 6026 2RS	136.5 138 139	139.5 144 146.5	158.5 172 191	1 1.5 2	0.939 1.86 3.16
	230 280	40 58	3 4	167 229	146 214	14.5 13.6	2 700 2 300		1 800	3 200 2 700	6226 ZZX 622 6326 ZZX	226 2RU		6226 2RS 	143 146	157 171	217 264	2.5 3	5.82 15.1
140	175 190 210	18 24 33	1.1 1.5 2	38.2 71.3 110	44.4 74.8 109	16.0 16.5 15.9	3 400 3 200 3 000	3 100 	 1 800	4 000 3 800 3 600		 928-1 2RU 928 2RU	6828 2RD 	 6028 2RS	146.5 148 149	148 153 158.5	168.5 182 201	1 1.5 2	1.00 1.98 3.55

Single-row deep groove ball bearings shielded type

Koyo

Bou	ndary d	limens	ions	Basic lo	ad ratings	Factor		Limiting spe	eds (min ⁻¹))		Bearing No.		М	ounting	dimensio	ns.	(Refer.)
	(mi	m)		(1	xN)			Grease lub.		Oil lub.					(r	nm)		Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	(Z, ZZ RU, 2RU)	(RD, 2RD)	(RS, 2RS)	(Z)	Shielded Non-contact sealed	Extremely light contact sealed	Contact sealed	min.	d_{a} max.	$D_{ m a}$ max.	$r_{ m a}$ max.	Open type (kg)
140	250 300	42 62	3 4	166 253	150 246	14.8 13.6	2 400 2 100	_	1 600	2 900 2 500	6228 ZZX 6228 2RU 6328 ZZX —	_	6228 2RS	153 156	169 184	237 284	2.5 3	7.45 19.4
150	210 225 270	28 35 45	2 2.1 3	93.4 125 176	94.3 126 168	16.2 16.0 15.1	2 900 2 800 2 200		1 700 1 600	3 400 3 300 2 700	6930 ZZ 6930 2RU 6030 ZZX 6030 2RU 6230 ZZX —		6930 2RS 6030 2RS	159 161 163	165.5 168.5 183.5	201 214 257	2 2 2.5	3.05 4.22 9.41
160	200 240 290	20 38 48	1.1 2.1 3	48.4 136 185	56.9 135 186	16.1 15.9 15.4	2 900 2 600 2 100	2 600 	 1 500 	3 400 3 000 2 500	6832 ZZ — 6032 ZZX 6032 2RU 6232 ZZX —	6832 2RD 	6032 2RS	166.5 171 173	168.5 178.5 198	193.5 229 277	1 2 2.5	1.45 5.22 14.3
170	215 260 310	22 42 52	1.1 2.1 4	59.8 161 212	70.5 161 223	16.1 15.8 15.3	2 700 2 400 1 900	 	 	3 200 2 800 2 300	6834 ZZ — 6034 ZZX 6034 2RU 6234 ZZX —	 _	 	176.5 181 186	182.5 194 210.5	208.5 249 294	1 2 3	1.90 6.80 17.5
180	225 280 320	22 46 52	1.1 2.1 4	60.7 182 227	73.1 194 241	16.1 15.8 15.1	2 600 2 200 1 800	2 300 		3 000 2 600 2 200	6836 ZZ — 6036 ZZX 6036 2RU 6236-1 ZZX —	6836 2RD 		186.5 191 196	189.5 209.5 220.5	218.5 269 304	1 2 3	2.00 10.3 18.3
190	240 290	24 46	1.5 2.1	73.1 188	88.1 201	16.1 15.8	2 400 2 100			2 800 2 500	6838 ZZ — 6038 ZZX —			198 201	202 215	232 279	1.5 2	2.60 10.8
200	310 360	51 58	2.1 4	217 269	243 311	15.6 15.2	1 900 1 600	_		2 300 1 900	6040 ZZX — 6240-1 ZZX —	_	_	211 216	228 250	299 344	2 3	14.0 28.2
220	340	56	3	235	271	15.6	1 700	_	_	2 000	6044 ZZX —	_	_	233	251	327	2.5	18.3

snap ring groove type locating snap ring type

d **10** ~ **32 mm**

With locating snap ring and one shield

Koyo

Snap ring groove details

Bo	undar	y dim	ensio	ns	Basic load		Factor	Limiting		Bearii	ng No.			ensions of groove	snap (mm)	Dimensions of snap ring	of locating (mm)		Μοι	•	dimensi m)	ons		(Refer.)	(Refer.)
d	D	B	<i>r</i> min.	r_1 min.		C_{0r}	f ₀	Grease lub.	Oil lub.	With snap ring groove	With locating snap ring	D_1 max.	a max.	b ±0.15	(IIIII) r ₀ max.	D ₂ max.	f ±0.05	$d_{ m a}$ min.	$D_{ m a}$ max.	D _X min.	C _Y max.	$r_{ m a}$ max.	$r_{ m b}$ max.	Mass (kg)	Bearing No.
10	30 35	9 11	0.6 0.6	0.3 0.5	5.10 8.10	2.40 3.45	13.2 11.2	24 000 22 000	29 000 27 000	6200N 6300N	6200NR 6300NR	28.17 33.17	2.06 2.06	1.5 1.5	0.4 0.4	34.7 39.7	1.07 1.07	14 14	26 31	35.5 40.5	2.92 2.92	0.6 0.6	0.3 0.5	0.032 0.053	
12	32 37	10 12	0.6 1	0.3 0.5	6.80 9.70	3.05 4.20	12.3 11.1	22 000 20 000	27 000 25 000	6201N 6301N	6201NR 6301NR	30.15 34.77	2.06 2.06	1.5 1.5	0.4 0.4	36.7 41.3	1.07 1.07	16 17	28 32	37.5 42	2.92 2.92	0.6 1	0.3 0.5	0.037 0.060	6201N 6301N
15	35 42	11 13	0.6 1	0.5 0.5	7.65 11.4	3.75 5.45		20 000 17 000	24 000 20 000	6202N 6302N	6202NR 6302NR	33.17 39.75	2.06 2.06	1.5 1.5	0.4 0.4	39.7 46.3	1.07 1.07	19 20	31 37	40.5 47	2.92 2.92	0.6 1	0.5 0.5	0.045 0.082	6202N 6302N
17	40 47	12 14	0.6 1	0.5 0.5	9.55 13.6	4.80 6.65		17 000 15 000	21 000 18 000	6203N 6303N	6203NR 6303NR	38.1 44.6	2.06 2.46	1.5 1.5	0.4 0.4	44.6 52.7	1.07 1.07	21 22	36 42	45.5 53.5	2.92 3.33	0.6 1	0.5 0.5	0.065 0.115	6203N 6303N
20	42 47 52	12 14 15	0.6 1 1.1	0.5 0.5 0.5	9.40 12.8 15.9	5.05 6.65 7.85	13.9 13.2 12.3	17 000 15 000 14 000	21 000 17 000 17 000	6004N 6204N 6304N	6004NR 6204NR 6304NR	39.75 44.6 49.73	2.06 2.46 2.46	1.5 1.5 1.5	0.4 0.4 0.4	46.3 52.7 57.9	1.07 1.07 1.07	24 25 26.5	38 42 45.5	47 53.5 58.5	2.92 3.33 3.33	0.6 1 1	0.5 0.5 0.5	0.069 0.106 0.144	6204N
22	44 50 56	12 14 16	0.6 1 1.1	0.5 0.5 0.5	9.40 12.8 18.5	5.15 6.65 9.40		17 000 15 000 13 000	20 000 17 000 15 000	60/22N 62/22N 63/22N	60/22NR 62/22NR 63/22NR	41.75 47.6 53.6	2.06 2.46 2.46	1.5 1.5 1.5	0.4 0.4 0.4	48.3 55.7 61.7	1.07 1.07 1.07	26 27 28.5	40 45 49.5	49 56.5 62.5	2.92 3.33 3.33	0.6 1 1	0.5 0.5 0.5	0.118	60/22N 62/22N 63/22N
25	47 52 62	12 15 17	0.6 1 1.1	0.5 0.5 0.5	10.1 14.0 20.6	5.85 7.85 11.3	14.5 13.9 13.2	15 000 13 000 11 000	18 000 15 000 13 000	6005N 6205N 6305N	6005NR 6205NR 6305NR	44.6 49.73 59.61	2.06 2.46 3.28	1.5 1.5 2.05	0.4 0.4 0.6	52.7 57.9 67.7	1.07 1.07 1.65	29 30 31.5	43 47 55.5	58.5	2.92 3.33 4.67	0.6 1 1	0.5 0.5 0.5	0.080 0.128 0.232	6205N
28	52 58 68	12 16 18	0.6 1 1.1	0.5 0.5 0.5	12.4 17.9 23.5	7.40 9.75 13.1	14.5 13.4 13.3	14 000 12 000 10 000	16 000 14 000 12 000	60/28N 62/28N 63/28N	60/28NR 62/28NR 63/28NR	49.73 55.6 64.82	2.06 2.46 3.28	1.5 1.5 2.05	0.4 0.4 0.6	57.9 63.7 74.6	1.07 1.07 1.65	32 33 34.5	48 53 61.5	58.5 64.5 76	2.92 3.33 4.67	0.6 1 1	0.5 0.5 0.5	0.173	60/28N 62/28N 63/28N
30	55 62 72	13 16 19	1 1 1.1	0.5 0.5 0.5	13.2 19.5 26.7	8.25 11.3 15.0	14.7 13.9 13.3	13 000 11 000 9 600	15 000 13 000 12 000	6006N 6206N 6306N	6006NR 6206NR 6306NR	52.6 59.61 68.81	2.08 3.28 3.28	1.5 2.05 2.05	0.4 0.6 0.6	60.7 67.7 78.6	1.07 1.65 1.65	35 35 36.5	50 57 65.5	61.5 68.5 80	2.9 4.67 4.67	1 1 1	0.5 0.5 0.5	0.116 0.199 0.346	6006N 6206N 6306N
32	58 65 75	13 17 20	1 1 1.1	0.5 0.5 0.5	15.0 23.5 30.1	9.15 13.1 16.2	14.5 13.3 12.7	12 000 10 000 9 300	14 000 12 000 11 000	60/32N 62/32N 63/32N	60/32NR 62/32NR 63/32NR	55.6 62.6 71.83	2.08 3.28 3.28	1.5 2.05 2.05	0.4 0.6 0.6	63.7 70.7 81.6	1.07 1.65 1.65	37 37 38.5	53 60 68.5		2.9 4.67 4.67	1 1 1	0.5 0.5 0.5	0.127 0.228 0.437	62/32N

snap ring groove type locating snap ring type

d **35** ~ **75 mm**

With locating snap ring and one shield

Koyo

Snap ring groove details

Be	oundar		ensior	15		d ratings	Factor			Bearin	ng No.			ensions o	•	Dimensions of	of locating		Мо	-	dimensi	ons		(Refer.)	(Refer.)
d	D	(mm) B	r min.	r_1 min.	(k) Cr	C_{0r}	fo	(mi Grease lub.	n ^r) Oil lub.	With snap ring groove	With locating snap ring	D_1 max.	ring a max.	groove <i>b</i> ±0.15	(mm) r ₀ max.	$\begin{array}{c} {\rm snap \ ring} \\ D_2 \\ {\rm max.} \end{array}$	(mm) f ±0.05	$d_{ m a}$ min.	$D_{ m a}$ max.	(m $D_{ m X}$ min.	m) C _Y max.	$r_{ m a}$ max.	$r_{ m b}$ max.	Mass (kg)	Bearing No.
35	62 72 80	14 17 21	1 1.1 1.5	0.5 0.5 0.5	15.9 25.7 33.4	10.3 15.4 19.3	14.9 13.9 13.2	11 000 9 200 8 500	13 000 11 000 10 000	6007N 6207N 6307N	6007NR 6207NR 6307NR	59.61 68.81 76.81	2.08 3.28 3.28	2.05 2.05 2.05	0.6 0.6 0.6	67.7 78.6 86.6	1.65 1.65 1.65	40 41.5 43	58 65.5 72	68.5 80 88	3.48 4.67 4.67	1 1 1.5	0.5 0.5 0.5	0.155 0.288 0.457	6007N 6207N 6307N
40	68 80 90	15 18 23	1 1.1 1.5	0.5 0.5 0.5	16.7 29.1 40.7	11.5 17.8 24.0	15.2 14.0 13.2	10 000 8 300 7 700	12 000 10 000 9 200	6008N 6208N 6308N	6008NR 6208NR 6308NR	64.82 76.81 86.79	2.49 3.28 3.28	2.05 2.05 2.85	0.6 0.6 0.6	74.6 86.6 96.5	1.65 1.65 2.41	45 46.5 48	63 73.5 82	76 88 98	3.89 4.67 5.43	1 1 1.5	0.5 0.5 0.5	0.192 0.366 0.633	6008N 6208N 6308N
45	75 85 100	16 19 25	1 1.1 1.5	0.5 0.5 0.5	21.0 32.7 48.9	15.1 20.3 29.5	15.3 14.0 13.3	9 200 7 700 6 800	11 000 9 200 8 100	6009N 6209N 6309N	6009NR 6209NR 6309NR	71.83 81.81 96.8	2.49 3.28 3.28	2.05 2.05 2.85	0.6 0.6 0.6	81.6 91.6 106.5	1.65 1.65 2.41	50 51.5 53	70 78.5 92	83 93 108	3.89 4.67 5.43	1 1 1.5	0.5 0.5 0.5	0.245 0.407 0.833	6009N 6209N 6309N
50	80 90 110	16 20 27	1 1.1 2	0.5 0.5 0.5	21.8 35.1 62.0	16.6 23.3 38.3	15.6 14.4 13.2	8 400 7 100 6 100	9 900 8 500 7 300	6010N 6210N 6310N	6010NR 6210NR 6310NR	76.81 86.79 106.81	2.49 3.28 3.28	2.05 2.85 2.85	0.6 0.6 0.6	86.6 96.5 116.6	1.65 2.41 2.41	55 56.5 59	75 83.5 101	88 98 118	3.89 5.43 5.43	1 1 2	0.5 0.5 0.5	0.261 0.463 1.07	6010N 6210N 6310N
55	90 100 120	18 21 29	1.1 1.5 2	0.5 0.5 0.5	28.3 43.4 71.6	21.2 29.4 45.0	15.3 14.4 13.2	7 600 6 300 5 600	8 900 7 600 6 700	6011N 6211N 6311N	6011NR 6211NR 6311NR	86.79 96.8 115.21	2.87 3.28 4.06	2.85 2.85 3.25	0.6 0.6 0.6	96.5 106.5 129.7	2.41 2.41 2.77	61.5 63 64	83.5 92 111	98 108 131.5	5.03 5.43 6.58	1 1.5 2	0.5 0.5 0.5	0.385 0.607 1.37	6011N 6211N 6311N
60	95 110 130	18 22 31	1.1 1.5 2.1	0.5 0.5 0.5	29.4 52.4 81.9	23.2 36.2 52.2	15.6 14.4 13.2	7 100 5 700 5 200	8 400 6 900 6 200	6012N 6212N 6312N	6012NR 6212NR 6312NR	91.82 106.81 125.22	2.87 3.28 4.06	2.85 2.85 3.25	0.6 0.6 0.6	101.6 116.6 139.7	2.41 2.41 2.77	66.5 68 71		103 118 141.5	5.03 5.43 6.58	1 1.5 2	0.5 0.5 0.5	0.415 0.783 1.70	6012N 6212N 6312N
65	100 120 140	18 23 33	1.1 1.5 2.1	0.5 0.5 0.5	30.5 57.2 92.7	25.2 40.1 59.9	15.8 14.4 13.2	6 600 5 400 4 800	7 800 6 400 5 800	6013N 6213N 6313N	6013NR 6213NR 6313NR	96.8 115.21 135.23	2.87 4.06 4.9	2.85 3.25 3.25	0.6 0.6 0.6	106.5 129.7 149.7	2.41 2.77 2.77	71.5 73 76		108 131.5 152	5.03 6.58 7.37	1 1.5 2	0.5 0.5 0.5	0.435 0.990 2.08	6013N 6213N 6313N
70	110 125 150	20 24 35	1.1 1.5 2.1	0.5 0.5 0.5	38.1 62.2 104	30.9 44.1 68.2	15.6 14.5 13.2	6 100 5 100 4 500	7 200 6 100 5 400	6014N 6214N 6314N	6014NR 6214NR 6314NR	106.81 120.22 145.24	2.87 4.06 4.9	2.85 3.25 3.25	0.6 0.6 0.6	116.6 134.7 159.7	2.41 2.77 2.77	78	103.5 117 139	118 136.5 162	5.03 6.58 7.37	1 1.5 2	0.5 0.5 0.5	0.602 1.07 2.52	6014N 6214N 6314N
75	115 130 160	20 25 37	1.1 1.5 2.1	0.5 0.5 0.5	39.6 67.4 113	33.5 48.3 77.2	15.8 14.5 13.2	5 700 4 800 4 200	6 800 5 800 5 000	6015N 6215N 6315N	6015NR 6215NR 6315NR	111.81 125.22 155.22	2.87 4.06 4.9	2.85 3.25 3.25	0.6 0.6 0.6	121.6 139.7 169.7	2.41 2.77 2.77	83	108.5 122 149		5.03 6.58 7.37	1 1.5 2	0.5 0.5 0.5	0.638 1.18 3.02	6015N 6215N 6315N

snap ring groove type locating snap ring type

d **80** ~ **130 mm**

With locating snap ring and one shield

Koyo

Snap ring groove details

nm) B 22 26 39 22 28 41 24 30	r min. 1.1 2 2.1 1.1 2 3 1.5 2	r ₁ min. 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(k C _r 47.6 72.7 123 49.5 84.0 133	C _{0r} 39.8 53.0 86.7 43.1 61.9 96.8	<i>f</i> ₀ 15.6 14.6 13.3 15.8	(min Grease lub. 5 300 4 500 3 900 5 000	Oil lub. 6 300 5 400 4 700	With snap ring groove 6016N 6216N 6316N	With locating snap ring 6016NR 6216NR	D ₁ max. 120.22	a max. 2.87	groove b ±0.15 3.25	(mm) r ₀ max. 0.6	snap ring <i>D</i> ₂ max. 134.7	(mm) f ±0.05 2.77	<i>d</i> _a min. 86.5	D _a max.	(m D _X min. 136.5	C _Y max.	r _a max.	<i>r</i> ь max. 0.5	Mass (kg) 0.850	Bear No 6016
26 39 22 28 41 24	1.1 2 2.1 1.1 2 3 1.5	0.5 0.5 0.5 0.5 0.5 0.5	47.6 72.7 123 49.5 84.0	39.8 53.0 86.7 43.1 61.9	15.6 14.6 13.3 15.8	5 300 4 500 3 900	5 400	6016N 6216N	6016NR	120.22	2.87									max.		0.850	6016
26 39 22 28 41 24	2 2.1 1.1 2 3 1.5	0.5 0.5 0.5 0.5 0.5	72.7 123 49.5 84.0	53.0 86.7 43.1 61.9	14.6 13.3 15.8	4 500 3 900	5 400	6216N		-		3.25	0.6	12/7	0 77	865	118 5	136.5	5 39	1	0.5	0 850	6016
 39 22 28 41 24 	2.1 1.1 2 3 1.5	0.5 0.5 0.5 0.5	123 49.5 84.0	86.7 43.1 61.9	13.3 15.8	3 900			6216NR				0.0	134.7	2.11	00.5	110.0	100.0	0.00			0.000	0010
22 28 41 24	1.1 2 3 1.5	0.5 0.5 0.5	49.5 84.0	43.1 61.9	15.8		4 700	6216N	OLIONA	135.23	4.9	3.25	0.6	149.7	2.77	89	131	152	7.37	2	0.5	1.40	621
28 41 24	2 3 1.5	0.5 0.5	84.0	61.9		5 000		031014	6316NR	163.65	5.69	3.65	0.6	182.9	3.05	91	159	185	8.44	2	0.5	3.59	631
41 24	3 1.5	0.5			145		5 900	6017N	6017NR	125.22	2.87	3.25	0.6	139.7	2.77	91.5	123.5	141.5	5.39	1	0.5	0.890	601
24	1.5		133	96.8	14.5	4 200	5 000	6217N	6217NR	145.24	4.9	3.25	0.6	159.7	2.77	94	141	162	7.37	2	0.5	1.79	621
		0.5		50.0	13.3	3 700	4 400	6317N	6317NR	173.66	5.69	3.65	0.6	192.9	3.05	98	167	195	8.44	2.5	0.5	4.23	631
30	2		58.2	49.7	15.6	4 700	5 600	6018N	6018NR	135.23	3.71	3.25	0.6	149.7	2.77	98	132	152	6.17	1.5	0.5	1.16	601
	2	0.5	96.1	71.5	14.5	3 900	4 700	6218N	6218NR	155.22	4.9	3.25	0.6	169.7	2.77	99	151	172	7.37	2	0.5	2.15	62
43	3	0.5	143	107	13.3	3 500	4 200	6318N	6318NR	183.64	5.69	3.65	0.6	202.9	3.05	103	177	205	8.44	2.5	0.5	4.91	63
24	1.5	0.5	60.4	53.9	15.8	4 400	5 200	6019N	6019NR	140.23	3.71	3.25	0.6	154.7	2.77	103	137	157	6.17	1.5	0.5	1.21	60
32	2.1	0.5	109	81.9	14.4	3 700	4 400	6219N	6219NR	163.65	5.69	3.65	0.6	182.9	3.05	106	159	185	8.44	2	0.5	2.62	62
45	3	0.5	153	119	13.3	3 300	4 000	6319N	6319NR	193.65	5.69	3.65	0.6	212.9	3.05	108	187	215	8.44	2.5	0.5	5.67	63
24	1.5	0.5	60.2	54.2	15.9	4 300	5 100	6020N	6020NR	145.24	3.71	3.25	0.6	159.7	2.77	108	142	162	6.17	1.5	0.5	1.25	60
34	2.1	0.5	122	93.1	14.4	3 500	4 200	6220N	6220NR	173.66	5.69	3.65	0.6	192.9	3.05	111	169	195	8.44	2	0.5	3.14	62
26	2	0.5	72.3	65.8	15.8	4 000	4 700	6021N	6021NR	155.22	3.71	3.25	0.6	169.7	2.77	114	151	172	6.17	2	0.5	1.59	60
36	2.1	0.5	133	105	14.4	3 300	3 900	6221N	6221NR	183.64	5.69	3.65	0.6	202.9	3.05	116	179	205	8.44	2	0.5	3.70	62
28	2	0.5	82.0	73.0	15.6	3 800	4 500	6022N	6022NR	163.65	3.71	3.65	0.6	182.9	3.05	119	161	185	6.45	2	0.5	1.96	60
38	2.1	0.5	144	117	14.4	3 100	3 700	6222N	6222NR	193.65	5.69	3.65	0.6	212.9	3.05	121	189	215	8.44	2	0.5	4.36	62
	2	0.5	85.0	79.3	15.9	3 600	4 200	6024N	6024NR	173.66	3.71	3.65	0.6	192.9	3.05	129	171	195	6.45	2	0.5	2.07	60
28	0	0.5	100	101	15.0	2 000	0.000	CODEN	COOCNID	102.05	E 00	0.05	0.0	010.0	2.05	100	101	015	0.44	0	0.5	0.10	60
	3	3 2.1	3 2.1 0.5 3 2 0.5 3 2 0.5	3 2.1 0.5 144 3 2 0.5 85.0 3 2 0.5 106	3 2.1 0.5 144 117 3 2 0.5 85.0 79.3	3 2.1 0.5 144 117 14.4 3 2 0.5 85.0 79.3 15.9 3 2 0.5 106 101 15.8	3 2.1 0.5 144 117 14.4 3 100 3 2 0.5 85.0 79.3 15.9 3 600 3 2 0.5 106 101 15.8 3 200	3 2.1 0.5 144 117 14.4 3 100 3 700 3 2 0.5 85.0 79.3 15.9 3 600 4 200 3 2 0.5 106 101 15.8 3 200 3 800	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024N	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024N 6024NR	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 193.65 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024N 6024NR 173.66	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 193.65 5.69 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024N 6024NR 173.66 3.71	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 193.65 5.69 3.65 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024NR 6024NR 173.66 3.71 3.65	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 193.65 5.69 3.65 0.6 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024NR 173.66 3.71 3.65 0.6	3 2.1 0.5 144 117 14.4 3 100 3 700 6222NR 193.65 5.69 3.65 0.6 212.9 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024NR 173.66 3.71 3.65 0.6 192.9	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 193.65 5.69 3.65 0.6 212.9 3.05 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024N 6024NR 173.66 3.71 3.65 0.6 192.9 3.05	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 193.65 5.69 3.65 0.6 212.9 3.05 121 3 2 0.5 85.0 79.3 15.9 3 600 4 200 6024N 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 129	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 193.65 5.69 3.65 0.6 212.9 3.05 121 189 3 2 0.5 85.0 79.3 15.9 3.600 4.200 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 129 171	3 2.1 0.5 144 117 14.4 3 100 3 700 6222NR 193.65 5.69 3.65 0.6 212.9 3.05 121 189 215 3 2 0.5 85.0 79.3 15.9 3.600 4 200 6024NR 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 129 171 195	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 193.65 5.69 3.65 0.6 212.9 3.05 121 189 215 8.44 3 2 0.5 85.0 79.3 15.9 3.600 4 200 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 121 189 215 8.44	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 193.65 5.69 3.65 0.6 212.9 3.05 121 189 215 8.44 2 3 2 0.5 85.0 79.3 15.9 3.600 4 200 6024NR 193.65 5.69 3.65 0.6 192.9 3.05 121 189 215 8.44 2 3 2 0.5 85.0 79.3 15.9 3.600 4 200 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 121 189 215 6.45 2	3 2.1 0.5 144 117 14.4 3 100 3 700 6222N 6222NR 193.65 5.69 3.65 0.6 212.9 3.05 121 189 215 8.44 2 0.5 3 2 0.5 85.0 79.3 15.9 3.600 4 200 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 129 171 195 6.45 2 0.5	3 2.1 0.5 144 117 14.4 3 100 3 700 6222NR 193.65 5.69 3.65 0.6 212.9 3.05 121 189 215 8.44 2 0.5 4.36 3 2 0.5 85.0 79.3 15.9 3.600 4200 6024NR 6024NR 173.66 3.71 3.65 0.6 192.9 3.05 129 171 195 6.45 2 0.5 2.07

Extra-small ball bearings, miniature ball bearings -

d **1** ~ (**4**) mm

Non-contact

sealed

2RD Extremely light contact sealed

2RS ght Contact led sealed

Koyo

	Bou	ndary (n	dimen m)	sions			ad ratings	Factor		niting spe Grease lub	eds (min	u ⁻¹) Oil lub.			Bearing No.				ng dim (mm)	ensions	(Refer.) Mass
d	D	В	B_1	$r^{1)}$ min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Open ZZ, 2RU	(2RD)	(2RS)	(Open Z	Open	Shielded	Non-contact sealed	Extremely light shielded	Contact sealed	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(g)
1	3 3	1 1.5	_	0.07 0.08		0.10 0.08	0.03 0.02	11.6 12.8	130 000 130 000			150 000 150 000	681 ML1003	_		_	_	1.6 1.6	2.4 2.4	0.05 0.07	0.03 0.05
	4	1.6		0.1	_	0.14	0.04	11.4	120 000	_	_	140 000	691				_	1.8	3.2	0.1	0.1
1.2	4	1.8		0.08	_	0.11	0.03	11.4	120 000	_		140 000	ML1204		_		_	1.8	3.4	0.07	0.1
1.5	4 5 6	1.2 2 2.5	2 2.6 3	0.1 0.15 0.1	0.1 0.15 0.1	0.11 0.24 0.33	0.03 0.07 0.10	13.2 13.3 11.4	120 000 110 000 86 000			140 000 130 000 100 000	68/1.5 69/1.5 ML1506	W68/1.5 ZZ W69/1.5 ZZX WML1506 ZZX				2.3 2.7 2.3	3.2 3.8 5.2	0.1 0.15 0.1	0.1 0.1 0.3
2	5 5 6	1.5 2 2.3	2.3 2.5 3	0.1 0.1 0.15	0.1 0.08 0.1	0.17 0.17 0.33	0.05 0.05 0.10	13.3 13.3 11.4	98 000 98 000 86 000			110 000 110 000 100 000	682 ML2005 692	W682 ZZX WML2005 ZZ W692 ZZ				2.8 2.6 3.2	4.4 4.2 4.8	0.1 0.07 0.1	0.1 0.1 0.2
	6 7 7	2.5 2.5 2.8	3 3 3.5	0.1 0.15 0.15	0.1 0.15 0.15	0.33 0.39 0.39	0.10 0.13 0.13	11.4 12.6 12.6	86 000 67 000 67 000	 	 	100 000 79 000 79 000	ML2006 ML2007 602	WML2006 ZZX WML2007 ZZX W602 ZZX	 _			2.8 3.2 3.2	5.2 5.8 5.8	0.1 0.15 0.15	0.3 0.4 0.5
2.5	6 7 8 8	1.8 2.5 2.5 2.8	2.6 3.5 —	0.1 0.15 0.1 0.15	0.1 0.15 0.1	0.19 0.31 0.43 0.55	0.06 0.11 0.15 0.17	14.3 13.7 13.4 11.5	75 000 66 000 63 000 64 000			89 000 79 000 75 000 76 000	68/2.5 69/2.5 ML2508/1B ML2508	W68/2.5 ZZ W69/2.5 ZZ — WML2508 ZZX	 	_ _ _ _	 	3.3 3.7 3.3 3.7	5.2 5.8 7.2 6.8	0.1 0.15 0.1 0.1	0.2 0.4 0.6 0.6
3	6 7 8 8 9	2 2 2.5 3 3	2.5 3 4 5	0.08 (0.15) 0.1 0.15 0.15	0.05 (0.15) 	0.19 0.31 0.40 0.55 0.43	0.06 0.11 0.14 0.17 0.16	14.3 13.7 13.4 11.5 14.0	75 000 66 000 63 000 64 000 60 000			89 000 79 000 75 000 76 000 72 000	ML3006 683 ML3008 693 603	WML3006 ZZ W683 ZZ W693 ZZ W603 ZZX	 	 	 	3.6 4.2 3.8 4.2 4.2	5.4 5.8 7.2 6.8 7.8	0.05 0.1 0.1 0.15 0.15	0.2 0.3 0.5 0.6 0.9
	10 13	4 5	4 5	0.15 0.2	0.15 0.2	0.63 1.30	0.22 0.49	12.8 12.3	52 000 44 000	_	44 000	63 000 54 000	623 633	623 ZZ 633 ZZ	_	_	623 2RS —	4.2 4.6	8.8 11.4	0.15 0.2	1.6 3.0
4	7 8 9	2 2 2.5	2.5 3 4	0.08 0.1 (0.15)	· ,	0.26 0.40 0.64	0.11 0.14 0.23	15.1 14.6 12.8	64 000 61 000 59 000			76 000 73 000 70 000	ML4007 ML4008 684	WML4007 ZZ WML4008 ZZ W684 ZZ	 _	 	 	4.6 4.8 5.2	6.4 7.2 7.8	0.05 0.08 0.1	0.2 0.4 0.6

[Note] 1) Numerical values in () do not conform to JIS B 1521.

B 39

Extra-small ball bearings, miniature ball bearings -

d (**4**) ~ (**7**) mm

 r1
 r1

 2RD
 2RS

 Extremely light
 Contact

 contact sealed
 sealed

 B_1

 B_1

	Bou	ndary (m	dimen:	sions			ad ratings	Factor		niting spe Grease lub.	eds (min-	⁻¹) Oil lub.			Bearing No.			Moun	ting din (mm	nensions	(Refer.) Mass
d	D	В	B_1	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	f ₀	Open ZZ, 2RU	(2RD)	(2RS)	Open Z	Open	Shielded	Non-contact sealed	Extremely light shielded	Contact sealed	$d_{ m a}$ min.	$D_{ m a}$ max.	ra	(g)
4	10 11	3 4	4 4	0.15 0.15	0.1 0.15	0.65	0.23 0.35	13.3 12.4	56 000 54 000		 44 000	67 000 65 000	ML4010 694	WML4010 ZZ 694 ZZ	 694 2RU		 694 2RS	5.2 5.2	8.8 9.8	0.15	1.0 1.8
	12 13 16	4 5 5	4 5 5	0.2 0.2 0.3	0.2 0.2 0.3	0.96 1.30 1.35	0.35 0.48 0.52	12.4 12.3 12.4	53 000 44 000 40 000		 39 000	63 000 54 000 49 000	604 624 634	604 ZZ 624 ZZ 634 ZZ	 624 2RU 		624 2RS	5.6 5.6 6	10.4 11.4 14		2.1 2.9 5.3
5	8 9 10	2 2.5 3	2.5 3	0.08 0.1 0.1	0.05 0.08 0.1	0.22 0.43 0.43	0.09 0.17 0.17	15.7 15.3 14.8	59 000 56 000 55 000			70 000 67 000 65 000	ML5008 ML5009 ML5010	WML5008 ZZ WML5009 ZZ WML5010 ZZ				5.6 5.8 5.8	7.4 8.2 9		0.3 0.5 0.9
	11 13 14	3 4 5	5 4 5	0.15 0.2 0.2	0.15 0.2 0.2	0.71 1.10 1.30	0.28 0.43 0.49	12.8 12.3 12.3	53 000 50 000 50 000	45 000	42 000	63 000 60 000 60 000	685 695 605	W685 ZZ 695 ZZ 605 ZZ	 695 2RU	 695 2RD	 695 2RS	6.2 6.6 6.6	9.8 11.4 12.4	0.15 0.2	1.0 2.2 3.5
	16 19	5 6	5 6	0.3 0.3	0.3 0.3	1.75 2.35	0.67 0.89	12.4 12.3	40 000 35 000	36 000 32 000	33 000 27 000	49 000 43 000	625 635	625 ZZ 635 ZZ	625 2RU 635 2RU	_	625 2RS 635 2RS	7 7 7	14 17	0.3 0.3	5.0 8.5
6	10 12 13	2.5 3 3.5	3 4 5	0.1 0.15 0.15	0.08 0.1 0.15	0.50 0.71 1.10	0.22 0.29 0.44	15.7 14.5 13.7	53 000 49 000 48 000	 43 000	 37 000 36 000	63 000 59 000 57 000	ML6010 ML6012 686	WML6010 ZZ WML6012 ZZ W686 ZZ				6.8 7.2 7.2	9.2 10.8 11.8	0.1	0.6 1.3 1.8
	15 17 19	5 6 6	5 6 6	0.2 0.3 0.3	0.2 0.3 0.3	1.35 1.95 2.35	0.52 0.74 0.89	12.4 12.2 12.3	45 000 43 000 35 000	41 000 39 000 32 000	32 000 27 000	54 000 51 000 43 000	696 606 626	696 ZZ 606 ZZ 626 ZZ	696 2RU 606 2RU 626 2RU	696 2RD 606 2RD 626 2RD	696 2RS 626 2RS	7.6 8 8	13.4 15 17	0.2 0.3 0.3	3.9 5.8 8.1
	19 22	8 7	8 7	0.3 0.3	0.3 0.3	2.60 3.30	1.05 1.35	12.3 12.4	40 000 31 000	_	 23 000	47 000 37 000	ML6019 636	ML6019 ZZ 636 ZZ			636 2RS	7 8	18 20	0.3 0.3	9.0 13
7	11 13 14	2.5 3 3.5	3 4 5	0.1 0.15 0.15	0.08 0.15 0.15	0.43 0.54 1.15	0.23 0.28 0.51	16.1 14.9 14.2	49 000 47 000 45 000			59 000 55 000 54 000	ML7011 ML7013 687	WML7011 ZZX WML7013 ZZ W687 ZZ				7.8 8.2 8.2	10.2 11.8 12.8	0.15	0.7 1.4 2.0
	17 19 22	5 6 7	5 6 7	0.3 0.3 0.3	0.3 0.3 0.3	1.60 2.35 3.30	0.71 0.89 1.35	14.0 12.3 12.4	42 000 40 000 31 000	 36 000 28 000	28 000 27 000 23 000	50 000 47 000 37 000	697 607 627	697 ZZ 607 ZZ 627 ZZ	 607 2RU 627 2RU	 607 2RD 627 2RD	697 2RS 607 2RS 627 2RS	9 9 9	15 17 20	0.3 0.3 0.3	5.3 7.6 13
	22	8	8	0.3	0.3	3.30	1.35	12.4	34 000	_	_	41 000	ML7022	ML7022 ZZ	—	_	_	9	20	0.3	14

Extra-small ball bearings, miniature ball bearings -

d (7) ~ 9 mm

Non-contact

sealed

2RS

Koyo

	Bou	ndary (n	dimen 1m)	sions			ad ratings	Factor		niting spe Grease lub.	eds (min	⁻¹) Oil lub.			Bearing No.			Moun	ting dime (mm)		(Refer.) Mass
d	D	В	B_1	r ¹⁾ min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Open ZZ, 2RU	(2RD)	(2RS)	(Open Z	Open	Shielded	Non-contact sealed	Extremely light shielded	Contact sealed	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(g)
7	26	9	9	0.3	0.3	4.55	1.95	12.3	26 000	_	_	32 000	637	637 ZZ	—	—	—	9	24	0.3	24
8	12 14 16 19 22 24 28	2.5 3.5 4 6 7 8 9	3.5 4 5 6 7 8 9	0.1 0.15 0.2 0.3 0.3 0.3 0.3	0.08 0.15 0.2 0.3 0.3 0.3 0.3	0.54 0.81 1.25 2.25 3.30 3.35 4.55	0.27 0.39 0.59 0.91 1.35 1.40 1.95	16.4 15.3 14.0 12.9 12.4 12.8 12.3	47 000 44 000 42 000 39 000 34 000 28 000 26 000	38 000 35 000 31 000 23 000	 28 000 27 000 23 000 22 000	55 000 52 000 50 000 46 000 41 000 35 000 32 000	ML8012 ML8014 688 698 608 628 638	WML8012 ZZ WML8014 ZZ W688 ZZ 698 ZZ 608 ZZ 628 ZZ 638 ZZ			W688 2RS 698 2RS 608 2RS 608 2RS 628 2RS	8.8 9.2 9.6 10 10 10 10	11.2 12.8 14.4 17 20 22 26	0.08 0.15 0.2 0.3 0.3 0.3 0.3	0.8 1.8 3.2 7.2 12 18 29
9	17 20 24 26 30	4 6 7 8 10	5 6 7 8 10	0.2 0.3 0.3 (0.6) 0.6	0.2 0.3 0.3 (0.6) 0.6	1.35 2.45 3.35 4.55 4.65	0.66 1.05 1.40 1.95 2.10	14.9 13.3 12.8 12.4 12.3	39 000 35 000 33 000 27 000 24 000	35 000 32 000 30 000 24 000 	25 000 22 000 19 000	46 000 42 000 40 000 33 000 29 000	689 699 609 629 639	W689 ZZ 699 ZZ 609 ZZ 629 ZZ 639 ZZ	W689 2RU 609 2RU 629 2RU	W689 2RD 699 2RD 609 2RD 629 2RD	699 2RS 609 2RS 629 2RS	10.6 11 11 12.1 13	15.4 18 22 22 26	0.2 0.3 0.3 0.3 0.3	3.5 7.5 15 20 35

[Note] 1) Numerical values in () do not conform to JIS B 1521.

Extra-small ball bearings, miniature ball bearings - flanged type

d **1** ~ (**4**) mm

Koyo

	Bou	ndary (n	dimen 1m)				ad ratings	Factor	Limiting sp Grease lub.	eeds (min ⁻¹) Oil lub.	Bearing No.		Dim	ension (m		ange		dimensions nm)	(Refer.) Mass
d	D	В	B_1	r ¹⁾ min.	$r_1{}^{1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Open ZZ, ZZX	$\left(\begin{smallmatrix} Open \\ Z, \: ZX \end{smallmatrix} \right)$	Open	Shielded	D_1	D_2	C_1	C_2	$d_{ m a}$ min.	$r_{ m a}$ max.	(g)
1	3 4	1 1.6	_	0.07 0.1	_	0.10 0.14	0.03 0.04	11.6 11.4	130 000 120 000	150 000 140 000	F681 F691		3.8 5	_	0.3 0.5		1.6 1.8	0.05 0.1	0.03 0.1
1.5	4 5 6	1.2 2 2.5	2 2.6 3	0.1 0.15 0.1	0.1 0.15 0.1	0.11 0.24 0.33	0.03 0.07 0.10	13.2 12.9 11.4	120 000 110 000 86 000	140 000 120 000 100 000	F68/1.5 F69/1.5 MLF1506	WF68/1.5 ZZ WF69/1.5 ZZ WMLF1506 ZZ	5 6.5 7.5	5 6.5 7.5	0.4 0.6 0.6	0.6 0.8 0.8	2.3 2.7 2.3	0.1 0.15 0.1	0.1 0.2 0.4
2	5 5 6	1.5 2 2.3	2.3 2.5 3	0.1 0.1 0.15	0.1 0.08 0.1	0.17 0.17 0.33	0.05 0.05 0.10	13.3 12.9 11.4	99 000 99 000 86 000	120 000 120 000 100 000	F682 MLF2005 F692	WF682 ZZ WMLF2005 ZZ WF692 ZZ	6.1 6.2 7.5	6.1 6.2 7.5	0.5 0.6 0.6	0.6 0.6 0.8	2.8 2.8 3.2	0.1 0.07 0.1	0.1 0.2 0.3
	6 7 7	2.5 2.5 2.8	3 3 3.5	0.1 0.15 0.15	0.1 0.15 0.15	0.33 0.39 0.39	0.10 0.13 0.13	11.4 12.6 12.6	86 000 67 000 67 000	100 000 79 000 79 000	MLF2006 MLF2007 F602	WMLF2006 ZZ WMLF2007 ZZ WF602 ZZ	7.2 8.2 8.5	7.2 8.2 8.5	0.6 0.6 0.7	0.6 0.6 0.9	2.8 3.2 3.2	0.1 0.15 0.15	0.4 0.5 0.6
2.5	6 7 8 8	1.8 2.5 2.5 2.8	2.6 3.5 —	0.1 0.15 0.1 0.15	0.1 0.15 0.1	0.21 0.39 0.56 0.56	0.07 0.13 0.18 0.18	14.3 12.7 11.7 11.5	69 000 66 000 63 000 63 000	82 000 79 000 75 000 75 000	F68/2.5 F69/2.5 MLF2508/1B MLF2508	WF68/2.5 ZZ WF69/2.5 ZZX — WMLF2508 ZZ	7.1 8.5 9.2 9.5	7.1 8.5 — 9.5	0.5 0.7 0.6 0.7	0.8 0.9 —	3.3 3.7 3.5 3.7	0.1 0.15 0.1 0.1	0.2 0.5 0.7 0.7
3	6 7 8 8 9 10	2 2 2.5 3 3 4	2.5 3 4 5 4	0.08 (0.15) 0.1 0.15 0.15 0.15	0.05 (0.15) — 0.15 0.15 0.15	0.21 0.31 0.40 0.56 0.57 0.63	0.07 0.11 0.14 0.18 0.19 0.22	14.3 14.0 13.4 11.9 12.4 12.4	69 000 65 000 61 000 63 000 60 000 61 000	82 000 78 000 72 000 75 000 72 000 72 000	MLF3006 F683 MLF3008 F693 F603 F623	WMLF3006 ZZ WF683 ZZ WF693 ZZ WF603 ZZ F623 ZZ	7.2 8.1 9.2 9.5 10.5 11.5	7.2 8.1 — 9.5 10.5 11.5	0.6 0.5 0.6 0.7 0.7 1	0.6 0.8 — 0.9 1 1	3.6 4.2 4.0 4.2 4.2 4.2 4.2	0.05 0.1 0.1 0.15 0.15 0.15	0.2 0.4 0.6 0.7 1.0 1.8
4	7 8 9 10 11 12	2 2 2.5 3 4 4	2.5 3 4 4 4 4 4	0.08 0.1 (0.15) 0.15 0.15 0.2	0.05 0.08 (0.15) 0.1 0.15 0.2	0.25 0.40 0.64 0.71 0.96 0.96	0.11 0.14 0.23 0.27 0.35 0.35	15.1 13.9 12.8 13.5 12.4 12.4	63 000 61 000 59 000 56 000 54 000 54 000	75 000 72 000 70 000 66 000 65 000 65 000	MLF4007 MLF4008 F684 MLF4010 F694 F604	WMLF4007 ZZX WMLF4008 ZZ WF684 ZZ WMLF4010 ZZ F694 ZZ F604 ZZ	8.2 9.2 10.3 11.2 12.5 13.5	8.2 9.2 10.3 11.6 12.5 13.5	0.6 0.6 0.6 0.6 1	0.6 0.6 1 0.8 1 1	4.6 4.8 5.2 5.2 5.2 5.2 5.2 5.6	0.05 0.08 0.1 0.1 0.15 0.2	0.3 0.5 0.7 1.1 2.0 2.3

[Note] 1) Numerical values in () do not conform to JIS B 1521.

Extra-small ball bearings, miniature ball bearings – flanged type

d (**4**) ~ **8 mm**

	Bou	ndary (m	dimens m)	sions			ad ratings	Factor	Limiting spe Grease lub.	eeds (min ⁻¹) Oil lub.	Bearing No.		Din	nension (m	ns of fla nm)	ange	(n	dimensions nm)	(Refer.) Mass
d	D	В	B_1	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Open ZZ, ZZX	$\left(\begin{smallmatrix} \text{Open} \\ \text{Z}, \text{ZX} \end{smallmatrix} \right)$	Open	Shielded	D_1	D_2	C_1	C_2	$d_{ m a}$ min.	r _a max.	(g)
4	13	5	5	0.2	0.2	1.30	0.48	12.2	50 000	60 000	F624	F624 ZZ	15	15	1	1	5.6	0.2	3.3
	16	5	5	0.3	0.3	1.35	0.52	13.0	47 000	55 000	F634	F634 ZZ	18	18	1	1	6	0.3	5.7
5	8	2	2.5	0.08	0.05	0.22	0.09	15.8	59 000	70 000	MLF5008	WMLF5008 ZZX	9.2	9.2	0.6	0.6	5.6	0.05	0.4
	9	2.5	3	0.1	0.08	0.43	0.17	14.6	57 000	67 000	MLF5009	WMLF5009 ZZX	10.2	10.2	0.6	0.6	5.8	0.08	0.6
	10	3	4	0.1	0.1	0.43	0.17	14.8	57 000	67 000	MLF5010	WMLF5010 ZZ	11.2	11.6	0.6	0.8	5.8	0.1	1.0
	11 13 14 16 19	3 4 5 5 6	5 4 5 5 6	0.15 0.2 0.2 0.3 0.3	0.15 0.2 0.2 0.3 0.3	0.71 1.10 1.35 1.75 2.35	0.28 0.43 0.51 0.67 0.89	14.0 13.4 12.3 12.4 12.3	53 000 49 000 48 000 45 000 40 000	63 000 59 000 57 000 54 000 47 000	F685 F695 F605 F625 F635	WF685 ZZ F695 ZZ F605 ZZ F625 ZZ F635 ZZ	12.5 15 16 18 22	12.5 15 16 18 22	0.8 1 1 1 1.5	1 1 1 1.5	6.2 6.6 6.6 7 7	0.15 0.2 0.2 0.3 0.3	1.1 2.5 3.9 5.4 9.7
6	10 12 13	2.5 3 3.5	3 4 5	0.3 0.1 0.15 0.15	0.08 0.1 0.15	0.50 0.71 1.10	0.22 0.29 0.44	15.2 14.5 13.7	40 000 53 000 49 000 48 000	63 000 59 000 57 000	MLF6010 MLF6012 F686	WMLF6010 ZZX WMLF6012 ZZ WF686 ZZ	11.2 13.2 15	11.2 13.6 15	0.6 0.6 1	0.6 0.8 1.1	6.8 7.2 7.2	0.08 0.1 0.15	0.7 1.4 2.1
	15	5	5	0.2	0.2	1.35	0.52	13.0	47 000	55 000	F696	F696 ZZ	17	17	1.2	1.2	7.6	0.2	4.3
	17	6	6	0.3	0.3	2.25	0.84	11.4	43 000	52 000	F606	F606 ZZ	19	19	1.2	1.2	8	0.3	6.3
	19	6	6	0.3	0.3	2.35	0.89	12.3	40 000	47 000	F626	F626 ZZ	22	22	1.5	1.5	8	0.3	9.2
7	22	7	7	0.3	0.3	3.30	1.35	12.4	34 000	41 000	F636	F636 ZZ	25	25	1.5	1.5	8	0.3	14
	11	2.5	3	0.1	0.08	0.46	0.20	15.6	49 000	59 000	MLF7011	WMLF7011 ZZX	12.2	12.2	0.6	0.6	7.8	0.08	0.8
	13	3	4	0.15	0.15	0.54	0.28	16.0	46 000	55 000	MLF7013	WMLF7013 ZZ	14.2	14.6	0.6	0.8	8.2	0.15	1.5
	14	3.5	5	0.15	0.15	1.15	0.51	14.2	45 000	54 000	F687	WF687 ZZ	16	16	1	1.1	8.2	0.15	2.4
	17	5	5	0.3	0.3	1.60	0.71	14.0	42 000	50 000	F697	F697 ZZ	19	19	1.2	1.2	9	0.3	5.8
	19	6	6	0.3	0.3	2.35	0.89	12.1	40 000	47 000	F607	F607 ZZ	22	22	1.5	1.5	9	0.3	8.7
	22	7	7	0.3	0.3	3.30	1.35	12.4	34 000	41 000	F627	F627 ZZ	25	25	1.5	1.5	9	0.3	14
8	12	2.5	3.5	0.1	0.08	0.54	0.27	15.9	47 000	55 000	MLF8012	WMLF8012 ZZX	13.2	13.6	0.6	0.8	8.8	0.08	0.9
	14	3.5	4	0.15	0.15	0.87	0.42	15.3	44 000	52 000	MLF8014	WMLF8014 ZZ	15.6	15.6	0.8	0.8	9.2	0.15	2.0
	16	4	5	0.2	0.2	1.25	0.59	14.8	42 000	50 000	F688	WF688 ZZ	18	18	1	1.1	9.6	0.2	3.6
	19	6	6	0.3	0.3	2.25	0.91	12.9	39 000	46 000	F698	F698 ZZ	22	22	1.5	1.5	10	0.3	8.3
	22	7	7	0.3	0.3	3.30	1.35	12.4	34 000	41 000	F608	F608 ZZ	25	25	1.5	1.5	10	0.3	13

Extra-small ball bearings, miniature ball bearings – flanged type

d **9 mm**

	Bou		dimen: 1m)	sions			ad ratings kN)	Factor	Limiting spe Grease lub.	eeds (min ⁻¹) Oil lub.	Bearing No.		Din	nension (m	s of fla m)	ange	č	dimensions nm)	(Refer.) Mass
d	D	В	B_1	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Open ZZ, ZZX	$\left(\begin{smallmatrix} \text{Open} \\ \text{Z}, \text{ZX} \end{smallmatrix} \right)$	Open	Shielded	D_1	D_2	C_1	C_2	$d_{ m a}$ min.	$r_{ m a}$ max.	(g)
9	17 20 24	4 6 7	5 6 7	0.2 0.3 0.3	0.2 0.3 0.3	1.35 2.45 3.35	0.66 1.05 1.45	15.1 13.3 12.8	39 000 37 000 32 000	46 000 44 000 38 000	F689 F699 F609	WF689 ZZ F699 ZZ F609 ZZ	19 23 27	19 23 27	1 1.5 1.5	1.1 1.5 1.5	10.6 11 11	0.2 0.3 0.3	3.9 8.7 16

Double-row deep groove ball bearings -

d **10** ~ (60) mm

Bou	indary o (m		ions	Basic load (k1		Factor	Limiting (mi			Mount	(mm)	nsions	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	(kg)
10	30	14	0.6	7.70	5.90	13.0	15 000	20 000	4200	14	26	0.6	0.057
12	32	14	0.6	7.75	6.15	13.6	14 000	18 000	4201	16	28	0.6	0.062
15	35	14	0.6	9.75	9.00	14.2	12 000	16 000	4202	19	31	0.6	0.071
	42	17	1	13.1	11.7	13.7	11 000	14 000	4302	20	37	1	0.123
17	40	16	0.6	11.7	10.4	14.1	11 000	14 000	4203	21	36	0.6	0.106
	47	19	1	16.5	15.0	13.7	9 400	13 000	4303	22	42	1	0.171
20	47	18	1	16.4	16.0	14.2	9 000	12 000	4204	25	42	1	0.165
	52	21	1.1	19.5	17.0	13.5	8 300	11 000	4304	26.5	45.5	1	0.227
25	52	18	1	16.3	16.9	15.0	7 500	9 900	4205	30	47	1	0.189
	62	24	1.1	26.3	25.7	14.1	6 700	9 000	4305	31.5	55.5	1	0.365
30	62	20	1	22.0	24.7	15.1	6 400	8 500	4206	35	57	1	0.298
	72	27	1.1	35.5	35.9	14.0	5 700	7 600	4306	36.5	65.5	1	0.542
35	72	23	1.1	26.4	30.7	15.2	5 600	7 400	4207	41.5	65.5	1	0.460
	80	31	1.5	40.6	41.8	14.1	5 200	7 000	4307	43	72	1.5	0.752
40	80	23	1.1	33.7	42.4	15.5	4 700	6 300	4208	46.5	73.5	1	0.558
	90	33	1.5	46.0	48.8	14.7	4 600	6 100	4308	48	82	1.5	1.01
45	85	23	1.1	31.9	43.9	15.8	4 600	6 100	4209	51.5	78.5	1	0.605
	100	36	1.5	57.6	62.4	14.3	4 100	5 500	4309	53	92	1.5	1.35
50	90	23	1.1	31.4	44.6	16.1	4 200	5 600	4210	56.5	83.5	1	0.651
	110	40	2	70.4	77.7	14.2	3 700	5 000	4310	59	101	2	1.80
55	100	25	1.5	37.2	54.1	16.1	3 800	5 000	4211	63	92	1.5	0.882
	120	43	2	84.2	94.4	14.2	3 400	4 600	4311	64	111	2	2.29
60	110	28	1.5	47.9	67.6	15.9	3 500	4 700	4212	68	102	1.5	1.20

d (60) ~ 75 mm

Bo	undary (m	dimens m)	ions		ad ratings (N)	Factor		s speeds n^{-1})	Pooring No.	Moun	ting dime (mm)	nsions	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Bearing No.	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
60	130	46	2.1	99.2	113	14.1	3 100	4 200	4312	71	119	2	2.87
65	120	31	1.5	54.7	78.5	15.9	3 200	4 300	4213	73	112	1.5	1.59
	140	48	2.1	107	124	14.3	2 900	3 900	4313	76	129	2	3.46
70	125	31	1.5	62.1	89.8	15.8	3 100	4 100	4214	78	117	1.5	1.68
	150	51	2.1	115	136	14.4	2 700	3 600	4314	81	139	2	4.21
75	130	31	1.5	61.6	90.7	16.0	2 900	3 900	4215	83	122	1.5	1.77
	160	55	2.1	132	158	14.4	2 500	3 400	4315	86	149	2	5.15

Angular contact ball bearings

Angular contact ball bearings are suitable for applications which require high accuracy and good high-speed performance. This type of bearing is designed to carry a combined load.

- Single-row angular contact ball bearings and matched pair angular contact ball bearings
 - The standard contact angles are 15°, 30° and 40°.

They are identified, respectively, by the supplementary codes "C", "A" (omitted) and "B". Bearings with a smaller contact angle are more suitable

for applications involving high-speed rotation. Those with a larger contact angle feature superior axial load resistance.

• Angular contact ball bearings are often preloaded to enhance their rigidity and rotating performance.

(refer to p. A 106.)

Contact angle

For high-precision matched pair angular contact ball bearings of class 5 or higher, which are used in machine tools and other precision equipment, the standard preload is specified in three levels: slight (S), light (L), medium (M) and heavy (H). (refer to Table 11-2 on p. A 108.)

 When this type of bearing is loaded radially, an axial component of force is produced. In this case, two bearings are used together facing one another, or two or more bearings are matched and used. (refer to provide the second second

(refer to p. A 34.)

- Tables 1 and 2 list the different types of singlerow and matched pair/stack angular contact ball bearings and describe their characteristics.
- Double-row angular contact ball bearings Consist of two single-row angular contact ball bearings matched back-to-back, with inner and outer rings integrated.

Table 3 shows major types and their characteristics.

- Four-point contact ball bearings
- Have a contact angle of 35° and an inner ring divided into two annular pieces. They are suitable for applications that involve either axial loading or combined loading, where the axial load makes up the major part of the load.
- Able to support both axial load and a certain degree of radial load. Each rolling element is in contact with each of the inner and outer rings at a single point, and both contact points lie on the contact angle line. The line runs to either the right or left depending on the direction of the axial load.

Bore diameter 10 - 380 mm

Matched pair angular contact ball bearings

Double-row angular contact ball bearings

Bore diameter 10 - 110 mm

Four-point contact ball bearings

• Consult with JTEKT when using the four-point contact ball bearing because application conditions such as load magnitude should be examined carefully.

B 55
Standard cages	 Pressed steel cage (supplementary content)	A	ppli	icati	on o	f sta	ndaı	rd ca	ages	
	 Copper alloy machine (supplementary content 			Bearir series		Pres	sed c	age	M	achir	ied ca	age
	[Note] Machine tools an			79C 79CP/	4		_				- 7932 - 7932	
	ally equipped wit that have a pher machined cage (Bearings with a p	nolic resi (FT). polyamic	n le	70 70B 70C 70CP/	4				7	000B	- 7040 - 7040 - 7040 - 7034)B)C
	molded cage car used depending applications. Four-point conta bearings usually	on the ct ball	,	72 72B 72C 72CP/	4	7200 7200E 7200C		20B	7	200B 200C	- 7240 - 7240 - 7240 - 7230)B)C
	copper alloy mad cage.			73 73B 73C		7300 7303E 7303C	3 – 73	20B	7	303B	- 7340 - 7340 - 7334	ЪВ
				74 74B		7405 7405E					- 7418 - 7418	
				HAR9 HAR0	-		_				– HAF – HAF	R934C R034C
				32 33		3200 3302	- 32 - 33				- 3222 - 3322	
			_	52 53		5203 5304	- 52 - 53	14		-		-
Allowable misalignment	Single-row0.000 6	i rad (2')	: Mato	hed p	air, d	ouble	-row	mis	salign	ment	not a	lowed
Equivalent radial load	Dynamic equivalent radial load					gle-row				to-bacl		
Single-row and matched pair	$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$	Contact angle	$\frac{if_0F_a^*}{C_{0r}}$	e		dem ar $r_{ m r} \leq e$	<u> </u>				arrange $F_{\rm a}/F$	
angular contact ball bearings			Cor		X	Y	X	Y	X	Y	X	Y
[Note]			0.178 0.357 0.714	0.38 0.40 0.43				1.47 1.40 1.30		1.65 1.57 1.46		2.39 2.28 2.11
When two single-row angular contact ball		15°	1.07 1.43	0.46 0.47	1	0	0.44	1.23 1.19	1	1.38 1.34	0.72	2.00 1.93

2.14

3.57

5.35

7.14

_

_

Contact

15°

30°

40°

angle

30°

40°

Static equivalent radial load

In reference to single-row and tandem arrangement bearings,

 $P_{0r} = X_0 F_r + Y_0 F_a$

 $P_{0r} = F_r$

when $P_{0r} < F_r$,

bearings are used

axial component of

force is produced

under radial load.

page A 34 for calculation of the

radial load.

In this case, refer to

dynamic equivalent

facing one another, an

0.50

0.55

0.56

0.56

0.80

1.14 1

* For *i*, use 2 for DB&DF and 1 for single&DT.

Factor f_0 is shown in the bearing dimention table.

1.12

1.02

1.00

1.00

1

1

0.39 0.76

0.35 0.57

 Y_0

0.46

0.33

0.26

0

0

Single-row and

 X_0

0.5

0.5

0.5

tandem arrangement

1

1.26

1.14

1.12

1.12

Back-to-back and

 X_0

1

1

1

face-to-face arrangement

 Y_0

0.92

0.66

0.52

0.78 0.63 1.24

0.55 0.57 0.93

1.82

1.66

1.63

1.63

Equivalent radial load	Dynamic equivalent radial load	Contact		$F_{\rm c}/F$	$r_r \leq e$	F_{a}/F	$r > \rho$	
Double-row	$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$	angle	е	X	$r \equiv C$ Y	X	$\frac{r > c}{Y}$	(reference)
angular contact ball bearings		24°	0.66	1	0.95	0.68	1.45	52, 53 series
		32°	0.86	1	0.73	0.62	1.17	32, 33 series
	Static equivalent radial load							
	$P_{0r} = X_0 F_r + Y_0 F_a$	Contact	angle	X_0	Y_0		(refer	ence)
	01 0 1 0 4	24	0	1	0.78		52, 53	series
		32	0	1	0.63	;	32, 33	series

Kovo

[Note] In angular contact ball bearings, slippage occurs between the balls and raceways under too small a load, causing smearing to develop.

Matched pair bearings may develop smearing when the ratio of the axial load to the radial load exceeds the value of e (F_a / F_r > e), as listed in the specification table. Consult with JTEKT when these bearings are used under the above conditions.

[Reference] Relationship between axial load and axial displacement

Diagrams (1) to (9) illustrate the relationship between axial load and axial displacement.

No.

20

axial displacement (µm)

Amount of

Bore dia.

No.

00

02 03

15,16 18,19,20 24

26 28,30

2.5

2

0

Bore dia.

No.

02

05

09

12 13,14 17,18 20,22 26

Axial load (kN)

(8) HAR900C (contact angle 15°)

1 Axial load (kN) 2

(9) HAR000C (contact angle 15°)

d 10 ~ (17) mm

HAR

Koyo

With machined cage

With pressed cage

Bo	oundar	y dim (mm)	ensio	ns		Basic load I hined cage		I) sed cage	Factor	Limiting s			Load	Mount	ing dime	nsions	(Refer.)
d	D	B	r min.	r_1 min.	$C_{ m r}$	C_{0r}		C_{0r}	fo	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	(mm) $D_{\rm a}$ max.	$r_{ m a}$ max.	Mass (kg)
10	22 26 26	6 8 8	0.3 0.3 0.3	0.15 0.15 0.15	3.00 5.00 4.65	1.50 2.35 2.15			14.2 — —	52 000 34 000 25 000	69 000 42 000 33 000	7900C 7000 7000B	5.1 9.1 11.6	12.5 12.5 12.5	19.5 23.5 23.5	0.3 0.3 0.3	0.008 0.021 0.021
	26 30 30	8 9 9	0.3 0.6 0.6	0.15 0.3 0.3	5.30 4.65 4.30	2.45 2.20 2.00	 5.40 4.95	 2.75 2.50	12.5 —	47 000 29 000 22 000	62 000 37 000 29 000	7000C 7200 7200B	6.4 10.4 13.1	12.5 14.5 14.5	23.5 25.5 25.5	0.3 0.6 0.6	0.021 0.031 0.031
	30 35	9 11	0.6 0.6	0.3 0.3	5.00 8.50	2.35 3.75	5.80 9.30	2.95 4.30	13.4	40 000 27 000	54 000 33 000	7200C 7300	7.2 12.0	14.5 14.5	25.5 30.5	0.6 0.6	0.031 0.054
12	24 28 28	6 8 8	0.3 0.3 0.3	0.15 0.15 0.15	3.20 5.40 4.95	1.70 2.75 2.50		 _	14.7 —	48 000 29 000 22 000	62 000 37 000 29 000	7901C 7001 7001B	5.4 9.9 12.6	14.5 14.5 14.5	21.5 25.5 25.5	0.3 0.3 0.3	0.010 0.024 0.024
	28 32 32	8 10 10	0.3 0.6 0.6	0.15 0.3 0.3	5.80 7.45 6.95	2.95 3.65 3.40	 8.00 7.40	4.05 3.75	13.4 	40 000 27 000 20 000	54 000 34 000 27 000	7001C 7201 7201B	6.7 11.4 14.2	14.5 16.5 16.5	25.5 27.5 27.5	0.3 0.6 0.6	0.024 0.038 0.038
	32 37	10 12	0.6 1	0.3 0.6	7.90 10.2	3.85 4.60	8.50 11.2	4.30 5.25	12.5 —	38 000 24 000	50 000 31 000	7201C 7301	7.9 13.1	16.5 17.5	27.5 31.5	0.6 1	0.038 0.065
15	28 32 32	7 9 9	0.3 0.3 0.3	0.15 0.15 0.15	4.75 6.10 5.55	2.65 3.45 3.15			14.5 —	39 000 26 000 19 000	52 000 32 000 25 000	7902C 7002 7002B	6.4 11.3 14.6	17.5 17.5 17.5	25.5 29.5 29.5	0.3 0.3 0.3	0.015 0.035 0.035
	32 35 35	9 11 11	0.3 0.6 0.6	0.15 0.3 0.3	6.60 8.10 7.45	3.70 4.25 3.95	8.10 7.45	4.25 3.95	14.1 —	35 000 24 000 18 000	47 000 29 000 24 000	7002C 7202 7202B	7.6 12.9 16.2	17.5 19.5 19.5	29.5 30.5 30.5	0.3 0.6 0.6	0.035 0.048 0.048
	35 42	11 13	0.6 1	0.3 0.6	8.65 12.5	4.55 6.45	8.65 13.4	4.55 7.20	13.3 —	33 000 20 000	43 000 25 000	7202C 7302	8.9 15.0	19.5 20.5	30.5 36.5	0.6 1	0.048 0.088
17	30 35	7 10	0.3 0.3	0.15 0.15	5.00 6.75	2.95 4.15	_	_	14.9	36 000 23 000	47 000 28 000	7903C 7003	6.7 12.7	19.5 19.5	27.5 32.5	0.3 0.3	0.016 0.045

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.
 [Remark] Standard cage types used for the above bearings are described earlier in this section.

B 60

d (17) ~ (25) mm

HAR

Koyo

With machined cage

With pressed cage

Bo	undar	y dim (mm)	ensio	ns		Basic load I		I) sed cage	Factor	Limiting (min			Load center	Mount	ing dime	nsions	(Refer.) Mass
d	D	В	r min.	r_1 min.	$C_{ m r}$	C_{0r}	$C_{ m r}$	C_{0r}	f_0	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
17	35 35 40	10 10 12	0.3 0.3 0.6	0.15 0.15 0.3	6.10 7.30 10.2	3.75 4.45 5.50	 10.2	 5.50	14.6	17 000 31 000 21 000	23 000 41 000 26 000	7003B 7003C 7203	16.1 8.6 14.4	19.5 19.5 21.5	32.5 32.5 35.5	0.3 0.3 0.6	0.045 0.045 0.070
	40 40 47	12 12 14	0.6 0.6 1	0.3 0.3 0.6	9.35 10.9 14.9	5.05 5.90 7.90	9.35 10.9 16.0	5.05 5.90 8.75	13.4 —	16 000 29 000 18 000	21 000 38 000 23 000	7203B 7203C 7303	18.2 9.9 16.5	21.5 21.5 22.5	35.5 35.5 41.5	0.6 0.6 1	0.070 0.070 0.120
	47 47	14 14	1 1	0.6 0.6	13.8 15.8	7.30 8.40	14.8 15.8	8.10 8.40	12.6	14 000 25 000	18 000 33 000	7303B 7303C	20.8 11.4	22.5 22.5	41.5 41.5	1 1	0.120 0.120
20	37 42 42 42 47 47 47 52 52	9 12 12 14 14 14 14 15 15	0.3 0.6 0.6 1 1 1.1 1.1	0.15 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6	7.30 10.3 9.35 11.1 14.5 13.3 15.5 17.4 16.2	4.55 6.10 5.55 6.60 8.40 7.70 9.00 9.40 8.70		9.15 8.40 9.80 10.4 9.65	14.9 — 14.1 — 13.4 —	30 000 19 000 14 000 26 000 17 000 13 000 24 000 17 000 13 000	39 000 24 000 19 000 35 000 22 000 17 000 32 000 21 000 17 000	7904C 7004 7004B 7004C 7204 7204B 7204B 7204C 7304 7304B	8.3 15.1 19.2 10.2 17.0 21.5 11.6 17.9 22.6	22.5 24.5 24.5 25.5 25.5 25.5 25.5 27 27 27	34.5 37.5 37.5 41.5 41.5 41.5 41.5 45 45	0.3 0.6 0.6 1 1 1 1 1	0.035 0.079 0.079 0.112 0.112 0.112 0.112 0.150 0.150
	52 72 72	15 19 19	1.1 1.1 1.1	0.6 0.6 0.6	18.5 35.6 33.5	9.95 19.1 17.9	19.9 —	11.1 — —	12.6 —	23 000 9 600 8 500	31 000 13 000 12 000	7304C 7404 7404B	12.3 23.1 29.2	27 27 27	45 65 65	1 1 1	0.150 0.395 0.395
25	42 47 47	9 12 12	0.3 0.6 0.6	0.15 0.3 0.3	7.80 11.3 10.2	5.45 7.40 6.70	 		15.5 —	25 000 17 000 12 000	33 000 21 000 17 000	7905C 7005 7005B	9.1 16.4 21.1	27.5 29.5 29.5	39.5 42.5 42.5	0.3 0.6 0.6	0.041 0.091 0.091
	47 52 52	12 15 15	0.6 1 1	0.3 0.6 0.6	12.3 15.3 14.0	8.00 9.50 8.70	 16.2 14.7	10.3 9.40	14.7 	23 000 15 000 12 000	30 000 19 000 15 000	7005C 7205 7205B	10.8 18.8 23.9	29.5 30.5 30.5	42.5 46.5 46.5	0.6 1 1	0.091 0.135 0.135
	52	15	1	0.6	16.6	10.2	17.5	11.1	14.0	21 000	28 000	7205C	12.7	30.5	46.5	1	0.135

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

B 62

d (25) ~ (35) mm

HAR

Koyo

With machined cage

With pressed cage

Be	oundar	y dim	ensio	ns		Basic load I nined cage		N) ssed cage	Factor	Limiting s			Load center	Mount	ing dime	nsions	(Refer.)
d	D	B	r min.	r_1 min.	$C_{ m r}$	C_{0r}	Cr	C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	D _a max.	$r_{ m a}$ max.	Mass (kg)
25	62 62 62 80	17 17 17 21	1.1 1.1 1.1 1.5	0.6 0.6 0.6 1	24.8 22.9 26.4 39.7	14.4 13.3 15.3 23.2	26.4 24.4 28.1 42.6	15.8 14.6 16.8 25.7	— — 12.8	14 000 10 000 19 000 8 200	17 000 14 000 25 000 11 000	7305 7305B 7305C 7405	21.1 26.8 14.3 26.4	32 32 32 33.5	55 55 55 71.5	1 1 1 1.5	0.243 0.243 0.243 0.527
	80 80	21		1	39.7 36.9	23.2	42.0 39.6	23.7	_	7 300	10 000	7405 7405B	20.4 33.6	33.5 33.5	71.5	1.5	0.527
30	47 55 55	9 13 13	0.3 1 1	0.15 0.6 0.6	8.30 8.70 14.5	6.25 4.85 10.1			15.9 7.9 —	22 000 26 000 14 000	29 000 40 000 18 000	7906C HAR006C 7006	9.7 12.2 18.8	32.5 35.5 35.5	44.5 49.5 49.5	0.3 1 1	0.046 0.116 0.133
	55 55 62	13 13 16	1 1 1	0.6 0.6 0.6	13.1 15.8 21.3	9.20 11.0 13.7	 22.5	14.8	14.9	11 000 20 000 13 000	14 000 26 000 16 000	7006B 7006C 7206	24.3 12.2 21.5	35.5 35.5 35.5	49.5 49.5 56.5	1 1 1	0.133 0.133 0.208
	62 62 72	16 16 19	1 1 1.1	0.6 0.6 0.6	19.4 23.0 30.1	12.5 14.7 18.9	20.5 24.3 31.9	13.6 16.0 20.6	14.0	9 600 18 000 12 000	13 000 24 000 14 000	7206B 7206C 7306	27.6 14.3 24.5	35.5 35.5 37	56.5 56.5 65	1 1 1	0.208 0.208 0.362
	72 72 90	19 19 23	1.1 1.1 1.5	0.6 0.6 1	27.6 32.3 47.6	17.4 20.3 28.4	29.3 34.2 51.0	19.0 22.1 31.6	13.4 —	8 700 16 000 7 300	12 000 21 000 9 700	7306B 7306C 7406	31.3 16.5 29.3	37 37 38.5	65 65 81.5	1 1 1.5	0.362 0.362 0.686
	90	23	1.5	1	44.2	26.4	47.4	29.3		6 500	8 900	7406B	37.3	38.5	81.5	1.5	0.686
35	55 62 62	10 14 14	0.6 1 1	0.3 0.6 0.6	12.5 9.25 17.5	9.70 5.55 12.6			15.7 8.1 —	19 000 23 000 12 000	25 000 35 000 15 000	7907C HAR007C 7007	11.0 13.5 21.2	39.5 40.5 40.5	50.5 56.5 56.5	0.6 1 1	0.074 0.158 0.170
	62 62 72	14 14 17	1 1 1.1	0.6 0.6 0.6	15.8 19.1 28.1	11.4 13.7 18.6	 29.7	20.2	15.0	9 200 17 000 11 000	12 000 22 000 14 000	7007B 7007C 7207	27.6 13.5 24.2	40.5 40.5 42	56.5 56.5 65	1 1 1	0.170 0.170 0.295
	72 72 80	17 17 21	1.1 1.1 1.5	0.6 0.6 1	25.6 30.4 35.4	17.0 20.1 22.0	27.0 32.1 39.9	18.5 21.7 26.4	 14.0 	8 300 15 000 10 000	11 000 20 000 13 000	7207B 7207C 7307	31.4 15.8 27.4	42 42 43.5	65 65 71.5	1 1 1.5	0.295 0.295 0.475

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d (35) ~ (45) mm

HAR

Koyo

With machined cage

With pressed cage

Bo	oundar	y dim (mm)	ensio	ns		Basic load I		(1) ssed cage	Factor	Limiting (min			Load center	Mount	ing dimer	nsions	(Refer.)
d	D	B	r min.	r_1 min.	C _r	C_{0r}	Cr	C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	D _a max.	$r_{ m a}$ max.	Mass (kg)
35	80 80 100 100	21 21 25 25	1.5 1.5 1.5 1.5	1 1 1	32.5 37.9 60.4 56.2	20.2 23.6 37.0 34.3	36.6 42.8 64.8 60.2	24.3 28.3 41.1 38.1	 13.4 	7 700 14 000 6 500 5 700	10 000 19 000 8 600 7 900	7307B 7307C 7407 7407B	35.0 18.3 32.6 41.7	43.5 43.5 43.5 43.5	71.5 71.5 91.5 91.5	1.5 1.5 1.5 1.5	0.475 0.475 0.950 0.950
40	62 62 68	12 12 15	0.6 0.6 1	0.3 0.3 0.6	15.7 6.35 9.70	12.4 4.05 6.20			15.7 8.4 8.2	17 000 22 000 20 000	22 000 33 000 31 000	7908C HAR908C HAR008C	12.8 12.8 14.7	44.5 44.5 45.5	57.5 57.5 62.5	0.6 0.6 1	0.107 0.115 0.200
	68 68 68	15 15 15	1 1 1	0.6 0.6 0.6	18.7 16.8 20.5	14.6 13.2 15.9			— — 15.4	11 000 8 300 15 000	14 000 11 000 20 000	7008 7008B 7008C	23.2 30.2 14.8	45.5 45.5 45.5	62.5 62.5 62.5	1 1 1	0.210 0.210 0.210
	80 80 80	18 18 18	1.1 1.1 1.1	0.6 0.6 0.6	33.6 30.6 36.4	23.3 21.3 25.2	35.3 32.1 38.2	25.1 23.0 27.1	 14.2	10 000 7 500 14 000	12 000 10 000 18 000	7208 7208B 7208C	26.3 34.2 17.0	47 47 47	73 73 73	1 1 1	0.382 0.382 0.382
	90 90 90	23 23 23	1.5 1.5 1.5	1 1 1	43.2 39.7 46.3	27.4 25.2 29.4	48.8 44.8 52.3	32.9 30.3 35.3	— — 13.4	9 200 6 900 13 000	12 000 9 200 17 000	7308 7308B 7308C	30.3 38.8 20.2	48.5 48.5 48.5	81.5 81.5 81.5	1.5 1.5 1.5	0.657 0.657 0.657
	110 110	27 27	2 2	1 1	69.9 64.9	43.5 40.4	75.0 69.6	48.4 44.9	_	5 900 5 200	7 900 7 200	7408 7408B	35.5 45.4	50 50	100 100	2 2	1.23 1.23
45	68 68 75	12 12 16	0.6 0.6 1	0.3 0.3 0.6	16.6 6.80 10.9	14.1 4.70 7.10			16.0 8.5 8.3	15 000 19 000 18 000	20 000 30 000 28 000	7909C HAR909C HAR009C	13.6 13.6 16.0	49.5 49.5 50.5	63.5 63.5 69.5	0.6 0.6 1	0.127 0.136 0.251
	75 75 75	16 16 16	1 1 1	0.6 0.6 0.6	22.2 20.0 24.4	17.7 16.0 19.3			— — 15.4	10 000 7 500 14 000	12 000 10 000 18 000	7009 7009B 7009C	25.3 33.2 16.0	50.5 50.5 50.5	69.5 69.5 69.5	1 1 1	0.260 0.260 0.260
	85 85 85	19 19 19	1.1 1.1 1.1	0.6 0.6 0.6	37.7 34.3 40.8	26.6 24.3 28.7	39.6 36.1 42.9	28.6 26.1 30.9	— — 14.2	9 400 7 000 13 000	12 000 9 400 17 000	7209 7209B 7209C	28.0 36.4 18.1	52 52 52	78 78 78	1 1 1	0.430 0.430 0.430

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d (45) ~ (55) mm

HAR

With machined cage

With pressed cage

В	oundar	y dim (mm)	ensio	ns		Basic load I hined cage		I) ssed cage	Factor	Limiting s			Load center	Mount	ing dime	nsions	(Refer.)
d	D	B	r min.	r_1 min.	Cr	C_{0r}	Cr	C_{0r}	f_0	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	D _a max.	$r_{ m a}$ max.	Mass (kg)
45	100 100 100	25 25 25	1.5 1.5 1.5	1 1 1	55.1 50.6 59.2	37.1 34.1 39.7	58.4 53.6 62.7	40.4 37.2 43.4	 13.5	8 200 6 200 11 000	10 000 8 200 15 000	7309 7309B 7309C	33.6 43.1 22.3	53.5 53.5 53.5	91.5 91.5 91.5	1.5 1.5 1.5	0.875 0.875 0.875
	120 120	29 29	2 2	1 1	84.9 78.9	53.8 50.0	91.1 84.7	59.8 55.5	_	5 400 4 800	7 100 6 600	7409 7409B	38.6 49.5	55 55	110 110	2 2	1.55 1.55
50	72 72 80	12 12 16	0.6 0.6 1	0.3 0.3 0.6	17.4 9.10 11.4	15.7 6.30 7.85			16.2 8.5 8.4	14 000 18 000 17 000	18 000 28 000 26 000	7910C HAR910C HAR010C	14.2 14.2 16.7	54.5 54.5 55.5	67.5 67.5 74.5	0.6 0.6 1	0.128 0.131 0.273
	80 80 80	16 16 16	1 1 1	0.6 0.6 0.6	23.6 21.2 26.0	20.1 18.1 21.9			 15.7	9 200 6 900 13 000	11 000 9 200 17 000	7010 7010B 7010C	26.9 35.3 16.8	55.5 55.5 55.5	74.5 74.5 74.5	1 1 1	0.290 0.290 0.290
	90 90 90	20 20 20	1.1 1.1 1.1	0.6 0.6 0.6	39.4 35.7 42.8	29.4 26.7 31.8	41.3 37.4 44.8	31.5 28.6 34.1	 14.6	8 500 6 400 12 000	11 000 8 500 16 000	7210 7210B 7210C	30.4 39.6 19.4	57 57 57	83 83 83	1 1 1	0.485 0.485 0.485
	110 110 110	27 27 27	2 2 2	1 1 1	70.1 64.4 75.1	48.1 44.3 51.6	74.3 68.2 79.6	52.5 48.3 56.2	 13.4	7 300 5 500 10 000	9 100 7 300 13 000	7310 7310B 7310C	37.2 47.9 24.5	60 60 60	100 100 100	2 2 2	1.14 1.14 1.14
	130 130	31 31	2.1 2.1	1.1 1.1	97.4 90.2	65.3 60.4		_	_	4 900 4 400	6 600 6 000	7410 7410B	41.6 53.5	62 62	118 118	2 2	1.92 1.92
55	80 80 90	13 13 18	1 1 1.1	0.6 0.6 0.6	19.7 10.1 14.1	18.5 7.65 9.90			16.3 8.6 8.4	13 000 16 000 15 000	17 000 25 000 23 000	7911C HAR911C HAR011C	15.5 15.5 18.7	60.5 60.5 62	74.5 74.5 83	1 1 1	0.178 0.189 0.403
	90 90 90	18 18 18	1.1 1.1 1.1	0.6 0.6 0.6	31.1 27.9 34.1	26.3 23.7 28.6			 15.5	8 300 6 200 11 000	10 000 8 300 15 000	7011 7011B 7011C	29.9 39.4 18.7	62 62 62	83 83 83	1 1 1	0.420 0.420 0.420
	100 100	21 21	1.5 1.5	1 1	48.7 44.1	37.1 33.8	51.0 46.2	39.8 36.2	_	7 600 5 700	9 500 7 600	7211 7211B	33.3 43.6	63.5 63.5	91.5 91.5	1.5 1.5	0.635 0.635

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.
 [Remark] Standard cage types used for the above bearings are described earlier in this section.

Koyo

d (55) ~ (65) mm

HAR

Koyo

With machined cage

With pressed cage

Be	oundar		ensio	ns		Basic load			Factor	Limiting			Load	Mount	ing dime	nsions	(Refer.)
d	D	(mm) B	r min.	r_1 min.		hined cage $C_{0\mathrm{r}}$		ssed cage $C_{ m 0r}$	fo	(mir Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	(mm) $D_{\rm a}$ max.	$r_{ m a}$ max.	Mass (kg)
55	100 120 120	21 29 29	1.5 2 2	1 1 1	52.9 80.9 74.3	40.2 56.5 52.0	55.4 85.8 78.7	43.1 61.7 56.7	14.6 — —	11 000 6 700 5 000	14 000 8 400 6 700	7211C 7311 7311B	21.1 40.2 51.8	63.5 65 65	91.5 110 110	1.5 2 2	0.635 1.45 1.45
	120 140 140	29 33 33	2 2.1 2.1	1 1.1 1.1	86.8 118 110	60.6 82.4 76.5	91.9 — —	66.1 	13.4 — —	9 300 4 500 4 000	12 000 6 000 5 500	7311C 7411 7411B	26.4 45.0 57.8	65 67 67	110 128 128	2 2 2	1.45 2.36 2.36
60	85 85 95	13 13 18	1 1 1.1	0.6 0.6 0.6	23.2 9.95 14.7	21.8 7.75 10.8			16.3 8.6 8.5	12 000 15 000 14 000	16 000 23 000 22 000	7912C HAR912C HAR012C	16.3 16.2 19.4	65.5 65.5 67	79.5 79.5 88	1 1 1	0.187 0.202 0.433
	95 95 95	18 18 18	1.1 1.1 1.1	0.6 0.6 0.6	31.9 28.6 35.0	28.1 25.3 30.6			 15.7	7 700 5 800 11 000	9 700 7 700 14 000	7012 7012B 7012C	31.4 41.5 19.4	67 67 67	88 88 88	1 1 1	0.450 0.450 0.450
	110 110 110	22 22 22	1.5 1.5 1.5	1 1 1	58.9 53.4 64.0	45.7 41.6 49.5	61.7 55.9 67.0	49.0 44.6 53.0	 14.5	6 900 5 100 9 500	8 600 6 900 13 000	7212 7212B 7212C	36.1 47.5 22.7	68.5 68.5 68.5	101.5 101.5 101.5	1.5 1.5 1.5	0.820 0.820 0.820
	130 130 130	31 31 31	2.1 2.1 2.1	1.1 1.1 1.1	92.5 84.9 99.2	65.6 60.3 70.3	98.1 90.0 105	71.6 65.8 76.7	 13.4	6 200 4 600 8 600	7 700 6 200 11 000	7312 7312B 7312C	43.2 55.8 28.4	72 72 72	118 118 118	2 2 2	1.81 1.81 1.81
	150 150	35 35	2.1 2.1	1.1 1.1	129 119	93.6 86.7	_	_		4 100 3 700	5 500 5 100	7412 7412B	48.5 62.6	72 72	138 138	2 2	2.85 2.85
65	90 90 100	13 13 18	1 1 1.1	0.6 0.6 0.6	20.8 11.8 15.3	21.2 9.45 11.8			16.5 8.6 8.5	11 000 14 000 13 000	15 000 22 000 21 000	7913C HAR913C HAR013C	16.9 16.9 20.1	70.5 70.5 72	84.5 84.5 93	1 1 1	0.205 0.212 0.462
	100 100 100	18 18 18	1.1 1.1 1.1	0.6 0.6 0.6	33.7 30.1 37.1	31.4 28.3 34.3			 15.9	7 200 5 400 10 000	9 000 7 200 13 000	7013 7013B 7013C	33.0 43.8 20.1	72 72 72	93 93 93	1 1 1	0.470 0.470 0.470
	120	23	1.5	1	67.3	54.2	70.2	57.8	_	6 400	8 000	7213	38.2	73.5	111.5	1.5	1.02

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d (65) ~ (75) mm

HAR

Koyo

With machined cage

With pressed cage

B	oundar	y dim (mm)	ensio	ns	With ma	Basic load in chined cage		1) ssed cage	Factor	Limiting (min		Dessier No. 2)	Load center	Mount	ting dimer (mm)	nsions	(Refer.) Mass
d	D	В	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
65	120 120 140	23 23 33	1.5 1.5 2.1	1 1 1.1	60.9 73.1 105	49.3 58.7 75.3	63.6 76.3 111	52.6 62.6 82.2	14.6	4 800 8 900 5 800	6 400 12 000 7 200	7213B 7213C 7313	50.3 23.9 46.3	73.5 73.5 77	111.5 111.5 128	1.5 1.5 2	1.02 1.02 2.22
	140 140 160 160	33 33 37 37	2.1 2.1 2.1 2.1	1.1 1.1 1.1 1.1	96.1 112 139 129	69.3 80.7 104 96.8	102 119 	75.6 88.1	13.4 —	4 300 8 000 3 900 3 500	5 800 11 000 5 200 4 800	7313B 7313C 7413 7413B	59.7 30.3 51.4 66.3	77 77 77 77 77	128 128 148 148	2 2 2 2	2.22 2.22 3.41 3.41
70	100 100 110	16 16 20	1 1 1.1	0.6 0.6 0.6	28.9 12.9 20.7	29.0 10.5 15.5	 		16.4 8.7 8.4	10 000 13 000 12 000	12 000 20 000 19 000	7914C HAR914C HAR014C	19.4 19.4 22.1	75.5 75.5 77	94.5 94.5 103	- 1 1 1	0.332 0.356 0.629
	110 110 110	20 20 20	1.1 1.1 1.1	0.6 0.6 0.6	42.7 38.3 46.9	39.4 35.5 43.0		 	— — 15.7	6 600 5 000 9 200	8 300 6 600 12 000	7014 7014B 7014C	36.0 47.8 22.1	77 77 77	103 103 103	1 1 1	0.660 0.660 0.660
	125 125 125	24 24 24	1.5 1.5 1.5	1 1 1	69.8 63.2 75.9	55.6 50.6 60.2	76.3 69.1 83.0	63.5 57.8 68.8	— — 14.6	6 100 4 600 8 400	7 600 6 100 11 000	7214 7214B 7214C	40.2 52.9 25.1	78.5 78.5 78.5	116.5 116.5 116.5	1.5 1.5 1.5	1.12 1.12 1.12
	150 150 150	35 35 35	2.1 2.1 2.1	1.1 1.1 1.1	118 108 126	85.8 78.9 91.9	125 114 134	93.6 86.0 100	— — 13.4	5 400 4 000 7 500	6 700 5 400 9 900	7314 7314B 7314C	49.3 63.7 32.2	82 82 82	138 138 138	2 2 2	2.70 2.70 2.70
	180 180	42 42	3 3	1.1 1.1	149 148	115 119	_	_		3 500 3 100	4 600 4 300	7414 7414B	57.6 74.2	84 84	166 166	2.5 2.5	4.99 4.99
75	105 105 115	16 16 20	1 1 1.1	0.6 0.6 0.6	29.4 13.3 21.1	30.5 11.2 16.2			16.5 8.7 8.5	9 300 12 000 12 000	12 000 19 000 18 000	7915C HAR915C HAR015C	20.1 20.1 22.7	80.5 80.5 82	99.5 99.5 108	1 1 1	0.350 0.370 0.665
	115 115 115	20 20 20	1.1 1.1 1.1	0.6 0.6 0.6	43.6 39.1 48.0	41.7 37.6 45.6			 15.9	6 300 4 700 8 700	7 800 6 300 11 000	7015 7015B 7015C	37.4 49.9 22.7	82 82 82	108 108 108	1 1 1	0.690 0.690 0.690

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

B 72

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.
 [Remark] Standard cage types used for the above bearings are described earlier in this section.

B 73

d (**75**) ~ (**85**) mm

HAR

Koyo

With machined cage

With pressed cage

B	oundar	r y dim (mm)	ensio	ns	With ma	Basic load chined cage		N) ssed cage	Factor	Limiting (min		Description No. 2)	Load center	Mount	ting dimer (mm)	nsions	(Refer.) Mass
d	D	В	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
75	130 130 130	25 25 25	1.5 1.5 1.5	1 1 1	79.2 71.7 86.1	65.2 59.3 70.6	82.7 74.9 89.9	69.5 63.3 75.3	 14.6	5 800 4 300 8 000	7 200 5 800 11 000	7215 7215B 7215C	42.1 55.5 26.2	83.5 83.5 83.5	121.5 121.5 121.5	1.5 1.5 1.5	1.23 1.23 1.23
	160 160 160	37 37 37	2.1 2.1 2.1	1.1 1.1 1.1	128 118 137	97.0 89.2 104	136 125 146	106 97.3 113	 13.4	5 000 3 800 7 000	6 300 5 000 9 200	7315 7315B 7315C	52.4 67.8 34.2	87 87 87	148 148 148	2 2 2	3.15 3.15 3.15
	190 190	45 45	3 3	1.1 1.1	171 158	141 131		_	 _	3 300 2 900	4 400 4 000	7415 7415B	61.3 78.9	89 89	176 176	2.5 2.5	5.90 5.90
80	110 110 125	16 16 22	1 1 1.1	0.6 0.6 0.6	29.8 13.6 24.7	31.6 11.9 19.2			16.5 8.8 8.4	8 800 12 000 10 000	11 000 18 000 16 000	7916C HAR916C HAR016C	20.7 20.7 24.7	85.5 85.5 87	104.5 104.5 118	1 1 1	0.368 0.398 0.903
	125 125 125	22 22 22	1.1 1.1 1.1	0.6 0.6 0.6	53.4 47.8 58.7	50.6 45.7 55.3			— — 15.7	5 800 4 300 8 000	7 200 5 800 11 000	7016 7016B 7016C	40.6 54.0 24.7	87 87 87	118 118 118	1 1 1	0.930 0.930 0.930
	140 140 140	26 26 26	2 2 2	1 1 1	85.3 77.1 92.8	71.5 65.0 77.5	89.0 80.5 96.9	76.2 69.3 82.7	 14.7	5 400 4 000 7 500	6 700 5 400 9 900	7216 7216B 7216C	44.8 59.2 27.7	90 90 90	130 130 130	2 2 2	1.50 1.50 1.50
	170 170 170	39 39 39	2.1 2.1 2.1	1.1 1.1 1.1	139 127 149	109 100 117	147 135 158	119 109 127	 13.5	4 700 3 500 6 500	5 900 4 700 8 600	7316 7316B 7316C	55.6 71.9 36.2	92 92 92	158 158 158	2 2 2	3.85 3.85 3.85
	200 200	48 48	3 3	1.1 1.1	193 179	166 154		_	_	3 100 2 700	4 100 3 800	7416 7416B	65.0 83.6	94 94	186 186	2.5 2.5	6.00 6.00
85	120 120 130	18 18 22	1.1 1.1 1.1	0.6 0.6 0.6	38.9 16.3 25.1	40.6 14.2 20.1			16.5 8.7 8.5	8 100 10 000 9 700	11 000 16 000 15 000	7917C HAR917C HAR017C	22.7 22.7 25.4	92 92 92	113 113 123	1 1 1	0.523 0.570 0.947
	130 130	22 22	1.1 1.1	0.6 0.6	54.6 48.8	53.7 48.4		_		5 500 4 100	6 800 5 500	7017 7017B	42.3 56.5	92 92	123 123	1 1	0.970 0.970

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d (85) ~ (95) mm

HAR

Koyo

With machined cage

With pressed cage

В	oundar	y dim	ensio	ns	With ma	Basic load chined cage		N) ssed cage	Factor	Limiting (min			Load center	Mount	ting dimer	nsions	(Refer.)
d	D	В	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{\rm r}$	C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Mass (kg)
85	130 150 150	22 28 28	1.1 2 2	0.6 1 1	60.1 98.6 89.2	58.7 83.6 76.0	103 93.1	89.2 81.1	15.9 —	7 600 5 000 3 800	10 000 6 300 5 000	7017C 7217 7217B	25.5 47.9 63.3	92 95 95	123 140 140	1 2 2	0.970 1.87 1.87
	150 180 180	28 41 41	2 3 3	1 1.1 1.1	107 150 137	90.6 122 112	112 159 145	96.6 133 122	14.7 —	7 000 4 400 3 300	9 200 5 500 4 400	7217C 7317 7317B	29.7 58.8 76.1	95 99 99	140 166 166	2 2.5 2.5	1.87 4.53 4.53
	180 210 210	41 52 52	3 4 4	1.1 1.5 1.5	161 204 189	130 180 167	170 — —	142 	13.5 — —	6 100 3 000 2 600	8 100 3 900 3 600	7317C 7417 7417B	38.3 68.7 88.1	99 103 103	166 192 192	2.5 3 3	4.53 8.54 8.54
90	125 125 140	18 18 24	1.1 1.1 1.5	0.6 0.6 1	39.6 16.8 32.8	42.6 15.1 26.1			16.6 8.8 8.4	7 800 9 700 9 100	10 000 15 000 14 000	7918C HAR918C HAR018C	23.4 23.4 27.4	97 97 98.5	118 118 131.5	1 1 1.5	0.551 0.598 1.21
	140 140 140	24 24 24	1.5 1.5 1.5	1 1 1	65.2 58.4 71.7	63.3 57.1 69.1			— — 15.7	5 100 3 900 7 100	6 400 5 100 9 400	7018 7018B 7018C	45.2 60.2 27.4	98.5 98.5 98.5	131.5 131.5 131.5	1.5 1.5 1.5	1.26 1.26 1.26
	160 160 160	30 30 30	2 2 2	1 1 1	113 102 123	96.7 88.0 105	118 107 128	103 93.8 112	— — 14.6	4 700 3 500 6 500	5 900 4 700 8 600	7218 7218B 7218C	51.1 67.4 31.7	100 100 100	150 150 150	2 2 2	2.30 2.30 2.30
	190 190 190	43 43 43	3 3 3	1.1 1.1 1.1	161 148 173	135 124 145	171 156 183	147 135 158	— — 13.5	4 200 3 100 5 800	5 200 4 200 7 700	7318 7318B 7318C	61.9 80.2 40.3	104 104 104	176 176 176	2.5 2.5 2.5	5.30 5.30 5.30
	225 225	54 54	4 4	1.5 1.5	216 200	196 182		_	_	2 800 2 500	3 700 3 400	7418 7418B	72.5 93.1	108 108	207 207	3 3	11.4 11.4
95	130 130 145	18 18 24	1.1 1.1 1.5	0.6 0.6 1	40.2 17.3 33.4	44.1 16.0 27.2		 	16.5 8.8 8.5	7 400 9 300 8 700	9 800 14 000 13 000	7919C HAR919C HAR019C	24.1 24.1 28.1	102 102 103.5	123 123 136.5	1 1 1.5	0.574 0.626 1.28
	145	24	1.5	1	66.6	67.1	_	_	_	4 800	6 000	7019	47.2	103.5	136.5	1.5	1.32

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d (95) ~ (105) mm

HAR

Kovo

With machined cage

With pressed cage

Boundary dimensions Basic load ratings (kN) Factor Limiting speeds 1) Mounting dimensions Load (Refer.) With pressed cage With machined cage (\min^{-1}) (mm)center (mm) Mass Bearing No. 2) $D_{\rm a}$ d_{a} $r_{\rm a}$ r r_1 (mm) (kg) D В $C_{\rm r}$ C_{0r} $C_{\rm r}$ C_{0r} Grease lub. Oil lub. d f_0 min. min. min. max. max. а 4 800 7019B 63.2 1.32 95 145 24 1.5 1 59.6 60.5 3 600 103.5 136.5 1.5 145 24 1.5 1 73.4 73.4 15.9 6 700 8 900 7019C 28.3 103.5 136.5 1.5 1.32 ____ ____ 170 32 2.1 1.1 122 103 128 111 4 400 5 500 7219 54.3 107 158 2 2.78 _ 170 32 2.1 1.1 111 94.0 116 101 3 300 4 4 0 0 7219B 71.6 107 158 2 2.78 ____ 170 32 2.1 1.1 133 112 139 120 14.6 6 100 8 1 0 0 7219C 33.8 107 158 2 2.78 45 3 172 183 4 900 7319 200 1.1 149 162 4 000 65.1 109 186 2.5 6.12 200 45 3 158 137 167 149 3 000 4 0 0 0 7319B 84.4 109 186 2.5 6.12 1.1 _____ 200 45 3 185 160 196 174 13.5 5 500 7 300 7319C 42.3 109 186 2.5 6.12 1.1 100 140 20 1.1 0.6 55.6 58.5 7 000 9 200 7920C 133 0.773 16.3 26.1 107 1 ____ ____ 140 20 1.1 0.6 24.2 21.7 8.7 8 700 13 000 HAR920C 26.1 107 133 1 0.839 ____ _____ 150 24 1.5 34.0 28.4 8.5 8 400 13 000 HAR020C 28.7 108.5 141.5 1.5 1.32 1 ____ ____ 150 24 1.5 1 68.4 70.6 4 700 5 900 7020 48.1 108.5 141.5 1.5 1.37 ____ ____ _ 150 24 1.5 1 63.6 3 500 4 700 7020B 64.4 108.5 141.5 1.5 1.37 61.2 ____ _ ____ 150 24 1.5 1 75.3 77.2 16.0 6 500 8 600 7020C 28.7 108.5 141.5 1.5 1.37 _ 180 34 2.1 1.1 137 117 144 126 4 100 5 200 7220 57.7 112 168 2 3.32 ____ 34 2.1 124 7220B 2 3.32 180 1.1 107 130 115 3 100 4 200 76.2 112 168 ____ 180 34 2.1 1.1 149 127 156 136 14.6 5 700 7 600 7220C 35.9 112 168 2 3.32 207 7320 215 47 3 184 161 194 3 600 4 600 69.4 114 201 2.5 7.53 1.1 ____ 47 3 168 190 7320B 2.5 7.53 215 1.1 148 178 2 700 3 600 90.2 114 201 ____ 3 222 208 7320C 7.53 215 47 197 173 13.4 5 000 6700 114 201 2.5 1.1 44.8 105 145 20 1.1 0.6 56.7 61.5 16.4 6 700 8 800 7921C 26.7 112 138 1 0.810 145 20 1.1 24.9 23.1 8.7 8 400 13 000 HAR921C 26.7 138 1 0.874 0.6 112 _ ____ 160 26 2 1 38.6 32.5 8.5 7 900 12 000 HAR021C 30.8 115 150 2 1.68 160 26 2 79.8 81.9 4 400 5 500 7021 51.8 115 150 2 1.73 1 _ _ ____ 160 26 2 1 71.4 73.8 3 300 4 400 7021B 68.6 115 150 2 1.73 _ ____ _ 26 7021C 160 2 1 87.8 89.6 15.9 6 0 0 0 8 000 31.0 115 150 2 1.73 ____ 190 36 2.1 1.1 149 132 3 900 4 900 7221 61.0 117 178 2 3.95

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings.

Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

 B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (105) ~ (120) mm

HAR

Koyo

With machined cage

With pressed cage

B	oundar	y dim	ensio	ns	With ma	Basic load	ratings (kN With pres		Factor	Limiting : (min			Load center	Moun	ting dime (mm)	nsions	(Refer.)
d	D	B	<i>r</i> min.	r_1 min.	Cr	C_{0r}	C _r	C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	D _a max.	$r_{ m a}$ max.	Mass (kg)
105	190 190 225 225 225 225	36 36 49 49 49	2.1 2.1 3 3 3	1.1 1.1 1.1 1.1 1.1	135 162 208 191 223	121 143 193 177 207			— 14.6 — — 13.4	2 900 5 400 3 500 2 600 4 800	3 900 7 200 4 400 3 500 6 400	7221B 7221C 7321 7321B 7321C	80.5 38.0 72.1 93.7 46.6	117 117 119 119 119 119	178 178 211 211 211	2 2 2.5 2.5 2.5	3.95 3.95 8.62 8.62 8.62
110	150 150 170	20 20 28	1.1 1.1 2	0.6 0.6 1	57.7 25.1 43.4	64.4 23.8 37.0			16.5 8.7 8.5	6 400 8 000 7 500	8 500 12 000 12 000	7922C HAR922C HAR022C	27.4 27.4 32.8	117 117 120	143 143 160	1 1 2	0.840 0.909 2.11
	170 170 170	28 28 28	2 2 2	1 1 1	91.9 82.3 101	92.8 83.7 101			— — 15.7	4 200 3 100 5 800	5 200 4 200 7 700	7022 7022B 7022C	54.4 72.7 32.8	120 120 120	160 160 160	2 2 2	2.14 2.14 2.14
	200 200 200	38 38 38	2.1 2.1 2.1	1.1 1.1 1.1	162 147 176	148 135 160			— — 14.5	3 700 2 800 5 100	4 600 3 700 6 800	7222 7222B 7222C	64.3 84.9 40.0	122 122 122	188 188 188	2 2 2	4.65 4.65 4.65
	240 240 240	50 50 50	3 3 3	1.1 1.1 1.1	232 213 249	226 208 242			— — 13.4	3 200 2 400 4 500	4 000 3 200 5 900	7322 7322B 7322C	76.4 99.6 48.8	124 124 124	226 226 226	2.5 2.5 2.5	10.1 10.1 10.1
120	165 165 180	22 22 28	1.1 1.1 2	0.6 0.6 1	71.7 29.4 44.9	81.2 28.4 39.9			16.5 8.8 8.5	5 900 7 300 7 000	7 800 11 000 11 000	7924C HAR924C HAR024C	30.1 30.1 34.1	127 127 130	158 158 170	1 1 2	1.15 1.25 2.26
	180 180 180	28 28 28	2 2 2	1 1 1	96.6 86.4 106	103 93.0 113		 	— — 16.0	3 900 2 900 5 400	4 900 3 900 7 100	7024 7024B 7024C	57.3 76.9 34.1	130 130 130	170 170 170	2 2 2	2.27 2.27 2.27
	215 215 215	40 40 40	2.1 2.1 2.1	1.1 1.1 1.1	174 158 190	166 151 180			— — 14.6	3 400 2 600 4 800	4 300 3 400 6 300	7224 7224B 7224C	68.5 90.3 42.5	132 132 132	203 203 203	2 2 2	5.49 5.49 5.49
	260	55	3	1.1	246	252	_	_	_	3 000	3 700	7324	82.3	134	246	2.5	12.6

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

B 80

d (120) ~ 140 mm

HAR

Koyo

With machined cage

With pressed cage

В	oundar	r y dim (mm)	ensio	ns	With ma	Basic load I chined cage	r atings (kN) With press		Factor	Limiting s			Load center	Mount	ting dime (mm)	nsions	(Refer.) Mass
d	D	В	r min.	r_1 min.	Cr	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) <i>a</i>	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
120	260 260	55 55	3 3	1.1 1.1	225 265	231 271		_	 13.7	2 200 4 100	3 000 5 500	7324B 7324C	107.2 53.0	134 134	246 246	2.5 2.5	12.6 12.6
130	180 180 200	24 24 33	1.5 1.5 2	1 1 1	87.2 35.1 56.3	99.9 35.1 48.4			16.4 8.8 8.5	5 400 6 700 6 300	7 100 10 000 9 800	7926C HAR926C HAR026C	32.8 32.8 38.6	138.5 138.5 140	171.5 171.5 190	1.5 1.5 2	1.50 1.66 3.38
	200 200 200	33 33 33	2 2 2	1 1 1	117 105 129	125 113 137			 15.9	3 500 2 600 4 800	4 400 3 500 6 400	7026 7026B 7026C	64.1 85.7 38.6	140 140 140	190 190 190	2 2 2	3.43 3.43 3.43
	230 230 230	40 40 40	3 3 3	1.1 1.1 1.1	196 177 213	198 180 214			— — 14.7	3 200 2 400 4 400	4 000 3 200 5 800	7226 7226B 7226C	72.0 95.5 44.1	144 144 144	216 216 216	2.5 2.5 2.5	6.21 6.21 6.21
	280 280 280	58 58 58	4 4 4	1.5 1.5 1.5	301 250 294	329 268 314			— — 13.7	2 700 2 100 3 800	3 400 2 700 5 000	7326 7326B 7326C	88.8 115.0 56.5	148 148 148	262 262 262	3 3 3	15.4 15.4 15.4
140	190 190 210	24 24 33	1.5 1.5 2	1 1 1	88.3 35.2 61.3	105 36.2 56.2	 		16.6 8.8 8.5	5 100 6 300 6 000	6 700 9 800 9 200	7928C HAR928C HAR028C	34.1 34.1 39.9	148.5 148.5 150	181.5 181.5 200	1.5 1.5 2	1.59 1.76 3.62
	210 210 210	33 33 33	2 2 2	1 1 1	120 107 132	133 119 145				3 300 2 500 4 500	4 100 3 300 6 000	7028 7028B 7028C	67.0 89.9 39.9	150 150 150	200 200 200	2 2 2	3.64 3.64 3.64
	250 250 250	42 42 42	3 3 3	1.1 1.1 1.1	218 197 238	234 213 254			 14.8	2 900 2 200 4 000	3 600 2 900 5 300	7228 7228B 7228C	77.3 102.8 47.1	154 154 154	236 236 236	2.5 2.5 2.5	7.76 7.76 7.76
	300 300 300	62 62 62	4 4 4	1.5 1.5 1.5	329 302 353	374 344 401			— — 13.4	2 500 1 900 3 500	3 200 2 500 4 600	7328 7328B 7328C	94.5 123.3 60.5	158 158 158	282 282 282	3 3 3	18.8 18.8 18.8

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d **150** ~ (**170**) mm

HAR

With machined cage

With pressed cage

B	oundar	y dim (mm)	ensio	ns	With mo	Basic load I chined cage	ratings (kN) With press		Factor	Limiting s			Load	Mount	ting dime	nsions	(Refer.)
d	D	(mm) B	<i>r</i> min.	r_1 min.	$C_{\rm r}$	C_{0r}		C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	(mm) D _a max.	$r_{ m a}$ max.	Mass (kg)
150	210 210 225	28 28 35	2 2 2	1 1 1	115 48.9 72.2	132 48.9 66.1		 	16.3 8.7 8.5	4 700 5 800 5 300	6 200 9 000 8 200	7930C HAR930C HAR030C	38.1 38.1 42.6	160 160 160	200 200 215	2 2 2	2.47 2.68 4.36
	225 225 225	35 35 35	2.1 2.1 2.1	1.1 1.1 1.1	137 122 151	154 138 169	 		 16.1	3 000 2 300 4 200	3 800 3 000 5 500	7030 7030B 7030C	72.1 96.2 42.8	162 162 162	213 213 213	2 2 2	4.43 4.43 4.43
	270 270 270	45 45 45	3 3 3	1.1 1.1 1.1	248 225 270	280 254 303	 	 	 14.7	2 700 2 000 3 700	3 300 2 700 4 900	7230 7230B 7230C	83.1 110.6 50.6	164 164 164	256 256 256	2.5 2.5 2.5	9.75 9.75 9.75
	320 320 320	65 65 65	4 4 4	1.5 1.5 1.5	348 318 374	414 380 445			 13.7	2 300 1 800 3 200	2 900 2 300 4 300	7330 7330B 7330C	100.3 131.1 64.0	168 168 168	302 302 302	3 3 3	22.4 22.4 22.4
160	220 220 240	28 28 38	2 2 2.1	1 1 1.1	120 50.2 78.3	144 51.8 72.7			16.5 8.8 8.5	4 400 5 200 5 000	5 800 8 100 7 700	7932C HAR932C HAR032C	39.5 39.5 45.8	170 170 172	210 210 228	2 2 2	2.60 2.83 5.40
	240 240 240	38 38 38	2.1 2.1 2.1	1.1 1.1 1.1	155 139 171	176 158 193		 	 16.0	2 800 2 100 3 900	3 500 2 800 5 200	7032 7032B 7032C	76.8 102.9 45.8	172 172 172	228 228 228	2 2 2	5.45 5.45 5.45
	290 290 290	48 48 48	3 3 3	1.1 1.1 1.1	230 238 287	263 279 333			 15.2	2 500 1 800 3 400	3 100 2 500 4 500	7232 7232B 7232C	89.0 118.4 54.1	174 174 174	276 276 276	2.5 2.5 2.5	12.1 12.1 12.1
	340 340 340	68 68 68	4 4 4	1.5 1.5 1.5	365 332 394	455 416 490			 14.0	2 200 1 600 3 000	2 700 2 200 4 000	7332 7332B 7332C	106.2 138.9 67.5	178 178 168.5	322 322 322	3 3 3	26.4 26.4 26.4
170	230 230 260	28 28 42	2 2 2.1	1 1 1.1	122 51.4 91.8	151 54.8 86.4		 	16.6 8.8 8.5	3 900 5 000 4 600	5 100 7 700 7 100	7934C HAR934C HAR034C	40.8 40.8 49.8	180 180 182	220 220 248	2 2 2	3.21 2.97 7.32

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.
 [Remark] Standard cage types used for the above bearings are described earlier in this section.

Koyo

d (170) ~ 190 mm

HAR

Koyo

With machined cage

With pressed cage

В	oundar	y dim	ensio	ns	With ma	Basic load Internet Comparison	ratings (kN) With press		Factor	Limiting s			Load center	Moun	ting dime	nsions	(Refer.)
d	D	B	r min.	r_1 min.	Cr	C_{0r}	C _r	C_{0r}	f ₀	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	D _a max.	$r_{ m a}$ max.	Mass (kg)
170	260 260 260	42 42 42	2.1 2.1 2.1	1.1 1.1 1.1	186 166 204	214 193 234		 	 15.9	2 600 1 900 3 600	3 200 2 600 4 800	7034 7034B 7034C	83.1 111.2 49.8	182 182 182	248 248 248	2 2 2	7.58 7.77 7.57
	310 310 310	52 52 52	4 4 4	1.5 1.5 1.5	272 245 297	331 300 359			— — 15.1	2 300 1 700 3 100	2 800 2 300 4 200	7234 7234B 7234C	95.3 126.7 58.2	188 188 188	292 292 292	3 3 3	15.1 15.1 15.1
	360 360 360	72 72 72	4 4 4	1.5 1.5 1.5	389 355 418	485 444 521			 13.8	2 000 1 500 2 800	2 500 2 000 3 700	7334 7334B 7334C	112.5 147.2 71.5	188 188 188	342 342 342	3 3 3	31.2 31.2 31.2
180	250 280 280	33 46 46	2 2.1 2.1	1 1.1 1.1	156 212 190	188 253 228			16.4 —	3 600 2 400 1 800	4 700 3 000 2 400	7936C 7036 7036B	45.3 89.4 119.5	190 192 192	240 268 268	2 2 2	4.68 10.1 10.2
	280 320 320	46 52 52	2.1 4 4	1.1 1.5 1.5	233 293 265	276 362 329	 	 	15.7 —	3 300 2 200 1 600	4 400 2 700 2 200	7036C 7236 7236B	53.8 98.2 130.9	192 198 198	268 302 302	2 3 3	9.96 15.7 15.7
	320 380 380	52 75 75	4 4 4	1.5 1.5 1.5	320 409 373	393 534 488			14.9 	3 000 1 900 1 400	4 000 2 400 1 900	7236C 7336 7336B	59.5 118.3 155.0	198 198 198	302 362 362	3 3 3	15.7 40.0 40.0
190	260 290 290	33 46 46	2 2.1 2.1	1 1.1 1.1	158 217 194	197 268 241			16.5 —	3 300 2 300 1 700	4 500 2 800 2 300	7938C 7038 7038B	46.6 92.3 123.7	200 202 202	250 278 278	2 2 2	4.83 10.8 10.8
	290 340 340	46 55 55	2.1 4 4	1.1 1.5 1.5	239 303 273	293 390 353		 	15.9 — —	3 100 2 000 1 500	4 200 2 500 2 000	7038C 7238 7238B	55.2 104.0 138.7	202 208 208	278 322 322	2 3 3	10.8 18.8 18.8
	340 400 400	55 78 78	4 5 5	1.5 2 2	331 450 411	424 598 548			15.1 —	2 800 1 800 1 300	3 700 2 200 1 800	7238C 7338 7338B	63.0 124.2 162.8	208 212 212	322 378 378	3 4 4	18.8 45.5 45.5

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d 200 ~ (340) mm

HAR

Koyo

With machined cage

With pressed cage

B	oundar	r y dim (mm)	ensio	ns	With ma	Basic load I	r atings (kN) With press		Factor	Limiting s			Load center	Moun	ting dime	nsions	(Refer.)
d	D	В	r min.	r_1 min.	$C_{\rm r}$	C_{0r}	$C_{ m r}$	C_{0r}	f_0	Grease lub.	Oil lub.	Bearing No. 2)	(mm) a	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Mass (kg)
200	280 310 310	38 51 51	2.1 2.1 2.1	1.1 1.1 1.1	204 244 218	255 309 279			16.3 — —	3 100 2 100 1 600	4 100 2 600 2 100	7940C 7040 7040B	51.2 99.1 132.5	212 212 212	268 298 298	2 2 2	6.85 12.7 12.7
	310 360 360	51 58 58	2.1 4 4	1.1 1.5 1.5	268 324 292	338 423 384		 	15.7 — —	2 900 1 900 1 400	3 900 2 400 1 900	7040C 7240 7240B	59.7 109.8 146.5	212 218 218	298 342 342	2 3 3	12.7 22.4 22.4
	360 420 420	58 80 80	4 5 5	1.5 2 2	354 474 432	460 658 602			15.1 — —	2 600 1 700 1 200	3 500 2 100 1 700	7240C 7340 7340B	66.5 129.5 170.1	218 222 222	342 398 398	3 4 4	22.4 52.0 52.0
220	340 340	56 56	3 3	1.1 1.1	267 239	353 318		_	_	1 900 1 400	2 400 1 900	7044 7044B	108.9 145.5	234 234	326 326	2.5 2.5	18.5 18.9
240	360 360 440 440	56 56 72 72	3 3 4 4	1.1 1.1 1.5 1.5	273 244 403 363	375 338 595 539		 		1 700 1 300 1 500 1 100	2 200 1 700 1 800 1 500	7048 7048B 7248 7248B	114.6 153.9 134.2 178.6	254 254 258 258	346 346 422 422	2.5 2.5 3 3	19.7 20.1 51.8 52.8
260	400 400	65 65	4 4	1.5 1.5 1.5	325 291	478 431				1 500 1 100	1 900 1 500	7052 7052B	128.4 171.0	278 278 278	382 382	3	28.7 29.3
280	420 420	65 65	4 4	1.5 1.5	332 297	507 453	_	_	_	1 400 1 100	1 800 1 400	7056 7056B	133.5 179.3	298 298	402 402	3 3	30.4 31.0
300	460 460	74 74	4 4	1.5 1.5	426 382	680 613		_	_	1 300 960	1 600 1 300	7060 7060B	146.7 196.4	318 318	442 442	3 3	43.7 44.9
320	480 480	74 74	4 4	1.5 1.5	437 391	722 651		_		1 200 890	1 500 1 200	7064 7064B	152.5 204.8	338 338	462 462	3 3	46.0 47.2
340	520	82	5	2	502	861		_	_	1 100	1 300	7068	165.1	362	498	4	61.8

B 88

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

d (340) ~ 380 mm

HAR

With machined cage

With pressed cage

Boundary dimensions Basic load ratings (kN) Factor Limiting speeds 1) Load Mounting dimensions (Refer.) With machined cage With pressed cage (mm) (min^{-1}) (mm) center Mass Bearing No. 2) d_{a} D_{a} r $r_{\rm a}$ r_1 (mm)(kg) D В $C_{\rm r}$ Oil lub. d C_{0r} C_{r} C_{0r} f_0 Grease lub. min. min. min. max. max. a **340** 520 450 800 1 1 0 0 7068B 221.4 362 63.3 82 5 2 777 498 4 _ ____ _ 360 540 82 5 2 515 913 1 000 1 300 7072 170.9 382 518 4 64.6 _ 540 82 5 2 461 1 000 7072B 229.8 382 518 66.2 824 750 4 ____ ____ ____ 380 560 82 5 2 528 966 940 1 200 7076 176.7 402 538 4 67.2 _ 560 82 5 2 472 870 700 940 7076B 238.2 402 538 69.1 4 ____ ____ ____

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cage or molded cage.

2) B or no indication after the bearing number indicates nominal contact angle of 15° and 30° respectively. [Remark] Standard cage types used for the above bearings are de-

scribed earlier in this section.

Koyo

d $10 \sim (17) \text{ mm}$

(With machined cages)

(With pressed cages)

Koyo

Bo	oundar	y dim (mm)	ensio	ns	Ba With machi	asic load r ined cages	atings (k) With press		Factor	Limiting (mi			Bearin	g No. $^{2)}$	Load c			Мо	unting d		ons		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
10	22 26 26	12 16 16	0.3 0.3 0.3	0.15 0.15 0.15	4.90 8.10 7.55	3.05 4.65 4.35	 		14.2 —	42 000 27 000 20 000	55 000 34 000 27 000	7900CDB 7000DB 7000BDB	7900CDF 7000DF 7000BDF	7900CDT 7000DT 7000BDT	10.3 18.2 23.1	1.7 2.2 7.1	12.5 12.5 12.5		19.5 23.5 23.5	20.8 24.8 24.8	0.3 0.3 0.3	0.15 0.15 0.15	0.016 0.042 0.042
	26 30 30	16 18 18	0.3 0.6 0.6	0.15 0.3 0.3	8.60 7.55 6.95	4.95 4.40 4.05	 8.80 8.10	 5.45 5.05	12.5 —	37 000 23 000 18 000	50 000 29 000 23 000	7000CDB 7200DB 7200BDB	7000CDF 7200DF 7200BDF	7000CDT 7200DT 7200BDT	12.7 20.8 26.2	3.3 2.8 8.2	12.5 14.5 14.5	 12.5 12.5	23.5 25.5 25.5	24.8 27.5 27.5	0.3 0.6 0.6	0.15 0.3 0.3	0.042 0.062 0.062
	30 35	18 22	0.6 0.6	0.3 0.3	8.10 13.8	4.70 7.55	9.45 15.1	5.85 8.60	13.4	32 000 21 000	43 000 27 000	7200CDB 7300DB	7200CDF 7300DF	7200CDT 7300DT	14.5 24.0	3.5 2.0	14.5 14.5	12.5 12.5	25.5 30.5	27.5 32.5	0.6 0.6	0.3 0.3	0.062 0.108
12	24 28 28	12 16 16	0.3 0.3 0.3	0.15 0.15 0.15	5.15 8.80 8.10	3.45 5.45 5.05	 		14.7 	37 000 23 000 18 000	49 000 29 000 23 000	7901CDB 7001DB 7001BDB	7901CDF 7001DF 7001BDF	7901CDT 7001DT 7001BDT	10.8 19.9 25.2	1.2 3.9 9.2	14.5 14.5 14.5		21.5 25.5 25.5	22.8 26.8 26.8	0.3 0.3 0.3	0.15 0.15 0.15	0.020 0.048 0.048
	28 32 32	16 20 20	0.3 0.6 0.6	0.15 0.3 0.3	9.40 12.1 11.3	5.85 7.25 6.80	 13.0 12.1	 8.05 7.50	13.4 —	32 000 22 000 16 000	43 000 27 000 22 000	7001CDB 7201DB 7201BDB	7001CDF 7201DF 7201BDF	7001CDT 7201DT 7201BDT	13.5 22.7 28.5	2.5 2.7 8.5	14.5 16.5 16.5	 14.5 14.5	25.5 27.5 27.5	26.8 29.5 29.5	0.3 0.6 0.6	0.15 0.3 0.3	0.048 0.076 0.076
	32 37	20 24	0.6 1	0.3 0.6	12.8 16.6	7.70 9.20	13.8 18.1	8.55 10.5	12.5 —	30 000 20 000	40 000 24 000	7201CDB 7301DB	7201CDF 7301DF	7201CDT 7301DT	15.9 26.2	4.1 2.2	16.5 17.5	14.5 16.5	27.5 31.5	29.5 32.5	0.6 1	0.3 0.6	0.076 0.130
15	28 32 32	14 18 18	0.3 0.3 0.3	0.15 0.15 0.15	7.75 9.95 9.05	5.30 6.85 6.30			14.5 —	31 000 20 000 15 000	41 000 26 000 20 000	7902CDB 7002DB 7002BDB	7902CDF 7002DF 7002BDF	7902CDT 7002DT 7002BDT	12.8 22.6 29.1	1.2 4.6 11.1	17.5 17.5 17.5		25.5 29.5 29.5	26.8 30.8 30.8	0.3 0.3 0.3	0.15 0.15 0.15	0.030 0.070 0.070
	32 35 35	18 22 22	0.3 0.6 0.6	0.15 0.3 0.3	10.7 13.2 12.1	7.40 8.55 7.85	 13.2 12.1	 8.55 7.85	14.1 —	28 000 19 000 14 000	37 000 24 000 19 000	7002CDB 7202DB 7202BDB	7002CDF 7202DF 7202BDF	7002CDT 7202DT 7202BDT	15.3 25.7 32.4	2.7 3.7 10.4	17.5 19.5 19.5	 17.5 17.5	29.5 30.5 30.5	30.8 32.5 32.5	0.3 0.6 0.6	0.15 0.3 0.3	0.070 0.096 0.096
	35 42	22 26	0.6 1	0.3 0.6	14.1 20.3	9.15 12.9	14.1 21.8	9.15 14.4	13.3	26 000 16 000	35 000 20 000	7202CDB 7302DB	7202CDF 7302DF	7202CDT 7302DT	17.8 30.0	4.2 4.0	19.5 20.5	17.5 19.5	30.5 36.5	32.5 37.5	0.6 1	0.3 0.6	0.096 0.176
17	30 35	14 20	0.3 0.3	0.15 0.15	8.10 10.9	5.90 8.25			14.9	28 000 18 000	38 000 23 000	7903CDB 7003DB	7903CDF 7003DF	7903CDT 7003DT	13.4 25.3	0.6 5.3	19.5 19.5		27.5 32.5	28.8 33.8	0.3 0.3	0.15 0.15	0.032 0.090

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respec-

d (17) ~ (25) mm

(With machined cages)

(With pressed cages)

Koyo

Во	undar	y dim (mm)	ensio	ns	Ba With machi	nsic load r		N) sed cages	Factor	Limiting (min			Bearin	g No. ²⁾	Load c			Мо	unting d		ns		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
17	35 35 40	20 20 24	0.3 0.3 0.6	0.15 0.15 0.3	9.90 11.9 16.5	7.50 8.95 11.0	 16.5	 11.0	 14.6 	14 000 25 000 17 000	18 000 33 000 21 000	7003BDB 7003CDB 7203DB	7003BDF 7003CDF 7203DF	7003BDT 7003CDT 7203DT	32.2 17.1 28.8	12.2 2.9 4.8	19.5 19.5 21.5	 19.5	32.5 32.5 35.5	33.8 33.8 37.5	0.3 0.3 0.6	0.15 0.15 0.3	0.090 0.090 0.140
	40 40 47	24 24 28	0.6 0.6 1	0.3 0.3 0.6	15.2 17.7 24.2	10.1 11.8 15.8	15.2 17.7 26.0	10.1 11.8 17.5	 13.4 	12 000 23 000 15 000	17 000 30 000 18 000	7203BDB 7203CDB 7303DB	7203BDF 7203CDF 7303DF	7203BDT 7203CDT 7303DT	36.3 19.8 33.1	12.3 4.2 5.1	21.5 21.5 22.5	19.5 19.5 21.5	35.5 35.5 41.5	37.5 37.5 42.5	0.6 0.6 1	0.3 0.3 0.6	0.140 0.140 0.240
	47 47	28 28	1 1	0.6 0.6	22.5 25.7	14.6 16.8	24.1 25.7	16.2 16.8	 12.6	11 000 20 000	15 000 27 000	7303BDB 7303CDB	7303BDF 7303CDF	7303BDT 7303CDT	41.7 22.8	13.7 5.2	22.5 22.5	21.5 21.5	41.5 41.5	42.5 42.5	1 1	0.6 0.6	0.240 0.240
20	37 42 42	18 24 24	0.3 0.6 0.6	0.15 0.3 0.3	11.8 16.7 15.2	9.15 12.2 11.1			14.9 	24 000 15 000 11 000	31 000 19 000 15 000	7904CDB 7004DB 7004BDB	7904CDF 7004DF 7004BDF	7904CDT 7004DT 7004BDT	16.6 30.2 38.4	1.4 6.2 14.4	22.5 24.5 24.5		34.5 37.5 37.5	35.8 39.5 39.5	0.3 0.6 0.6	0.15 0.3 0.3	0.070 0.158 0.158
	42 47 47	24 28 28	0.6 1 1	0.3 0.6 0.6	18.0 23.5 21.6	13.2 16.8 15.4	 24.9 22.9	18.3 16.8	14.1 —	21 000 14 000 10 000	28 000 17 000 14 000	7004CDB 7204DB 7204BDB	7004CDF 7204DF 7204BDF	7004CDT 7204DT 7204BDT	20.4 33.9 42.9	3.6 5.9 14.9	24.5 25.5 25.5	 24.5 24.5	37.5 41.5 41.5	39.5 42.5 42.5	0.6 1 1	0.3 0.6 0.6	0.158 0.224 0.224
	47 52 52	28 30 30	1 1.1 1.1	0.6 0.6 0.6	25.2 28.3 26.3	18.0 18.8 17.4	26.7 30.4 28.2	19.6 20.8 19.3	13.4 —	19 000 13 000 10 000	26 000 17 000 13 000	7204CDB 7304DB 7304BDB	7204CDF 7304DF 7304BDF	7204CDT 7304DT 7304BDT	23.2 35.8 45.2	4.8 5.8 15.2	25.5 27 27	24.5 24.5 24.5	41.5 45 45	42.5 47.5 47.5	1 1 1	0.6 0.6 0.6	0.224 0.300 0.300
	52 72 72	30 38 38	1.1 1.1 1.1	0.6 0.6 0.6	30.1 57.8 54.4	19.9 38.2 35.9	32.3 	22.2 	12.6 —	18 000 7 400 6 400	24 000 11 000 9 600	7304CDB 7404DB 7404BDB	7304CDF 7404DF 7404BDF	7304CDT 7404DT 7404BDT	24.6 46.1 58.4	5.4 8.1 20.4	27 27 27	24.5 	45 65 65	47.5 67.5 67.5	1 1 1	0.6 0.6 0.6	0.300 0.790 0.790
25	42 47 47	18 24 24	0.3 0.6 0.6	0.15 0.3 0.3	12.7 18.3 16.6	10.9 14.8 13.4			15.5 	20 000 13 000 10 000	27 000 17 000 13 000	7905CDB 7005DB 7005BDB	7905CDF 7005DF 7005BDF	7905CDT 7005DT 7005BDT	18.2 32.9 42.3	0.2 8.9 18.3	27.5 29.5 29.5	_	39.5 42.5 42.5	40.8 44.5 44.5	0.3 0.6 0.6	0.15 0.3 0.3	0.082 0.182 0.182
	47 52 52	24 30 30	0.6 1 1	0.3 0.6 0.6	20.0 24.9 22.7	16.0 19.0 17.4	 26.3 24.0	 20.6 18.8	14.7 —	18 000 12 000 9 200	24 000 15 000 12 000	7005CDB 7205DB 7205BDB	7005CDF 7205DF 7205BDF	7005CDT 7205DT 7205BDT	21.7 37.5 47.7	2.3 7.5 17.7	29.5 30.5 30.5	 29.5 29.5	42.5 46.5 46.5	44.5 47.5 47.5	0.6 1 1	0.3 0.6 0.6	0.182 0.270 0.270
	52	30	1	0.6	26.9	20.5	28.4	22.2	14.0	17 000	23 000	7205CDB	7205CDF	7205CDT	25.5	4.5	30.5	29.5	46.5	47.5	1	0.6	0.270

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (25) ~ (35) mm

(With machined cages)

(With pressed cages)

Koyo

Be	oundar	r y dim (mm)	nensi	ons		asic load r ined cages		xN) ssed cages	Factor	Limiting (min			Bearir	g No. ²⁾	Load c spread			Мо	unting d		ons		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
25	62 62 62	34 34 34	1.1 1.1 1.1	0.6 0.6 0.6	40.3 37.2 42.8	28.8 26.6 30.6	42.9 39.6 45.6	31.6 29.2 33.7	— — 12.8	11 000 8 300 15 000	14 000 11 000 20 000	7305DB 7305BDB 7305CDB	7305DF 7305BDF 7305CDF	7305DT 7305BDT 7305CDT	42.1 53.5 28.7	8.1 19.5 5.3	32 32 32	29.5 29.5 29.5	55 55 55	57.5 57.5 57.5	1 1 1	0.6 0.6 0.6	0.486 0.486 0.486
	80 80	42 42	1.5 1.5		64.5 60.0	46.3 43.0	69.2 64.3	51.5 47.8	_	6 400 5 500	9 100 8 200	7405DB 7405BDB	7405DF 7405BDF	7405DT 7405BDT	52.8 67.2	10.8 25.2	33.5 33.5	30.5 30.5	71.5 71.5	74.5 74.5	1.5 1.5	1 1	1.05 1.05
30	47 55 55	18 26 26	0.3 1 1	0.15 0.6 0.6	13.5 14.2 23.6	12.5 9.75 20.2			15.9 7.9 —	18 000 21 000 11 000	23 000 32 000 14 000	7906CDB HAR006CDB 7006DB	7906CDF HAR006CDF 7006DF	7906CDT HAR006CDT 7006DT	19.3 24.4 37.5	1.3 1.6 11.5	32.5 35.5 35.5		44.5 49.5 49.5	45.8 50.5 50.5	0.3 1 1	0.15 0.6 0.6	0.092 0.232 0.266
	55 55 62	26 26 32	1 1 1	0.6 0.6 0.6	21.3 25.7 34.7	18.4 22.0 27.4	 36.6	 29.7	 14.9 	8 500 16 000 10 000	11 000 21 000 13 000	7006BDB 7006CDB 7206DB	7006BDF 7006CDF 7206DF	7006BDT 7006CDT 7206DT	48.7 24.4 43.0	22.7 1.6 11.0	35.5 35.5 35.5	 34.5	49.5 49.5 56.5	50.5 50.5 57.5	1 1 1	0.6 0.6 0.6	0.266 0.266 0.416
	62 62 72	32 32 38	1 1 1.1	0.6 0.6 0.6	31.6 37.4 48.9	25.0 29.5 37.8	33.3 39.5 51.8	27.1 32.0 41.2	 14.0 	7 700 14 000 9 200	10 000 19 000 12 000	7206BDB 7206CDB 7306DB	7206BDF 7206CDF 7306DF	7206BDT 7206CDT 7306DT	55.2 28.5 49.0	23.2 3.5 11.0	35.5 35.5 37	34.5 34.5 34.5	56.5 56.5 65	57.5 57.5 67.5	1 1 1	0.6 0.6 0.6	0.416 0.416 0.724
	72 72 90	38 38 46	1.1 1.1 1.5	0.6 0.6 1	44.9 52.5 77.3	34.7 40.5 56.9	47.5 55.6 82.9	37.9 44.2 63.2	 13.4 	6 900 13 000 5 700	9 200 17 000 8 100	7306BDB 7306CDB 7406DB	7306BDF 7306CDF 7406DF	7306BDT 7306CDT 7406DT	62.6 32.9 58.5	24.6 5.1 12.5	37 37 38.5	34.5 34.5 35.5	65 65 81.5	67.5 67.5 84.5	1 1 1.5	0.6 0.6 1	0.724 0.724 1.37
	90	46	1.5	1	71.8	52.8	77.0	58.6	_	4 900	7 300	7406BDB	7406BDF	7406BDT	74.6	28.6	38.5	35.5	81.5	84.5	1.5	1	1.37
35	55 62 62	20 28 28	0.6 1 1	0.3 0.6 0.6	20.4 15.0 28.4	19.4 11.1 25.2			15.7 8.1 —	15 000 18 000 9 800	20 000 28 000 12 000	7907CDB HAR007CDB 7007DB	7907CDF HAR007CDF 7007DF	7907CDT Har007CDT 7007DT	22.1 27.0 42.3	2.1 1.0 14.3	39.5 40.5 40.5		50.5 56.5 56.5	52.5 57.5 57.5	0.6 1 1	0.3 0.6 0.6	0.148 0.316 0.340
	62 62 72	28 28 34	1 1 1.1	0.6 0.6 0.6	25.7 31.0 45.7	22.8 27.4 37.3	 48.2	 40.4	 15.0 	7 300 13 000 8 800	9 800 18 000 11 000	7007BDB 7007CDB 7207DB	7007BDF 7007CDF 7207DF	7007BDT 7007CDT 7207DT	55.1 27.0 48.5	27.1 1.0 14.5	40.5 40.5 42	 39.5	56.5 56.5 65	57.5 57.5 67.5	1 1 1	0.6 0.6 0.6	0.340 0.340 0.590
	72 72 80	34 34 42	1.1 1.1 1.5	0.6 0.6 1	41.6 49.4 57.5	34.1 40.2 44.0	43.9 52.1 64.9	36.9 43.5 52.8	 14.0 	6 600 12 000 8 200	8 800 16 000 10 000	7207BDB 7207CDB 7307DB	7207BDF 7207CDF 7307DF	7207BDT 7207CDT 7307DT	62.7 31.6 54.8	28.7 2.4 12.8	42 42 43.5	39.5 39.5 40.5	65 65 71.5	67.5 67.5 74.5	1 1 1.5	0.6 0.6 1	0.590 0.590 0.950

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (35) ~ (45) mm

(With machined cages)

(With pressed cages)

Koyo

В	oundar	y dim (mm)	ensio	ns		asic load i ined cages		N) ssed cages	Factor	Limiting (min			Bearin	g No. ²⁾	Load c spread			Мо	unting d	limensio m)	ons		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	$C_{ m r}$	C_{0r}	$C_{ m r}$	C_{0r}	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	<i>a</i> ₂	$d_{ m a}$ min.	$d_{ m b}$ min.	D_{a} max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
35	80 80 100	42 42 50	1.5 1.5 1.5	1 1 1	52.7 61.6 98.2	40.5 47.2 73.9	59.5 69.6 105	48.6 56.6 82.1	 13.4	6 200 11 000 5 000	8 200 15 000 7 200	7307BDB 7307CDB 7407DB	7307BDF 7307CDF 7407DF	7307BDT 7307CDT 7407DT	70.1 36.7 65.2	28.1 5.3 15.2	43.5 43.5 43.5	40.5 40.5 40.5	71.5 71.5 91.5	74.5 74.5 94.5	1.5 1.5 1.5	1 1 1	0.950 0.950 1.90
	100	50	1.5	1	91.3	68.6	97.9	76.2		4 300	6 500	7407BDB	7407BDF	7407BDT	83.3	33.3	43.5	40.5	91.5	94.5	1.5	1	1.90
40	62 62 68	24 24 30	0.6 0.6 1	0.3 0.3 0.6	25.6 10.3 15.8	24.9 8.15 12.4			15.7 8.4 8.2	13 000 17 000 16 000	18 000 27 000 25 000	7908CDB HAR908CDB HAR008CDB	7908CDF HAR908CDF HAR008CDF	7908CDT HAR908CDT HAR008CDT	25.7 25.7 29.5	1.7 1.7 0.5	44.5 44.5 45.5		57.5 57.5 62.5	59.5 59.5 63.5	0.6 0.6 1	0.3 0.3 0.6	0.214 0.230 0.400
	68 68 68	30 30 30	1 1 1	0.6 0.6 0.6	30.4 27.4 33.4	29.2 26.4 31.8		 	 15.4	8 900 6 600 12 000	11 000 8 900 16 000	7008DB 7008BDB 7008CDB	7008DF 7008BDF 7008CDF	7008DT 7008BDT 7008CDT	46.3 60.5 29.5	16.3 30.5 0.5	45.5 45.5 45.5		62.5 62.5 62.5	63.5 63.5 63.5	1 1 1	0.6 0.6 0.6	0.420 0.420 0.420
	80 80 80	36 36 36	1.1 1.1 1.1	0.6 0.6 0.6	54.6 49.7 59.1	46.7 42.7 50.4	57.4 52.2 62.0	50.3 45.9 54.3	 14.2	8 000 6 000 11 000	10 000 8 000 15 000	7208DB 7208BDB 7208CDB	7208DF 7208BDF 7208CDF	7208DT 7208BDT 7208CDT	52.7 68.3 34.1	16.7 32.3 1.9	47 47 47	44.5 44.5 44.5	73 73 73	75.5 75.5 75.5	1 1 1	0.6 0.6 0.6	0.764 0.764 0.764
	90 90 90	46 46 46	1.5 1.5 1.5	1 1 1	70.2 64.5 75.3	54.9 50.5 58.8	79.3 72.8 85.0	65.9 60.6 70.5	— — 13.4	7 400 5 500 10 000	9 200 7 400 14 000	7308DB 7308BDB 7308CDB	7308DF 7308BDF 7308CDF	7308DT 7308BDT 7308CDT	60.5 77.5 40.4	14.5 31.5 5.6	48.5 48.5 48.5	45.5 45.5 45.5	81.5 81.5 81.5	84.5 84.5 84.5	1.5 1.5 1.5	1 1 1	1.31 1.31 1.31
	110 110	54 54	2 2	1 1	114 105	87.1 80.8	122 113	96.8 89.8	_	4 600 3 900	6 600 5 900	7408DB 7408BDB	7408DF 7408BDF	7408DT 7408BDT	70.9 90.8	16.9 36.8	50 50	45.5 45.5	100 100	104.5 104.5	2 2	1 1	2.46 2.46
45	68 68 75	24 24 32	0.6 0.6 1	0.3 0.3 0.6	27.0 11.0 17.6	28.2 9.35 14.2			16.0 8.5 8.3	12 000 16 000 15 000	16 000 24 000 23 000	7909CDB HAR909CDB HAR009CDB	7909CDF HAR909CDF HAR009CDF	7909CDT HAR909CDT HAR009CDT	27.1 27.1 32.1	3.1 3.1 0.1	49.5 49.5 50.5		63.5 63.5 69.5	65.5 65.5 70.5	0.6 0.6 1	0.3 0.3 0.6	0.254 0.272 0.502
	75 75 75	32 32 32	1 1 1	0.6 0.6 0.6	36.2 32.5 39.6	35.4 32.0 38.5		 	 15.4	8 000 6 000 11 000	10 000 8 000 15 000	7009DB 7009BDB 7009CDB	7009DF 7009BDF 7009CDF	7009DT 7009BDT 7009CDT	50.7 66.3 32.1	18.7 34.3 0.1	50.5 50.5 50.5		69.5 69.5 69.5	70.5 70.5 70.5	1 1 1	0.6 0.6 0.6	0.520 0.520 0.520
	85 85 85	38 38 38	1.1 1.1 1.1	0.6 0.6 0.6	61.3 55.8 66.3	53.2 48.6 57.4	64.4 58.6 69.7	57.2 52.3 61.8	 14.2	7 500 5 600 10 000	9 400 7 500 14 000	7209DB 7209BDB 7209CDB	7209DF 7209BDF 7209CDF	7209DT 7209BDT 7209CDT	56.0 72.8 36.2	18.0 34.8 1.8	52 52 52	49.5 49.5 49.5	78 78 78	80.5 80.5 80.5	1 1 1	0.6 0.6 0.6	0.860 0.860 0.860

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (45) ~ (55) mm

(With machined cages)

(With pressed cages)

Koyo

В	oundar	y dim (mm)	ensio	ns		Basic load chined cages		kN) ssed cages	Factor	Limiting (mi			Bearin	ng No. $^{2)}$	Load c spread			Мо	unting d		ons		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	Cr	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	<i>a</i> ₂	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	r _a max.	$r_{ m b}$ max.	(kg)
45	100 100 100	50 50 50	1.5 1.5 1.5	1 1 1	89.6 82.1 96.1	74.2 68.2 79.5	94.9 87.1 102	80.9 74.3 86.7	— — 13.5	6 600 4 900 9 000	8 200 6 600 12 000	7309DB 7309BDB 7309CDB	7309DF 7309BDF 7309CDF	7309DT 7309BDT 7309CDT	67.2 86.3 44.6	17.2 36.3 5.4	53.5 53.5 53.5	50.5 50.5 50.5	91.5 91.5 91.5	94.5 94.5 94.5	1.5 1.5 1.5	1 1 1	1.75 1.75 1.75
	120 120	58 58	2 2	1 1	138 128	108 100	148 138	120 111	_	4 200 3 600	6 000 5 400	7409DB 7409BDB	7409DF 7409BDF	7409DT 7409BDT	77.2 99.1	19.2 41.1	55 55	50.5 50.5	110 110	114.5 114.5	2 2	1 1	3.10 3.10
50	72 72 80	24 24 32	0.6 0.6 1	0.3 0.3 0.6	28.3 14.8 18.5	31.4 12.6 15.7			16.2 8.5 8.4	11 000 14 000 14 000	15 000 22 000 21 000	7910CDB HAR910CDB HAR010CDB	7910CDF HAR910CDF HAR010CDF	7910CDT HAR910CDT HAR010CDT	28.3 28.3 33.4	4.3 4.3 1.4	54.5 54.5 55.5		67.5 67.5 74.5	69.5 69.5 75.5	0.6 0.6 1	0.3 0.3 0.6	0.256 0.262 0.546
	80 80 80	32 32 32	1 1 1	0.6 0.6 0.6	38.4 34.5 42.2	40.2 36.2 43.9			 15.7	7 300 5 500 10 000	9 200 7 400 13 000	7010DB 7010BDB 7010CDB	7010DF 7010BDF 7010CDF	7010DT 7010BDT 7010CDT	53.8 70.5 33.6	21.8 38.5 1.6	55.5 55.5 55.5		74.5 74.5 74.5	75.5 75.5 75.5	1 1 1	0.6 0.6 0.6	0.580 0.580 0.580
	90 90 90	40 40 40	1.1 1.1 1.1	0.6 0.6 0.6	64.0 58.0 69.6	58.7 53.5 63.6	67.0 60.7 72.8	62.9 57.3 68.1	 14.6	6 800 5 100 9 400	8 500 6 800 12 000	7210DB 7210BDB 7210CDB	7210DF 7210BDF 7210CDF	7210DT 7210BDT 7210CDT	60.7 79.2 38.9	20.7 39.2 1.1	57 57 57	54.5 54.5 54.5	83 83 83	85.5 85.5 85.5	1 1 1	0.6 0.6 0.6	0.970 0.970 0.970
	110 110 110	54 54 54	2 2 2	1 1 1	114 105 122	96.3 88.6 103	121 111 129	105 96.6 112	 13.4	5 800 4 400 8 000	7 300 5 800 11 000	7310DB 7310BDB 7310CDB	7310DF 7310BDF 7310CDF	7310DT 7310BDT 7310CDT	74.4 95.8 49.0	20.4 41.8 5.0	60 60 60	55.5 55.5 55.5	100 100 100	104.5 104.5 104.5	2 2 2	1 1 1	2.28 2.28 2.28
	130 130	62 62	2.1 2.1	1.1 1.1	158 147	131 121		_	_	3 800 3 300	5 500 4 900	7410DB 7410BDB	7410DF 7410BDF	7410DT 7410BDT	83.3 106.9	21.3 44.9	62 62	_	118 118	123 123	2 2	1 1	3.84 3.84
55	80 80 90	26 26 36	1 1 1.1	0.6 0.6 0.6	32.0 16.4 22.9	37.0 15.3 19.8			16.3 8.6 8.4	10 000 13 000 12 000	14 000 20 000 19 000	7911CDB HAR911CDB HAR011CDB	7911CDF HAR911CDF HAR011CDF	7911CDT HAR911CDT HAR011CDT	31.1 31.1 37.4	5.1 5.1 1.4	60.5 60.5 62		74.5 74.5 83	75.5 75.5 85.5	1 1 1	0.6 0.6 0.6	0.356 0.378 0.806
	90 90 90	36 36 36	1.1 1.1 1.1	0.6 0.6 0.6	50.5 45.4 55.4	52.5 47.5 57.3			— — 15.5	6 600 5 000 9 100	8 300 6 600 12 000	7011DB 7011BDB 7011CDB	7011DF 7011BDF 7011CDF	7011DT 7011BDT 7011CDT	59.9 78.8 37.4	23.9 42.8 1.4	62 62 62		83 83 83	85.5 85.5 85.5	1 1 1	0.6 0.6 0.6	0.840 0.840 0.840
	100 100	42 42	1.5 1.5	1 1	79.1 71.6	74.2 67.6	82.8 75.0	79.6 72.4	_	6 100 4 600	7 600 6 100	7211DB 7211BDB	7211DF 7211BDF	7211DT 7211BDT	66.6 87.3	24.6 45.3	63.5 63.5	60.5 60.5	91.5 91.5	94.5 94.5	1.5 1.5	1 1	1.27 1.27

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (55) ~ (65) mm

(With machined cages)

(With pressed cages)

Koyo

В	oundar	y dim (mm)	ensio	ns		asic load		kN) ssed cages	Factor	Limiting (min			Bearing	No. ²⁾	Load c spread			Мо	unting d	imensio	ons		(Refer.)
d	D	B_1	r min.	r_1 min.	Cr	$C_{0\mathrm{r}}$	C _r	C_{0r}	f ₀	Grease lub.	Oil lub.		e-to-face DF	Tandem DT	<i>a</i> ₁		$d_{ m a}$ min.	$d_{ m b}$ min.	D _a max.	D _b max.	$r_{ m a}$ max.	$r_{ m b}$ max.	Mass (kg)
55	100 120 120	42 58 58	1.5 2 2	1 1 1	85.9 132 121	80.4 113 104	90.0 139 128	86.1 123 113	14.6 —	8 400 5 400 4 000	11 000 6 700 5 400	7211CDB 7211 7311DB 7311 7311BDB 7311	1DF	7211CDT 7311DT 7311BDT	42.2 80.4 103.7	0.2 22.4 45.7	63.5 65 65	60.5 60.5 60.5	91.5 110 110	94.5 114.5 114.5	1.5 2 2	1 1 1	1.27 2.90 2.90
	120 140 140	58 66 66	2 2.1 2.1	1 1.1 1.1	141 192 179	121 165 153	149 	132 	13.4 —	7 400 3 500 3 000	9 800 5 000 4 500	7311CDB 7311 7411DB 7411 7411BDB 7411	1DF	7311CDT 7411DT 7411BDT	52.9 89.9 115.7	5.1 23.9 49.7	65 67 67	60.5 	110 128 128	114.5 133 133	2 2 2	1 1 1	2.90 4.72 4.72
60	85 85 95	26 26 36	1 1 1.1	0.6 0.6 0.6	37.8 16.2 23.9	43.6 15.5 21.7			16.3 8.6 8.5	9 100 12 000 11 000	13 000 19 000 18 000		912CDF	7912CDT HAR912CDT HAR012CDT	32.6 32.4 38.8	6.6 6.4 2.8	65.5 65.5 67		79.5 79.5 88	80.5 80.5 90.5	1 1 1	0.6 0.6 0.6	0.374 0.404 0.866
	95 95 95	36 36 36	1.1 1.1 1.1	0.6 0.6 0.6	51.8 46.4 56.9	56.1 50.7 61.3			 15.7	6 200 4 600 8 500	7 700 6 200 11 000	7012DB 7012 7012BDB 7012 7012CDB 7012	2BDF	7012DT 7012BDT 7012CDT	62.8 83.0 38.8	26.8 47.0 2.8	67 67 67		88 88 88	90.5 90.5 90.5	1 1 1	0.6 0.6 0.6	0.900 0.900 0.900
	110 110 110	44 44 44	1.5 1.5 1.5	1	95.7 86.8 104	91.5 83.3 99.0	100 90.8 109	98.0 89.2 106	 14.5	5 500 4 100 7 500	6 900 5 500 10 000	7212DB 7212 7212BDB 7212 7212CDB 7212	2BDF	7212DT 7212BDT 7212CDT	72.3 95.0 45.3	28.3 51.0 1.3	68.5 68.5 68.5	65.5 65.5 65.5	101.5 101.5 101.5	104.5 104.5 104.5	1.5 1.5 1.5	1 1 1	1.64 1.64 1.64
	130 130 130	62 62 62	2.1 2.1 2.1	1.1 1.1 1.1	150 138 161	131 121 141	159 146 171	143 132 153	— — 13.4	5 000 3 700 6 800	6 200 5 000 9 100	7312DB 7312 7312BDB 7312 7312CDB 7312 7312CDB 7312	2BDF	7312DT 7312BDT 7312CDT	86.5 111.6 56.7	24.5 49.6 5.3	72 72 72	67 67 67	118 118 118	123 123 123	2 2 2	1 1 1	3.62 3.62 3.62
	150 150	70 70	2.1 2.1	1.1 1.1	209 194	187 173	_	_	_	3 200 2 800	4 600 4 100	7412DB 7412 7412BDB 7412		7412DT 7412BDT	97.0 125.1	27.0 55.1	72 72	_	138 138	143 143	2 2	1 1	5.70 5.70
65	90 90 100	26 26 36	1 1 1.1	0.6 0.6 0.6	33.7 19.1 24.8	42.3 18.9 23.5		 	16.5 8.6 8.5	8 600 11 000 11 000	12 000 18 000 16 000		913CDF	7913CDT HAR913CDT HAR013CDT	33.8 33.8 40.1	7.8 7.8 4.1	70.5 70.5 72		84.5 84.5 93	85.5 85.5 95.5	1 1 1	0.6 0.6 0.6	0.410 0.424 0.924
	100 100 100	36 36 36	1.1 1.1 1.1	0.6 0.6 0.6	54.7 48.9 60.2	62.8 56.6 68.7	 		 15.9	5 800 4 300 7 900	7 200 5 800 11 000	7013DB 7013 7013BDB 7013 7013CDB 7013	3BDF	7013DT 7013BDT 7013CDT	65.9 87.6 40.2	29.9 51.6 4.2	72 72 72		93 93 93	95.5 95.5 95.5	1 1 1	0.6 0.6 0.6	0.940 0.940 0.940
	120	46	1.5		109	108	114	116	_	5 200	6 400	7213DB 7213		7213DT	76.4	30.4	73.5	70.5	111.5	114.5	1.5	1	2.04

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (65) ~ (75) mm

(With machined cages)

(With pressed cages)

Koyo

В	oundar	r y dim (mm)	ensio	ns		Basic load		kN) ssed cages	Factor	Limiting (mi			Bearin	g No. ²⁾	Load c spread			Мо	unting d	limensio m)	ons		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{\rm r}$	C_{0r}	$C_{\rm r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
65	120 120 140	46 46 66	1.5 1.5 2.1	1 1 1.1	99.0 119 170	98.7 117 151	103 124 180	105 125 164	 14.6 	3 900 7 100 4 600	5 200 9 400 5 800	7213BDB 7213CDB 7313DB	7213BDF 7213CDF 7313DF	7213BDT 7213CDT 7313DT	100.6 47.8 92.5	54.6 1.8 26.5	73.5 73.5 77	70.5 70.5 72	111.5 111.5 128	114.5 114.5 133	1.5 1.5 2	1 1 1	2.04 2.04 4.44
	140 140 160 160	66 66 74 74	2.1 2.1 2.1 2.1	1.1 1.1 1.1 1.1	156 182 226 209	139 161 209 194	165 193 	151 176 	 13.4 	3 500 6 300 3 000 2 600	4 600 8 500 4 300 3 900	7313BDB 7313CDB 7413DB 7413BDB	7313BDF 7313CDF 7413DF 7413BDF	7313BDT 7313CDT 7413DT 7413BDT	119.4 60.6 102.9 132.7	53.4 5.4 28.9 58.7	77 77 77 77	72 72 	128 128 148 148	133 133 153 153	2 2 2 2	1 1 1	4.44 4.44 6.82 6.82
70	100 100 110	32 32 40	1 1 1.1	0.6 0.6 0.6	47.0 20.9 33.7	58.0 20.9 30.9			16.4 8.7 8.4	7 800 10 000 9 800	11 000 16 000 15 000	7914CDB HAR914CDB HAR014CDB	7914CDF HAR914CDF HAR014CDF	7914CDT HAR914CDT HAR014CDT	38.8 38.8 44.1	6.8 6.8 4.1	75.5 75.5 77		94.5 94.5 103	95.5 95.5 105.5	1 1 1	0.6 0.6 0.6	0.664 0.712 1.26
	110 110 110	40 40 40	1.1 1.1 1.1	0.6 0.6 0.6	69.3 62.1 76.2	78.7 71.1 86.0			 15.7	5 300 4 000 7 300	6 600 5 300 9 700	7014DB 7014BDB 7014CDB	7014DF 7014BDF 7014CDF	7014DT 7014BDT 7014CDT	72.0 95.5 44.1	32.0 55.5 4.1	77 77 77		103 103 103	105.5 105.5 105.5	1 1 1	0.6 0.6 0.6	1.32 1.32 1.32
	125 125 125	48 48 48	1.5 1.5 1.5	1 1 1	113 103 123	111 101 120	124 112 135	127 116 138	 14.6	4 900 3 700 6 700	6 100 4 900 8 900	7214DB 7214BDB 7214CDB	7214DF 7214BDF 7214CDF	7214DT 7214BDT 7214CDT	80.3 105.8 50.1	32.3 57.8 2.1	78.5 78.5 78.5	75.5 75.5 75.5	116.5 116.5 116.5	119.5 119.5 119.5	1.5 1.5 1.5	1 1 1	2.24 2.24 2.24
	150 150 150	70 70 70	2.1 2.1 2.1	1.1 1.1 1.1	191 175 205	172 158 184	203 186 217	187 172 200	 13.4	4 300 3 200 5 900	5 400 4 300 7 900	7314DB 7314BDB 7314CDB	7314DF 7314BDF 7314CDF	7314DT 7314BDT 7314CDT	98.5 127.3 64.5	28.5 57.3 5.5	82 82 82	77 77 77	138 138 138	143 143 143	2 2 2	1 1 1	5.40 5.40 5.40
	180 180	84 84	3 3	1.1 1.1	242 241	230 237	_			2 700 2 300	3 900 3 500	7414DB 7414BDB	7414DF 7414BDF	7414DT 7414BDT	115.3 148.4	31.3 64.4	84 84	_	166 166	173 173	2.5 2.5	1 1	9.98 9.98
75	105 105 115	32 32 40	1 1 1.1	0.6 0.6 0.6	47.7 21.5 34.3	60.9 22.4 32.4			16.5 8.7 8.5	7 400 9 800 9 300	9 800 15 000 14 000	7915CDB HAR915CDB HAR015CDB	7915CDF HAR915CDF HAR015CDF	7915CDT HAR915CDT HAR015CDT	40.1 40.1 45.5	8.1 8.1 5.5	80.5 80.5 82		99.5 99.5 108	100.5 100.5 110.5	1 1 1	0.6 0.6 0.6	0.700 0.740 1.33
	115 115 115	40 40 40	1.1 1.1 1.1	0.6 0.6 0.6	70.9 63.5 78.0	83.4 75.2 91.3			 15.9	5 000 3 800 6 900	6 300 5 000 9 200	7015DB 7015BDB 7015CDB	7015DF 7015BDF 7015CDF	7015DT 7015BDT 7015CDT	74.9 99.7 45.5	34.9 59.7 5.5	82 82 82		108 108 108	110.5 110.5 110.5	1 1 1	0.6 0.6 0.6	1.38 1.38 1.38

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (**75**) ~ (**85**) mm

(With machined cages)

(With pressed cages)

Koyo

В	oundar	y dim (mm)	ensio	ns		Basic load chined cages		kN) essed cages	Factor	Limiting (min			Bearin	g No. ²⁾	Load c spread			Мо	unting d		ons		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	Cr	$C_{0\mathrm{r}}$	C _r	C_{0r}	f ₀	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁		$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
75	130 130 130	50 50 50	1.5 1.5 1.5	1 1 1	129 116 140	130 119 141	134 122 146	139 127 151	 14.6	4 600 3 500 6 400	5 800 4 600 8 500	7215BDB	7215DF 7215BDF 7215CDF	7215DT 7215BDT 7215CDT	84.2 111.0 52.5	34.2 61.0 2.5	83.5 83.5 83.5	80.5 80.5 80.5	121.5 121.5 121.5	124.5 124.5 124.5	1.5 1.5 1.5	1 1 1	2.46 2.46 2.46
	160 160 160	74 74 74	2.1 2.1 2.1	1.1 1.1 1.1	208 191 223	194 178 208	221 202 236	212 195 227	 13.4	4 000 3 000 5 500	5 000 4 000 7 400	7315BDB	7315DF 7315BDF 7315CDF	7315DT 7315BDT 7315CDT	104.9 135.6 68.5	30.9 61.6 5.5	87 87 87	82 82 82	148 148 148	153 153 153	2 2 2	1 1 1	6.30 6.30 6.30
	190 190	90 90	3 3	1.1 1.1	278 257	282 261	_	_	_	2 500 2 200	3 600 3 300		7415DF 7415BDF	7415DT 7415BDT	122.7 157.9	32.7 67.9	89 89	_	176 176	183 183	2.5 2.5	1 1	11.8 11.8
80	110 110 125	32 32 44	1 1 1.1	0.6 0.6 0.6	48.4 22.2 40.1	63.2 23.9 38.5			16.5 8.8 8.4	7 000 9 300 8 200	9 300 14 000 13 000	HAR916CDB	7916CDF HAR916CDF HAR016CDF	7916CDT HAR916CDT HAR016CDT	41.5 41.5 49.5	9.5 9.5 5.5	85.5 85.5 87		104.5 104.5 118	105.5 105.5 120.5	1 1 1	0.6 0.6 0.6	0.736 0.796 1.81
	125 125 125	44 44 44	1.1 1.1 1.1	0.6 0.6 0.6	86.7 77.7 95.3	101 91.3 111			 15.7	4 600 3 500 6 400	5 800 4 600 8 500	7016BDB	7016DF 7016BDF 7016CDF	7016DT 7016BDT 7016CDT	81.2 108.0 49.5	37.2 64.0 5.5	87 87 87		118 118 118	120.5 120.5 120.5	1 1 1	0.6 0.6 0.6	1.86 1.86 1.86
	140 140 140	52 52 52	2 2 2	1 1 1	139 125 151	143 130 155	145 131 157	152 139 165	 14.7	4 300 3 200 5 900	5 400 4 300 7 900	7216BDB	7216DF 7216BDF 7216CDF	7216DT 7216BDT 7216CDT	89.5 118.3 55.5	37.5 66.3 3.5	90 90 90	85.5 85.5 85.5	130 130 130	134.5 134.5 134.5	2 2 2	1 1 1	3.00 3.00 3.00
	170 170 170	78 78 78	2.1 2.1 2.1	1.1 1.1 1.1	226 207 242	218 200 233	239 219 256	238 218 255	 13.5	3 800 2 800 5 200	4 700 3 800 6 900	7316BDB	7316DF 7316BDF 7316CDF	7316DT 7316BDT 7316CDT	111.2 143.9 72.5	33.2 65.9 5.5	92 92 92	87 87 87	158 158 158	163 163 163	2 2 2	1 1 1	7.70 7.70 7.70
	200 200	96 96	3 3	1.1 1.1	313 290	332 307				2 400 2 100	3 400 3 100		7416DF 7416BDF	7416DT 7416BDT	130.0 167.2	34.0 71.2	94 94	_	186 186	193 193	2.5 2.5	1 1	12.0 12.0
85	120 120	36 36	1.1 1.1	0.6 0.6	63.2 26.6	81.3 28.4	_		16.5 8.7	6 500 8 200	8 600 13 000	HAR917CDB	7917CDF HAR917CDF	7917CDT HAR917CDT	45.5 45.5	9.5 9.5	92 92		113 113	115.5 115.5	1	0.6 0.6	1.05
	130 130 130	44 44 44	1.1 1.1 1.1	0.6 0.6 0.6	40.8 88.6 79.3	40.2 107 96.7			8.5 — —	7 800 4 400 3 300	12 000 5 500 4 400	7017DB	HAR017CDF 7017DF 7017BDF	HAR017CDT 7017DT 7017BDT	50.8 84.7 113.0	6.8 40.7 69.0	92 92 92		123 123 123	125.5 125.5 125.5	1	0.6 0.6 0.6	1.89 1.94 1.94

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (85) ~ (95) mm

(With machined cages)

(With pressed cages)

Koyo

В	oundar	y dim (mm)	ensio	ns	Ba With mach	asic load		kN) essed cages	Factor	Limiting (min			Bearir	ng No. $^{2)}$	Load c spread			Мо	unting d		ns		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
85	130 150 150	44 56 56	1.1 2 2	0.6 1 1	97.6 160 145	117 167 152	167 151	 178 162	15.9 —	6 000 4 000 3 000	8 000 5 000 4 000	7017CDB 7217DB 7217BDB	7017CDF 7217DF 7217BDF	7017CDT 7217DT 7217BDT	51.1 95.9 126.6	7.1 39.9 70.6	92 95 95	 90.5 90.5	123 140 140	125.5 144.5 144.5	1 2 2	0.6 1 1	1.94 3.74 3.74
	150 180 180	56 82 82	2 3 3	1 1.1 1.1	174 243 223	181 243 223	182 258 236	193 265 244	14.7 —	5 500 3 500 2 700	7 400 4 400 3 500	7217CDB 7317DB 7317BDB	7217CDF 7317DF 7317BDF	7217CDT 7317DT 7317BDT	59.5 117.5 152.2	3.5 35.5 70.2	95 99 99	90.5 92 92	140 166 166	144.5 173 173	2 2.5 2.5	1 1 1	3.74 9.06 9.06
	180 210 210	82 104 104	3 4 4	1.1 1.5 1.5	261 331 307	261 360 334	277 	284 	13.5 —	4 900 2 300 2 000	6 500 3 300 3 000	7317CDB 7417DB 7417BDB	7317CDF 7417DF 7417BDF	7317CDT 7417DT 7417BDT	76.5 137.5 176.2	5.5 33.5 72.2	99 103 103	92 	166 192 192	173 201.5 201.5	2.5 3 3	1 1.5 1.5	9.06 17.1 17.1
90	125 125 140	36 36 48	1.1 1.1 1.5	0.6 0.6 1	64.3 27.3 53.3	85.2 30.2 52.1			16.6 8.8 8.4	6 200 7 800 7 300	8 200 12 000 11 000	7918CDB HAR918CDB HAR018CDB	7918CDF HAR918CDF HAR018CDF	7918CDT HAR918CDT HAR018CDT	46.8 46.8 54.8	10.8 10.8 6.8	97 97 98.5		118 118 131.5	120.5 120.5 134.5	1 1 1.5	0.6 0.6 1	1.10 1.20 2.43
	140 140 140	48 48 48	1.5 1.5 1.5	1	106 94.9 116	127 114 138			— — 15.7	4 100 3 100 5 700	4 100	7018DB 7018BDB 7018CDB	7018DF 7018BDF 7018CDF	7018DT 7018BDT 7018CDT	90.4 120.5 54.8	42.4 72.5 6.8	98.5 98.5 98.5		131.5 131.5 131.5	134.5 134.5 134.5	1.5 1.5 1.5	1 1 1	2.52 2.52 2.52
	160 160 160	60 60 60	2 2 2	1 1 1	183 166 199	193 176 209	191 173 208	206 188 223	 14.6	3 800 2 800 5 200	4 700 3 800 6 900	7218DB 7218BDB 7218CDB	7218DF 7218BDF 7218CDF	7218DT 7218BDT 7218CDT	102.2 134.9 63.5	42.2 74.9 3.5	100 100 100	95.5 95.5 95.5	150 150 150	154.5 154.5 154.5	2 2 2	1 1 1	4.60 4.60 4.60
	190 190 190	86 86 86	3 3 3	1.1 1.1 1.1	261 240 281	270 248 289	277 254 297	294 270 315	 13.5	3 300 2 500 4 600	4 200 3 300 6 100	7318DB 7318BDB 7318CDB	7318DF 7318BDF 7318CDF	7318DT 7318BDT 7318CDT	123.9 160.5 80.5	37.9 74.5 5.5	104 104 104	97 97 97	176 176 176	183 183 183	2.5 2.5 2.5	1 1 1	10.6 10.6 10.6
	225 225	108 108	4 4	1.5 1.5	351 325	393 364		_	_	2 100 1 800	3 100 2 800	7418DB 7418BDB	7418DF 7418BDF	7418DT 7418BDT	145.0 186.2	37.0 78.2	108 108	_	207 207	216.5 216.5	3 3	1.5 1.5	22.8 22.8
95	130 130 145	36 36 48	1.1 1.1 1.5	0.6 0.6 1	65.3 28.1 54.3	88.3 32.1 54.4			16.5 8.8 8.5	5 900 7 400 7 000	7 900 11 000 11 000	7919CDB HAR919CDB HAR019CDB	7919CDF HAR919CDF HAR019CDF	7919CDT HAR919CDT HAR019CDT	48.1 48.1 56.2	12.1 12.1 8.2	102 102 103.5		123 123 136.5	125.5 125.5 139.5	1 1 1.5	0.6 0.6 1	1.15 1.25 2.56
	145	48	1.5		108	134				3 900	4 800	7019DB	7019DF	7019DT	94.5	46.5	103.5		136.5	139.5	1.5	1	2.64

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (95) ~ (105) mm

(With machined cages)

(With pressed cages)

Koyo

Be	oundar	y dim (mm)	ensio	ns		asic load		kN) essed cages	Factor	Limiting s			Bearin	g No. ²⁾	Load c spread			Мо	unting d		ns		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	$C_{ m r}$	C_{0r}	Cr	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	d_{a} min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
95	145 145 170	48 48 64	1.5 1.5 2.1	1 1 1.1	96.8 119 198	121 147 207	 208	 221	 15.9 	2 900 5 300 3 500	3 900 7 100 4 400	7019CDB 7	7019BDF 7019CDF 7219DF	7019BDT 7019CDT 7219DT	126.4 56.7 108.5	78.4 8.7 44.5	103.5 103.5 107	 102	136.5 136.5 158	139.5 139.5 163	1.5 1.5 2	1 1 1	2.64 2.64 5.56
	170 170 200	64 64 90	2.1 2.1 3	1.1 1.1 1.1	180 216 280	188 224 298	188 226 297	201 240 325	 14.6 	2 700 4 900 3 200	3 500 6 500 4 000	7219CDB 7	7219BDF 7219CDF 7319DF	7219BDT 7219CDT 7319DT	143.2 67.5 130.2	79.2 3.5 40.2	107 107 109	102 102 102	158 158 186	163 163 193	2 2 2.5	1 1 1	5.56 5.56 12.2
	200 200	90 90	3 3	1.1 1.1	256 300	273 319	272 318	298 348	 13.5	2 400 4 400	3 200 5 800		7319BDF 7319CDF	7319BDT 7319CDT	168.8 84.5	78.8 5.5	109 109	102 102	186 186	193 193	2.5 2.5	1 1	12.2 12.2
100	140 140 150	40 40 48	1.1 1.1 1.5	0.6 0.6 1	90.2 39.2 55.2	117 43.5 56.7			16.3 8.7 8.5	5 500 7 000 6 700	7 400 11 000 10 000	HAR920CDB H	7920CDF Har920CDF Har020CDF	7920CDT HAR920CDT HAR020CDT	52.1 52.2 57.5	12.1 12.2 9.5	107 107 108.5		133 133 141.5	135.5 135.5 144.5	1 1 1.5	0.6 0.6 1	1.55 1.68 2.64
	150 150 150	48 48 48	1.5 1.5 1.5		111 99.4 122	141 127 154			 16.0	3 800 2 800 5 200	4 700 3 800 6 900	7020BDB 7	7020DF 7020BDF 7020CDF	7020DT 7020BDT 7020CDT	96.2 128.9 57.5	48.2 80.9 9.5	108.5 108.5 108.5	 	141.5 141.5 141.5	144.5 144.5 144.5	1.5 1.5 1.5	1 1 1	2.74 2.74 2.74
	180 180 180	68 68 68	2.1 2.1 2.1	1.1 1.1 1.1	223 202 242	235 214 254	233 211 254	252 229 273	— — 14.6	3 300 2 500 4 600	4 100 3 300 6 100	7220BDB 7	7220DF 7220BDF 7220CDF	7220DT 7220BDT 7220CDT	115.4 152.3 71.8	47.4 84.3 3.8	112 112 112	 107	168 168 168	173 173 173	2 2 2	1 1 1	6.64 6.64 6.64
	215 215 215	94 94 94	3 3 3	1.1 1.1 1.1	298 274 320	323 297 346	337 309 361	387 356 415	 13.4	2 900 2 200 4 000	3 600 2 900 5 300	7320BDB 7	7320DF 7320BDF 7320CDF	7320DT 7320BDT 7320CDT	138.8 180.4 89.6	44.8 86.4 4.4	114 114 114	 107	201 201 201	208 208 208	2.5 2.5 2.5	1 1 1	15.1 15.1 15.1
105	145 145 160	40 40 52	1.1 1.1 2	0.6 0.6 1	92.1 40.4 62.6	123 46.2 65.1			16.4 8.7 8.5	5 300 6 700 6 300	7 100 10 000 9 800	HAR921CDB H	7921CDF Har921CDF Har021CDF	7921CDT HAR921CDT HAR021CDT	53.5 53.5 61.5	13.5 13.5 9.5	112 112 115		138 138 150	140.5 140.5 154.5	1 1 2	0.6 0.6 1	1.62 1.75 3.37
	160 160 160	52 52 52	2 2 2	1 1 1	130 116 143	164 148 179			 15.9	3 500 2 600 4 800	4 400 3 500 6 400	7021BDB 7	7021DF 7021BDF 7021CDF	7021DT 7021BDT 7021CDT	103.7 137.2 62.0	51.7 85.2 10.0	115 115 115		150 150 150	154.5 154.5 154.5	2 2 2	1 1 1	3.46 3.46 3.46
	190	72	2.1	1.1	243	265	_		_	3 100	3 900		7221DF	7221DT	122.1	50.1	117		178	183	2	1	7.90

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (105) ~ (120) mm

(With machined cages)

(With pressed cages)

Koyo

B	oundai	r y dim (mm)	ensio	ns		Basic load i hined cages		N) sed cages	Factor	Limiting (min			Bearin	g No. ²⁾	Load of spread			Мо		dimensio	ons		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{\rm r}$	C_{0r}	$C_{ m r}$	C_{0r}	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	<i>a</i> ₂	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
105	190 190 225	72 72 98	2.1 2.1 3	1.1 1.1 1.1	220 264 337	241 287 386			 14.6 	2 300 4 300 2 800	3 100 5 700 3 500	7221BDB 7221CDB 7321DB	7221BDF 7221CDF 7321DF	7221BDT 7221CDT 7321DT	161.0 75.9 144.3	89.0 3.9 46.3	117 117 119		178 178 211	183 183 218	2 2 2.5	1 1 1	7.90 7.90 17.2
	225 225	98 98	3 3	1.1 1.1	310 362	355 413			 13.4	2 100 3 900	2 800 5 100	7321BDB 7321CDB	7321BDF 7321CDF	7321BDT 7321CDT	187.5 93.2	89.5 4.8	119 119	_	211 211	218 218	2.5 2.5	1 1	17.2 17.2
110	150 150 170	40 40 56	1.1 1.1 2	0.6 0.6 1	93.8 40.8 70.5	129 47.7 73.9			16.5 8.7 8.5	5 100 6 400 6 000	6 800 9 900 9 200	7922CDB HAR922CDB HAR022CDB	7922CDF HAR922CDF HAR022CDF	7922CDT HAR922CDT HAR022CDT	54.8 54.8 65.5	14.8 14.8 9.5	117 117 120		143 143 160	145.5 145.5 164.5	1 1 2	0.6 0.6 1	1.68 1.82 4.22
	170 170 170	56 56 56	2 2 2	1 1 1	149 134 164	186 167 203			 15.7	3 300 2 500 4 600	4 200 3 300 6 100	7022DB 7022BDB 7022CDB	7022DF 7022BDF 7022CDF	7022DT 7022BDT 7022CDT	108.9 145.5 65.5	52.9 89.5 9.5	120 120 120		160 160 160	164.5 164.5 164.5	2 2 2	1 1 1	4.28 4.28 4.28
	200 200 200	76 76 76	2.1 2.1 2.1	1.1 1.1 1.1	263 238 286	297 270 321			 14.5	3 000 2 200 4 100	3 700 3 000 5 400	7222DB 7222BDB 7222CDB	7222DF 7222BDF 7222CDF	7222DT 7222BDT 7222CDT	128.7 169.7 80.1	52.7 93.7 4.1	122 122 122		188 188 188	193 193 193	2 2 2	1 1 1	9.30 9.30 9.30
	240 240 240	100 100 100	3 3 3	1.1 1.1 1.1	377 346 404	452 416 484			 13.4	2 600 1 900 3 500	3 200 2 600 4 700	7322DB 7322BDB 7322CDB	7322DF 7322BDF 7322CDF	7322DT 7322BDT 7322CDT	152.7 199.3 97.7	52.7 99.3 2.3	124 124 124		226 226 226	233 233 233	2.5 2.5 2.5	1 1 1	20.2 20.2 20.2
120	165 165 180	44 44 56	1.1 1.1 2	0.6 0.6 1	117 47.7 72.9	162 56.8 79.9			16.5 8.8 8.5	4 700 5 900 5 600	6 200 9 100 8 600	7924CDB HAR924CDB HAR024CDB	7924CDF HAR924CDF HAR024CDF	7924CDT HAR924CDT HAR024CDT	60.2 60.2 68.2	16.2 16.2 12.2	127 127 130		158 158 170	160.5 160.5 174.5	1 1 2	0.6 0.6 1	2.30 2.49 4.52
	180 180 180	56 56 56	2 2 2	1 1 1	157 140 173	206 186 226			 16.0	3 100 2 300 4 300	3 900 3 100 5 700	7024DB 7024BDB 7024CDB	7024DF 7024BDF 7024CDF	7024DT 7024BDT 7024CDT	114.6 153.9 68.2	58.6 97.9 12.2	130 130 130		170 170 170	174.5 174.5 174.5	2 2 2	1 1 1	4.54 4.54 4.54
	215 215 215	80 80 80	2.1 2.1 2.1	1.1 1.1 1.1	283 257 308	332 302 359			 14.6	2 700 2 100 3 800	3 400 2 800 5 000	7224DB 7224BDB 7224CDB	7224DF 7224BDF 7224CDF	7224DT 7224BDT 7224CDT	137.0 180.5 85.0	57.0 100.5 5.0	132 132 132		203 203 203	208 208 208	2 2 2	1 1 1	11.0 11.0 11.0
	260	110	3	1.1	400	504		—	—	2 400	3 000	7324DB	7324DF	7324DT	164.7	54.7	134	_	246	253	2.5	1	25.2

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (120) ~ (150) mm

(With machined cages)

(With pressed cages)

Koyo

B	oundai	ry dim (mm)	ensio	ns		asic load r	r atings (kl With press		Factor	Limiting s			Bearin	g No. ²⁾	Load of spread			Mo	unting d		ons		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{ m r}$	C_{0r}	$C_{ m r}$	C_{0r}	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a ₂	d_{a} min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
120	260 260	110 110	3 3	1.1 1.1	366 431	462 542	_	_	 13.7	1 800 3 300	2 400 4 400	7324BDB 7324CDB	7324BDF 7324CDF	7324BDT 7324CDT	214.4 105.9	104.4 4.1	134 134	_	246 246	253 253	2.5 2.5	1 1	25.2 25.2
130	180 180 200	48 48 66	1.5 1.5 2		142 57.0 91.5	200 70.3 96.7			16.4 8.8 8.5	4 300 5 400 5 100	5 700 8 300 7 800	7926CDB HAR926CDB HAR026CDB	7926CDF HAR926CDF HAR026CDF	7926CDT HAR926CDT HAR026CDT	65.5 65.5 77.2	17.5 17.5 11.2	138.5 138.5 140		171.5 171.5 190	174.5 174.5 194.5	1.5 1.5 2	1 1 1	3.00 3.32 6.77
	200 200 200	66 66 66	2 2 2	1 1 1	191 171 210	251 226 274	 	 	 15.9	2 800 2 100 3 900	3 500 2 800 5 100	7026DB 7026BDB 7026CDB	7026DF 7026BDF 7026CDF	7026DT 7026BDT 7026CDT	128.3 171.5 77.2	62.3 105.5 11.2	140 140 140		190 190 190	194.5 194.5 194.5	2 2 2	1 1 1	6.86 6.86 6.86
	230 230 230	80 80 80	3 3 3	1.1 1.1 1.1	318 288 346	395 360 428			 14.7	2 500 1 900 3 500	3 200 2 500 4 700	7226DB 7226BDB 7226CDB	7226DF 7226BDF 7226CDF	7226DT 7226BDT 7226CDT	143.9 191.0 88.2	63.9 111.0 8.2	144 144 144		216 216 216	223 223 223	2.5 2.5 2.5	1 1 1	12.4 12.4 12.4
	280 280 280	116 116 116	4 4 4	1.5 1.5 1.5	489 406 478	659 536 629			 13.7	2 200 1 600 3 000	2 700 2 200 4 000	7326DB 7326BDB 7326CDB	7326DF 7326BDF 7326CDF	7326DT 7326BDT 7326CDT	177.5 230.0 112.9	61.5 114.0 3.1	148 148 148		262 262 262	271.5 271.5 271.5	3 3 3	1.5 1.5 1.5	30.8 30.8 30.8
140	190 190 210	48 48 66	1.5 1.5 2		143 57.2 99.6	210 72.4 112	 		16.6 8.8 8.5	4 000 5 100 4 800	5 400 7 800 7 400	7928CDB HAR928CDB HAR028CDB	7928CDF HAR928CDF HAR028CDF	7928CDT HAR928CDT HAR028CDT	68.2 68.2 79.9	20.2 20.2 13.9	148.5 148.5 150	 	181.5 181.5 200	184.5 184.5 204.5	1.5 1.5 2	1 1 1	3.18 3.52 7.24
	210 210 210	66 66 66	2 2 2	1 1 1	194 174 214	265 237 290	 	 	 16.0	2 600 2 000 3 600	3 300 2 600 4 800	7028DB 7028BDB 7028CDB	7028DF 7028BDF 7028CDF	7028DT 7028BDT 7028CDT	134.1 179.8 79.9	68.1 113.8 13.9	150 150 150		200 200 200	204.5 204.5 204.5	2 2 2	1 1 1	7.28 7.28 7.28
	250 250 250	84 84 84	3 3 3	1.1 1.1 1.1	355 320 386	468 426 508			 14.8	2 300 1 700 3 200	2 900 2 300 4 300	7228DB 7228BDB 7228CDB	7228DF 7228BDF 7228CDF	7228DT 7228BDT 7228CDT	154.6 205.6 94.2	70.6 121.6 10.2	154 154 154		236 236 236	243 243 243	2.5 2.5 2.5	1 1 1	15.5 15.5 15.5
	300 300 300	124 124 124	4 4 4	1.5 1.5 1.5	535 491 573	748 688 802			 13.4	2 000 1 500 2 800	2 500 2 000 3 700	7328DB 7328BDB 7328CDB	7328DF 7328BDF 7328CDF	7328DT 7328BDT 7328CDT	189.0 246.6 120.9	65.0 122.6 3.1	158 158 158		282 282 282	291.5 291.5 291.5	3 3 3	1.5 1.5 1.5	37.6 37.6 37.6
150	210	56	2	1	187	263		_	16.3	3 700	4 900	7930CDB	7930CDF	7930CDT	76.2	20.2	160	_	200	204.5	2	1	4.94

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages. B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (150) ~ (170) mm

(With machined cages)

(With pressed cages)

Koyo

Be	oundar	y dim (mm)	ensio	ns		asic load i ined cages	r atings (kN With press		Factor	Limiting (min			Bearin	ng No. 2)	Load of spread			Mo	0	dimensio	ons		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	C_{0r}	f ₀	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT		a ₂	d_{a} min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
150	210 225 225	56 70 70	2 2 2.1	1 1 1.1	79.5 117 222	97.7 132 308			8.7 8.5 —	4 600 4 200 2 400	7 200 6 500 3 000	HAR930CDB HAR030CDB 7030DB	HAR930CDF HAR030CDF 7030DF	HAR930CDT HAR030CDT 7030DT	76.2 85.2 144.2	20.2 15.2 74.2	160 160 162	 	200 215 213	204.5 219.5 218	2 2 2	1 1 1	5.36 8.72 8.86
	225 225 270	70 70 90	2.1 2.1 3	1.1 1.1 1.1	199 245 403	275 337 560			 16.1 	1 800 3 300 2 100	2 400 4 400 2 700	7030BDB 7030CDB 7230DB	7030BDF 7030CDF 7230DF	7030BDT 7030CDT 7230DT	192.3 85.6 166.3	122.3 15.6 76.3	162 162 164		213 213 256	218 218 263	2 2 2.5	1 1 1	8.86 8.86 19.5
	270 270 320	90 90 130	3 3 4	1.1 1.1 1.5	365 439 565	509 607 829			 14.7 	1 600 2 900 1 900	2 100 3 900 2 300	7230BDB 7230CDB 7330DB	7230BDF 7230CDF 7330DF	7230BDT 7230CDT 7330DT	221.2 101.3 200.7	131.2 11.3 70.7	164 164 168	 	256 256 302	263 263 311.5	2.5 2.5 3	1 1 1.5	19.5 19.5 44.8
	320 320	130 130	4 4	1.5 1.5	516 607	760 891			 13.7	1 400 2 600	1 900 3 400	7330BDB 7330CDB	7330BDF 7330CDF	7330BDT 7330CDT	262.2 128.0	132.2 2.0	168 168	_	302 302	311.5 311.5	3 3	1.5 1.5	44.8 44.8
160	220 220 240	56 56 76	2 2 2.1	1 1 1.1	196 81.5 127	289 104 145			16.5 8.8 8.5	3 500 4 200 4 000	4 700 6 400 6 100	7932CDB HAR932CDB HAR032CDB	7932CDF HAR932CDF HAR032CDF	7932CDT HAR932CDT HAR032CDT	78.9 78.9 91.6	22.9 22.9 15.6	170 170 172	 	210 210 228	214.5 214.5 233	2 2 2	1 1 1	5.20 5.66 10.8
	240 240 240	76 76 76	2.1 2.1 2.1	1.1 1.1 1.1	252 225 278	353 316 386			 16.0	2 300 1 700 3 100	2 800 2 300 4 100	7032DB 7032BDB 7032CDB	7032DF 7032BDF 7032CDF	7032DT 7032BDT 7032CDT	153.5 205.8 91.6	77.5 129.8 15.6	172 172 172	 	228 228 228	233 233 233	2 2 2	1 1 1	10.9 10.9 10.9
	290 290 290	96 96 96	3 3 3	1.1 1.1 1.1	374 386 465	525 557 665			 15.2	2 000 1 500 2 700	2 500 2 000 3 600	7232DB 7232BDB 7232CDB	7232DF 7232BDF 7232CDF	7232DT 7232BDT 7232CDT	177.9 236.8 108.3	81.9 140.8 12.3	174 174 174		276 276 276	283 283 283	2.5 2.5 2.5	1 1 1	24.2 24.2 24.2
	340 340 340	136 136 136	4 4 4	1.5 1.5 1.5	592 540 640	909 831 980			 14.0	1 700 1 300 2 400	2 200 1 700 3 200	7332DB 7332BDB 7332CDB	7332DF 7332BDF 7332CDF	7332DT 7332BDT 7332CDT	212.3 277.8 135.0	76.3 141.8 1.0	178 178 168.5	 	322 322 322	331.5 331.5 331.5	3 3 3	1.5 1.5 1.5	52.8 52.8 52.8
170	230 230 260	56 56 84	2 2 2.1	1 1 1.1	199 83.4 149	302 110 173			16.6 8.8 8.5	3 100 4 000 3 700	4 100 6 100 5 700	7934CDB HAR934CDB HAR034CDB	7934CDF HAR934CDF HAR034CDF	7934CDT HAR934CDT HAR034CDT	81.6 81.6 99.6	25.6 25.6 15.6	180 180 182		220 220 248	224.5 224.5 253	2 2 2	1 1 1	6.42 5.94 14.6
	260	84	2.1	1.1	302	429		—	—	2 100	2 600	7034DB	7034DF	7034DT	166.2	82.2	182	—	248	253	2	1	15.2

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (170) ~ 190 mm

(With machined cages)

(With pressed cages)

Koyo

В	ounda	r y dim (mm)	ensio	ns		Basic load achined cages	ratings (k) With press		Factor	Limiting (mi	speeds $^{1)}$ n ⁻¹)		Bearir	ng No. $^{2)}$	Load of spread			Мо	0	dimensio m)	ons		(Refer.) Mass
d	D	B_1	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
170	260 260 310	84 84 104	2.1 2.1 4	1.1 1.1 1.5	270 332 441	386 469 661		 	 15.9 	1 600 2 900 1 800	2 100 3 800 2 300	7034BDB 7034CDB 7234DB	7034BDF 7034CDF 7234DF	7034BDT 7034CDT 7234DT	222.4 99.6 190.6	138.4 15.6 86.6	182 182 188		248 248 292	253 253 301.5	2 2 3	1 1 1.5	15.5 15.1 30.2
	310 310 360	104 104 144	4 4 4	1.5 1.5 1.5	398 482 631	600 719 969			 15.1 	1 400 2 500 1 600	1 800 3 300 2 000	7234BDB 7234CDB 7334DB	7234BDF 7234CDF 7334DF	7234BDT 7234CDT 7334DT	253.4 116.3 225.0	149.4 12.3 81.0	188 188 188		292 292 342	301.5 301.5 351.5	3 3 3	1.5 1.5 1.5	30.2 30.2 62.4
	360 360	144 144	4 4	1.5 1.5	577 679	888 1 040	_	_	 13.8	1 200 2 200	1 600 3 000	7334BDB 7334CDB	7334BDF 7334CDF	7334BDT 7334CDT	294.4 143.0	150.4 1.0	188 188	_	342 342	351.5 351.5	3 3	1.5 1.5	62.4 62.4
180	250 280 280	66 92 92	2 2.1 2.1	1 1.1 1.1	253 344 308	375 506 457			16.4 	2 800 1 900 1 400	3 700 2 400 1 900	7936CDB 7036DB 7036BDB	7936CDF 7036DF 7036BDF	7936CDT 7036DT 7036BDT	90.6 178.8 239.0	24.6 86.8 147.0	190 192 192		240 268 268	244.5 273 273	2 2 2	1 1 1	9.36 20.2 20.4
	280 320 320	92 104 104	2.1 4 4	1.1 1.5 1.5	378 477 430	553 724 657			15.7 — —	2 600 1 700 1 300	3 500 2 200 1 700	7036CDB 7236DB 7236BDB	7036CDF 7236DF 7236BDF	7036CDT 7236DT 7236BDT	107.6 196.3 261.8	15.6 92.3 157.8	192 198 198		268 302 302	273 311.5 311.5	2 3 3	1 1.5 1.5	19.9 31.4 31.4
	320 380 380	104 150 150	4 4 4	1.5 1.5 1.5	520 665 606	786 1 070 976			14.9 — —	2 400 1 500 1 100	3 200 1 900 1 500	7236CDB 7336DB 7336BDB	7236CDF 7336DF 7336BDF	7236CDT 7336DT 7336BDT	119.0 236.7 309.9	15.0 86.7 159.9	198 198 198		302 362 362	311.5 371.5 371.5	3 3 3	1.5 1.5 1.5	31.4 80.0 80.0
190	260 290 290	66 92 92	2 2.1 2.1	1 1.1 1.1	257 353 316	394 535 483			16.5 —	2 700 1 800 1 400	3 600 2 300 1 800	7938CDB 7038DB 7038BDB	7938CDF 7038DF 7038BDF	7938CDT 7038DT 7038BDT	93.3 184.6 247.4	27.3 92.6 155.4	200 202 202		250 278 278	254.5 283 283	2 2 2	1 1 1	9.66 21.6 21.6
	290 340 340	92 110 110	2.1 4 4	1.1 1.5 1.5	388 493 443	585 779 706			15.9 —	2 500 1 600 1 200	3 300 2 000 1 600	7038CDB 7238DB 7238BDB	7038CDF 7238DF 7238BDF	7038CDT 7238DT 7238BDT	110.3 208.0 277.4	18.3 98.0 167.4	202 208 208		278 322 322	283 331.5 331.5	2 3 3	1 1.5 1.5	21.6 37.6 37.6
	340 400 400	110 156 156	4 5 5	1.5 2 2	538 731 668	848 1 200 1 100			15.1 — —	2 200 1 400 1 100	3 000 1 800 1 400	7238CDB 7338DB 7338BDB	7238CDF 7338DF 7338BDF	7238CDT 7338DT 7338BDT	126.0 248.3 325.5	16.0 92.3 169.5	208 212 212		322 378 378	331.5 390 390	3 4 4	1.5 2 2	37.6 91.0 91.0

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectivelv.

d 200 ~ (340) mm

(With machined cages)

(With pressed cages)

Koyo

B	oundar	y dim (mm)	ensio	ns	With m	Basic load achined cages	ratings (k) With press		Factor	Limiting (min			Bearin	g No. $^{2)}$	Load of spread			Мо	0	dimensio	ons		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	<i>a</i> ₂	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	r _b max.	(kg)
200	280 310 310	76 102 102	2.1 2.1 2.1	1.1 1.1 1.1	332 396 355	509 618 558			16.3 —	2 500 1 700 1 300	3 300 2 100 1 700	7940CDB 7040DB 7040BDB	7940CDF 7040DF 7040BDF	7940CDT 7040DT 7040BDT	102.3 198.3 265.0	26.3 96.3 163.0	212 212 212		268 298 298	273 303 303	2 2 2	1 1 1	13.7 25.4 25.4
	310 360 360	102 116 116	2.1 4 4	1.1 1.5 1.5	435 526 474	676 847 768			15.7 —	2 300 1 500 1 100	3 100 1 900 1 500	7040CDB 7240DB 7240BDB	7040CDF 7240DF 7240BDF	7040CDT 7240DT 7240BDT	119.3 219.7 292.9	17.3 103.7 176.9	212 218 218		298 342 342	303 351.5 351.5	2 3 3	1 1.5 1.5	25.4 44.8 44.8
	360 420 420	116 160 160	4 5 5	1.5 2 2	575 770 702	921 1 320 1 200			15.1 — —	2 100 1 300 1 000	2 800 1 700 1 300	7240CDB 7340DB 7340BDB	7240CDF 7340DF 7340BDF	7240CDT 7340DT 7340BDT	133.0 259.0 340.1	17.0 99.0 180.1	218 222 222		342 398 398	351.5 410 410	3 4 4	1.5 2 2	44.8 104 104
220	340 340	112 112	3 3	1.1 1.1	434 389	705 636				1 500 1 100	1 900 1 500	7044DB 7044BDB	7044DF 7044BDF	_	217.8 290.9	105.8 178.9	234 234		326 326	333 333	2.5 2.5	1 1	37.0 37.8
240	360 360 440 440	112 112 144 144	3 3 4 4	1.1 1.1 1.5 1.5	443 397 655 589	751 677 1 190 1 080		 		1 400 1 000 1 200 890	1 700 1 400 1 500 1 200	7048DB 7048BDB 7248DB 7248BDB	7048DF 7048BDF 7248DF 7248DF	 	229.2 307.7 268.3 357.3	117.2 195.7 124.3 213.3	254 254 258 258	 	346 346 422 422	353 353 431.5 431.5	2.5 2.5 3 3	1 1 1.5 1.5	39.4 40.2 104 106
260	400 400	130 130	4 4	1.5 1.5	529 473	956 862		_	_	1 200 910	1 500 1 200	7052DB 7052BDB	7052DF 7052BDF		256.7 341.9	126.7 211.9	278 278		382 382	391.5 391.5	3 3	1.5 1.5	57.4 58.6
280	420 420	130 130	4 4	1.5 1.5	540 483	1 010 906			—	1 100 850	1 400 1 100	7056DB 7056BDB	7056DF 7056BDF	_	267.1 358.7	137.1 228.7	298 298		402 402	411.5 411.5	3 3	1.5 1.5	60.8 62.0
300	460 460	148 148	4 4	1.5 1.5	693 621	1 360 1 230	_	_	_	1 000 770	1 300 1 000	7060DB 7060BDB	7060DF 7060BDF	_	293.4 392.9	145.4 244.9	318 318	_	442 442	451.5 451.5	3 3	1.5 1.5	87.4 89.8
320	480 480	148 148	4 4	1.5 1.5	710 636	1 440 1 300		_	_	950 710	1 200 950	7064DB 7064BDB	7064DF 7064BDF	_	304.9 409.6	156.9 261.6	338 338	_	462 462	471.5 471.5	3 3	1.5 1.5	92.0 94.4
340	520	164	5	2	816	1 720	_	_	—	860	1 100	7068DB	7068DF	—	330.3	166.3	362	_	498	510	4	2	124

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value.

For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

2) B, C or no indication after the bearing number indicates nominal contact angle of 40°, 15° and 30° respectively.

d (340) ~ 380 mm

(With machined cages)

(With pressed cages)

Koyo

B	ounda	ry dim (mm)		ons		Basic load chined cages	ratings (kl With press		Factor	Limiting (min			Bearing	No. ²⁾	Load of spread			Mo	, v	dimensi m)	ons		(Refer.) Mass
d	D	B_1	<i>r</i> min.	r_1 min.	C_{r}	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Back-to-back DB	Face-to-face DF	Tandem DT	<i>a</i> ₁	a_2	$d_{ m a}$ min.	$d_{ m b}$ min.	$D_{ m a}$ max.	$D_{ m b}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	(kg)
340	520	164	5	2	731	1 550		_	_	640	860	7068BDB	7068BDF	—	442.8	278.8	362		498	510	4	2	127
360	540 540	164 164	5 5	2 2	837 750	1 830 1 650	_	_	_	800 600	1 000 800	7072DB 7072BDB	7072DF 7072BDF		341.8 459.6	177.8 295.6	382 382	_	518 518	530 530	4 4	2 2	129 132
380	560 560	164 164	5 5	2 2	858 767	1 930 1 740				750 560	940 750	7076DB 7076BDB	7076DF 7076BDF		353.4 476.4	189.4 312.4	402 402	_	538 538	550 550	4 4	2 2	134 138

[Notes] 1) Limiting speeds shown above are applicable to machined cage bearings. Limiting speeds of pressed cage bearings should be kept to under 80% of this value. For bearings with 15° contact angle, this figure is applied to the high precision bearings ranked higher than class 5, used with machined cages or molded cages.

Double-row angular contact ball bearings

d **10** ~ (**40**) mm

 $\oint \phi d$

Koyo

Boun	dary	dimens	sions	Bas	ic load i	ratings (1	xN)	Limiting	speeds (min ⁻¹)	Be	aring No.		Load center	Мо	unting d	mension	s ¹⁾	(Refer.)
	(m	m)		Ope	en	Shielded	l/sealed	Greas	e lub.	Oil lub.		0		spread (mm)		(m	m)		Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Open Z, ZZ	(RS, 2RS)	${Open \choose Z}$	Open	Shielded	Sealed	Open a	d min.	a max.	$D_{ m a}$ max.	r _a max.	(kg)
10	30	14.3	0.6	7.35	5.35	_	—	15 000	—	20 000	3200	—	—	19.5	14.5	—	25.5	0.6	0.05
12	32	15.9	0.6	9.70	7.15	_	_	14 000	_	18 000	3201	—		21.7	16.5	_	27.5	0.6	0.06
15		15.9 19	0.6 1	9.70 15.2	7.45 11.9			12 000 10 000		16 000 14 000	3202 3302	_		23.6 27.6	19.5 20.5	_	30.5 36.5	0.6 1	0.07 0.13
17	40	17.5 17.5 22.2	0.6 0.6 1	13.8 13.2 21.7	10.8 8.15 17.1	 12.7 	 8.35 	11 000 11 000 9 400	 11 000 	14 000 14 000 13 000	3203 5203 3303	5203 ZZ	5203 2RS	26.6 20.0 31.0	21.5 21.5 22.5	 23.5 	35.5 35.5 41.5	0.6 0.6 1	0.100 0.091 0.192
20	47	20.6 20.6 22.2	1 1 1.1	17.2 19.7 20.8	15.0 12.5 18.4	 16.0 	 10.8 	9 000 8 800 8 200	8 800	12 000 12 000 11 000	3204 5204 3304	5204 ZZ	5204 2RS	31.5 23.5 33.8	25.5 25.5 27	 26.6 	41.5 41.5 45	1 1 1	0.170 0.120 0.230
	52	22.2	1.1	24.7	15.0	19.8	12.8	8 300	8 300	11 000	5304	5304 ZZ	5304 2RS	25.9	27	28.3	45	1	0.23
25	52 62	20.6 20.6 25.4	1 1 1.1	18.9 21.4 28.9	18.2 14.8 26.5			7 800 7 700 6 800	 7 700 	10 000 10 000 9 100	3205 5205 3305	 5205 ZZ 	5205 2RS	34.4 26.1 40.5	30.5 30.5 32		46.5 46.5 55	1 1 1	0.190 0.190 0.369 0.340
30	62 62 72	25.4 23.8 23.8 30.2 30.2	1.1 1 1.1 1.1	32.7 27.3 29.7 38.1 41.0	20.8 27.0 21.3 36.1 28.5	27.5 25.4 34.3	18.5 18.3 25.2	6 900 6 500 6 400 5 800 5 800	6 900 6 400 5 800	9 200 8 700 8 600 7 800 7 700	5305 3206 5206 3306 5306	5305 ZZ	5305 2RS 	31.1 40.7 30.8 47.2 36.2	32 35.5 35.5 37 37	33.4 38.6 41.3	55 56.5 56.5 65 65	1 1 1 1 1	0.34
35			1.1 1.1 1.5 1.5	36.8 39.2 48.6 51.2	37.5 29.0 46.8 36.2	 31.7 46.1	 24.6 32.8	5 600 5 500 5 200 5 100	5 500 — 5 100	7 500 7 300 7 000 6 800	3207 5207 3307 5307	5207 ZZ 5307 ZZ	5207 2RS 	46.9 36.1 53.4 41.0	42 42 43.5 43.5	 43.9 45.5	65 65 71.5 71.5	1 1 1.5 1.5	0.480 0.430 0.810 0.790
40	80	30.2	1.1	42.0	43.9		_	5 000		6 700	3208	_		52.6	47		73	1	0.65

[Note] 1) The maximum value of d_a is applied to shielded and sealed type bearings.

Double-row angular contact ball bearings

d (40) ~ (70) mm

Koyo

Bour	ndary o (m	dimens m)	sions		sic load		∝N) d∕sealed	Limiting Greas	s peeds (e lub.	min ⁻¹) Oil lub.	В	earing No.		Load center spread (mm)		(m	imension	s ¹⁾	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	$\left(\begin{smallmatrix} Open \\ Z, ZZ \end{smallmatrix} \right)$	(RS, 2RS)	${Open \choose Z}$	Open	Shielded	Sealed	Open a	d min.	a max.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
40	90	30.2 36.5 36.5	1.1 1.5 1.5	44.4 54.1 62.7	33.6 53.8 45.4	36.5 — 51.4	29.1 37.8	5 000 4 600 4 600	5 000 4 600	6 700 6 100 6 100	5208 3308 5308	5208 ZZ 	5208 2RS 	39.2 58.9 44.9	47 48.5 48.5	49.5 52.1	73 81.5 81.5	1 1.5 1.5	0.570 1.07 1.05
45	85	30.2 30.2 39.7 39.7	1.1 1.1 1.5 1.5	45.4 49.9 66.1 75.1	51.4 38.4 67.3 55.7	 41.7 68.9	 33.9 51.4	4 600 4 600 4 100 4 100 4 100	4 600 — 4 100	6 100 6 100 5 500 5 500	3209 5209 3309 5309	5209 ZZ 5309 ZZ	5209 2RS 	56.3 42.2 65.6 51.0	52 52 53.5 53.5	 55.3 58.2	78 78 91.5 91.5	1 1 1.5 1.5	0.710 0.620 1.42 1.42
50			1.1 1.1 2 2	45.1 53.3 86.1 88.5	52.1 43.6 88.6 67.0	44.1 — 81.8	37.9 — 62.2	4 300 4 300 3 800 3 600	4 300 — 3 600	5 700 5 600 5 000 4 800	5210	5210 ZZ 	5210 2RS 	58.8 44.5 71.7 56.6	57 57 60 60	— 58.9 — 64.4	83 83 100 100	1 1 2 2	0.760 0.670 1.95 1.93
55	100 100 120 120	33.3 49.2	1.5 1.5 2 2	50.9 65.9 101 110	60.2 55.2 106 85.1	 52.9 95.7	 44.7 74.3	3 900 3 800 3 400 3 300	 3 800 3 300	5 100 5 100 4 500 4 500	5211	5211 ZZ 	5211 2RS 	65.0 50.2 79.3 61.6	63.5 63.5 65 65	 66.2 71.8	91.5 91.5 110 110	1.5 1.5 2 2	1.05 0.960 2.53 2.30
60	110 110 130 130	36.5 54	1.5 1.5 2.1 2.1	64.0 74.4 125 126	76.8 60.8 132 98.7	62.6 — 110	 55.9 87.1	3 500 3 500 3 100 3 100	 3 500 3 100	4 700 4 700 4 200 4 100	5212	5212 ZZ 	5212 2RS 	71.3 53.8 87.4 67.2	68.5 68.5 72 72	 74.1 79.2	101.5 101.5 118 118	1.5 1.5 2 2	1.40 1.36 3.24 3.16
65	120 120 140 140	38.1 58.7	1.5 1.5 2.1 2.1	76.4 86.9 142 142	97.4 75.3 153 113	69.2 — 142	63.1 — 113	3 200 3 200 2 900 2 900	3 200 — 2 900	4 300 4 300 3 900 3 900	3213 5213 3313 5313	5213 ZZ 	5213 2RS 	76.8 58.8 92.7 70.9	73.5 73.5 77 77	 79.0 85.9	111.5 111.5 128 128	1.5 1.5 2 2	1.75 1.66 4.08 3.91
70	125 125 150	39.7	1.5 1.5 2.1	77.9 94.5 151	96.4 82.6 160		 70.3 	3 100 3 100 2 700	 3 100 	4 100 4 100 3 600	3214 5214 3314	5214 ZZ	5214 2RS	80.7 61.4 99.7	78.5 78.5 82	 83.5 	116.5 116.5 138	1.5 1.5 2	1.92 1.81 5.04

RS

2RS

[Note] 1) The maximum value of d_a is applied to shielded and sealed type bearings.
Double-row angular contact ball bearings

d (**70**) ~ **110 mm**

Koyo

Bour		dimens nm)	sions		isic load i pen		(kN) ed/sealed	Limiting Greas	s peeds (: e lub.	min ⁻¹) Oil lub.	Be	earing No.		Load center spread (mm)		(n	imension m)	S ¹⁾	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Open Z, ZZ	(RS, 2RS)	${Open \brack Z}$	Open	Shielded	Sealed	Open a	a min.	a max.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
70	150	63.5	2.1	160	129	160	129	2 700	2 700	3 600	5314	5314 ZZ	5314 2RS	76.0	82	92.9	138	2	4.89
75	130 160 160	41.3 68.3 68.3	1.5 2.1 2.1	92.4 169 174	120 189 147	 174	 147	2 900 2 500 2 500	 2 500	3 900 3 300 3 300	3215 3315 5315	 5315 ZZ	 5315 2RS	84.7 108.7 81.5	83.5 87 87	 99.6	121.5 148 148	1.5 2 2	2.10 6.16 5.97
80	140 170	44.4 68.3	2 2.1	97.5 184	121 213		_	2 700 2 400		3 600 3 100	3216 3316			90.7 113.1	90 92		130 158	2 2	2.64 6.93
85	150 180	49.2 73	2 3	114 188	143 219			2 500 2 200	_	3 400 3 000	3217 3317	_		98.4 118.8	95 99		140 166	2 2.5	3.39 8.30
90	160 190	52.4 73	2 3	132 205	167 242	_		2 400 2 100	_	3 100 2 800	3218 3318			104.1 125.5	100 104	_	150 176	2 2.5	4.14 9.23
95	170 200	55.6 77.8	2.1 3	152 218	193 270	_	_	2 200 2 000	_	3 000 2 600	3219 3319			110.6 132.2	107 109	_	158 186	2 2.5	5.00 10.9
100	180 215	60.3 82.6	2.1 3	172 249	221 324	_	_	2 100 1 800	_	2 800 2 500	3220 3320			116.8 140.4	112 114	_	168 201	2 2.5	6.10 13.5
105	190 225	65.1 87.3	2.1 3	182 265	237 354	_	_	2 000 1 800	_	2 600 2 300	3221 3321			124.2 148.1	117 119	_	178 211	2 2.5	7.37 15.6
110	200 240	69.8 92.1	2.1 3	201 281	263 388	_	_	1 900 1 600	_	2 500 2 200	3222 3322			131.4 156.4	122 124	_	188 226	2 2.5	8.80 18.9

DO

RS

DO

2RS

Contact sealed

[Note] 1) The maximum value of d_a is applied to shielded and sealed type bearings.

Four-point contact ball bearings -

d **20** ~ **75 mm**

В	oundary d			Basic loa	d ratings N)	(mi	s speeds n^{-1})	Bearing No.	Load center spread		ing dime (mm)		(Refer.) Mass
d	D	В	r min.	Cr	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.		(mm) a	$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	(kg)
20	47 52	14 15	1 1.1	23.5 27.4	15.3 18.1	12 000 11 000	16 000 15 000	6204BI 6304BI	23.5 25.2	25.5 27.0	41.5 45	1 1	0.129 0.179
25	52 62	15 17	1 1.1	26.7 40.8	18.8 28.0	10 000 9 200	14 000 13 000	6205BI 6305BI	27.0 30.5	30.5 32	46.5 55	1 1	0.156 0.285
30	62 72	16 19	1 1.1	36.3 49.5	27.6 36.6	8 600 7 800	12 000 11 000	6206BI 6306BI	32.6 35.7	35.5 37	56.5 65	1 1	0.241 0.426
35	72 80	17 21	1.1 1.5	47.1 61.2	36.7 46.4	7 500 7 000	10 000 9 600	6207BI 6307BI	37.5 40.3	42 43.5	65 71.5	1 1.5	0.351 0.565
40	80 90	18 23	1.1 1.5	55.9 74.1	46.5 57.6	6 600 6 200	9 000 8 500	6208BI 6308BI	42.7 45.5	47 48.5	73 81.5	1 1.5	0.451 0.778
45	85 100	19 25	1.1 1.5	58.7 87.9	51.3 70.0	6 100 5 500	8 400 7 600	6209BI 6309BI	45.9 50.8	52 53.5	78 91.5	1 1.5	0.512 1.04
50	90 110	20 27	1.1 2	65.4 103	58.0 83.7	5 700 5 000	7 900 6 900	6210BI 6310BI	49.0 56.0	57 60	83 100	1 2	0.575 1.35
55	100 120	21 29	1.5 2	80.0 119	72.3 98.5	5 200 4 500	7 100 6 200	6211BI 6311BI	54.3 61.3	63.5 65	91.5 110	1.5 2	0.763 1.72
60	110 130	22 31	1.5 2.1	91.7 145	87.6 126	4 600 4 100	6 300 5 700	6212BI 6312BI	60.6 67.2	68.5 72	101.5 118	1.5 2	0.983 2.17
65	120 140	23 33	1.5 2.1	95.1 164	90.1 145	4 300 3 800	5 900 5 300	6213BI 6313BI	64.8 72.1	73.5 77	111.5 128	1.5 2	1.23 2.67
70	125 150	24 35	1.5 2.1	103 184	99.0 165	4 100 3 600	5 600 4 900	6214BI 6314BI	68.3 77.0	78.5 82	116.5 138	1.5 2	1.35 3.25
75	130 160	25 37	1.5 2.1	108 200	108 187	3 900 3 400	5 300 4 600	6215BI 6315BI	71.8 82.3	83.5 87	121.5 148	1.5 2	1.47 3.90

Four-point contact ball bearings -

d 80 ~ 110 mm

	oundary d	m)	1 s	0	ad ratings kN)		speeds n ⁻¹)	Bearing No.	Load center spread (mm)	Mount d _a	ting dime (mm) Da	ensions	(Refer.) Mass
d	D	В	min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	lub.	Oil lub.		a	min.	max.	max.	(kg)
80	140 170	26 39	2 2.1	126 217	128 210	3 600 3 100	4 900 4 300	6216BI 6316BI	77.0 87.5	90 92	130 158	2 2	1.80 4.63
85	150 180	28 41	2 3	146 234	150 234	3 400 3 000	4 600 4 100	6217BI 6317BI	82.3 92.8	95 99	140 166	2 2.5	2.25 5.45
90	160 190	30 43	2 3	167 252	173 260	3 100 2 800	4 300 3 800	6218BI 6318BI	87.5 98.0	100 104	150 176	2 2.5	2.77 6.36
95	170 200	32 45	2.1 3	190 269	198 287	3 000 2 600	4 100 3 600	6219BI 6319BI	92.8 103.3	107 109	158 186	2 2.5	3.37 7.37
100	180	34	2.1	201	213	2 800	3 800	6220BI	98.0	112	168	2	4.02
110	200	38	2.1	242	275	2 500	3 400	6222BI	108.5	122	188	2	5.64

Kovo

Self-aligning ball bearings

Self-aligning ball bearings have a spherical outer ring raceway, the center of whose curvature meets that of the bearing itself, so that the inner ring, balls and cage continue to rotate, aligning themselves if they have become misaligned within design limits.

This type of bearing is suitable when the displacement of the centers around which the shaft and housing rotate and shaft deflection are likely to occur.

Bearings with a tapered bore can easily be fit to the shaft with an adapter assembly.

 θ : Allowable aligning angle

Cylindrical bore Tapered bore

Bore diameter 5-110 mm

Self-aligning ball bearings

Extended inner ring type

Bore diameter 17 - 100 mm

	F
Yo The	
120	
Re	
	Re

Boundary	The dimensions of standard series are as
dimensions	specified in JIS B 1512.
Tolerances	As specified in JIS B 1514-1, class 0. (refer to Table 7-3 on pp. A 54 – A 57.)
Radial internal	As specified in JIS B 1520.
clearance	(refer to Table 10-6 on p. A 99.)
Recommended fits	Refer to Table 9-4 on pp. A 85, 86.
Standard cages	 Staggered type pressed steel cage (application : all dimensional range of 12, 13, 112, 113, 222RS and 232RS series) Snap type pressed steel cage (application : all dimensional range of 22 series and those of No. 2300 thru 2316.) Copper alloy machined cage (application : bearings of No. 2317 thru 2322)
Allowable aligning angle	12 and 22 series

Dynamic e P _r =XF _r	•		ial load	k
	$F_{\rm a}/F$	$r_r \leq e$	$F_{\rm a}/F$	$r_{\rm r} > e$
	X	Y	X	Y
	1	Y_1	0.65	Y_2
Static equi	valent	radial	load	
$P_{0r} = F_r$	$+ Y_0 F_a$	1		
S	pecific	ation	bearing table f_{1} , Y_{2} a	

d 5 ~ (20) mm

Koyo

Cylindrical bore

Tapered bore

Boi	undary o		ons	Basic load	0	Limiting (min		Beari	ng No.	Mounti	ng dime	ensions	Con- stant	Axia	l load fa	ctors	(Refer.) M	ass (kg)
d	D	B	<i>r</i> min.		$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	D _a max.	$r_{ m a}$ max.	e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
5	19	6	0.3	2.55	0.48	30 000	37 000	135	—	7	17	0.3	0.34	1.86	2.87	1.94	0.009	_
6	19	6	0.3	2.50	0.48	30 000	37 000	126	—	8	17	0.3	0.34	1.86	2.87	1.94	0.009	—
7	22	7	0.3	2.65	0.56	27 000	33 000	127	_	9	20	0.3	0.35	1.82	2.82	1.91	0.014	_
8	22	7	0.3	2.60	0.56	26 000	33 000	108	_	10	20	0.3	0.35	1.82	2.82	1.91	0.014	_
9	26	8	0.6	3.80	0.80	23 000	29 000	129	_	13	22	0.6	0.34	1.86	2.87	1.94	0.022	_
10	30 30 35	9 14 11	0.6 0.6 0.6	5.50 7.40 7.25	1.20 1.60 1.60	23 000 23 000 20 000	28 000 29 000 24 000	1200 2200 1300		14 14 14	26 26 31	0.6 0.6 0.6	0.33 0.59 0.34	1.92 1.07 1.85	2.97 1.65 2.87	2.01 1.12 1.94	0.034 0.047 0.058	
	35	17	0.6	9.30	2.10	18 000	24 000	2300		14	31	0.6	0.59	1.07	1.66	1.13	0.085	
12	32 32 37 37	10 14 12 17	0.6 0.6 1 1	5.60 7.65 9.40 9.70	1.25 1.75 2.15 2.30	21 000 21 000 18 000 16 000	26 000 26 000 22 000 22 000	1201 2201 1301 2301	 	16 16 17 17	28 28 32 32	0.6 0.6 1 1	0.33 0.53 0.36 0.54	1.89 1.18 1.77 1.17	2.93 1.83 2.74 1.81	1.98 1.24 1.86 1.23	0.040 0.053 0.067 0.095	
15	35 35 42 42	11 14 13 17	0.6 0.6 1 1	7.45 7.70 9.55 12.1	1.75 1.85 2.30 2.90	18 000 18 000 16 000 14 000	22 000 22 000 20 000 20 000	1202 2202 1302 2302	 	19 19 20 20	31 31 37 37	0.6 0.6 1 1	0.33 0.50 0.34 0.50	1.90 1.27 1.86 1.27	2.95 1.97 2.88 1.96	2.00 1.33 1.95 1.33	0.049 0.060 0.094 0.114	
17	40 40 47 47	12 16 14 19	0.6 0.6 1 1	7.90 9.80 12.5 14.5	2.00 2.40 3.20 3.60	16 000 16 000 14 000 13 000	20 000 20 000 17 000 18 000	1203 2203 1303 2303	 	21 21 22 22	36 36 42 42	0.6 0.6 1 1	0.31 0.50 0.33 0.49	2.03 1.27 1.92 1.28	3.14 1.96 2.97 1.98	2.12 1.33 2.01 1.34	0.073 0.088 0.130 0.158	
20	47 47 52	14 18 15	1 1 1.1	9.90 12.6 12.4	2.60 3.30 3.30	14 000 14 000 13 000	17 000 17 000 15 000	1204 2204 1304	1204K 2204K 1304K	25 25 26.5	42 42 45.5	1 1 1	0.29 0.48 0.30	2.16 1.31 2.12	3.35 2.02 3.28	2.27 1.37 2.22	0.120 0.140 0.163	0.118 0.136 0.161

d (20) ~ 50 mm

Koyo

Cylindrical bore

Tapered bore

Во	undary o		ons	Basic loa	0	Limiting		Bearir	ng No.	Mounti	0	nsions	Con-	Axia	l load fa	ctors	(Refer.) Ma	ass (kg)
d	(m D	m) B	<i>r</i> min.	(kl C _r	C_{0r}	(min Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	(mm) Da max.	r _a max.	stant e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
20	52	21	1.1	18.0	4.70	11 000	15 000	2304	2304K	26.5	45.5	1	0.49	1.29	2.00	1.35	0.209	0.205
25	52 52 62 62	15 18 17 24	1 1 1.1 1.1	12.1 12.6 18.0 24.4	3.30 3.50 5.00 6.60	12 000 12 000 9 900 9 400	14 000 15 000 12 000 13 000	1205 2205 1305 2305	1205K 2205K 1305K 2305K	30 30 31.5 31.5	47 47 55.5 55.5	1 1 1	0.28 0.40 0.27 0.46	2.28 1.58 2.31 1.36	3.52 2.45 3.57 2.10	2.39 1.66 2.42 1.42	0.141 0.163 0.257 0.335	0.138 0.158 0.252 0.327
30	62 62 72 72	16 20 19 27	1 1 1.1 1.1	15.6 15.6 21.3 31.4	4.65 4.65 6.30 8.75	9 900 10 000 8 700 8 000	12 000 12 000 11 000 11 000	1206 2206 1306 2306	1206K 2206K 1306K 2306K	35 35 36.5 36.5	57 57 65.5 65.5	1 1 1	0.25 0.35 0.26 0.44	2.55 1.79 2.40 1.44	3.94 2.77 3.72 2.23	2.67 1.87 2.52 1.51	0.220 0.260 0.387 0.500	0.216 0.254 0.381 0.489
35	72 72 80 80	17 23 21 31	1.1 1.1 1.5 1.5	15.8 21.6 25.1 39.4	5.10 6.60 7.85 11.3	8 500 8 500 7 600 7 100	10 000 10 000 9 300 9 800	1207 2207 1307 2307	1207K 2207K 1307K 2307K	41.5 41.5 43 43	65.5 65.5 72 72	1 1 1.5 1.5	0.23 0.37 0.25 0.45	2.71 1.71 2.48 1.39	4.20 2.65 3.84 2.15	2.84 1.79 2.60 1.46	0.323 0.403 0.510 0.675	0.317 0.396 0.502 0.657
40	80 80 90 90	18 23 23 33	1.1 1.1 1.5 1.5	19.2 22.4 29.5 44.9	6.50 7.40 9.70 13.5	7 500 7 600 6 900 6 200	9 200 9 300 8 400 8 600	1208 2208 1308 2308	1208K 2208K 1308K 2308K	46.5 46.5 48 48	73.5 73.5 82 82	1 1 1.5 1.5	0.22 0.33 0.25 0.43	2.83 1.92 2.57 1.47	4.38 2.96 3.98 2.27	2.97 2.01 2.69 1.54	0.417 0.505 0.715 0.925	0.411 0.494 0.704 0.903
45	85 85 100 100	19 23 25 36	1.1 1.1 1.5 1.5	21.8 23.3 38.1 54.4	7.35 8.15 12.7 16.7	7 000 7 000 6 100 5 600	8 500 8 500 7 500 7 700	1209 2209 1309 2309	1209K 2209K 1309K 2309K	51.5 51.5 53 53	78.5 78.5 92 92	1 1 1.5 1.5	0.21 0.30 0.25 0.42	2.94 2.09 2.56 1.51	4.56 3.23 3.95 2.33	3.09 2.19 2.68 1.58	0.465 0.545 0.957 1.23	0.459 0.533 0.942 1.20
50	90 90 110 110	20 23 27 40	1.1 1.1 2 2	22.7 23.3 43.4 64.6	8.10 8.50 14.1 20.3	6 500 6 500 5 600 5 100	7 900 7 900 6 800 7 000	1210 2210 1310 2310	1210K 2210K 1310K 2310K	56.5 56.5 59 59	83.5 83.5 101 101	1 1 2 2	0.21 0.27 0.23 0.40	3.07 2.33 2.70 1.56	4.76 3.61 4.17 2.41	3.22 2.45 2.83 1.63	0.525 0.590 1.21 1.64	0.515 0.577 1.19 1.60

d 55 ~ (85) mm

 C_1

[Note] Protruding distance of balls

Balls of the following bearing protrude by C_1 from the bearing side.

Bearing No.	$C_1(\mathrm{mm})$
2216	0.2 (approx.)

Cylindrical bore

Tapered bore

Bo	undary d		ons	Basic load		Limiting		Bearir	ng No.	Mount	ing dim	ensions	Con-	Axia	l load fa	ctors	(Refer.) Ma	ass (kg)
d	(mi D	m) B	<i>r</i> min.	(kľ C _r	C_{0r}	(min Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	(mm) $D_{ m a}$ max.	$r_{ m a}$ max.	stant e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
55	100	21	1.5	26.8	10.0	5 800	7 100	1211	1211K	63	92	1.5	0.20	3.19	4.94	3.34	0.705	0.693
	100	25	1.5	26.8	10.0	5 800	7 100	2211	2211K	63	92	1.5	0.27	2.35	3.64	2.47	0.810	0.792
	120	29	2	51.3	17.9	5 000	6 200	1311	1311K	64	111	2	0.23	2.70	4.18	2.83	1.58	1.56
	120	43	2	75.3	24.0	4 600	6 400	2311	2311K	64	111	2	0.41	1.53	2.37	1.60	2.10	2.05
60	110	22	1.5	30.2	11.5	5 200	6 400	1212	1212K	68	102	1.5	0.19	3.37	5.22	3.53	0.900	0.885
	110	28	1.5	34.1	12.6	5 300	6 500	2212	2212K	68	102	1.5	0.28	2.26	3.49	2.36	1.09	1.07
	130	31	2.1	57.2	20.8	4 500	5 500	1312	1312K	71	119	2	0.22	2.91	4.50	3.05	1.96	1.93
	130	46	2.1	87.2	28.3	4 200	5 800	2312	2312K	71	119	2	0.39	1.62	2.51	1.70	2.60	2.53
65	120	23	1.5	31.0	12.5	4 800	5 800	1213	1213K	73	112	1.5	0.17	3.67	5.68	3.84	1.15	1.13
	120	31	1.5	43.5	16.4	4 900	5 900	2213	2213K	73	112	1.5	0.28	2.24	3.47	2.35	1.46	1.43
	140	33	2.1	61.7	22.9	4 300	5 200	1313	1313K	76	129	2	0.23	2.73	4.23	2.86	2.45	2.41
	140	48	2.1	95.8	32.5	3 800	5 300	2313	2313K	76	129	2	0.38	1.66	2.58	1.74	3.23	3.15
70	125	24	1.5	34.6	13.8	4 600	5 700	1214	_	78	117	1.5	0.18	3.48	5.38	3.64	1.26	
	125	31	1.5	43.9	17.1	4 600	5 600	2214	_	78	117	1.5	0.26	2.42	3.74	2.53	1.52	_
	150	35	2.1	74.0	27.7	4 000	4 900	1314	—	81	139	2	0.22	2.84	4.40	2.98	2.99	—
	150	51	2.1	89.6	31.7	3 600	4 900	2314	—	81	139	2	0.35	1.82	2.82	1.91	4.23	
75	130	25	1.5	38.8	15.7	4 300	5 300	1215	1215K	83	122	1.5	0.17	3.60	5.58	3.77	1.36	1.34
	130	31	1.5	44.2	17.8	4 300	5 300	2215	2215K	83	122	1.5	0.25	2.49	3.85	2.61	1.62	1.58
	160	37	2.1	78.9	29.9	4 000	4 900	1315	1315K	86	149	2	0.23	2.80	4.33	2.93	3.56	3.51
	160	55	2.1	103	36.8	3 400	4 600	2315	2315K	86	149	2	0.34	1.86	2.88	1.95	5.13	5.01
80	140	26	2	39.8	17.0	4 000	4 900	1216	1216K	89	131	2	0.16	3.90	6.03	4.08	1.67	1.64
	140	33	2	49.0	19.9	4 100	5 000	2216	2216K	89	131	2	0.26	2.42	3.75	2.54	2.01	1.97
	170	39	2.1	88.1	33.1	3 500	4 300	1316	1316K	91	159	2	0.22	2.90	4.49	3.04	4.18	4.12
	170	58	2.1	129	45.7	3 100	4 300	2316	2316K	91	159	2	0.34	1.87	2.90	1.96	6.10	5.96
85	150	28	2	49.2	20.8	3 800	4 600	1217	1217K	94	141	2	0.17	3.61	5.59	3.78	2.07	2.04

Koyo

 C_1

[Note] Protruding distance of balls

Balls of the following bearing protrude by C_1 from the bearing side.

Bearing No.	C_1	(mm)
1319	1.6	
1320	2.5	()
1321	2.5	(approx.)
1322	2.6	

Cylindrical bore

Tapered bore

Bo	undary d		ons	Basic loa	0	Limiting	•	Bearin	ng No.	Mount	ing dim	ensions	Con-	Axia	l load fa	ctors	(Refer.) Ma	ass (kg)
d	(mı D	m) <i>B</i>	<i>r</i> min.	(kl C _r	N) C _{0r}	(min Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	(mm) Da max.	$r_{ m a}$ max.	stant e	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
85	150	36	2	58.3	23.6	3 800	4 600	2217	2217K	94	141	2	0.25	2.49	3.85	2.61	2.52	2.46
	180	41	3	97.3	37.8	3 300	4 000	1317	1317K	98	167	2.5	0.22	2.93	4.53	3.07	4.98	4.91
	180	60	3	141	51.5	3 000	4 100	2317	2317K	98	167	2.5	0.35	1.82	2.82	1.91	7.05	6.89
90	160	30	2	56.8	23.4	3 500	4 300	1218	1218K	99	151	2	0.17	3.69	5.70	3.86	2.52	2.48
	160	40	2	67.7	27.2	3 500	4 300	2218	2218K	99	151	2	0.26	2.39	3.71	2.51	3.40	3.33
	190	43	3	116	44.4	3 100	3 800	1318	1318K	103	177	2.5	0.22	2.81	4.35	2.94	5.80	5.71
	190	64	3	153	57.9	2 800	3 900	2318	2318K	103	177	2.5	0.34	1.84	2.85	1.93	8.44	8.25
95	170	32	2.1	57.0	24.3	3 300	4 000	1219	1219K	106	159	2	0.17	3.63	5.62	3.80	3.10	3.05
	170	43	2.1	82.7	34.3	3 300	4 000	2219	2219K	106	159	2	0.26	2.43	3.76	2.55	4.10	4.00
	200	45	3	132	50.8	2 900	3 600	1319	1319K	108	187	2.5	0.23	2.73	4.23	2.86	6.69	6.59
	200	67	3	166	64.8	2 700	3 700	2319	2319K	108	187	2.5	0.35	1.82	2.82	1.91	9.79	9.57
100	180	34	2.1	69.0	29.7	3 100	3 800	1220	1220K	111	169	2	0.17	3.62	5.60	3.79	3.70	3.64
	180	46	2.1	80.9	34.0	3 100	3 800	2220	2220K	111	169	2	0.24	2.57	3.98	2.70	4.98	4.87
	215	47	3	143	57.3	2 800	3 400	1320	1320K	113	202	2.5	0.24	2.66	4.11	2.78	8.30	8.19
	215	73	3	183	73.4	2 400	3 400	2320	2320K	113	202	2.5	0.34	1.84	2.85	1.93	12.4	12.1
105	190	36	2.1	77.0	34.0	2 900	3 600	1221		116	179	2	0.18	3.56	5.51	3.73	4.37	_
	190	50	2.1	94.9	40.1	3 000	3 600	2221	—	116	179	2	0.26	2.43	3.76	2.55	6.07	_
	225	49	3	149	60.2	2 600	3 200	1321	—	118	212	2.5	0.23	2.73	4.22	2.86	10.0	
	225	77	3	187	78.0	2 300	3 200	2321	—	118	212	2.5	0.36	1.75	2.71	1.83	14.3	—
110	200	38	2.1	80.2	35.2	2 800	3 400	1222	1222K	121	189	2	0.17	3.64	5.63	3.81	5.15	5.07
	200	53	2.1	120	48.9	2 800	3 400	2222	2222K	121	189	2	0.26	2.41	3.73	2.53	7.10	6.94
	240	50	3	150	63.2	2 400	3 000	1322	1322K	123	227	2.5	0.22	2.82	4.37	2.96	11.8	11.7
	240	80	3	200	85.7	2 200	3 000	2322	2322K	123	227	2.5	0.35	1.82	2.82	1.91	17.3	16.9

Self-aligning ball bearings sealed type

d **10** ~ **55** mm

Koyo

В	oundary d		s		ad ratings	Limiting speed (min ⁻¹)	Bearing No.	Mo		dimensio m)	ons	Con- stant	Axia	l load fa	ictors	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Boaring Hor	min.	a max.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	(kg)
10	30 35	14 17	0.6 0.6	5.40 7.25	1.20 1.60	15 000 13 000	2200 2RS 2300 2RS	13.7 15	13.7 15.7	25 30	0.6 0.6	0.33 0.34	1.92 1.85	2.97 2.87	2.01 1.94	0.047 0.085
12	32 37	14 17	0.6 1	5.60 9.40	1.25 2.15	14 000 12 000	2201 2RS 2301 2RS	15.2 16.8	15.2 16.8	27 31	0.6 1	0.33 0.36	1.89 1.77	2.93 2.74	1.98 1.86	0.053 0.095
15	35 42	14 17	0.6 1	7.45 9.55	1.75 2.30	12 000 11 000	2202 2RS 2302 2RS	18.0 20.0	18.0 20.0	30 36	0.6 1	0.33 0.34	1.90 1.86	2.95 2.88	2.00 1.95	0.060 0.114
17	40 47	16 19	0.6 1	7.90 12.5	2.00 3.20	11 000 9 400	2203 2RS 2303 2RS	20.2 22.1	20.2 22.1	35 41	0.6 1	0.31 0.33	2.03 1.92	3.14 2.97	2.12 2.01	0.088 0.158
20	47 52	18 21	1 1.1	9.90 12.4	2.60 3.35	9 100 8 300	2204 2RS 2304 2RS	24.1 26.2	24.1 26.2	41 45	1 1	0.29 0.30	2.16 2.12	3.35 3.28	2.27 2.22	0.140 0.209
25	52 62	18 24	1 1.1	12.1 17.6	3.30 4.95	7 900 6 600	2205 2RS 2305 2RS	29.4 32	29.4 33.9	46 55	1 1	0.28 0.27	2.28 2.31	3.52 3.57	2.39 2.42	0.163 0.335
30	62 72	20 27	1 1.1	15.6 21.3	4.65 6.30	6 600 5 800	2206 2RS 2306 2RS	35.5 37	35.5 37.8	56 65	1 1	0.25 0.26	2.55 2.40	3.94 3.72	2.67 2.52	0.260 0.500
35	72 80	23 31	1.1 1.5	15.8 25.1	5.10 7.85	5 700 5 100	2207 2RS 2307 2RS	40.9 43.5	40.9 45.0	65 71.5	1 1.5	0.23 0.25	2.71 2.48	4.20 3.84	2.84 2.60	0.403 0.675
40	80 90	23 33	1.1 1.5	19.2 29.5	6.50 9.70	5 000 4 600	2208 2RS 2308 2RS	47 48.5	48.1 49.6	73 81.5	1 1.5	0.22 0.25	2.83 2.57	4.38 3.98	2.97 2.69	0.505 0.925
45	85 100	23 36	1.1 1.5	21.8 38.1	7.35 12.7	4 600 4 100	2209 2RS 2309 2RS	52 53.5	52.4 56.6	78 91.5	1 1.5	0.21 0.25	2.94 2.56	4.56 3.95	3.09 2.68	0.545 1.23
50	90 110	23 40	1.1 2	22.7 43.4	8.10 14.1	4 300 3 700	2210 2RS 2310 2RS	56.5 60	56.5 62.5	83 100	1 2	0.21 0.23	3.07 2.70	4.76 4.17	3.22 2.83	0.590 1.64
55	100 120	25 43	1.5 2	26.8 51.3	10.0 17.9	3 900 3 400	2211 2RS 2311 2RS	63.5 65	63.5 65	91.5 110	1.5 2	0.20 0.23	3.19 2.70	4.94 4.18	3.34 2.83	0.810 2.10

Self-aligning ball bearings sealed type

d 60 ~ 110 mm

Koyo

B	oundary d (mr		s		ad ratings		Bearing No.		(n	dimensio	ons	Con- stant	Axia	l load fa	ctors	(Refer.) Mass
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	U	min.	d _a max.	$D_{ m a}$ max.	r _a max.	е	Y_1	Y_2	Y_0	(kg)
60	110 130	28 46	1.5 2.1	30.2 57.1	11.5 20.8	3 500 3 000	2212 2RS 2312 2RS	68.5 72	68.5 72	101.5 118	1.5 2	0.19 0.22	3.37 2.91	5.22 4.50	3.53 3.05	1.09 2.60
65	120 140	31 48	1.5 2.1	31.0 62.1	12.5 22.9	3 200 2 900	2213 2RS 2313 2RS	73.5 77	75.5 77	111.5 128	1.5 2	0.17 0.23	3.67 2.73	5.68 4.23	3.84 2.86	1.46 3.23
70	125 150	31 51	1.5 2.1	34.6 74.1	13.8 27.7	3 100 2 600	2214 2RS 2314 2RS	78.5 82	78.5 82	116.5 138	1.5 2	0.18 0.22	3.48 2.84	5.38 4.40	3.64 2.98	1.52 4.23
75	130 160	31 55	1.5 2.1	38.8 81.8	15.7 30.5	2 900 2 600	2215 2RS 2315 2RS	83.5 87	83.5 87	121.5 148	1.5 2	0.17 0.23	3.60 2.80	5.58 4.33	3.77 2.93	1.62 5.13
80	140 170	33 58	2 2.1	39.8 88.4	17.0 33.1	2 700 2 300	2216 2RS 2316 2RS	90 92	90 92	130 158	2 2	0.16 0.22	3.90 2.90	6.03 4.49	4.08 3.04	2.01 6.10
85	150	36	2	49.2	20.8	2 500	2217 2RS	95	95	140	2	0.17	3.61	5.59	3.78	2.52
90	160	40	2	54.1	23.1	2 400	2218 2RS	100	100	150	2	0.17	3.69	5.70	3.86	3.40
95	170	43	2.1	60.8	26.8	2 200	2219 2RS	107	107	158	2	0.17	3.63	5.62	3.80	4.10
100	180	46	2.1	69.0	29.7	2 100	2220 2RS	112	112	168	2	0.17	3.62	5.60	3.79	4.98
105	190	50	2.1	77.0	34.0	2 000	2221 2RS	117	117	178	2	0.18	3.56	5.51	3.73	6.07
110	200	53	2.1	80.2	35.2	1 900	2222 2RS	122	122	188	2	0.17	3.64	5.63	3.81	7.10

Self-aligning ball bearings – extended inner ring type

d **20** ~ **60 mm**

	Βοι	undary c (m:		ons		Basic loa (k)		(mi	s speeds n^{-1})	Bearing No.	Mounting o		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	В	C	F	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Dearing IVO.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	(kg)
20	47 52	40 44	14 15	29.2 31.5	1 1.1	9.90 12.4	2.60 3.35	14 000 13 000	17 000 15 000	11204 11304	42 45.5	1 1	0.29 0.30	2.16 2.12	3.35 3.28	2.27 2.22	0.191 0.266
25	52 62	44 48	15 17	33.3 38	1 1.1	12.1 17.6	3.30 4.95	12 000 9 900	14 000 12 000	11205 11305	47 55.5	1 1	0.28 0.27	2.28 2.31	3.52 3.57	2.39 2.42	0.226 0.445
30	62 72	48 52	16 19	40.1 45	1 1.1	15.6 21.3	4.65 6.30	9 900 8 700	12 000 11 000	11206 11306	57 65.5	1 1	0.25 0.26	2.55 2.40	3.94 3.72	2.67 2.52	0.360 0.614
35	72 80	52 56	17 21	47.7 51.7	1.1 1.5	15.8 25.1	5.10 7.85	8 500 7 600	10 000 9 300	11207 11307	65.5 72	1 1.5	0.23 0.25	2.71 2.48	4.20 3.84	2.84 2.60	0.556 0.821
40	80 90	56 58	18 23	54 57.7	1.1 1.5	19.2 29.5	6.50 9.70	7 500 6 900	9 200 8 400	11208 11308	73.5 82	1 1.5	0.22 0.25	2.83 2.57	4.38 3.98	2.97 2.69	0.733 1.09
45	85 100	58 60	19 25	57.7 63.9	1.1 1.5	21.8 38.1	7.35 12.7	7 000 6 100	8 500 7 500	11209 11309	78.5 92	1 1.5	0.21 0.25	2.94 2.56	4.56 3.95	3.09 2.68	0.793 1.40
50	90 110	58 62	20 27	62.7 70.3	1.1 2	22.7 43.4	8.10 14.1	6 500 5 600	7 900 6 800	11210 11310	83.5 102	1 2	0.21 0.23	3.07 2.70	4.76 4.17	3.22 2.83	0.875 1.74
55	100	60	21	70.3	1.5	26.8	10.0	5 800	7 100	11211	93.5	1.5	0.20	3.19	4.94	3.34	1.16
60	110	62	22	78	1.5	30.2	11.5	5 200	6 400	11212	103.5	1.5	0.19	3.37	5.22	3.53	1.52

Adapter assemblies for self-aligning ball bearings

 d_1 **17** ~ (**45**) mm

 ϕK

Bour	ndary c		ions	Brg.	Designations	Mou	nting o	limens	ions	Mass Brg.+adapter	(Re	fer.)
	(m	m)		bore	Bearing + adapter			· ·	,	1 .	Adaptan	Lastand
d_1	B_1	d_2	B_2	d	ass'y	A	K	$d_{ m e}$	b	ass'y	Adapter sleeve No.	Locknut No.
-	-			(mm)		min.	min.	min.	min.	(kg)	sieeve ino.	INO.
17	24	32	7	20	1204K+ H2O4X	_	_	23	5	0.162	A204X	AN04
	28	32	7	20	2204K+ H304X	—	—	24	5	0.185	A304X	AN04
	28	32	7	20	1304K+ H304X	—	—	24	8	0.210	A304X	AN04
	31	32	7	20	2304K+ H2304X	—	—	24	5	0.257	A2304X	AN04
20	26	38	8	25	1205K+ H205X	15	45	28	5	0.218	A205X	AN05
	29	38	8	25	2205K+ H305X	15	45	29	5	0.243	A305X	AN05
	29	38	8	25	1305K+ H305X	15	45	29	6	0.337	A305X	AN05
	35	38	8	25	2305K+ H2305X	15	45	29	5	0.424	A2305X	AN05
25	27	45	8	30	1206K+ H206X	15	50	33	5	0.320	A206X	AN06
	31	45	8	30	2206K+ H306X	15	50	34	5	0.368	A306X	AN06
	31	45	8	30	1306K+ H306X	15	50	34	6	0.495	A306X	AN06
	38	45	8	30	2306K+ H2306X	15	50	35	5	0.620	A2306X	AN06
30	29	52	9	35	1207K+ H207X	17	58	38	5	0.462	A207X	AN07
	35	52	9	35	2207K+ H307X	17	58	39	5	0.557	A307X	AN07
	35	52	9	35	1307K+ H307X	17	58	39	7	0.663	A307X	AN07
	43	52	9	35	2307K+ H2307X	17	58	40	5	0.843	A2307X	AN07
35	31	58	10	40	1208K+ H208X	17	65	44	5	0.597	A208X	AN08
	36	58	10	40	2208K+ H308X	17	65	44	5	0.696	A308X	AN08
	36	58	10	40	1308K+ H308X	17	65	44	5	0.906	A308X	AN08
	46	58	10	40	2308K+ H2308X	17	65	45	5	1.14	A2308X	AN08
40	33	65	11	45	1209K+ H209X	17	72	49	5	0.701	A209X	AN09
	39	65	11	45	2209K+ H309X	17	72	49	8	0.798	A309X	AN09
	39	65	11	45	1309K+ H309X	17	72	49	5	1.21	A309X	AN09
	50	65	11	45	2309K+ H2309X	17	72	50	5	1.51	A2309X	AN09
45	35	70	12	50	1210K+ H210X	19	76	53	5	0.804	A210X	AN10
	42	70	12	50	2210K+ H310X	19	76	54	10	0.896	A310X	AN10

Koyo

 d_1 (45) ~ 75 mm

Adapter assemblies for self-aligning ball bearings -

 d_1 80 ~ 100 mm

Bour	ndary c		ions	Brg. bore	Designations	Mou	nting o		ions	Mass Brg.+adapter	(Re	fer.)
d_1	B_1	d_2	B_2	<i>d</i> (mm)	Bearing + adapter ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknut No.
80	52	120	18	90	1218K+ H218X	28	139	95	6	3.75	A218X	AN18
	65	120	18	90	2218K+ H318X	28	139	96	10	4.78	A318X	AN18
	65	120	18	90	1318K+ H318X	28	139	96	6	7.16	A318X	AN18
	86	120	18	90	2318K+ H2318X	28	139	99	6	9.95	A2318X	AN18
85	55	125	19	95	1219K+ H219X	29	145	101	7	4.47	A219X	AN19
	68	125	19	95	2219K+ H319X	29	145	102	9	5.62	A319X	AN19
	68	125	19	95	1319K+ H319X	29	145	102	7	8.21	A319X	AN19
	90	125	19	95	2319K+ H2319X	29	145	105	7	11.6	A2319X	AN19
90	58	130	20	100	1220K+ H220X	30	150	106	7	5.23	A220X	AN20
	71	130	20	100	2220K+ H320X	30	150	107	8	6.67	A320X	AN20
	71	130	20	100	1320K+ H320X	30	150	107	7	9.99	A320X	AN20
	97	130	20	100	2320K+ H2320X	30	150	110	7	14.4	A2320X	AN20
100	63	145	21	110	1222K+ H222X	32	170	116	7	7.10	A222X	AN22
	77	145	21	110	2222K+ H322X	32	170	117	6	9.23	A322X	AN22
	77	145	21	110	1322K+ H322X	32	170	117	9	14.0	A322X	AN22
	105	145	21	110	2322K+ H2322X	32	170	121	7	19.8	A2322X	AN22

Cylindrical roller bearings

Cylindrical roller bearings feature high radial load capacity because the rollers and raceway are in linear contact. These bearings are suitable for applications that involve heavy radial and impact loading.

They are also appropriate for high-speed applications in that they can be machined very accurately due to their structure.

Having a separable inner ring or outer ring, these bearings can be mounted and dismounted easily.

Single-row cylindrical roller bearings

- The NU and N types exhibit their best performance when used as free side bearings since they adjust to the shaft's axial movement, to a certain extent, relative to the housing position.
- The NJ and NF types carry axial load in one direction, while the NUP and NH types can carry a certain degree of axial load in both directions.
- Type R cylindrical roller bearings feature enhanced load rating compared with standard series, though both have equal dimensions.

This is because type R bearings have different internal design. They are identified by supplementary code "R".

Double-row cylindrical roller bearings

- Double-row cylindrical roller bearings come in two types : with a cylindrical bore, and with a tapered bore. As for those with a tapered bore, the specified amount of clearance can be obtained by adjusting the press-in distance. Some bearings have lubrication holes and lubrication grooves on the outer ring. They are identified by supplementary code "W".
- These bearings can accommodate high radial loads, and are often used on machine tool spindles.

Kovo

B 155

- Ruyu

Tolerances	As specified in	n JIS B 1514-	1 (refer to Tab	ole 7-3 on pp.	A 54 – A 57).	
			e diameter $F_{ m w}$ are as follows :		t outside diam	heter $E_{ m w}$ of
	linerenangear	le bearinge e				Unit : µm
	Nominal bo d (n		\mathcal{A}_{Fw} Roller diamet	set bore ter deviation	\mathcal{A}_{Ew} Roller diame	set outside eter deviation
	over	up to	upper	lower	upper	lower
	-	20	+ 10	0	0	- 10
	20	50	+ 15	0	0	- 15
	50	120	+ 20	0	0	- 20
	120	200	+ 25	0	0	- 25
	200	250	+ 30	0	0	- 30
	250	315	+ 35	0	0	- 35
	315	400	+ 40	0	0	- 40
	400	500	+ 45	0	-	-
	ma	atched with th	e outer ring, o e inner ring, w s the same bea	r an outer ring rithout affectir	g with rollers t g performanc	e in the
	ma be Tapered bore	tolerance and classes 5 a	e outer ring, o e inner ring, w s the same bea d allowable va nd 4) are prov	r an outer ring rithout affectir aring number lues of high p	g with rollers t ig performanc in one catego recision doub	hat can be e in the
Radial internal clearance	Tapered bore roller bearings (refer to Table · Cylindrical be	tolerance an s (classes 5 a 2 7-11 on p. A ore and taper 	e outer ring, o e inner ring, w s the same bea d allowable va nd 4) are prov	r an outer rinș ithout affectir aring number lues of high p ided in JTEK	g with rollers t ig performanc in one catego recision doub T standards	hat can be e in the ry.
	Tapered bore roller bearings (refer to Table · Cylindrical be	tolerance and s (classes 5 a e 7-11 on p. A ore and taper (refe gs(refe	e outer ring, o e inner ring, w s the same bea d allowable va nd 4) are prov a 70). ed bore bearir r to Table 10-8 r to Table 10-7	r an outer rinș ithout affectir aring number lues of high p ided in JTEK	g with rollers t ig performanc in one catego recision doub T standards	hat can be e in the ry.

Allowable misalignment	Allowable misalignment of single-row cylindrical roller bearings depends on bearing type and specification. General values are as follows : 1) When P_r/C_r is approx. 10% under load of normal use
Equivalent radial load	Dynamic equivalent radial load $P_r = F_r$ Static equivalent radial load $P_{0r} = F_r$
Allowable axial load	Cylindrical roller bearings with ribs, including loose rib and thrust collar, on both inner and outer rings accommodate axial load to a certain extent. (NJ and NF types accommodate load applied in one direction : NUP and NH in both directions.) For calculation of allowable axial load, refer to p. A 40.

Tabl	e 1 Application of standard o	cages
Bearing series	Pressed cage	Machined cage
NU, NUP 10	—	1005 – 1092
NU, NJ, NUP, NF 2	204 – 220	204 – 264
NU, NJ, NUP 2 R	204R – 220R	204R – 240R
NU, NJ, NUP 22	2204 – 2220	2204 - 2252
NU, NJ, NUP 22 R	2204R – 2220R	2204R - 2240R
NU 32	—	3206 - 3252
NU, NJ, NUP, NF 3	304 – 320	304 – 348
NU, NJ, NUP 3 R	304R – 320R	304R – 332R
NU, NJ, NUP 23	2304 – 2320	2304 – 2340
NU, NJ, NUP 23 R	2304R – 2320R	2304R – 2332R
NU 33	—	3306 – 3352
NU, NJ, NUP, NF 4	406 – 420	406 – 430

d **20** ~ (**30**) mm

Koyo

	I	Bounda	ary dim (mm)	ension	s		Basic loa (kl		Limiting (min		Bearir	ng No.									dimens m)					(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	E_{w}	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	d _a min.	c min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	D max.	ъ min.	r _a max.	r _b max.	NU (kg)
20	47 47	14 14	1 1	0.6 0.6	27 26.5	40	15.4 25.7	12.7 22.6	15 000 15 000	18 000 18 000	NU204 NU204R	NJ204 NJ204R	NUP204 NUP204R	N204	NF204	25 25	24 24	26 26	29 29	32 32	42 42	43	42	1 1	0.6 0.6	0.108 0.112
	47	18	1	0.6	27	—	20.7	18.4	13 000	18 000	NU2204	NJ2204	NUP2204	—	—	25	24	26	29	32	42	—	—	1	0.6	0.146
	47 52	18 15	1 1.1	0.6 0.6	26.5 28.5	 44.5	30.6 23.1	28.3 19.2	13 000 12 000	18 000 16 000	NU2204R NU304	NJ2204R NJ304	NUP2204R NUP304	 N304	 NF304	25 26.5	24 24	26 27	29 30	32 33	42 45.5	 48	 45.5	1 1	0.6 0.6	0.146 0.147
	52	15	1.1	0.6	27.5	_	31.5	26.9	12 000	16 000	NU304R	NJ304R	NUP304R	_	_	26.5	24	27	30	33	45.5	_	_	1	0.6	0.153
	52 52	21 21	1.1 1.1	0.6 0.6	28.5 27.5	_	32.9 42.0	30.2 38.8	11 000 11 000	16 000 16 000	NU2304 NU2304R	NJ2304 N 12304R	NUP2304 NUP2304R	_	_	26.5 26.5	24 24	27 27	30 30	33 33	45.5 45.5	_		1	0.6	0.212 0.215
		21										histooth								00	40.0			1		
25	47 52	12 15	0.6 1	0.3 0.6	30.5 32	 45	14.3 17.7	13.1 15.7	15 000 13 000	18 000 16 000	NU1005 NU205	 NJ205	NUP1005 NUP205	 N205	 NF205	29 30	27 29	30 31	32 34	 37	43 47	 48	 47	0.6 1	0.3 0.6	0.084 0.132
	52	15	1	0.6	31.5	—	29.3	27.7	13 000	15 000	NU205R	NJ205R	NUP205R	—	—	30	29	31	34	37	47	—	—	1	0.6	0.138
	52	18	1	0.6	32	—	23.7	22.8	12 000	16 000	NU2205	NJ2205	NUP2205	—	—	30	29	31	34	37	47	—	—	1	0.6	0.163
	52 62	18 17	1 1.1	0.6 1.1	31.5 35	53	34.9 29.3	34.6 25.2	12 000 10 000	15 000 14 000	NU2205R NU305	NJ2205R NJ305	NUP2205R NUP305	N305	NF305	30 31.5	29 31.5	31 33	34 37	37 40	47 55.5	 55.5	55	1 1	0.6 1	0.166 0.241
	62	17	1.1	1.1	34	_	41.6	37.4	10 000	14 000	NU305R	NJ305R	NUP305R	_	_	31.5	31.5	33	37	40	55.5		_	1	1	0.243
	62 62	24 24	1.1 1.1	1.1 1.1	35 34	_	42.7 57.0	40.9 56.1	9 100 9 100	14 000 14 000	NU2305 NU2305R	NJ2305 NJ2305R	NUP2305 NUP2305R	_	_	31.5 31.5	31.5 31.5	33 33	37 37	40 40	55.5 55.5	_	_	1 1	1 1	0.340 0.350
30	55	13	1	0.6	36.5	_	18.7	18.4	13 000	15 000	NU1006		NUP1006			35	34	35	38	_	50	_	_	1	0.6	0.121
	62	16	1	0.6	38.5	53.5	23.5	21.5	11 000	13 000	NU206	NJ206	NUP206	N206	NF206	35	34	37	40	44	57	58	56	1	0.6	0.200
	62	16	1	0.6	37.5	_	39.1	37.4	11 000	13 000	NU206R	NJ206R	NUP206R	_	—	35	34	37	40	44	57		_	1	0.6	0.209
	62 62	20 20	1	0.6 0.6	38.5 37.5	_	32.9 48.9	33.1 49.8	9 800 9 700	13 000 13 000	NU2206 NU2206R	NJ2206 NJ2206R	NUP2206 NUP2206R	_		35 35	34 34	37 37	40 40	44 44	57 57	_	_	1	0.6 0.6	0.262 0.262
	62	23.8	1	1	38.5	_	42.7	46.4	8 700	13 000	NU3206			_		35	35	37	40		57		_	1	0.6	0.343
	72	19	1.1	1.1	42	62	38.6	35.2	8 700	12 000	NU306	NJ306	NUP306	N306	NF306	36.5	36.5	40	44	48	65.5	65.5	64	1	1	0.358
	72 72	19 27	1.1 1.1	1.1 1.1	40.5 42	_	53.1 51.4	50.2 50.8	8 700 7 700	12 000 12 000	NU306R NU2306	NJ306R NJ2306	NUP306R NUP2306	_	_	36.5 36.5	36.5 36.5	40 40	44 44	48 48	65.5 65.5	_	_	1	1	0.361 0.500
	72		1.1	1.1	40.5	_	74.6	77.6	7 800	12 000	NU2306R		NUP2306R	_	_	36.5	36.5	40	44	48	65.5	_	_	1	1	0.534

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (**30**) ~ (**45**) mm

Koyo

	E	Bounda	(mm)	ension	IS		Basic loa		Limiting (min		Beari	ng No.							Μοι		dimens 1m)	ions				(Refer.) Mass
d	D	В	r min.	r_1 min.	F_{w}	E_{w}	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease Iub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	c min.	$t_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	D max.) _b min.	r _a max.	$r_{ m b}$ max.	NU (kg)
30	72 90	30.2 23	1.1 1.5	1.1 1.5	42 45	 73	69.1 62.8	74.3 55.0	7 700 7 600	12 000 10 000	NU3306 NU406	 NJ406	 NUP406	 N406	 NF406	36.5 38	36.5 38	40 44	44 47	 52	65.5 82	 82	 74	1 1.5	1 1.5	0.650 0.753
35	62 72 72	14 17 17	1 1.1 1.1	0.6 0.6 0.6	42 43.8 44	 61.8 	22.6 33.6 50.2	23.2 31.5 50.2	11 000 9 500 9 300	13 000 11 000 11 000	NU1007 NU207 NU207R	 NJ207 NJ207R	NUP1007 NUP207 NUP207R	 N207	 NF207 	40 41.5 41.5	39 39 39	41 43 43	44 46 46	50 50	57 65.5 65.5	68	64	1 1 1	0.5 0.6 0.6	0.182 0.293 0.306
	72 72 72	23 23 27	1.1 1.1 1.1	0.6 0.6 1.1	43.8 44 43.8		49.0 61.6 54.8	51.2 65.3 59.1	8 500 8 300 7 600	11 000 11 000 11 000	NU2207 NU2207R NU3207	NJ2207 NJ2207R —	NUP2207 NUP2207R 			41.5 41.5 41.5	39 39 41.5	43 43 43	46 46 46	50 50	65.5 65.5 65.5			1 1 1	0.6 0.6 0.6	0.402 0.404 0.524
	80 80 80	21 21 31	1.5 1.5 1.5	1.1 1.1 1.1	46.2 46.2 46.2	68.2 	49.6 66.6 64.4	46.9 65.4 65.7	7 900 7 700 7 000	10 000 10 000 10 000	NU307 NU307R NU2307	NJ307 NJ307R NJ2307	NUP307 NUP307R NUP2307	N307 	NF307 	43 43 43	41.5 41.5 41.5	45 45 45	48 48 48	53 53 53	72 72 72	73.5 	71 	1.5 1.5 1.5	1 1 1	0.477 0.482 0.696
	80 80 100	31 34.9 25	1.5 1.5 1.5	1.1 1.5 1.5	46.2 46.2 53	 83	93.1 81.7 75.2	101 89.1 68.9	6 900 7 000 6 600	10 000 10 000 8 800	NU2307R NU3307 NU407	NJ2307R NJ407	NUP2307R NUP407	 N407	 NF407	43 43 43	41.5 43 43	45 45 52	48 48 55	53 61	72 72 92	 92	 84	1.5 1.5 1.5	1 1 1.5	0.729 0.908 1.02
40	68 80 80	15 18 18	1 1.1 1.1	0.6 1.1 1.1	47 50 49.5	70	24.9 43.8 55.7	25.7 42.9 55.4	10 000 8 300 8 300	12 000 10 000 9 900	NU1008 NU208 NU208R	 NJ208 NJ208R	NUP1008 NUP208 NUP208R	N208	NF208	45 46.5 46.5	44 46.5 46.5	46 49 49	49 52 52	56 56	63 73.5 73.5	 73.5 	72	1 1 1	0.6 1 1	0.223 0.366 0.384
	80 80 80	23 23 30.2	1.1 1.1 1.1	1.1 1.1 1.1	50 49.5 50		58.3 72.3 78.3	62.0 77.6 90.6	7 500 7 400 6 700	10 000 9 900 10 000	NU2208 NU2208R NU3208	NJ2208 NJ2208R —	NUP2208 NUP2208R 			46.5 46.5 46.5	46.5 46.5 46.5	49 49 49	52 52 52	56 56	73.5 73.5 73.5			1 1 1	1 1 1	0.490 0.490 0.711
	90 90 90	23 23 33	1.5 1.5 1.5	1.5 1.5 1.5	53.5 52 53.5	77.5 —	58.6 83.1 82.2	56.9 81.5 88.0	6 900 6 800 6 100	9 100 9 100 9 100	NU308 NU308R NU2308	NJ308 NJ308R NJ2308	NUP308 NUP308R NUP2308	N308 	NF308 	48 48 48	48 48 48	51 51 51	55 55 55	60 60 60	82 82 82	82 	80 	1.5 1.5 1.5	1.5 1.5 1.5	0.657 0.664 0.956
	90 90 110	33 36.5 27	1.5 1.5 2	1.5 1.5 2	52 53.5 58	 92	114 104 97.1	122 119 89.1	6 100 6 100 6 000	9 100 9 100 8 000	NU2308R NU3308 NU408	NJ2308R NJ408	NUP2308R NUP408	 N408	 NF408	48 48 49	48 48 49	51 51 57	55 55 60	60 67	82 82 101	 101	 93	1.5 1.5 2	1.5 1.5 2	0.962 1.19 1.30
45	75	16	1	0.6	52.5	_	31.0	33.8	9 200	11 000	NU1009		NUP1009			50	49	52	54	_	70		_	1	0.6	0.289

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (45) ~ (55) mm

Koyo

		Boun		dime nm)	ension	S			nd ratings N)	Limiting (min	speeds n ⁻¹)	Beari	ng No.							Μοι		dimens nm)	ions				(Refer.) Mass
d	D	В	r r	r min.	r_1 min.	$F_{ m w}$	$E_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	d _a min.	c min.	l _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	I max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
45	85 85 85	19		1.1 1.1 1.1	1.1 1.1 1.1	55 54.5 55	75 	46.1 63.1 61.4	46.9 66.4 67.8	7 700 7 600 6 900	9 200 9 200 9 200	NU209 NU209R NU2209	NJ209 NJ209R NJ2209	NUP209 NUP209R NUP2209	N209 	NF209 	51.5 51.5 51.5	51.5 51.5 51.5	54	57 57 57	61 61 61	78.5 78.5 78.5	78.5 	77 —	1 1 1	1 1 1	0.427 0.439 0.536
	85 85 100	30	.2	1.1 1.1 1.5	1.1 1.1 1.5	54.5 55 58.5	 86.5	76.1 82.4 78.8	84.6 99.0 77.5	6 900 6 100 6 200	9 200 9 200 8 300	NU2209R NU3209 NU309	NJ2209R NJ309	NUP2209R NUP309	 N309	 NF309	51.5 51.5 53	51.5 51.5 53		57 57 60	61 66	78.5 78.5 92	 92	 89	1 1 1.5	1 1 1.5	0.536 0.770 0.870
	100 100 100	36		1.5 1.5 1.5	1.5 1.5 1.5	58.5 58.5 58.5		97.4 106 137	98.3 113 153	6 100 5 500 5 400	8 200 8 300 8 200	NU309R NU2309 NU2309R	NJ309R NJ2309 NJ2309R	NUP309R NUP2309 NUP2309R			53 53 53	53 53 53	57 57 57	60 60 60	66 66 66	92 92 92			1.5 1.5 1.5	1.5 1.5 1.5	0.909 1.25 1.32
	100 120			1.5 2	1.5 2	58.5 64.5	 100.5	131 115	149 112	5 500 5 400	8 300 7 200	NU3309 NU409	 NJ409	 NUP409	 N409	 NF409	53 54	53 54	57 63	60 66	74	92 111	111	102	1.5 2	1.5 2	1.59 1.64
50	80 90 90	20		1 1.1 1.1	0.6 1.1 1.1	57.5 60.4 59.5	80.4	33.6 48.2 66.1	36.8 51.0 71.9	8 400 7 100 7 100	9 900 8 500 8 500	NU1010 NU210 NU210R	 NJ210 NJ210R	NUP1010 NUP210 NUP210R	 N210 	NF210	55 56.5 56.5	54 56.5 56.5	57 58 58	59 62 62	67 67	75 83.5 83.5	 83.5 	82	1 1 1	0.6 1 1	0.306 0.479 0.497
	90 90 90	23		1.1 1.1 1.1	1.1 1.1 1.1	60.4 59.5 60.4		64.2 79.7 86.2	73.6 91.5 108	6 400 6 400 5 700	8 500 8 500 8 500	NU2210 NU2210R NU3210	NJ2210 NJ2210R —	NUP2210 NUP2210R 			56.5 56.5 56.5	56.5 56.5 56.5		62 62 62	67 67	83.5 83.5 83.5			1 1 1	1 1 1	0.580 0.580 0.829
	110 110 110	27		2 2 2	2 2 2	65 65 65	95 	92.2 110 128	93.4 113 142	5 600 5 500 5 000	7 500 7 400 7 500	NU310 NU310R NU2310	NJ310 NJ310R NJ2310	NUP310 NUP310R NUP2310	N310 	NF310 	59 59 59	59 59 59	63 63 63	67 67 67	73 73 73	101 101 101	101 	98 	2 2 2	2 2 2	1.15 1.15 1.69
	110 110 130	44	.4	2 2 2.1	2 2 2.1	65 65 70.8	 110.8	163 156 139	187 183 136	4 900 5 000 4 900	7 400 7 500 6 600	NU2310R NU3310 NU410	NJ2310R NJ410	NUP2310R NUP410	 N410	 NF410	59 59 61	59 59 61	63 63 69	67 67 73	73 81	101 101 119	 119	 112	2 2 2	2 2 2	1.76 2.14 2.01
55	90 100 100	21		1.1 1.5 1.5	1 1.1 1.1	64.5 66.5 66	 88.5 	37.4 58.0 86.4	43.8 62.3 98.7	7 600 6 400 6 400	8 900 7 700 7 700	NU1011 NU211 NU211R	 NJ211 NJ211R	NUP1011 NUP211 NUP211R	 N211 	 NF211 	61.5 63 63	60 61.5 61.5	63 65 65	66 68 68	 73 73	83.5 92 92	93.5	91	1 1.5 1.5	1 1 1	0.445 0.640 0.650
	100	-		1.5	1.1	66.5	_	75.3	87.2	5 800	7 700	NU2211	NJ2211	NUP2211	_		63	61.5		68	73	92	—	_	1.5	1	0.780

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (55) ~ (65) mm

Koyo

	Bour	ndary dir (mm		S		Basic loa		Limiting (min		Beari	ng No.							Mou	0	dimens 1m)	ions				(Refer.) Mass
d	D B	r min.	r_1 min.	$F_{ m w}$	$E_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	ر min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	L max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
55	100 25 100 33 120 29	8.3 1.5	1.1 1.5 2	66 66.5 70.5	 104.5	101 95.5 111	122 118 111	5 800 5 100 5 100	7 700 7 700 6 800	NU2211R NU3211 NU311	NJ2211R NJ311	NUP2211R NUP311	 N311	 NF311	63 63 64	61.5 63 64	65 65 69	68 68 72	73 80	92 92 111	 111	 107	1.5 1.5 2	1 1 2	0.806 1.14 1.44
	120 29 120 43 120 43	2	2 2 2	70.5 70.5 70.5		137 148 201	143 162 233	5 100 4 500 4 500	6 700 6 800 6 700	NU311R NU2311 NU2311R	NJ311R NJ2311 NJ2311R	NUP311R NUP2311 NUP2311R	 		64 64 64	64 64 64	69 69 69	72 72 72	80 80 80	111 111 111			2 2 2	2 2 2	1.50 2.10 2.25
	120 49 140 33		2 2.1	70.5 77.2	 117.2	188 142	220 138	4 500 4 600	6 800 6 100	NU3311 NU411	 NJ411	 NUP411		 NF411	64 66	64 66	69 76	72 79	87	111 129	129	119	2 2	2 2	2.81 2.51
60	95 18 110 22 110 22	1.5	1 1.5 1.5	69.5 73.5 72	97.5	42.1 71.9 97.7	50.0 79.9 107	7 000 5 800 5 800	8 300 7 000 6 900	NU1012 NU212 NU212R	 NJ212 NJ212R	NUP1012 NUP212 NUP212R	N212	NF212	66.5 68 68	65 68 68	68 71 71	71 75 75	80 80	88.5 102 102	102	100	1 1.5 1.5	1 1.5 1.5	0.477 0.823 0.830
	110 28 110 28 110 36	1.5	1.5 1.5 1.5	73.5 72 73.5		101 131 128	123 157 167	5 200 5 200 4 700	7 000 6 900 7 000	NU2212 NU2212R NU3212	NJ2212 NJ2212R —	NUP2212 NUP2212R —			68 68 68	68 68 68	71 71 71	75 75 75	80 80	102 102 102			1.5 1.5 1.5	1.5 1.5 1.5	1.07 1.09 1.52
	130 31 130 31 130 46		2.1 2.1 2.1	77 77 77	113 	124 150 168	126 157 188	4 700 4 600 4 200	6 300 6 200 6 300	NU312 NU312R NU2312	NJ312 NJ312R NJ2312	NUP312 NUP312R NUP2312	N312 	NF312 	71 71 71	71 71 71	75 75 75	79 79 79	86 86 86	119 119 119	119 	116 	2 2 2	2 2 2	1.83 1.87 2.69
	130 46 130 54 150 35	2.1	2.1 2.1 2.1	77 77 83	 127	223 220 178	262 265 184	4 100 4 200 4 200	6 200 6 300 5 700	NU2312R NU3312 NU412	NJ2312R NJ412	NUP2312R NUP412	 N412	 NF412	71 71 71	71 71 71	75 75 82	79 79 85	86 94	119 119 139	 139	 128	2 2 2	2 2 2	2.81 3.61 3.02
65	100 18 120 23 120 23	1.5	1 1.5 1.5	74.5 79.6 78.5	105.6	43.3 83.8 108	52.9 94.4 119	6 600 5 400 5 300	7 800 6 400 6 400	NU1013 NU213 NU213R	 NJ213 NJ213R	NUP1013 NUP213 NUP213R	N213	 NF213 	71.5 73 73	70 73 73	73 77 77	76 81 81	87 87	93.5 112 112	112	108	1 1.5 1.5	1 1.5 1.5	0.506 1.05 1.05
	120 31 120 31 120 38		1.5 1.5 1.5	79.6 78.5 79.6	 	120 149 148	149 181 197	4 800 4 800 4 300	6 400 6 400 6 400	NU2213 NU2213R NU3213	NJ2213 NJ2213R —	NUP2213 NUP2213R —			73 73 73	73 73 73	77 77 77	81 81 81	87 87	112 112 112			1.5 1.5 1.5	1.5 1.5 1.5	1.43 1.45 1.90
	140 33	2.1	2.1	83.5	121.5	137	139	4 300	5 800	NU313	NJ313	NUP313	N313	NF313	76	76	81	85	93	129	129	125	2	2	2.24

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (65) ~ (75) mm

Koyo

	E	Bounda	(mm)	ensior	ıs			load ratings (kN)	Limiting (min		Beari	ng No.							Мо		dimens nm)	sions				(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	E_{w}	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	1 max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
65	140 140 140	33 48 48	2.1 2.1 2.1	2.1 2.1 2.1	82. 83. 82.	5 —	181 190 251	191 212 287	4 300 3 900 3 800	5 700 5 800 5 700	NU313R NU2313 NU2313R	NJ313R NJ2313 NJ2313R	NUP313R NUP2313 NUP2313R	 		76 76 76	76 76 76	81 81 81	85 85 85	93 93 93	129 129 129			2 2 2	2 2 2	2.31 3.25 3.36
	140 160	58.7 37	2.1 2.1	2.1 2.1	83. 89.		241 3 198	294 203	3 900 4 000	5 800 5 300	NU3313 NU413	 NJ413	 NUP413	N413	 NF413	76 76	76 76	81 88	85 91	100	129 149	149	 137	2 2	2 2	4.53 3.58
70	110 125 125	20 24 24	1.1 1.5 1.5	1 1.5 1.5	80 84. 83.		57.9 5 83.3 119		6 100 5 100 5 000	7 200 6 100 6 000	NU1014 NU214 NU214R	 NJ214 NJ214R	NUP1014 NUP214 NUP214R	N214	NF214	76.5 78 78	75 78 78	78 82 82	82 86 86	92 92	103.5 117 117	117	 114 	1 1.5 1.5	1 1.5 1.5	0.702 1.15 1.16
	125 125 125	31 31 39.7	1.5 1.5 1.5	1.5 1.5 1.5	84. 83. 84.	5 —	119 156 147	151 194 198	4 600 4 500 4 100	6 100 6 000 6 100	NU2214 NU2214R NU3214	NJ2214 NJ2214R —	NUP2214 NUP2214R —	 		78 78 78	78 78 78	82 82 82	86 86 86	92 92 	117 117 117	 		1.5 1.5 1.5	1.5 1.5 1.5	1.52 1.53 2.09
	150 150 150	35 35 51	2.1 2.1 2.1	2.1 2.1 2.1	90 89 90	130 	162 205 224	168 222 262	4 000 4 000 3 600	5 400 5 300 5 400	NU314 NU314R NU2314	NJ314 NJ314R NJ2314	NUP314 NUP314R NUP2314	N314 	NF314 	81 81 81	81 81 81	87 87 87	92 92 92	100 100 100	139 139 139	139 	134 	2 2 2	2 2 2	2.73 2.81 3.97
	150 150 180	51 63.5 42	2.1 2.1 3	2.1 2.1 3	89 90 100	152	275 283 246	323 356 257	3 600 3 600 3 500	5 300 5 400 4 700	NU2314R NU3314 NU414	NJ2314R NJ414	NUP2314R NUP414	 N414	 NF414	81 81 83	81 81 83	87 87 99	92 92 102	100 112	139 139 167	 167	 153	2 2 2.5	2 2 2.5	4.08 5.62 5.26
75	115 130 130	20 25 25	1.1 1.5 1.5	1 1.5 1.5	85 88. 88.		63.6 5 101 130	78.1 118 156	5 700 4 800 4 800	6 800 5 800 5 700	NU1015 NU215 NU215R	 NJ215 NJ215R	NUP1015 NUP215 NUP215R	N215	NF215	81.5 83 83	80 83 83	83 87 87	87 90 90	96 96	108.5 122 122	122	120	1 1.5 1.5	1 1.5 1.5	0.735 1.24 1.29
	130 130 130	31 31 41.3	1.5 1.5 1.5	1.5 1.5 1.5	88. 88. 88.	5 —	135 162 167	172 207 226	4 300 4 300 3 900	5 800 5 700 5 800	NU2215 NU2215R NU3215	NJ2215 NJ2215R —	NUP2215 NUP2215R —	 		83 83 83	83 83 83	87 87 87	90 90 90	96 96	122 122 122			1.5 1.5 1.5	1.5 1.5 1.5	1.57 1.61 2.28
	160 160 160	37 37 55	2.1 2.1 2.1	2.1 2.1 2.1	95. 95 95.	_	5 194 240 275	205 263 327	3 800 3 700 3 400	5 000 5 000 5 000	NU315 NU315R NU2315	NJ315 NJ315R NJ2315	NUP315 NUP315R NUP2315	N315 	NF315 	86 86 86	86 86 86	93 93 93	97 97 97	106 106 106	149 149 149	149 	143 	2 2 2	2 2 2	3.24 3.37 4.84
	160	55	2.1	2.1	95	_	329	395	3 300	5 000		NJ2315R	NUP2315R	—	—	86	86	93	97	106	149	—	—	2	2	5.00

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (**75**) ~ (**90**) mm

Koyo

	I	Bounda	ary dim (mm)	ensio	ns			ad ratings	Limiting (mir		Beari	ng No.							Мо		dimens nm)	ions				(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	${E}_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	$d_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	I max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
75	160 190	68.3 45	2.1 3	2.1 3	95.5 104.5	 160.5	338 265	430 274	3 400 3 300	5 000 4 400	NU3315 NU415	 NJ415	 NUP415	 N415	 NF415	86 88	86 88	93 103	97 107	 118	149 177	 177	 162	2 2.5	2 2.5	6.86 6.25
80	125 140 140	22 26 26	1.1 2 2	1 2 2	91.5 95.3 95.3	125.3	69.3 106 139	86.4 122 167	5 300 4 500 4 400	6 300 5 400 5 300	NU1016 NU216 NU216R	 NJ216 NJ216R	NUP1016 NUP216 NUP216R	 N216 	NF216	86.5 89 89	85 89 89	90 94 94	94 97 97	104 104	118.5 131 131	131	128	1 2 2	1 2 2	0.994 1.51 1.56
	140 140 140	33 33 44.4	2 2 2	2 2 2	95.3 95.3 95.3		148 186 190	186 243 259	4 000 4 000 3 600	5 400 5 300 5 400	NU2216 NU2216R NU3216	NJ2216 NJ2216R —	NUP2216 NUP2216R —			89 89 89	89 89 89	94 94 94	97 97 97	104 104	131 131 131			2 2 2	2 2 2	1.96 2.03 2.87
	170 170 170	39 39 58	2.1 2.1 2.1	2.1 2.1 2.1	103 101 103	147 	194 259 275	207 282 332	3 500 3 500 3 100	4 700 4 700 4 700	NU316 NU316R NU2316	NJ316 NJ316R NJ2316	NUP316 NUP316R NUP2316	N316 	NF316 	91 91 91	91 91 91	99 99 99	105 105 105	114 114 114	159 159 159	159 	151 	2 2 2	2 2 2	3.92 4.00 5.83
	170 170 200	58 68.3 48	2.1 2.1 3	2.1 2.1 3	101 103 110	 170	361 338 302	431 436 315	3 100 3 100 3 100	4 700 4 700 4 200	NU2316R NU3316 NU416	NJ2316R NJ416	NUP2316R NUP416	 N416	 NF416	91 91 93	91 91 93	99 99 109	105 105 112	114 124	159 159 187	 187	 172	2 2 2.5	2 2 2.5	5.95 7.72 7.28
85	130 150 150	22 28 28	1.1 2 2	1 2 2	96.5 101.8 100.5		71.4 121 167	91.2 140 199	5 100 4 200 4 200	6 000 5 000 5 000	NU1017 NU217 NU217R	 NJ217 NJ217R	NUP1017 NUP217 NUP217R	 N217 	NF217	91.5 94 94	90 94 94	95 99 99	99 104 104	110 110	123.5 141 141	141	137	1 2 2	1 2 2	1.04 1.90 1.94
	150 150 150	36 36 49.2	2 2 2	2 2 2	101.8 100.5 101.8		169 218 215	218 279 296	3 800 3 700 3 300	5 000 5 000 5 000	NU2217 NU2217R NU3217	NJ2217 NJ2217R —	NUP2217 NUP2217R —			94 94 94	94 94 94	99 99 99	104 104 104	110 110	141 141 141			2 2 2	2 2 2	2.50 2.53 3.67
	180 180 180	41 41 60	3 3 3	3 3 3	108 108 108	156 	225 291 315	247 330 382	3 300 3 300 3 000	4 500 4 400 4 500	NU317 NU317R NU2317	NJ317 NJ317R NJ2317	NUP317 NUP317R NUP2317	N317 	NF317 	98 98 98	98 98 98	106 106 106	110 110 110	119 119 119	167 167 167	167 	160 	2.5 2.5 2.5	2.5 2.5 2.5	4.52 4.80 6.62
	180 180 210	60 73 52	3 3 4	3 3 4	108 108 113	 177	394 399 340	485 517 350	2 900 3 000 3 000	4 400 4 500 4 000	NU2317R NU3317 NU417	NJ2317R NJ417	NUP2317R NUP417	 N417	 NF417	98 98 101	98 98 101	106 106 111	110 110 115	119 128	167 167 194	 194	 179	2.5 2.5 3	2.5 2.5 3	6.98 9.23 8.68
90	140	24	1.5	1.1	103	_	84.7	109	4 700	5 600	NU1018	_	NUP1018	_	—	98	96.5	101	106	_	132	_	_	1.5	1	1.34

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (90) ~ (100) mm

Koyo

	E	Bounda	(mm)	ensior	IS			ad ratings	Limiting (min		Beari	ng No.								(n	dimen: nm)					(Refer.) Mass
d	D	В	r min.	r_1 min.	F_{w}	$E_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	$d_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
90	160 160 160	30 30 40	2 2 2	2 2 2	107 107 107	143 	152 182 207	178 217 265	3 900 3 900 3 500	4 700 4 700 4 700	NU218 NU218R NU2218	NJ218 NJ218R NJ2218	NUP218 NUP218R NUP2218	N218 	NF218 	99 99 99	99 99 99	105 105 105	109 109 109	116 116 116	151 151 151	151 	146 	2 2 2	2 2 2	2.28 2.38 3.10
	160 160 190	40 52.4 43	2 2 3	2 2 3	107 107 115	165	242 270 243	314 373 265	3 500 3 100 3 100	4 700 4 700 4 200	NU2218R NU3218 NU318	NJ2218R NJ318	NUP2218R NUP318	 N318	 NF318	99 99 103	99 99 103	105 105 111	109 109 117	116 127	151 151 177	 177	169	2 2 2.5	2 2 2.5	3.21 4.49 5.38
	190 190 190	43 64 64	3 3 3	3 3 3	113.5 115 113.5		316 329 437	355 395 534	3 100 2 800 2 800	4 100 4 200 4 100	NU318R NU2318 NU2318R	NJ318R NJ2318 NJ2318R	NUP318R NUP2318 NUP2318R			103 103 103	103 103 103	111 111 111	117 117 117	127 127 127	177 177 177			2.5 2.5 2.5	2.5 2.5 2.5	5.47 7.90 8.12
	190 225	73 54	3 4	3 4	115 123.5	 191.5	428 374	559 400	2 800 2 800	4 200 3 700	NU3318 NU418	 NJ418	 NUP418	N418	 NF418	103 106	103 106	111 122	117 125	139	177 209	209	194	2.5 3	2.5 3	10.3 10.3
95	145 170 170	24 32 32	1.5 2.1 2.1	1.1 2.1 2.1	108 113.5 112.5	 151.5 	87.2 165 221	115 195 265	4 500 3 700 3 700	5 300 4 400 4 400	NU1019 NU219 NU219R	 NJ219 NJ219R	NUP1019 NUP219 NUP219R	 N219 	NF219	103 106 106	101.5 106 106	5 106 111 111	111 116 116	 123 123	137 159 159	159	155	1.5 2 2	1 2 2	1.40 2.80 2.92
	170 170 170	43 43 55.6	2.1 2.1 2.1	2.1 2.1 2.1	113.5 112.5 113.5		230 287 297	298 371 412	3 300 3 300 3 000	4 400 4 400 4 400	NU2219 NU2219R NU3219	NJ2219 NJ2219R —	NUP2219 NUP2219R —			106 106 106	106 106 106	111 111 111	116 116 116	123 123	159 159 159		 	2 2 2	2 2 2	3.85 3.93 5.42
	200 200 200	45 45 67	3 3 3	3 3 3	121.5 121.5 121.5	173.5 	277 334 394	311 387 496	3 000 2 900 2 600	4 000 3 900 4 000	NU319 NU319R NU2319	NJ319 NJ319R NJ2319	NUP319 NUP319R NUP2319	N319 — —	NF319 	108 108 108	108 108 108	119 119 119	124 124 124	134 134 134	187 187 187	187 	178 	2.5 2.5 2.5	2.5 2.5 2.5	6.20 6.42 9.39
	200 240	77.8 55	3 4	3 4	121.5 133.5	 201.5	487 410	654 444	2 600 2 600	4 000 3 400	NU3319 NU419	 NJ419	 NUP419	N419	 NF419	108 111	108 111	119 132	124 136	149	187 224	224	204	2.5 3	2.5 3	12.1 13.6
100	150 180 180	24 34 34	1.5 2.1 2.1	1.1 2.1 2.1	113 120 119	160	91.0 183 250	120 217 306	4 300 3 500 3 500	5 100 4 200 4 200	NU1020 NU220 NU220R	 NJ220 NJ220R	NUP1020 NUP220 NUP220R	N220	NF220	108 111 111	106.5 111 111	5 111 117 117	116 122 122	130 130	142 169 169	 169	164	1.5 2 2	1 2 2	1.46 3.38 3.52
	180 180	46 46	2.1 2.1	2.1 2.1	120 119	_	259 334	338 444	3 100 3 100	4 200 4 200	NU2220 NU2220R	NJ2220 NJ2220R	NUP2220 NUP2220R	_	_	111 111	111 111	117 117	122 122	130 130	169 169	_	_	2 2	2 2	4.67 4.82

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (100) ~ 110 mm

Koyo

	E	Bounda	ary dim (mm)	ensio	ns			ad ratings	Limiting (min		Beari	ng No.							Мо		dimen: nm)	sions				(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	${E}_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	I max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
100	180 215 215	60.3 47 47	2.1 3 3	2.1 3 3	120 129.5 127.5		327 323 379	459 337 424	2 800 2 800 2 700	4 200 3 700 3 600	NU3220 NU320 NU320R	 NJ320 NJ320R	NUP320 NUP320R	N320	NF320	111 113 113	111 113 113	117 125 125	122 132 132	 143 143	169 202 202	202	190	2 2.5 2.5	2 2.5 2.5	6.62 7.70 7.75
	215 215 215	73 73 82.6	3 3 3	3 3 3	129.5 127.5 129.5	_	464 570 530	548 717 706	2 500 2 400 2 500	3 700 3 600 3 700	NU2320 NU2320R NU3320	—	NUP2320 NUP2320R —			113 113 113	113 113 113	125 125 125	132 132 132	143 143 	202 202 202			2.5 2.5 2.5	2.5 2.5 2.5	11.9 12.1 15.0
	250	58	4	4	139	211	458	498	2 500	3 300	NU420	NJ420	NUP420	N420	NF420	116	116	137	141	156	234	234	213	3	3	14.0
105	160 190 190	26 36 65.1	2 2.1 2.1	1.1 2.1 2.1	119.5 126.8 126.8	168.8	108 201 344	149 241 482	4 100 3 300 2 600	4 800 3 900 3 900	NU1021 NU221 NU3221	 NJ221 	NUP1021 NUP221	N221	NF221	114 116 116	111.5 116 116	5 118 124 124	122 129 129	137 	151 179 179	179 	173 	2 2 2	1 2 2	1.85 4.00 8.00
	225 225 225	49 77 87.3	3 3 3	3 3 3	135 135 135	195 	366 568 638	417 750 871	2 600 2 300 2 300	3 500 3 500 3 500	NU321 NU2321 NU3321	NJ321 	NUP321 NUP2321 —	N321 	NF321 	118 118 118	118 118 118	132 131 132	137 138 137	149 	212 212 212	212 	199 	2.5 2.5 2.5	2.5 2.5 2.5	8.76 15.6 17.4
	260	60	4	4	144.5	220.5	471	510	2 400	3 100	NU421	NJ421	NUP421	N421	NF421	121	121	143	147	162	244	244	223	3	3	19.1
110	170 200 200	28 38 38	2 2.1 2.1	1.1 2.1 2.1	125 132.5 132.5		134 241 293	171 290 365	3 800 3 100 3 100	4 500 3 700 3 700	NU1022 NU222 NU222R	 NJ222 NJ222R	NUP1022 NUP222 NUP222R	N222	 NF222	119 121 121	116.5 121 121	5 124 130 130	128 135 135	 144 144	161 189 189	189 	182 	2 2 2	1 2 2	2.31 4.65 4.90
	200 200 200	53 53 69.8	2.1 2.1 2.1	2.1 2.1 2.1	132.5 132.5 132.5	_	334 384 427	442 517 607	2 800 2 800 2 500	3 700 3 700 3 700	NU2222 NU2222R NU3222	NJ2222 NJ2222R 	NUP2222 NUP2222R —			121 121 121	121 121 121	130 130 130	135 135 135	144 144 	189 189 189			2 2 2	2 2 2	6.93 6.93 9.55
	240 240 240	50 50 80	3 3 3	3 3 3	143 143 143	207	411 451 604	467 525 789	2 500 2 400 2 200	3 300 3 200 3 300	NU322 NU322R NU2322	NJ322 NJ322R NJ2322	NUP322 NUP322R NUP2322	N322 	NF322 	123 123 123	123 123 123	140 140 140	145 145 145	158 158 158	227 227 227	227 	211 	2.5 2.5 2.5	2.5 2.5 2.5	10.4 10.7 18.8
	240 240 280	80 92.1 65	3 3 4	3 3 4	143 143 155	 235	680 678 550	880 918 621	2 200 2 200 2 200	3 200 3 300 2 900	NU2322R NU3322 NU422	NJ2322R NJ422	NUP2322R NUP422	 N422	 NF422	123 123 126	123 123 126	140 140 153	145 145 157	158 173	227 227 264	264	237	2.5 2.5 3	2.5 2.5 3	18.8 21.1 19.9

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d **120** ~ (**140**) mm

Koyo

	E	Bound	ary dim (mm)	ensio	ns			ad ratings	Limiting (min		Beari	ng No.							Мо		dimen nm)					(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{ m w}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	d _a min.	min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	l max.	D _b min.	r _a max.	$r_{ m b}$ max.	NU (kg)
120	180 215 215	28 40 40	2 2.1 2.1	1.1 2.1 2.1	135 143.5 143.5		137 260 336	181 318 421	3 500 2 900 2 800	4 200 3 400 3 400	NU1024 NU224 NU224R	 NJ224 NJ224R	NUP1024 NUP224 NUP224R	N224	NF224	129 131 131	126.5 131 131	134 141 141	138 146 146	156 156	171 204 204	204	196 	2 2 2	1 2 2	2.47 5.65 5.85
	215 215 215	58 58 76	2.1 2.1 2.1	2.1 2.1 2.1	143.5 143.5 143.5		367 452 477	492 619 695	2 600 2 600 2 300	3 400 3 400 3 400	NU2224 NU2224R NU3224	NJ2224 NJ2224R 	NUP2224 NUP2224R —	 		131 131 131	131 131 131	141 141 141	146 146 146	156 156	204 204 204			2 2 2	2 2 2	8.56 8.56 11.9
	260 260 260	55 55 86	3 3 3	3 3 3	154 154 154	226 	485 528 708	551 610 918	2 200 2 200 2 000	3 000 3 000 3 000	NU324 NU324R NU2324	NJ324 NJ324R NJ2324	NUP324 NUP324R NUP2324	N324 	NF324 	133 133 133	133 133 133	151 151 151	156 156 156	171 171 171	247 247 247	247 	230 	2.5 2.5 2.5	2.5 2.5 2.5	13.1 13.4 23.1
	260 260 310	86 106 72	3 3 5	3 3 5	154 154 170	260	793 826 690	1 030 1 120 770	2 000 2 000 1 900	3 000 3 000 2 600	NU2324R NU3324 NU424	NJ2324R NJ424	NUP2324R NUP424	 N424	 NF424	133 133 140	133 133 140	151 151 168	156 156 172	172 190	247 247 290	 290	262	2.5 2.5 4	2.5 2.5 4	23.1 28.3 28.0
130	200 230 230	33 40 40	2 3 3	1.1 3 3	148 156 153.5	204	171 282 364	238 362 453	3 200 2 700 2 600	3 800 3 200 3 200	NU1026 NU226 NU226R	 NJ226 NJ226R	NUP1026 NUP226 NUP226R	 N226 	NF226	139 143 143	136.5 143 143	146 151 151	151 158 158	168 168	191 217 217	217	208	2 2.5 2.5	1 2.5 2.5	3.77 6.49 6.60
	230 230 230	64 64 80	3 3 3	3 3 3	156 153.5 156		395 530 550	560 737 857	2 400 2 400 2 100	3 200 3 200 3 200	NU2226 NU2226R NU3226	NJ2226 NJ2226R —	NUP2226 NUP2226R —			143 143 143	143 143 143	151 151 151	158 158 158	168 168	217 217 217	 		2.5 2.5 2.5	2.5 2.5 2.5	11.2 11.2 14.1
	280 280 280	58 58 93	4 4 4	4 4 4	167 167 167	243	564 616 838	667 736 1 130	2 100 2 000 1 800	2 700 2 700 2 700	NU326 NU326R NU2326	NJ326 NJ326R NJ2326	NUP326 NUP326R NUP2326	N326 	NF326 	146 146 146	146 146 146	164 164 164	169 169 169	184 184 184	264 264 264	264	247	3 3 3	3 3 3	16.4 16.7 29.1
	280 280 340	93 112 78	4 4 5	4 4 5	167 167 185	 285	920 936 771	1 230 1 290 876	1 800 1 800 1 800	2 700 2 700 2 300	NU2326R NU3326 NU426	NJ2326R NJ426	NUP2326R NUP426	 N426	 NF426	146 146 150	146 146 150	164 164 183	169 169 187	186 208	264 264 320	 320	 287	3 3 4	3 3 4	29.1 34.6 36.1
140	210 250 250	33 42 42	2 3 3	1.1 3 3	158 169 169	221	175 324 392	250 421 514	3 000 2 400 2 400	3 600 2 900 2 900	NU1028 NU228 NU228R	 NJ228 NJ228R	NUP1028 NUP228 NUP228R	N228	NF228	149 153 153	146.5 153 153	156 166 166	161 171 171	182 182	201 237 237	237	228	2 2.5 2.5	1 2.5 2.5	4.00 8.27 8.50

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (140) ~ (160) mm

Koyo

		Bounda	ary dim (mm)	ensio	ns			ad ratings kN)	Limiting (min		Bearin	ng No.							Мо		dimens nm)	sions				(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	I max.	D _b min.	r _a max.	$r_{ m b}$ max.	NU (kg)
140	250 250 250	68 68 88	3 3 3	3 3 3	169 169 169		465 572 604	671 835 939	2 200 2 200 1 900	2 900 2 900 2 900	NU2228 NU2228R NU3228	NJ2228 NJ2228R —	NUP2228 NUP2228R —	 		153 153 153	153 153 153	166 166 166	171 171 171	182 182	237 237 237			2.5 2.5 2.5	2.5 2.5 2.5	14.3 14.3 18.5
	300 300 300	62 62 102	4 4 4	4 4 4	180 180 180	260 	623 663 920	746 797 1 250	1 900 1 900 1 700	2 500 2 500 2 500	NU328 NU328R NU2328	NJ328 NJ328R NJ2328	NUP328 NUP328R NUP2328	N328 	NF328 	156 156 156	156 156 156	176 176 176	182 182 182	198 198 198	284 284 284	284 	264 	3 3 3	3 3 3	21.8 21.8 36.8
	300 300 360	118	4 4 5	4 4 5	180 180 198	302	1 020 1 090 874	1 380 1 550 1 020	1 700 1 700 1 600	2 500 2 500 2 200	NU2328R NU3328 NU428	NJ2328R NJ428	NUP2328R NUP428	 N428	 NF428	156 156 160	156 156 160	176 176 195	182 182 200	200 222	284 284 340	340	304	3 3 4	3 3 4	36.8 41.5 46.8
150	225 270 270	35 45 45	2.1 3 3	1.5 3 3	169.5 182 182	238	201 374 448	281 492 594	2 800 2 200 2 200	3 300 2 700 2 600	NU1030 NU230 NU230R	 NJ230 NJ230R	NUP1030 NUP230 NUP230R	N230	 NF230 	161 163 163	158 163 163	167 179 179	173 184 184	196 196	214 257 257	257 	245 	2 2.5 2.5	1.5 2.5 2.5	4.83 10.3 10.7
	270 270 270	73 73 96	3 3 3	3 3 3	182 182 182		545 662 749	800 982 1 200	2 000 2 000 1 800	2 700 2 600 2 700	NU2230 NU2230R NU3230	NJ2230 NJ2230R 	NUP2230 NUP2230R —			163 163 163	163 163 163	179 179 179	184 184 184	196 196	257 257 257	 		2.5 2.5 2.5	2.5 2.5 2.5	18.7 18.7 23.7
	320 320 320	65 65 108	4 4 4	4 4 4	193 193 193	277 	663 757 1 020	807 922 1 400	1 800 1 700 1 600	2 300 2 300 2 300	NU330 NU330R NU2330	NJ330 NJ330R NJ2330	NUP330 NUP330R NUP2330	N330 	NF330 	166 166 166	166 166 166	190 190 190	195 195 195	213 213 213	304 304 304	304 	281 	3 3 3	3 3 3	26.4 27.0 44.7
	320 320 380	128	4 4 5	4 4 5	193 193 213	 317	1 180 1 290 930	1 600 1 890 1 120	1 500 1 600 1 500	2 300 2 300 2 000	NU2330R NU3330 NU430	NJ2330R NJ430	NUP2330R NUP430	 N430	 NF430	166 166 170	166 166 170	190 190 210	195 195 216	213 237	304 304 360	360	 319	3 3 4	3 3 4	44.7 51.4 53.3
160	240 290 290	38 48 48	2.1 3 3	1.5 3 3	180 195 195	255 	236 427 498	330 568 666	2 600 2 100 2 000	3 000 2 500 2 400	NU1032 NU232 NU232R	 NJ232 NJ232R	NUP1032 NUP232 NUP232R	N232	 NF232 	171 173 173	168 173 173	178 192 192	184 197 197	210 210	229 277 277	277 	262	2 2.5 2.5	1.5 2.5 2.5	5.93 14.4 14.8
	290 290 290	80 80 104	3 3 3	3 3 3	195 193 195		631 809 857	939 1 190 1 390	1 800 1 800 1 600	2 500 2 400 2 500	NU2232 NU2232R NU3232	NJ2232 NJ2232R 	NUP2232 NUP2232R —			173 173 173	173 173 173	192 192 192	197 197 197	210 210	277 277 277			2.5 2.5 2.5	2.5 2.5 2.5	23.6 23.6 29.8

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (160) ~ (190) mm

Koyo

	Boun	dary d	imensi n)	ons			oad ratings (kN)	Limiting (min		Beari	ng No.							Мо		dimen nm)	sions				(Refer.) Mass
d	D B	r mir	<i>r</i> 1 n. mir		E_{w}	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	l max.	D _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
160	340 68 340 68 340 114		4 4 4	208 204 208	292 	698 857 1 070	876 1 050 1 520	1 600 1 600 1 400	2 200 2 100 2 200	NU332 NU332R NU2332	NJ332 NJ332R NJ2332	NUP332 NUP332R NUP2332	N332 — —	NF332 	176 176 176	176 176 176	200 200 200	211 211 211	228 228 228	324 324 324	324 	296 	3 3 3	3 3 3	31.7 32.0 53.1
	340 114 340 136		4 4	204 208	_	1 310 1 270	1 820 1 890	1 400 1 400	2 100 2 200	NU2332R NU3332	NJ2332R —	NUP2332R —			176 176	176 176	200 200	211 211	228	324 324	_	_	3 3	3 3	53.1 61.5
170	260 42 310 52 310 52	4	1 2. ⁻ 4 4	1 193 208 207	272	276 475 603	400 637 802	2 400 1 900 1 900	2 800 2 300 2 200	NU1034 NU234 NU234R	 NJ234 NJ234R	NUP1034 NUP234 NUP234R	N234	 NF234 	181 186 186	181 186 186	190 204 204	197 211 211	 223 223	249 294 294	 294	280	2 3 3	2 3 3	7.90 18.4 18.6
	310 86 310 86 310 110	4	4 4 4	208 205 208		715 967 964	1 080 1 410 1 580	1 700 1 700 1 500	2 300 2 200 2 300	NU2234 NU2234R NU3234	NJ2234 NJ2234R —	NUP2234 NUP2234R —			186 186 186	186 186 186	204 204 204	211 211 211	223 223	294 294 294	 		3 3 3	3 3 3	29.2 29.2 36.2
	36072360120360140	4	4 4 4	220 220 220	310 	809 1 220 1 420	1 010 1 750 2 120	1 500 1 300 1 300	2 000 2 000 2 000	NU334 NU2334 NU3334	NJ334 NJ2334 —	NUP334 NUP2334 —	N334 	NF334 	186 186 186	186 186 186	216 216 216	223 223 223	241 241 	344 344 344	344 	314 	3 3 3	3 3 3	38.6 62.6 70.8
180	280 46 320 52 320 52	4	1 2. ⁻ 4 4	1 205 218 217	282	356 492 626	503 677 852	2 200 1 800 1 800	2 600 2 200 2 100	NU1036 NU236 NU236R	 NJ236 NJ236R	NUP1036 NUP236 NUP236R	 N236 	 NF236 	191 196 196	191 196 196	203 214 214	209 221 221	 233 233	269 304 304	304	290	2 3 3	2 3 3	10.5 19.3 19.3
	320 86 320 86 320 112	4	4 4 4	218 215 218		741 1 010 999	1 140 1 510 1 680	1 600 1 600 1 400	2 200 2 100 2 200	NU2236 NU2236R NU3236	NJ2236 NJ2236R —	NUP2236 NUP2236R —			196 196 196	196 196 196	214 214 214	221 221 221	233 233	304 304 304			3 3 3	3 3 3	30.4 30.4 38.4
	380 75 380 126 380 150	4	4 4 4	232 232 232	328 	917 1 350 1 660	1 150 1 940 2 520	1 400 1 300 1 300	1 900 1 900 1 900	NU336 NU2336 NU3336	NJ336 NJ2336 —	NUP336 NUP2336 —	N336 	NF336 	196 196 196	196 196 196	227 227 227	235 235 235	255 255	364 364 364	364 	332 	3 3 3	3 3 3	42.6 73.0 84.4
190	290 46 340 55 340 55	4	1 2. ⁻ 4 4	l 215 231 230	299	366 554 694	530 768 954	2 100 1 700 1 700	2 500 2 000 2 000	NU1038 NU238 NU238R	 NJ238 NJ238R	NUP1038 NUP238 NUP238R	N238	NF238	201 206 206	201 206 206	213 227 227	219 234 234	 247 247	279 324 324	324	310	2 3 3	2 3 3	10.9 23.2 23.3
	340 92	4	4	231	_	828	1 290	1 500	2 000	NU2238	NJ2238	NUP2238	_	_	206	206	227	234	247	324	_		3	3	37.0

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (190) ~ (240) mm

Koyo

	E	Bounda	(mm)	ensio	ıs			oad ratings (kN)	Limiting (min		Bearir	ng No.									dimen nm)					(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{ m w}$	$E_{ m w}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	$d_{ m a}$ min.	min.	d _b max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	1 max.	D _b min.	r _a max.	$r_{ m b}$ max.	NU (kg)
190	340	92	4	4	228	_	1 100	1 670	1 500	2 000	NU2238R	NJ2238R	NUP2238R	—	—	206	206	227	234	247	324	_	_	3	3	37.0
	340 400	120 78	4 5	4 5	231 245	345	1 310 987	1 930 1 260	1 300 1 300	2 000 1 800	NU3238 NU338	 NJ338	 NUP338	N338	 NF338	206 210	206 210	227 240	234 248	268	324 380	380	349	3 1	3 1	46.8 49.9
			5	5					1 200		NU2338	NJ2338	NUP2338		NI 550			240	240			500	040	4	4	
		132 155	5 5	5 5	245 245	_	1 520 1 870	2 220 2 910	1 200	1 800 1 800	NU2338 NU3338	NJ2338	NUP2338			210 210	210 210	240 240	248 248	268	380 380	_	_	4	4	84.7 96.5
			-																							
200	310	51	2.1	2.1	229 244	316	388 618	582 865	1 900 1 600	2 300 1 900	NU1040 NU240	 NJ240	NUP1040 NUP240	N240	 NF240	211 216	211	226 240	233 247		299 344	244	328	2 3	2 3	14.1 26.8
	360 360	58 58	4 4	4	244 243	310	766	1 060	1 600	1 900	NU240 NU240R	NJ240R	NUP240 NUP240R	N240	INF 240	210	216 216	240 240	247	261 261	344 344	344	320	3 3	3 3	20.0
	360	98	4	4	244	_	946	1 490	1 400	1 900	NU2240	NJ2240	NUP2240			216	216	240	247	261	344			3	3	44.4
	360	98	4	4	241		1 220	1 870	1 400	1 900	NU2240R	NJ2240R	NUP2240R	_	_	216	216	240	247	261	344			3	3	44.4
	360	128	4	4	244	_	1 200	2 020	1 300	1 900	NU3240	—	—	—	—	216	216	240	247		344		_	3	3	56.2
	420	80	5	5	260	360	987	1 270	1 200	1 700	NU340	NJ340	NUP340	N340	NF340	220	220	254	263	283	400	400	364	4	4	56.2
	420	138	5	5	260		1 520	2 240	1 100	1 700	NU2340	NJ2340	NUP2340	—	—	220	220	254	263	283	400		_	4	4	97.4
	420	165	5	5	260	_	1 870	2 930	1 100	1 700	NU3340					220	220	250	258		400			4	4	113
220	340	56	3	3	250		507	748	1 700	2 000	NU1044	_	NUP1044	—	_	233	233	248	254	_	327	_		2.5	2.5	18.5
	400	65	4	4	270	350	766	1 080	1 400	1 700	NU244	NJ244	NUP244	N244	NF244	236	236	266	273	289	384	384	362	3	3	38.5
	400	108	4	4	270	—	1 130	1 810	1 200	1 700	NU2244	NJ2244	—	—	—	236	236	266	273	289	384	—	_	3	3	60.9
	400	144	4	4	270		1 630	2 880	1 100	1 700	NU3244	_	_	_		236	236	266	273		384			3	3	78.8
	460 460	88 145	5 5	5	284 284	396	1 200	1 570 2 690	1 100 990	1 500 1 500	NU344 NU2344	NJ344	NUP344 NUP2344	N344	NF344	240 240	240 240	279 276	287 287	309	440 440	440	400	4	4	74.4
			5	5	284			3 300		1 500	NU3344	—	NOF 2344	_	_			270	287	_	440	_		4	4	148
	460	180	5	5	204	_	2 130	3 300	990	1 500	1103344					240	240	219	201	_	440			4	4	140
240	360	56	3	3	270		535	822	1 600	1 900	NU1048	—	NUP1048	—	—	253	253	268	275	—	347		—	2.5	2.5	20.1
	440	72	4	4	295	385	949	1 340	1 200	1 500	NU248	NJ248	NUP248	N248	NF248	256	256	293	298	316	424	424	397	3	3	52.1
	440	120	4	4	295	_	1 430	2 320	1 100	1 500	NU2248	NJ2248	—	—	_	256	256	293	298	316	424	_	_	3	3	82.5
	440	160	4 5	4	295	420	1 950	3 460	990	1 500	NU3248	 NJ348				256	256	293	298		424	490	424	3	3	107
	500 500	95 155	5 5	5 5	310 310	430	1 430 2 170	1 950 3 320	990 880	1 300 1 300	NU348 NU2348	INJ348	NUP348 NUP2348	N348	NF348	260 260	260 260	305 303	313 313	337	480 480	480	434	4 4	4	94.6 152

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

d (240) ~ 460 mm

Koyo

		Bound	ary dim (mm)	ensio	ns			oad ratings	Limiting (mir		Beari	ng No.							Мо	unting (n	dimen: nm)	sions				(Refer.) Mass
d	D	В	r min.	r_1 min.	$F_{\rm w}$	$E_{ m w}$	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	NU	NJ	NUP	Ν	NF	d_{a} min.	min.	$d_{ m b}$ max.	$d_{ m c}$ min.	$d_{ m d}$ min.	$D_{ m a}$ max.	L max.) _b min.	$r_{ m a}$ max.	$r_{ m b}$ max.	NU (kg)
240	500	195	5	5	310	_	2 540	4 070	880	1 300	NU3348	_	_	_	_	260	260	305	313		480	_	_	4	4	189
260	400 480 480	65 80 130	4 5 5	4 5 5	296 320 320	420	651 1 100 1 790	979 1 580 2 950	1 400 1 100 990	1 700 1 300 1 300	NU1052 NU252 NU2252	 NJ252 NJ2252	NUP1052 NUP252 —	N252	NF252	276 280 280	276 280 280	292 318 318	300 323 323	343 343	384 460 460	460	432	3 4 4	3 4 4	29.2 69.0 107
	480 540 540		5 6 6	5 6 6	320 336 336		2 140 2 430 2 940	3 680 3 750 4 790	880 790 790	1 300 1 200 1 200	NU3252 NU2352 NU3352		 NUP2352 			280 284 284	280 284 284	318 327 330	323 339 339		460 516 516			4 5 5	4 5 5	139 185 232
280	420 500		4 5	4 5	316 340	440	669 1 140	1 030 1 680	1 300 1 000	1 500 1 200	NU1056 NU256	 NJ256	NUP1056 NUP256	 N256	 NF256	296 300	296 300	313 336	320 343	365	404 480	480	452	3 4	3 4	35.2 72.7
300	460 540	74 85	4 5	4 5	340 364	476	890 1 350	1 380 1 960	1 200 920	1 400 1 100	NU1060 NU260	 NJ260	NUP1060 NUP260	N260	 NF260	316 320	316 320	337 361	344 368	392	444 520	520	487	3 4	3 4	44.1 90.7
320	480 580 670		4 5 7.5	4 5 7.5	360 390 425	510	913 1 540 1 970	1 450 2 270 2 880	1 100 840 650	1 000	NU1064 NU264 NU364	 NJ264 	NUP1064 NUP264 —	N264	NF264	336 340 352	336 340 352	356 386 419	365 393 428	419 	464 560 638	560 638	522 575	3 4 6	3 4 6	48.4 114 199
340	520	82	5	5	385	_	1 090	1 750	980	1 200	NU1068		NUP1068	_	_	360	360	381	390		500	_	_	4	4	64.1
360	540	82	5	5	405	_	1 120	1 830	920	1 100	NU1072	_	NUP1072	_	_	380	380	401	410		520	_	_	4	4	67.1
380	560	82	5	5	425	_	1 150	1 920	860	1 000	NU1076		NUP1076	_	_	400	400	421	430		540	_	_	4	4	70.1
400	600	90	5	5	450	_	1 400	2 310	780	920	NU1080		NUP1080	_	_	420	420	446	455		580	_	_	4	4	91.0
420	620	90	5	5	470	_	1 390	2 320	730	860	NU1084	_	NUP1084	_	_	440	440	466	475	_	600	_	_	4	4	94.6
440	650	94	6	6	493	_	1 490	2 520	680	800	NU1088	_	NUP1088	_	_	464	464	489	498	_	626	_	_	5	5	109
460	680	100	6	6	516	_	1 590	2 730	630	750	NU1092	_	NUP1092	_	_	484	484	512	520	_	656	_	_	5	5	127

[Remarks] 1) Standard cage types used for the above bearings are shown in Table 1 earlier in this section. Please note that basic load ratings and limiting speeds shown above indicate the value applicable to machined cage. Consult JTEKT about bearings with pressed cage, since they may be different from bearings with machined cage in values above.

Thrust collars for cylindrical roller bearings

d **20** ~ (**35**) mm

d (35) ~ (50) mm

Thrust collar

	Bound	ary dime (mm)	nsions		Thrust collar No.	(Refer.) Mass		cable ng No.
d	d_1	B_1	B_2	r_1 min.		(kg)	NJ	NU
20	29.7	3	6.75	0.6	HJ204	0.012	NJ204	NU204
	29.8	3	5.5	0.6	HJ204R	0.011	NJ204R	NU204R
	30	3	7.5	0.6	HJ2204	0.012	NJ2204	NU2204
	29.8	3	6.5	0.6	HJ2204R	0.012	NJ2204R	NU2204R
	31.8	4	7.5	0.6	HJ304	0.017	NJ304	NU304
	31.4	4	6.5	0.6	HJ304R	0.017	NJ304R	NU304R
	31.8	4	8.5	0.6	HJ2304	0.020	NJ2304	NU2304
	31.4	4	7.5	0.6	HJ2304R	0.018	NJ2304R	NU2304R
25	34.7	3	7.25	0.6	HJ205	0.015	NJ205	NU205
	34.8	3	6	0.6	HJ205R	0.014	NJ205R	NU205R
	34.7	3	7.5	0.6	HJ2205	0.015	NJ2205	NU2205
	34.8	3	6.5	0.6	HJ2205R	0.014	NJ2205R	NU2205R
	39	4	8	1.1	HJ305	0.025	NJ305	NU305
	38.2	4	7	1.1	HJ305R	0.025	NJ305R	NU305R
	39	4	9	1.1	HJ2305	0.025	NJ2305	NU2305
	38.2	4	8	1.1	HJ2305R	0.026	NJ2305R	NU2305R
30	41.8	4	8.25	0.6	HJ206	0.025	NJ206	NU206
	41.4	4	7	0.6	HJ206R	0.025	NJ206R	NU206R
	41.8	4	8.5	0.6	HJ2206	0.025	NJ2206	NU2206
	41.4	4	7.5	0.6	HJ2206R	0.025	NJ2206R	NU2206R
	45.9	5	9.5	1.1	HJ306	0.039	NJ306	NU306
	45.1	5	8.5	1.1	HJ306R	0.042	NJ306R	NU306R
	45.9	5	11.5	1.1	HJ2306	0.039	NJ2306	NU2306
	45.1	5	9.5	1.1	HJ2306R	0.043	NJ2306R	NU2306R
	50.5	7	11.5	1.5	HJ406	0.080	NJ406	NU406
35	47.6	4	8	0.6	HJ207	0.030	NJ207	NU207
	48.2	4	7	0.6	HJ207R	0.033	NJ207R	NU207R
	47.6	4	8.5	0.6	HJ2207	0.030	NJ2207	NU2207

	Bound	ary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass		cable ng No.
d	d_1	B_1	B_2	r_1 min.		(kg)	NJ	NU
35	48.2	4	8.5	0.6	HJ2207R	0.035	NJ2207R	NU2207R
	50.8	6	11	1.1	HJ307	0.056	NJ307	NU307
	51.1	6	9.5	1.1	HJ307R	0.060	NJ307R	NU307R
	50.8	6	14	1.1	HJ2307	0.056	NJ2307	NU2307
	51.1	6	11	1.1	HJ2307R	0.062	NJ2307R	NU2307R
	59	8	13	1.5	HJ407	0.120	NJ407	NU407
40	54.2	5	9	1.1	HJ208	0.046	NJ208	NU208
	54.1	5	8.5	1.1	HJ208R	0.049	NJ208R	NU208R
	54.2	5	9.5	1.1	HJ2208	0.046	NJ2208	NU2208
	54.1	5	9	1.1	HJ2208R	0.050	NJ2208R	NU2208R
	58.4	7	12.5	1.5	HJ308	0.083	NJ308	NU308
	57.7	7	11	1.5	HJ308R	0.088	NJ308R	NU308R
	58.4	7	14.5	1.5	HJ2308	0.083	NJ2308	NU2308
	57.7	7	12.5	1.5	HJ2308R	0.091	NJ2308R	NU2308R
	64.8	8	13	2	HJ408	0.140	NJ408	NU408
45	59	5	9.5	1.1	HJ209	0.053	NJ209	NU209
	59.1	5	8.5	1.1	HJ209R	0.055	NJ209R	NU209R
	59	5	9.5	1.1	HJ2209	0.053	NJ2209	NU2209
	59.1	5	9	1.1	HJ2209R	0.055	NJ2209R	NU2209R
	64	7	12.5	1.5	HJ309	0.099	NJ309	NU309
	64.5	7	11.5	1.5	HJ309R	0.110	NJ309R	NU309R
	64	7	15	1.5	HJ2309	0.099	NJ2309	NU2309
	64.5	7	13	1.5	HJ2309R	0.113	NJ2309R	NU2309R
	71.8	8	13.5	2	HJ409	0.175	NJ409	NU409
50	64.6	5	10	1.1	HJ210	0.063	NJ210	NU210
	64.1	5	9	1.1	HJ210R	0.061	NJ210R	NU210R
	64.6	5	9.5	1.1	HJ2210	0.063	NJ2210	NU2210
	64.1	5	9	1.1	HJ2210R	0.061	NJ2210R	NU2210R
	71	8	14	2	HJ310	0.142	NJ310	NU310

Thrust collars for cylindrical roller bearings

d (50) ~ (65) mm

d (65) ~ (80) mm

Thrust collar

	Bound	lary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass		cable ng No.
<i>d</i>	d_1	B_1	B_2	r_1 min.	Thi ust conar no.	(kg)	NJ	NU
50	71.4	8	13	2	HJ310R	0.151	NJ310R	NU310R
	71	8	17	2	HJ2310	0.142	NJ2310	NU2310
	71.4	8	14.5	2	HJ2310R	0.155	NJ2310R	NU2310R
	78.8	9	14.5	2.1	HJ410	0.230	NJ410	NU410
55	70.8	6	11	1.1	HJ211	0.084	NJ211	NU211
	70.9	6	9.5	1.1	HJ211R	0.087	NJ211R	NU211R
	70.8	6	11	1.1	HJ2211	0.084	NJ2211	NU2211
	70.9	6	10	1.1	HJ2211R	0.088	NJ2211R	NU2211R
	77.2	9	15	2	HJ311	0.182	NJ311	NU311
	77.6	9	14	2	HJ311R	0.195	NJ311R	NU311R
	77.2	9	18.5	2	HJ2311	0.182	NJ2311	NU2311
	77.6	9	15.5	2	HJ2311R	0.200	NJ2311R	NU2311R
	85.2	10	16.5	2.1	HJ411	0.290	NJ411	NU411
60	78.4	6	11	1.5	HJ212	0.108	NJ212	NU212
	77.7	6	10	1.5	HJ212R	0.108	NJ212R	NU212R
	78.4	6	11	1.5	HJ2212	0.108	NJ2212	NU2212
	77.7	6	10	1.5	HJ2212R	0.108	NJ2212R	NU2212R
	84.2	9	15.5	2.1	HJ312	0.220	NJ312	NU312
	84.5	9	14.5	2.1	HJ312R	0.231	NJ312R	NU312R
	84.2	9	19	2.1	HJ2312	0.220	NJ2312	NU2312
	84.5	9	16	2.1	HJ2312R	0.237	NJ2312R	NU2312R
	91.8	10	16.5	2.1	HJ412	0.340	NJ412	NU412
65	84.8	6	11	1.5	HJ213	0.123	NJ213	NU213
	84.5	6	10	1.5	HJ213R	0.129	NJ213R	NU213R
	84.8	6	11.5	1.5	HJ2213	0.123	NJ2213	NU2213
	84.5	6	10.5	1.5	HJ2213R	0.131	NJ2213R	NU2213R
	91	10	17	2.1	HJ313	0.280	NJ313	NU313
	90.6	10	15.5	2.1	HJ313R	0.288	NJ313R	NU313R

	Bound	lary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass		cable ng No.
d	d_1	B_1	B_2	r_1 min.		(kg)	NJ	NU
65	91	10	20	2.1	HJ2313	0.280	NJ2313	NU2313
	90.6	10	18	2.1	HJ2313R	0.298	NJ2313R	NU2313R
	98.5	11	18	2.1	HJ413	0.420	NJ413	NU413
70	89.6	7	12.5	1.5	HJ214	0.150	NJ214	NU214
	89.5	7	11	1.5	HJ214R	0.157	NJ214R	NU214R
	89.6	7	12.5	1.5	HJ2214	0.150	NJ2214	NU2214
	89.5	7	11.5	1.5	HJ2214R	0.158	NJ2214R	NU2214R
	98	10	17.5	2.1	HJ314	0.330	NJ314	NU314
	97.5	10	15.5	2.1	HJ314R	0.330	NJ314R	NU314R
	98	10	20.5	2.1	HJ2314	0.330	NJ2314	NU2314
	97.5	10	18.5	2.1	HJ2314R	0.345	NJ2314R	NU2314R
	110.5	12	20	3	HJ414	0.605	NJ414	NU414
75	94	7	12.5	1.5	HJ215	0.156	NJ215	NU215
	94.5	7	11	1.5	HJ215R	0.166	NJ215R	NU215R
	94	7	12.5	1.5	HJ2215	0.156	NJ2215	NU2215
	94.5	7	11.5	1.5	HJ2215R	0.167	NJ2215R	NU2215R
	104.2	11	18.5	2.1	HJ315	0.400	NJ315	NU315
	104.2	11	16.5	2.1	HJ315R	0.410	NJ315R	NU315R
	104.2	11	21.5	2.1	HJ2315	0.400	NJ2315	NU2315
	104.2	11	19.5	2.1	HJ2315R	0.430	NJ2315R	NU2315R
	116	13	21.5	3	HJ415	0.710	NJ415	NU415
80	101.2	8	13.5	2	HJ216	0.207	NJ216	NU216
	101.6	8	12.5	2	HJ216R	0.222	NJ216R	NU216R
	101.2	8	13.5	2	HJ2216	0.207	NJ2216	NU2216
	101.6	8	12.5	2	HJ2216R	0.222	NJ2216R	NU2216R
	111.8	11	19.5	2.1	HJ316	0.470	NJ316	NU316
	110.6	11	17	2.1	HJ316R	0.460	NJ316R	NU316R
	111.8	11	23	2.1	HJ2316	0.470	NJ2316	NU2316
	110.6	11	20	2.1	HJ2316R	0.480	NJ2316R	NU2316R

Thrust collars for cylindrical roller bearings -

d (80) ~ (100) mm

d (100) ~ 120 mm

Thrust collar

	Bound	ary dime	ensions		Thrust collar No.	(Refer.) Mass		cable ng No.	
d	d_1	B_1	B_2	r_1 min.	Thrust condr No.	(kg)	NJ	NU	
80	122	13	22	3	HJ416	0.780	NJ416	NU416	
85	108.2	8	14	2	HJ217	0.250	NJ217	NU217	
	107.6	8	12.5	2	HJ217R	0.250	NJ217R	NU217R	
	108.2	8	14	2	HJ2217	0.250	NJ2217	NU2217	
	107.6	8	13	2	HJ2217R	0.252	NJ2217R	NU2217R	
	117.5	12	20.5	3	HJ317	0.560	NJ317	NU317	
	117.9	12	18.5	3	HJ317R	0.575	NJ317R	NU317R	
	117.5	12	24	3	HJ2317	0.560	NJ2317	NU2317	
	117.9	12	22	3	HJ2317R	0.595	NJ2317R	NU2317R	
	126	14	24	4	HJ417	0.880	NJ417	NU417	
90	114.2	9	15	2	HJ218	0.305	NJ218	NU218	
	114.4	9	14	2	HJ218R	0.320	NJ218R	NU218R	
	114.2	9	16	2	HJ2218	0.305	NJ2218	NU2218	
	114.4	9	15	2	HJ2218R	0.325	NJ2218R	NU2218R	
	125	12	21	3	HJ318	0.630	NJ318	NU318	
	124.2	12	18.5	3	HJ318R	0.630	NJ318R	NU318R	
	125	12	26	3	HJ2318	0.630	NJ2318	NU2318	
	124.2	12	22	3	HJ2318R	0.660	NJ2318R	NU2318R	
	137	14	24	4	HJ418	1.05	NJ418	NU418	
95	121	9	15.5	2.1	HJ219	0.352	NJ219	NU219	
	120.6	9	14	2.1	HJ219R	0.355	NJ219R	NU219R	
	121	9	16.5	2.1	HJ2219	0.352	NJ2219	NU2219	
	120.6	9	15.5	2.1	HJ2219R	0.365	NJ2219R	NU2219R	
	132	13	22.5	3	HJ319	0.760	NJ319	NU319	
	132.2	13	20.5	3	HJ319R	0.785	NJ319R	NU319R	
	132	13	26.5	3	HJ2319	0.760	NJ2319	NU2319	
	147	15	25.5	4	HJ419	1.30	NJ419	NU419	
100	128	10 17		2.1	HJ220	0.444	NJ220	NU220	

	Bound	ary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass		cable 1g No.
d	d_1	B_1	B_2	r_1 min.	Thirdst condi 140.	(kg)	NJ	NU
100	127.5	10	15	2.1	HJ220R	0.435	NJ220R	NU220R
	128	10	18	2.1	HJ2220	0.444	NJ2220	NU2220
	127.5	10	16	2.1	HJ2220R	0.450	NJ2220R	NU2220R
	140.5	13	22.5	3	HJ320	0.895	NJ320	NU320
	139.6	13	20.5	3	HJ320R	0.890	NJ320R	NU320R
	140.5	13	27.5	3	HJ2320	0.895	NJ2320	NU2320
	139.6	13	23.5	3	HJ2320R	0.920	NJ2320R	NU2320R
	153.5	16	27	4	HJ420	1.50	NJ420	NU420
105	135	10	17.5	2.1	HJ221	0.505	NJ221	NU221
	147	13	22.5	3	HJ321	0.970	NJ321	NU321
	159.5	16	27	4	HJ421	1.65	NJ421	NU421
110	141.5	11	18.5	2.1	HJ222	0.615	NJ222	NU222
	141.7	11	17	2.1	HJ222R	0.620	NJ222R	NU222R
	141.5	11	20.5	2.1	HJ2222	0.615	NJ2222	NU2222
	141.7	11	19.5	2.1	HJ2222R	0.645	NJ2222R	NU2222R
	155.5	14	23	3	HJ322	1.17	NJ322	NU322
	155.8	14	22	3	HJ322R	1.21	NJ322R	NU322R
	155.5	14	28	3	HJ2322	1.17	NJ2322	NU2322
	155.8	14	26.5	3	HJ2322R	1.27	NJ2322R	NU2322R
	171	17	29.5	4	HJ422	2.10	NJ422	NU422
120	153 153.4 153	11 11 11	19 17 22	19 2.1 HJ22 17 2.1 HJ22		0.715 0.710 0.715	NJ224 NJ224R NJ2224	NU224 NU224R NU2224
	153.4	11	20	2.1	HJ2224R	0.745	NJ2224R	NU2224R
	168.5	14	23.5	3	HJ324	1.40	NJ324	NU324
	168.6	14	22.5	3	HJ324R	1.41	NJ324R	NU324R
	168.5	14	28	3	HJ2324	1.40	NJ2324	NU2324
	168.6	14	26	3	HJ2324R	1.46	NJ2324R	NU2324R
	188	17	30.5	5	HJ424	2.60	NJ424	NU424

Thrust collars for cylindrical roller bearings -

d **130** ~ (**160**) mm

d (160) ~ (200) mm

Thrust collar

	Bound	lary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass		cable 1g No.
d	d_1	B_1	B_2	r_1 min.	Thrust condi No.	(kg)	NJ	NU
130	165.5	11	19	3	HJ226	0.840	NJ226	NU226
	164.2	11	17	3	HJ226R	0.790	NJ226R	NU226R
	165.5	11	25	3	HJ2226	0.840	NJ2226	NU2226
	164.2	11	21	3	HJ2226R	0.840	NJ2226R	NU2226R
	182	14	24	4	HJ326	1.62	NJ326	NU326
	182.3	14	23	4	HJ326R	1.65	NJ326R	NU326R
	182	14	29.5	4	HJ2326	1.62	NJ2326	NU2326
	182.3	14	28	4	HJ2326R	1.73	NJ2326R	NU2326R
	205	18	32	5	HJ426	3.30	NJ426	NU426
140	179.5	11	19	3	HJ228	1.00	NJ228	NU228
	180	11	18	3	HJ228R	0.990	NJ228R	NU228R
	179.5	11	25	3	HJ2228	1.00	NJ2228	NU2228
	180	11	23	3	HJ2228R	1.07	NJ2228R	NU2228R
	196	15	26	4	HJ328	1.93	NJ328	NU328
	196	15	25	4	HJ328R	2.04	NJ328R	NU328R
	196	15	33.5	4	HJ2328	1.98	NJ2328	NU2328
	196	15	31	4	HJ2328R	2.14	NJ2328R	NU2328R
	219	18	33	5	HJ428	3.75	NJ428	NU428
150	193	12	20.5	3	HJ230	1.24	NJ230	NU230
	193.7	12	19.5	3	HJ230R	1.26	NJ230R	NU230R
	193	12	26.5	3	HJ2230	1.24	NJ2230	NU2230
	193.7	12	24.5	3	HJ2230R	1.35	NJ2230R	NU2230R
	210	15	26.5	4	HJ330	2.37	NJ330	NU330
	210	15	25	4	HJ330R	2.35	NJ330R	NU330R
	210	15	34	4	HJ2330	2.37	NJ2330	NU2330
	210	15	31.5	4	HJ2330R	2.48	NJ2330R	NU2330R
	234	20	36.5	5	HJ430	4.70	NJ430	NU430
160	207	12	21	3	HJ232	1.48	NJ232	NU232
	207.3	12	20	3	HJ232R	1.48	NJ232R	NU232R

	Bound	lary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass		cable 1g No.
d	d_1	B_1	B_2	r_1 min.	Thrust condi No.	(kg)	NJ	NU
160	205	12	28	3	HJ2232	1.48	NJ2232	NU2232
	206.1	12	24.5	3	HJ2232R	1.55	NJ2232R	NU2232F
	225	15	28	4	HJ332	2.75	NJ332	NU332
	222.1	15	25	4	HJ332R	2.59	NJ332R	NU332R
	225	15	37	4	HJ2332	2.75	NJ2332	NU2332
	222.1	15	32	4	HJ2332R	2.76	NJ2332R	NU2332F
170	220.5	12	22	4	HJ234	1.70	NJ234	NU234
	220.8	12	20	4	HJ234R	1.70	NJ234R	NU234R
	219	12	29	4	HJ2234	1.70	NJ2234	NU2234
	219.5	12	24	4	HJ2234R	1.79	NJ2234R	NU2234
	238	16	29.5	4	HJ334	3.25	NJ334	NU334
	238	16	38.5	4	HJ2334	3.25	NJ2334	NU2334
180	230.5	12	22	4	HJ236	1.80	NJ236	NU236
	230.8	12	20	4	HJ236R	1.79	NJ236R	NU236R
	229	12	29	4	HJ2236	1.80	NJ2236	NU2236
	229.5	12	24	4	HJ2236R	1.88	NJ2236R	NU2236
	252	17	30.5	4	HJ336	3.85	NJ336	NU336
	252	17	40	4	HJ2336	3.85	NJ2336	NU2336
190	244.5	13	23.5	4	HJ238	2.20	NJ238	NU238
	244.5	13	21.5	4	HJ238R	2.19	NJ238R	NU238R
	243	13	31.5	4	HJ2238	2.20	NJ2238	NU2238
	243.2	13	26.5	4	HJ2238R	2.31	NJ2238R	NU2238
	265	18	32	5	HJ338	4.45	NJ338	NU338
	265	18	41.5	5	HJ2338	4.45	NJ2338	NU2338
200	258	14	25	4	HJ240	2.60	NJ240	NU240
	258.2	14	23	4	HJ240R	2.65	NJ240R	NU240R
	258	14	34	4	HJ2240	2.60	NJ2240	NU2240
	256.9	14	28	4	HJ2240R	2.78	NJ2240R	NU2240
	280	18	33	5	HJ340	5.00	NJ340	NU340

Thrust collars for cylindrical roller bearings -

d (200) ~ 320 mm

Thrust collar

	Bound	dary dime (mm)	ensions		Thrust collar No.	(Refer.) Mass	Applicable bearing No.			
d	d_1	B_1	B_2	r_1 min.		(kg)	NJ	NU		
200	280	18	44.5	5	HJ2340	5.00	NJ2340	NU2340		
220	286	15	27.5	4	HJ244	3.55	NJ244	NU244		
	286	15	36.5	4	HJ2244	3.55	NJ2244	NU2244		
	307	20	36	5	HJ344	7.05	NJ344	NU344		
240	313	16	29.5	4	HJ248	4.65	NJ248	NU248		
	313	16	38.5	4	HJ2248	4.65	NJ2248	NU2248		
	335	22	39.5	5	HJ348	8.20	NJ348	NU348		
260	340	18	33	5	HJ252	6.20	NJ252	NU252		
	340	18	40.5	5	HJ2252	6.20	NJ2252	NU2252		
280	360	18	33	5	HJ256	7.15	NJ256	NU256		
300	387	20	34.5	5	HJ260	7.40	NJ260	NU260		
320	415	21	37	5	HJ264	11.3	NJ264	NU264		

Double-row cylindrical roller bearings -

d **25** ~ (**110**) mm

	Boun	dary o	dimens	ions		Basic loa		Limiting (min			ing No. NN	Λ	INU		N		dimensio	ons		(Refer.) Ma	ass (kg)
d	D	В	r min.	F_{w}	$E_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	Cylindrical bore	Tapered bore	a min.	l _a max.	$d_{ m b}$ min.		D _a min.	$r_{ m a}$ max.	Cylindrical bore	Tapered bore
25	47	16	0.6	—	41.3	25.7	30.0	14 000	17 000	NN3005	NN3005K	—	—	29	—	—	43	42	0.6	0.127	0.123
30	55	19	1	_	48.5	36.8	44.1	12 000	14 000	NN3006	NN3006K		_	35	_	_	50	49	1	0.198	0.192
35	62	20	1	_	55	39.1	50.0	10 000	12 000	NN3007	NN3007K	_	_	40			57	56	1	0.253	0.246
40	68	21	1	_	61	41.3	55.9	9 100	11 000	NN3008	NN3008K	_	_	45	_	_	63	62	1	0.307	0.298
45	75	23	1	_	67.5	53.4	71.9	8 300	9 900	NN3009	NN3009K	_		50	_	_	70	69	1	0.404	0.382
50	80	23	1	_	72.5	52.8	72.6	7 600	9 100	NN3010	NN3010K	_	_	55	_		75	74	1	0.429	0.415
55	90	26	1.1	_	81	71.2	101	6 800	8 200	NN3011	NN3011K	_	_	61.5	_		83.5	82	1	0.637	0.618
60	95	26	1.1	_	86.1	72.8	106	6 400	7 700	NN3012	NN3012K	_	_	66.5	_	_	88.5	87	1	0.685	0.664
65	100	26	1.1	_	91	74.5	111	6 000	7 200	NN3013	NN3013K	_		71.5	_	_	93.5	92	1	0.728	0.705
70	110	30	1.1	_	100	96.9	148	5 500	6 500	NN3014	NN3014K	_	_	76.5	_		103.5	101	1	1.04	1.02
75	115	30	1.1	_	105	99.0	155	5 200	6 200	NN3015	NN3015K	_	_	81.5	_		108.5	106	1	1.11	1.08
80	125	34	1.1	_	113	119	186	4 800	5 800	NN3016	NN3016K	_	_	86.5	_	_	118.5	114	1	1.55	1.50
85	130	34	1.1	_	118	121	194	4 600	5 500	NN3017	NN3017K	_		91.5	_	_	123.5	119	1	1.63	1.58
90	140	37	1.5	_	127	142	228	4 200	5 100	NN3018	NN3018K	_	_	98	_		132	129	1.5	2.07	2.01
95	145	37	1.5	_	132	150	246	4 100	4 900	NN3019	NN3019K	_	_	103	_		137	134	1.5	2.17	2.10
100	140	40	1.1	113		139	258	4 000	4 800			NNU4920	NNU4920K	106.5	111	115	133.5		1	1.95	1.87
	150	37	1.5		137	157	265	3 900	4 700	NN3020	NN3020K		_	108			142	139	1.5	2.28	2.21
105	145 160	40 41	1.1 2	118	146	157 197	306 322	3 900 3 700	4 600 4 400	NN3021	NN3021K	NNU4921	NNU4921K 	111.5 114	116	120	138.5 151	148	1 2	2.00 2.88	1.91 2.81
110	150	40	1.1	123	_	163	326	3 700	4 500		_	NNU4922	NNU4922K	116.5	121	125	143.5		1	2.10	2.01

Double-row cylindrical roller bearings -

d (110) ~ (260) mm

	Bour	dary o		sions			ad ratings	Limiting (mi	speeds		ng No. NN		NN	IU		N	-	dimensionm)	ons		(Refer.) Ma	ass (kg)
d	D	В	r min.	$F_{ m w}$	$E_{ m w}$	$C_{ m r}$	C_{0r}	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	Cylindri bore		Tapered bore	min.	d _a max.	$d_{ m b}$ min.	max.	D _a min.	$r_{ m a}$ max.	Cylindrical bore	Tapered bore
110	170	45	2		155	221	361	3 500	4 200	NN3022	NN3022K	—		—	119	—	—	161	157	2	3.65	3.56
120	165 180	45 46	1.1 2	134.	5 — 165	187 232	373 392	3 400 3 200	4 000 3 900	 NN3024	 NN3024K	NNU49	24	NNU4924K 	126.5 129	132	137	158.5 171	167	1 2	2.90 4.00	2.77 3.87
130	180 200	50 52	1.5 2	146	 182	216 283	428 476	3 100 2 900	3 700 3 500	 NN3026	 NN3026K	NNU49 —	26	NNU4926K 	138 139	143.5	148	172 191	183	1.5 2	3.90 5.94	3.73 5.76
140	190 210	50 53	1.5 2	156	192	222 297	456 516	2 900 2 700	3 500 3 300		 NN3028K	NNU49 	28	NNU4928K 	148 149	153.5	158	182 201	194	1.5 2	4.15 6.41	3.97 6.21
150	210 225	60 56	2 2.1	168. 	5 <u>—</u> 206	343 334	692 587	2 600 2 500	3 100 3 000	NN3030	 NN3030K	NNU49 	30	NNU4930K 	159 161	166	171	201 214	208	2 2	6.50 7.74	6.22 7.50
160	220 240	60 60	2 2.1	178.	5 <u> </u> 219	340 398	695 695	2 500 2 400	3 000 2 800	 NN3032	 NN3032K	NNU49 —	32	NNU4932K 	169 171	176	182	211 229	221	2 2	6.95 9.38	6.65 9.08
170	230 260	60 67	2 2.1	188.	5 <u> </u> 236	361 471	763 824	2 300 2 200	2 800 2 600	NN3034	 NN3034K	NNU49 —	34	NNU4934K 	179 181	186	192	221 249	238	2 2	7.20 12.8	6.88 12.4
180	250 280	69 74	2 2.1	202	255	458 561	964 958	2 100 2 000	2 600 2 400	NN3036	 NN3036K	NNU49 	36	NNU4936K 	189 191	199.5	205	241 269	257	2 2	10.5 16.8	10.1 16.3
190	260 290	69 75	2 2.1	210	265	465 598	996 1 020	2 000 1 900	2 400 2 300	NN3038	 NN3038K	NNU49 	38	NNU4938K 	199 201	207	215	251 279	267	2 2	11.0 17.6	10.5 17.1
200	280 310	80 82	2.1 2.1	223	282	509 638	1 050 1 120	1 900 1 700	2 300 2 100	 NN3040	 NN3040K	NNU49 —	40	NNU4940K 	211 211	219.5	228	269 299	285	2 2	15.4 22.5	14.7 21.8
220	300 340	80 90	2.1 3	244	310	561 752	1 220 1 370	1 700 1 600	2 000 1 900	 NN3044	 NN3044K	NNU49 —	44	NNU4944K 	231 233	241	248	289 327	313	2 2.5	16.7 29.3	16.0 28.4
240	320 360	80 92	2.1 3	263	330	588 864	1 340 1 590	1 600 1 400	1 900 1 700		 NN3048K	NNU49 	48	NNU4948K 	251 253	260	269	309 347	333	2 2.5	18.0 32.8	17.2 31.8
260	360	100	2.1	287	_	941	2 050	1 400	1 700		_	NNU49	52	NNU4952K	271	284	296	349		2	31.4	30.0

Double-row cylindrical roller bearings -

d (260) ~ 480 mm

Tapered bore

 ϕd

Taper 1/12

	Bour	ndary o		ions			oad ratings (kN)	Limiting (min			ng No. N	1	NNU		IV	lounting (n	dimensi nm)	ons		(Refer.) Mass (
d	D	В	r min.	$F_{ m w}$	$E_{ m w}$	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	Cylindrical bore	Tapered bore	min.	d_{a} max.	$d_{ m b}$ min.	max.	$D_{ m a}$ min.	$r_{ m a}$ max.	Cylindrical bore	Tapered bore
260	400	104	4	_	364	1 030	1 830	1 300	1 500	NN3052	NN3052K	—	—	276	—	—	384	367	3	47.4	46.0
280	380 420	100 106	2.1 4	308	384	976 1 090	2 200 2 010	1 300 1 200	1 500 1 400	NN3056	 NN3056K	NNU4956 —	NNU4956K —	291 296	305	316	369 404	387	2 3	33.1 51.2	31.6 49.6
300	420 460	118 118	3 4	339	 418	1 170 1 290	2 720 2 460	1 100 1 100	1 300 1 300	NN3060	 NN3060K	NNU4960 —	NNU4960K 	313 316	335	343	407 444	421	2.5 3	51.9 70.8	49.7 68.7
320	440 480	118 121	3 4	352 —	 438	1 220 1 350	2 750 2 670	1 100 980	1 300 1 200	 NN3064	 NN3064K	NNU4964 	NNU4964K 	333 336	348	363	427 464	442	2.5 3	53.7 76.4	51.4 74.0
340	460 520	118 133	3 5	372	 473	1 270 1 580	2 930 3 090	990 880	1 200 1 100	 NN3068	 NN3068K	NNU4968 —	NNU4968K —	353 360	368	383	447 500	477	2.5 4	56.8 101	54.3 97.8
360	540	134	5	_	493	1 560	3 090	830	990	NN3072	NN3072K	_	—	380	_	_	520	497	4	107	104
380	560	135	5	_	510	1 650	3 350	780	940	NN3076	NN3076K	_	_	400	_	_	540	514	4	113	109
400	600	148	5	_	548	2 030	4 140	700	850	NN3080	NN3080K	_	_	420	_	_	580	552	4	146	141
420	620	150	5	_	570	2 310	4 570	670	800	NN3084	NN3084K	_	_	440	_	_	600	574	4	154	149
440	650	157	6	_	597	2 520	5 060	620	740	NN3088	NN3088K	_	_	464	_		626	602	5	177	171
460	680	163	6	_	627	2 700	5 480	570	690	NN3092	NN3092K	_	—	484	_	_	656	632	5	201	195
480	700	165	6	_	642	2 770	5 710	540	650	NN3096	NN3096K	_	_	504		_	676	647	5	211	204

Tapered roller bearings

Tapered roller bearings are designed such that outer ring, inner ring and rollers have tapered surfaces whose apexes converge at a common point on the bearing axis. Along with metric series bearings, inch series bearings are also available.

This type of bearing is suitable for applications that involve heavy or impact loading.

- Single-row tapered roller bearings
 - Able to carry radial and axial load in one direction simultaneously.

Because an axial component of force is produced when this type of bearing is loaded radially, two bearings are used together facing one another, or two or more bearings are matched and used.

• There are the standard, medium and steep type which are different in contact angle size.

Medium-tapered metric series bearings are identified by the supplementary code "C" which is added as a suffix to bearing numbers.

 Bearings whose outer ring width, outer ring small inside diameter and contact angle are determined in accordance with ISO 355 specifications are identified by the supplementary code "J" as a suffix.

Inner ring assemblies and the outer rings of such bearings are interchangeable with those of bearings produced abroad if the bearing numbers are the same.

ISO sub-unit specifications

Double-row tapered roller bearings

• These bearings are divided into the TDO type which has one double outer ring and two singlerow inner rings, and the TDI type which has two single-row outer rings and one double inner ring. Both accommodate radial and axial loading in both directions.

These two also carry moment loads, however, the TDO type is superior to the TDI type, because the distance between load centers (a) is longer in the TDO type.

 The spacer of the TDO type, or the TDI type, pre-adjusts the internal clearance to provide proper operating clearance after mounting.

Single-row tapered roller bearings

Double-row tapered roller bearings

[Note] When supplementary code "J" is added as a prefix (not a suffix) to bearing numbers (e.g. JHM720249/JHM720210), the bearings are not designed according to ISO 355. Such bearings are called "J series metric tapered roller bearings," and are produced according to special tolerances.

	Reference	ISO 355, as	well as the c	dimension serie onventional "3X ries are as follow	X" dimension a	
			New dir	nension series		
	(1)	Angle ser		(3) Width ser	
	Angle series		angle α	Width series		$(-d)^{0.95}$
		over	up to		over	up to
	2	10°	13° 52'	В	0.50	0.68
	3	13° 52'	15° 59'	С	0.68	0.80
	4	15° 59'	18° 55'	DE	0.80 0.88	0.88 1.00
	5	18° 55'	23°	E	0.88	1.00
	6	23° 27°	27°			
		21*	30°			
	(2)	Diameter s	eries	[Demerica]		
	Diameter	D/(a		. [Remarks] 1. Combine	these series s	symbols in
	series	over	up to	the listed	order to make	the
	B	3.40	3.80		n series numb	ers.
	С	3.80	4.40	(ex. 2BC) 2 Bearing r) 1umbers consi	stofa
	D	4.40	4.70		n series numb	
	E	4.70	5.00		neter which is	added as
	F	5.00	5.60	a suffix.	180 · bore dia	neter 80 mm)
	G	5.60	7.00			
	. Motrio corio	e single-row	tapered rolle			
Tolerances	Metric serie Inch series	s double-row	r tapered rolle	er bearings as s specified in AB 	er to Table 7-5 becified in BA (refer to T MA Section 19 refer to Table is specified sep	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63.) J. 7-7 on pp. A 64, 65.)
	Metric serie Inch series J series me Radial intern	s double-row tapered rolle tric tapered r al clearance	v tapered rolle r bearings as oller bearings of double-rov	specified in AB (refe stearings as s (s she tolerance is (w, four-row and	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table is specified sep refer to Table matched pair to	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63. 9. 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67.
Internal clearance	Metric serie Inch series J series me Radial intern bearings	s double-row tapered rolle tric tapered r al clearance	r tapered rolle r bearings as oller bearing: of double-rov	specified in AB	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table s specified sep refer to Table matched pair to (refer to Table	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63. J. 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller
Internal clearance	Metric serie Inch series J series me Radial intern bearings	s double-row tapered rolle tric tapered r al clearance	r tapered rolle r bearings as oller bearing: of double-rov	s the tolerance is (classes 0, 6X a	er to Table 7-5 becified in BA (refer to T MA Section 19 refer to Table s specified sep refer to Table matched pair to (refer to Table nd 6)	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63. J. 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller 10-10 on p. A 104.)
Internal clearance	Metric serie Inch series J series me Radial intern bearings Metric serie	s double-row tapered rolle tric tapered r al clearance s tapered rol	of double-row	s the tolerance i w, four-row and (classes 0, 6X a	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table s specified sep refer to Table matched pair to (refer to Table nd 6) efer to Table 9	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63. J. 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller 10-10 on p. A 104.) J-4 on pp. A 85, 86.)
Internal clearance Recommended fits	Metric serie Inch series J series me Radial intern bearings Metric serie	s double-row tapered rolle tric tapered r al clearance s tapered rolle	r bearings as oller bearing: of double-row ler bearings	(classes 0, 6X a	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table s specified sep refer to Table matched pair to (refer to Table nd 6) efer to Table 9	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63. J. 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller 10-10 on p. A 104.)
Internal clearance	Metric serie Inch series J series me Radial intern bearings Metric serie Inch series	s double-row tapered rolle tric tapered r al clearance s tapered rolle	r bearings as oller bearing: of double-row ler bearings	w, four-row and for the set of th	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table is specified sep refer to Table matched pair to (refer to Table efer to Table sep refer to Table sep refer to Table sep	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63. J. 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller 10-10 on p. A 104.) J-4 on pp. A 85, 86.)
Internal clearance	Metric serie Inch series J series me Radial intern bearings Metric serie Inch series	s double-row tapered rolle tric tapered r al clearance s tapered rol tapered rolle tric tapered r	v tapered rolle r bearings as oller bearings of double-row ler bearings i r bearings oller bearings	(classes 0, 6X a 	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table is specified sep refer to Table matched pair to (refer to Table efer to Table sep refer to Table sep refer to Table sep	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63.). 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller 10-10 on p. A 104.) 9-4 on pp. A 85, 86. 9-7 on pp. A 90, 91.
Internal clearance Recommended fits	Metric serie Inch series J series me Radial intern bearings Metric serie Inch series J series me Pressed stee	s double-row tapered rolle tric tapered r al clearance s tapered rol tapered rolle tric tapered r	v tapered rolle r bearings as oller bearings of double-row ler bearings i r bearings oller bearings elementary co	(classes 0, 6X a 	er to Table 7-5 pecified in BA (refer to T MA Section 19 refer to Table s specified sep refer to Table matched pair to (refer to Table efer to Table efer to Table	on pp. A 60 – A 62. S 1002. able 7-6 on p. A 63.). 7-7 on pp. A 64, 65. parately. 7-8 on pp. A 66, 67. apered roller 10-10 on p. A 104.) 9-4 on pp. A 85, 86. 9-7 on pp. A 90, 91.

Allowable misalignment	Single-row tapered roller bearings : 0.000 9 rad (3') (If the misalignment exceeds this angle size, JTEKT is ready to design special bearings to order.)
Equivalent radial load	Single-row tapered roller bearings Dynamic equivalent radial load $\left(\text{when } \frac{F_a}{F_r} \le e \right) P_r = F_r$ $\left(\text{when } \frac{F_a}{F_r} > e \right) P_r = 0.4F_r + Y_1F_a$ Static equivalent radial load $P_{0r} = 0.5F_r + Y_0F_a$ when $P_{0r} \le F_r$, $P_{0r} = F_r$
[Note] Refer to the bearing specification table for the values of axial load factors Y_1, Y_2, Y_3 and Y_0 and constant e .	Double-row or four-row tapered roller bearings Dynamic equivalent radial load $\left(\text{when } \frac{F_a}{F_r} \leq e \right) P_r = F_r + Y_2 F_a$ $\left(\text{when } \frac{F_a}{F_r} > e \right) P_r = 0.67F_r + Y_3 F_a$ Static equivalent radial load $P_{0r} = F_r + Y_0 F_a$

[Remarks] 1. When two single-row tapered roller bearings are used together facing one another, an axial component of force is produced under radial load. In this case, refer to pp. A 34, 35 for calculation of the dynamic equivalent radial load.

2. When the load is too small, slippage occurs between the rollers and raceways, causing smearing to develop. This also occurs to matched pair bearings when the ratio of axial load to radial load exceeds the value e shown in the specification table $(F_a/F_r > e)$. Consult with JTEKT on use of bearings under such conditions.

d **15** ~ **22** mm

Koyo

		Bounda	ry dime	nsions			Basic loa		Limiting (mi			Dimension series to	Load center			N	lountir	ng dim (mm)	ension	S			Con- stant	Axial fact		(Refer.) Mass
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No. ¹⁾	IS0355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	D max.	a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е		Y_0	(kg)
15	35 42	11.75 14.25	11 13	10 11	0.6 1	0.6 1	15.8 21.9	14.5 19.2	12 000 10 000	16 000 14 000	30202R 30302JR	 2FB	8.3 10.0	19.5 20.5	20 22	30.5 36.5	29 35	33 38	2 2	1.7 3	0.6 1	0.6 1	0.32 0.29		1.04 1.16	0.054 0.098
17	40 40 47	13.25 17.25 15.25	12 16 14	11 14 12	1 1 1	1 1 1	20.8 27.4 27.4	20.7 27.5 24.5	10 000 10 000 9 200	14 000 14 000 12 000	30203JR 32203JR 30303JR	2DB 2DD 2FB	10.1 11.4 11.0	22.5 22.5 22.5	23 23 25	34.5 34.5 41.5	33 33 40	37 37 42	2 2 2	2 3 3	1 1 1	1 1 1	0.35 0.31 0.29	2.11	0.96 1.06 1.16	0.081 0.104 0.133
	47 47 47	15.25 20.25 20.25	14 19 19	12 16 16	1 1 1	1 1	27.4 31.9 36.6	24.5 29.9 35.9	9 200 9 400 9 400	12 000 13 000 13 000	30303R 32303 32303JR	 2FD	10.5 12.4 12.2	22.5 22.5 22.5	25 25 25	41.5 41.5 41.5	40 39 39	42 43 43	2 2 2	3 4 4	1 1	1 1	0.28 0.28 0.29	2.11	1.16 1.16 1.16	0.127 0.170 0.176
20	42 47 47	15 15.25 15.25	15 14 14	12 12 12	0.6 1 1	0.6 1 1	27.3 25.8 27.0	31.5 25.5 27.2	9 700 9 000 8 700	13 000 12 000 12 000	32004JR 57008R 30204JR	3CC 2DB	10.5 12.9 11.8	24.5 25.5 25.5	25 26 27	37.5 41.5 41.5	35 37 39	39 44 44	3 2 2	3 3 3	0.6 1 1	0.6 1 1	0.37 0.52 0.35	1.60 1.16 1.74	0.88 0.64 0.96	0.102 0.125 0.127
	47 47 52	19.25 19.25 16.25	18 18 16	15 16 12	1 1 1.5	1 1 1.5	33.1 33.3 30.5	34.7 37.0 28.4	8 900 9 100 8 300	12 000 12 000 11 000	32204JR 32204XR 30304AC	2DD —	12.5 15.3 13.5	25.5 25.5 28.5	27 25 28	41.5 41.5 43.5	39 35 42	43 45 49	2 2 4	4 3 4	1 1 1.5	1 1 1.5	0.33 0.55 0.55	1.81 1.10 1.10	1.00 0.60 0.60	0.159 0.170 0.170
	52 52 52	16.25 22.25 22.25	16 21 21	13 18 18	1.5 1.5 1.5	1.5 1.5 1.5	36.2 41.8 45.1	35.1 44.9 46.7	8 300 8 600 8 400	11 000 12 000 11 000	30304AJR 32304CR 32304JR	 2FD	11.1 16.5 14.4	28.5 28.5 28.5	28 25 27	44 43.5 43.5	44 37 43	47 48 47	2 3 3	3 4 4	1.5 1.5 1.5	1.5 1.5 1.5	0.30 0.55 0.30	1.10	1.10 0.60 1.10	0.179 0.250 0.244
22	44 47 50	15 17 15.25	15 17.5 14	11.5 13.5 12	0.6 1 1	0.6 1 1	28.3 32.7 29.2	33.6 35.9 28.6	9 100 8 700 8 400	12 000 12 000 11 000	320/22JR T2CC022 302/22CR	3CC 2CC —	11.0 11.3 13.9	26.5 27.5 27.5	27 28 28	39.5 41.5 44.5	38 40 40	41 44 47	3 4 2	3.5 3.5 3	0.6 1 1	0.6 1 1	0.40 0.33 0.55	1.51 1.79 1.10	0.83 0.99 0.60	0.108 0.138 0.140
	50 50 50	15.25 19.25 19.25	14 18 18	12 15 15	1 1 1	1 1 1	29.3 35.1 36.8	30.9 39.1 41.6	8 100 8 400 8 100	11 000 11 000 11 000	302/22R 322/22CR 322/22R		12.2 15.5 14.0	27.5 27.5 27.5	30 28 29	44.5 44.5 44.5	41 38 41	46 47 46	2 2 2	3 4 4	1 1 1	1 1 1	0.37 0.55 0.37	1.60 1.10 1.60	0.88 0.60 0.88	0.144 0.170 0.178
	56 56 56	17.25 17.25 22.25	16 16 21	13 14 17	1.5 1.5 1.5	1.5 1.5 1.5	36.3 41.7 48.3	36.6 41.1 50.6	7 700 7 500 8 000	10 000 10 000 11 000	303/22XR 303/22R 323/22CR		15.7 12.2 16.9	30.5 30.5 30.5	31 32 28	47.5 47.5 47.5	44 47 41	52 51 52	3 2 3	4 3 5	1.5 1.5 1.5	1.5 1.5 1.5	0.59 0.31 0.55	1.02 1.97 1.10	0.56 1.08 0.60	0.210 0.216 0.290
	56	22.25	21	18	1.5	1.5	50.6	52.7	7 600	10 000	323/22R	_	14.6	30.5	31	47.5	46	51	3	4	1.5	1.5	0.31	1.97	1.08	0.273

d 25 ~ (30) mm

Koyo

		Bounda	(mm)	ensions			Basic loa		Limiting (min	speeds		Dimension series to	Load center			N	lounti	ng dime	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	r min.	r_1 min.	C _r	C_{0r}	Grease lub.	Oil lub.	Bearing No. ¹⁾	ISO355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	D max.	a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y ₀	Mass (kg)
25	47 47 52	15 17 16.25	15 17 15	11.5 14 12	0.6 0.6 1	0.6 0.6 1	30.2 33.5 30.4	37.7 42.3 32.4	8 300 8 300 7 900	11 000 11 000 11 000	32005JR 33005JR 30205XR	4CC 2CE —	11.8 10.9 14.9	29.5 29.5 30.5	30 30 30	42.5 42.5 46.5	40 41 41	44 44 49	3 3 2	3.5 3 4	0.6 0.6 1	0.6 0.6 1	0.43 0.29 0.58	1.39 2.07 1.04	0.77 1.14 0.57	0.118 0.131 0.155
	52 52 52	16.25 19.25 19.25	15 18 18	13 16 16	1 1 1	1 1 1	31.5 36.4 39.8	33.7 43.2 44.8	7 800 7 900 7 900	10 000 11 000 11 000	30205JR 32205XR 32205JR	3CC 2CD	12.9 16.2 13.5	30.5 30.5 30.5	31 30 31	46.5 46.5 46.5	44 40 43	48 50 48	2 2 2	3 3 4	1 1 1	1 1 1	0.37 0.55 0.36	1.60 1.10 1.67	0.88 0.60 0.92	0.156 0.200 0.188
	52 62 62	22 18.25 18.25	22 17 17	18 13 14	1 1.5 1.5	1 1.5 1.5	48.9 39.8 45.0	58.5 42.5 45.8	7 900 5 700 6 700	10 000 8 000 9 000	33205JR 30305DJR TR0506R	2DE 7FB —	14.1 20.4 16.3	30.5 33.5 33.5	30 34 35	46.5 53.5 53.5	43 47 50	49 58.5 58	4 3 3	4 5 4	1 1.5 1.5	1 1.5 1.5	0.35 0.83 0.55	1.71 0.73 1.10	0.94 0.40 0.60	0.225 0.269 0.275
	62 62 62	18.25 25.25 25.25	17 24 24	15 19 20	1.5 1.5 1.5	1.5 1.5 1.5	48.2 57.2 61.2	46.9 65.8 64.1	6 800 7 000 6 900	9 000 9 300 9 100	30305JR 32305XR 32305JR	2FB 2FD	12.9 18.9 16.6	33.5 33.5 33.5	34 33 33	54 53.5 53.5	54 46 52	57 58 57	2 3 3	3 6 5	1.5 1.5 1.5	1.5 1.5 1.5	0.30 0.55 0.30	2.00 1.10 2.00	1.10 0.60 1.10	0.273 0.390 0.386
28	52 58 58	16 17.25 17.25	16 16 16	12 13 14	1 1 1	1 1 1	35.2 38.8 38.8	44.0 41.7 42.0	7 500 7 000 7 000	10 000 9 300 9 300	320/28JR 302/28CR 302/28R	4CC 	12.7 16.0 13.4	33.5 33.5 33.5	33 34 35	46.5 52.5 52.5	45 47 49	49 55 54	3 2 2	4 4 3	1 1 1	1 1 1	0.43 0.55 0.37	1.39 1.10 1.60	0.77 0.60 0.88	0.150 0.205 0.209
	58 58 58	20.25 20.25 24	19 19 24	16 16 19	1 1 1	1 1 1	44.9 49.2 57.6	54.1 55.2 69.5	7 100 6 900 7 000	9 400 9 100 9 300	322/28CR 322/28R 332/28JR	 2DE	17.0 15.0 15.4	33.5 33.5 33.5	33 35 34	52.5 52.5 52.5	45 49 49	55 54.5 55	3 2 4	4 4 5	1 1 1	1 1 1	0.55 0.37 0.34	1.10 1.60 1.77	0.60 0.88 0.97	0.255 0.244 0.302
	68 68 68	19.75 19.75 25.75	18 18 24	14 16 20	1.5 1.5 1.5	1.5 1.5 1.5	51.7 53.5 66.5	50.2 54.0 72.9	6 200 6 100 6 300	8 200 8 200 8 500	303/28CR 303/28R 323/28CR		17.8 14.9 20.5	36.5 36.5 36.5	37 38 35	59.5 59.5 59.5	55 58 51	64 63 64	3 2 3	4.5 3.5 5.5	1.5 1.5 1.5	1.5 1.5 1.5	0.55 0.32 0.55	1.10 1.88 1.10	0.60 1.04 0.60	0.332 0.345 0.480
	68	25.75	24	21	1.5	1.5	69.6	75.6	6 100	8 100	323/28R		17.6	36.5	38	59.5	57	63	3	4.5	1.5	1.5	0.32	1.88	1.04	0.469
30	55 55 62	17 20 17.25	17 20 16	13 16 13	1 1 1	1 1 1	38.2 43.2 42.3	48.0 55.2 45.1	7 000 7 000 6 500	9 400 9 400 8 700	32006JR 33006JR 30206CR	4CC 2CE —	13.6 13.0 16.5	35.5 35.5 35.5	35 36 36	49.5 49.5 56.5	47 48 51	52 52 59	3 3 2	4 4 4	1 1 1	1 1 1	0.43 0.29 0.55	1.39 2.06 1.10	0.77 1.13 0.60	0.177 0.203 0.230
	62 62	17.25 21.25	16 20	14 16	1 1	1 1	41.5 51.7	44.8 59.0	6 500 6 600	8 700 8 900	30206JR 32206XR	3DB	14.1 18.0	35.5 35.5	37 36	56.5 56.5	53 49	57 59	2 3	3 5	1 1	1 1	0.37 0.55	1.60 1.10	0.88 0.60	0.236 0.300

d (30) ~ (35) mm

Koyo

		Bounda	ry dim (mm)	ensions			Basic loa		Limiting (mi	speeds n^{-1}			mension eries to	Load center			N	lounti	ng dim (mm)	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	r min.	r_1 min.	Cr	C_{0r}	Grease lub.	Oil lub.	Bearing No. ¹⁾	IS	80355 Refer.)	(mm) a	d_{a} min.	$d_{ m b}$ max.	D max.	a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y_0	Mass (kg)
30	62 62 72	21.25 25 20.75	20 25 19	17 19.5 14	1 1 1.5	1 1 1.5	50.7 66.4 50.9	57.9 79.4 54.9	6 500 6 500 4 900	8 700 8 700 6 800	32206JR 33206JR 30306DJR	2	3DC 2DE 7FB	15.9 16.3 23.7	35.5 35.5 38.5	37 36 40	56.5 56.5 63.5	52 53 55	58 59 68	2 5 3	4 5.5 6.5	1 1 1.5	1 1 1.5	0.37 0.34 0.83	1.60 1.76 0.73	0.88 0.97 0.40	0.292 0.359 0.400
	72 72 72 72	20.75 20.75 28.75 28.75	19 19 27 27	16 16 23 23	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	56.9 59.6 80.0 82.2	55.6 60.1 93.8 91.6	5 900 5 800 6 000 5 900	7 900 7 700 8 000 7 900	TRA0607R 30306JR 32306CR 32306JR		 2FB 5FD 2FD	18.6 15.7 22.0 18.9	38.5 38.5 38.5 38.5	39 40 37 39	63.5 63.5 63.5 63.5	58 62 54 59	68 66 68 66	3 3 3 3	4.5 4.5 5.5 5.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	0.55 0.31 0.55 0.31	1.10 1.90 1.10 1.90	0.60 1.05 0.60 1.05	0.405 0.411 0.610 0.588
32	58 65 65	17 18.25 18.25	17 17 17	13 14 15	1 1 1	1 1 1	39.2 47.5 48.0	50.6 51.5 51.4	6 700 6 200 6 200	8 900 8 300 8 200	320/32JR 302/32CR 302/32R		4CC 	14.3 17.2 14.9	37.5 37.5 37.5	38 38 39	52.5 59.5 59.5	50 53 55	55 62 61	3 3 3	4 4 3	1 1 1	1 1 1	0.45 0.55 0.37	1.32 1.10 1.60	0.73 0.60 0.88	0.196 0.275 0.266
	65 65 65	22.25 22.25 26	21 21 26	17 18 20.5	1 1 1	1 1 1	55.8 51.6 71.8	65.1 57.7 86.9	6 300 6 200 6 200	8 400 8 200 8 300	322/32CR 322/32 332/32JR		 2DE	18.7 16.3 16.9	37.5 37.5 37.5	37 40 38	59.5 59.5 59.5	51 55 55	62 61 62	3 2 5	5 4 5.5	1 1 1	1 1 1	0.55 0.37 0.35	1.10 1.60 1.73	0.60 0.88 0.95	0.340 0.330 0.404
	75 75 75	21.75 21.75 29.75	20 20 28	16 18 23	1.5 1.5 1.5	1.5 1.5 1.5	63.4 64.4 75.1	66.3 65.6 87.1	5 600 5 500 5 600	7 400 7 300 7 400	303/32CR 303/32R TR0608A		 5FD	19.7 16.0 23.7	40.5 40.5 40.5	42 43 41	66.5 66.5 66.5	60 64 57	70 70 71	3 3 3	5.5 3.5 6.5	1.5 1.5 1.5	1.5 1.5 1.5	0.55 0.32 0.55	1.10 1.88 1.10	0.60 1.04 0.60	0.465 0.461 0.649
	75	29.75	28	25	1.5	1.5	89.6	101	5 600	7 400	323/32R		-	19.6	40.5	42	66.5	63	69	3	4.5	1.5	1.5	0.32	1.88	1.04	0.650
35	55 62 62	14 18 21	14 18 20	11.5 14 16	0.6 1 1	0.6 1 1	26.1 45.5 40.8	36.5 59.4 53.8	6 600 6 200 6 200	8 800 8 200 8 200	32907JR-2 32007JR 33007		2BD 4CC —	10.9 15.1 14.8	39.5 40.5 40.5	40 40 41	50.5 56.5 56.5	49 54 55	52 59 59	2.5 4 3	2.5 4 4	0.6 1 1	0.6 1 1	0.29 0.45 0.33	2.06 1.32 1.80	1.13 0.73 0.99	0.120 0.231 0.250
	62 72 72	21 18.25 18.25	21 17 17	17 15 15	1 1.5 1.5	1 1.5 1.5	51.3 52.9 55.1	68.0 56.2 60.9	6 200 5 700 5 600	8 200 7 600 7 400	33007JR 30207CR 30207JR		2CE 3DB	14.2 17.9 15.3	40.5 43.5 43.5	41 43 44	56.5 63.5 63.5	55 59 62	59 68 67	3 3 3	4 3 3	1 1.5 1.5	1 1.5 1.5	0.31 0.55 0.37	1.97 1.10 1.60	1.08 0.60 0.88	0.263 0.350 0.344
	72 72 72	24.25 24.25 28	23 23 28	19 19 22	1.5 1.5 1.5	1.5 1.5 1.5	69.0 69.6 87.6	86.6 82.4 107	5 700 5 600 5 700	7 600 7 500 7 500	32207-1R 32207JR 33207JR		 3DC 2DE	21.1 18.2 18.4	43.5 43.5 43.5	42 43 42	63.5 63.5 63.5	56 61 61	68 67 68	3 3 5	5 5 6	1.5 1.5 1.5	1.5 1.5 1.5	0.58 0.37 0.35	1.04 1.60 1.70	0.57 0.88 0.93	0.465 0.453 0.551
	80	22.75	21	15	2	1.5	63.1	69.1	4 300	6 000	30307DJR		7FB	26.8	45	44	70	66	76.5	3	7.5	2	1.5	0.83	0.73	0.40	0.536

d (35) ~ (45) mm

Koyo

		Bounda	ry dime (mm)	ensions			Basic loa		Limiting (mi				Vimension series to	Load center			N	lountii	ng dime (mm)	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	B	С	r min.	r_1 min.	C _r	C_{0r}	Grease lub.	Oil lub.	Bearing No. 1)		ISO355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	D max.	a min.	$D_{\rm b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y_0	Mass (kg)
35	80 80 80	22.75 22.75 32.75	21 21 31	18 18 25	2 2 2	1.5 1.5 1.5	69.8 76.2 96.9	77.8 78.9 123	5 200 5 200 5 200	7 000 6 900 7 000	30307XR 30307JR-1 TR0708-1R		 2FB 	20.5 16.9 23.8	45 45 45	45 45 44	70 70 70	63 70 60	74 74 75	3 3 3	4.5 4.5 7.5	2 2 2	1.5 1.5 1.5	0.55 0.31 0.47	1.10 1.90 1.27	0.60 1.05 0.70	0.560 0.527 0.830
	80	32.75	31	25	2	1.5	101	114	5 300	7 000	32307JR		2FE	20.6	45	44	70	66	74	3	7.5	2	1.5	0.31	1.90	1.05	0.776
40	62 68 68	15 19 22	15 19 22	12 14.5 18	0.6 1 1	0.6 1 1	33.5 53.5 60.4	48.5 71.4 84.6	5 900 5 600 5 500	7 800 7 400 7 400	32908JR 32008JR 33008JR		2BC 3CD 2BE	11.9 15.1 14.7	44.5 45.5 45.5	45 46 46	57.5 62.5 62.5	55 60 60	59 65 65	3 4 3	3 4.5 4	0.6 1 1	0.6 1 1	0.29 0.38 0.28	2.07 1.58 2.12	1.14 0.87 1.17	0.164 0.282 0.326
	75 80 80	26 19.75 19.75	26 18 18	20.5 15 16	1.5 1.5 1.5	1.5 1.5 1.5	82.2 61.4 62.9	108 67.4 69.2	5 200 5 000 5 000	6 900 6 700 6 700	33108JR 30208CR 30208JR		2CE 3DB	18.3 20.2 17.0	48.5 48.5 48.5	47 49 49	66.5 71.5 71.5	65 66 69	71 76 75	4 3 3	5.5 4.5 3.5	1.5 1.5 1.5	1.5 1.5 1.5	0.36 0.55 0.37	1.69 1.10 1.60	0.93 0.60 0.88	0.508 0.445 0.434
	80 80 80	24.75 24.75 32	23 23 32	19 19 25	1.5 1.5 1.5	1.5 1.5 1.5	78.5 77.7 108	93.1 90.8 139	5 000 5 000 5 000	6 700 6 600 6 700	32208CR 32208JR 33208JR		5DC 3DC 2DE	22.0 19.4 20.7	48.5 48.5 48.5	48 48 47	71.5 71.5 71.5	64 68 67	76 75 76	3 3 5	5.5 5.5 7	1.5 1.5 1.5	1.5 1.5 1.5	0.55 0.37 0.36	1.10 1.60 1.68	0.60 0.88 0.92	0.570 0.554 0.758
	85 90 90	33 25.25 25.25	32.5 23 23	28 17 20	2.5 2 2	2 1.5 1.5	114 80.5 87.3	143 90.2 98.5	4 800 3 800 4 600	6 400 5 300 6 100	T2EE040 30308DJR 30308XR		2EE 7FB 	21.9 29.9 23.8	52 50 50	48 51 53	75 80 80	70 71 72	80 86.5 84	5 3 3	5 8 5	2 2 2	2 1.5 1.5	0.34 0.83 0.55	1.74 0.73 1.10	0.96 0.40 0.60	0.900 0.757 0.780
	90 90 90	25.25 35.25 35.25	23 33 33	20 26 27	2 2 2	1.5 1.5 1.5	90.6 112 116	101 138 139	4 500 4 700 4 600	6 100 6 200 6 200	30308JR TR0809AR 32308JR		2FB 2FD	19.9 27.5 24.3	50 50 50	52 49 50	80 80 80	77 67 73	82 85 82	3 3 3	5 9 8	2 2 2	1.5 1.5 1.5	0.35 0.55 0.35	1.74 1.10 1.74	0.96 0.60 0.96	0.757 1.10 1.06
45	68 75 75	15 20 24	15 20 24	12 15.5 19	0.6 1 1	0.6 1 1	34.7 62.8 69.6	52.4 86.5 101	5 300 5 000 5 000	7 100 6 600 6 700	32909JR 32009JR 33009JR		2BC 3CC 2CE	12.5 16.5 16.4	49.5 50.5 50.5	50 51 51	63.5 69.5 69.5	61 67 67	64 72 71	3 4 4	3 4.5 5	0.6 1 1	0.6 1 1	0.32 0.39 0.29	1.88 1.53 2.04	1.04 0.84 1.12	0.190 0.354 0.416
	80 85 85	26 20.75 20.75	26 19 19	20.5 15 16	1.5 1.5 1.5	1.5 1.5 1.5	87.5 69.4 67.2	120 81.5 77.4	4 800 4 600 4 600	6 400 6 100 6 100	33109JR 30209XR 30209JR		3CE 3DB	19.4 21.1 18.9	53.5 53.5 53.5	52 54 54	71.5 76.5 76.5	69 71 74	76.5 80 80	4 4 3	5.5 5.5 4.5	1.5 1.5 1.5	1.5 1.5 1.5	0.38 0.55 0.40	1.57 1.10 1.48	0.86 0.60 0.81	0.563 0.500 0.502
	85 85	24.75 24.75	23 23	19 19	1.5 1.5	1.5 1.5	80.7 84.2	102 104	4 600 4 600	6 200 6 100	32209CR 32209JR-1		3DC	23.0 20.3	53.5 53.5	53 53	76.5 76.5	69 73	81 81	3 3	5.5 5.5	1.5 1.5	1.5 1.5	0.55 0.40	1.10 1.48	0.60 0.81	0.625 0.597

d (**45**) ~ (**55**) mm

Koyo

		Bounda		ensions				nd ratings		speeds n^{-1}		Dimension	Load			N	lounti	ng dim	ension	s			Con-	Axial		(Refer.)
d	D	T	(mm) B	С	r min.	r_1 min.	C _r	C_{0r}	Grease lub.	n ⁻) Oil lub.	Bearing No. 1)	series to ISO355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	D max.	a min.	$({ m mm})$ $D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	r _a max.	$r_{ m b}$ max.	e e	fact Y_1	Y_0	Mass (kg)
45	85 95 95	32 29 36	32 26.5 35	25 20 30	1.5 2.5 2.5	1.5 2.5 2.5	112 94.1 140	149 118 177	4 600 3 600 4 300	6 200 5 100 5 700	33209JR T7FC045 T2ED045	3DE 7FC 2ED	21.8 32.6 23.8	53.5 57 57	52 54 55	76.5 83 83	72 71 80	81 91 89	5 3 6	7 9 6	1.5 2 2	1.5 2 2	0.39 0.87 0.32	1.56 0.69 1.86	0.86 0.38 1.02	0.818 0.943 1.20
	100 100 100	27.25 27.25 27.25	25 25 25	18 20 22	2 2 2	1.5 1.5 1.5	95.1 109 113	107 119 128	3 400 4 100 4 100	4 700 5 500 5 400	30309DJR 30309CR 30309JR	7FB 2FB	32.9 25.7 21.3	55 55 55	56 57 59	90 90 90	79 81 86	96 94 93	3 4 3	9 7 5	2 2 2	1.5 1.5 1.5	0.83 0.55 0.35	0.73 1.10 1.74	0.40 0.60 0.96	0.973 1.00 1.01
	100 100	38.25 38.25	36 36	29 30	2 2	1.5 1.5	145 146	182 180	4 200 4 100	5 600 5 500	32309CR 32309JR	 2FD	30.3 26.8	55 55	56 56	90 90	76 82	95 93	4 3	9 8	2 2	1.5 1.5	0.55 0.35	1.10 1.74	0.60 0.96	1.45 1.43
50	72 80 80	15 20 24	15 20 24	12 15.5 19	0.6 1 1	0.6 1 1	35.9 65.7 73.0	56.3 94.5 110	4 900 4 600 4 600	6 600 6 100 6 100	32910JR 32010JR 33010JR	2BC 3CC 2CE	13.7 17.7 17.4	54.5 55.5 55.5	55 56 56	67.5 74.5 74.5	65 72 72	69 77 76	3 4 4	3 4.5 5	0.6 1 1	0.6 1 1	0.34 0.42 0.32	1.76 1.42 1.90	0.97 0.78 1.04	0.195 0.389 0.451
	85 90 90	26 21.75 21.75	26 20 20	20 16 17	1.5 1.5 1.5	1.5 1.5 1.5	89.4 77.2 76.5	127 95.8 91.7	4 400 4 300 4 300	5 900 5 700 5 700	33110JR 30210CR 30210JR	3CE 3DB	20.6 22.7 20.1	58.5 58.5 58.5	56 58 58	76.5 81.5 81.5	74 76 79	81.5 86 85	4 4 3	6 5.5 4.5	1.5 1.5 1.5	1.5 1.5 1.5	0.41 0.55 0.42	1.46 1.10 1.43	0.80 0.60 0.79	0.594 0.590 0.566
	90 90 90	24.75 24.75 32	23 23 32	19 19 24.5	1.5 1.5 1.5	1.5 1.5 1.5	84.5 85.0 119	113 105 167	4 300 4 300 4 300	5 700 5 700 5 700	32210CR 32210JR 33210JR	 3DC 3DE	24.0 20.6 23.1	58.5 58.5 58.5	58 58 57	81.5 81.5 81.5	74 78 77	86 85 86.5	3 3 5	5.5 5.5 7.5	1.5	1.5 1.5 1.5	0.55 0.42 0.41	1.10 1.43 1.45	0.60 0.79 0.80	0.675 0.643 0.887
	100 105 110	36 32 29.25	35 29 27	30 22 19	2.5 3 2.5	2.5 3 2	157 113 115	196 140 133	4 100 3 300 3 100	5 400 4 600 4 300	T2ED050 T7FC050 30310DJR	2ED 7FC 7FB	24.5 35.9 35.0	62 64 62	58 59 62	88 91 98	84 78 87	94 100 105	6 4 3	6 10 10	2 2.5 2	2 2.5 2	0.34 0.87 0.83	1.75 0.69 0.73	0.96 0.38 0.40	1.28 1.25 1.25
	110 110 110	29.25 29.25 42.25	27 27 40	20 23 33	2.5 2.5 2.5	2 2 2	124 137 171	143 152 234	3 700 3 700 3 800	4 900 4 900 5 100	30310CR 30310JR 32310CR	 2FB 5FD	27.5 22.9 33.4	62 62 62	64 65 61	98 98 98	90 95 81	103 102 103	4 3 4	9 6 9	2 2 2	2 2 2	0.55 0.35 0.55	1.10 1.74 1.10	0.60 0.96 0.60	1.25 1.32 2.00
55	110 80 90 90	42.25 17 23 27	40 17 23 27	33 14 17.5 21	2.5 1 1.5 1.5	2 1 1.5 1.5	176 44.6 84.6 96.5	220 73.3 121 149	3 700 4 400 4 100 4 100	5 000 5 900 5 500 5 400	32310JR 32911JR 32011JR 33011JR	2FD 2BC 3CC 2CE	29.4 14.5 19.8 19.3	62 61 63.5 63.5	62 61 63 63	98 74 81.5 81.5	90 72 81 81	102 76 86 86	3 3 4 5	9 3 5.5 6	2 1 1.5 1.5	2 1 1.5 1.5	0.35 0.31 0.41 0.31	1.74 1.94 1.48 1.92	0.96 1.07 0.81 1.06	1.89 0.285 0.569 0.672

d (55) ~ (60) mm

Koyo

		Bounda	ry dime	ensions			Basic loa		Limiting (mi	speeds n^{-1}		Dimension series to	Load center			ľ	Nount	ing dim	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No. 1)	IS0355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	L max.) _a min.	$D_{ m b}$ min.	$m{S}_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y_0	Mass (kg)
55	95 100 100	30 22.75 22.75	30 21 21	23 17 18	1.5 2 2	1.5 1.5 1.5	116 89.6 94.6	161 108 113	4 000 3 900 3 900	5 300 5 200 5 200	33111JR 30211CR 30211JR	3CE 3DB	22.5 24.3 20.7	63.5 65 65	62 63 64	86.5 90 90	83 84 88	91 95 94	5 4 4	7 5.5 4.5	1.5 2 2	1.5 1.5 1.5	0.37 0.55 0.40	1.60 1.10 1.48	0.88 0.60 0.81	0.868 0.750 0.732
	100 100 100	26.75 26.75 35	25 25 35	21 21 27	2 2 2	1.5 1.5 1.5	107 107 142	135 133 189	3 900 3 900 3 900	5 200 5 200 5 200	32211CR 32211JR-1 33211JR	UNDE	25.9 23.0 25.3	65 65 65	64 63 62	90 90 90	83 87 85	96 95 96	4 4 6	5.5 5.5 8	2 2 2	1.5 1.5 1.5	0.55 0.40 0.40	1.10 1.48 1.50	0.60 0.81 0.83	0.875 0.863 1.18
	115 120 120	34 31.5 31.5	31 29 29	23.5 21 22	3 2.5 2.5	3 2 2	129 129 144	164 148 161	3 000 2 900 3 400	4 200 4 000 4 500	T7FC055 30311DJR 30311CR	7FC 7FB —	38.6 38.4 29.8	69 67 67	65 68 70	101 108 108	86 94 97	109 113 112	4 4 4.5	10.5 10.5 9.5	2.5 2 2	2.5 2 2	0.87 0.83 0.55	0.69 0.73 1.10	0.38 0.40 0.60	1.59 1.59 1.58
	120 120 120	31.5 45.5 45.5	29 43 43	25 35 35	2.5 2.5 2.5	2 2 2	149 184 171	170 247 203	3 300 3 400 3 400	4 500 4 600 4 500	30311JR 32311C 32311J	2FB 5FD 2FD	25.5 35.9 32.4	67 67 67	71 67 68	108 108 108	104 90 99	111 113 111	4 4 4	6.5 10 10.5	2 2 2	2 2 2	0.35 0.55 0.35	1.74 1.10 1.74	0.96 0.60 0.96	1.65 2.45 2.24
	120	45.5	43	35	2.5	2	200	250	3 400	4 500	32311JR	2FD	32.4	67	68	108	99	111	4	10.5	2	2	0.35	1.74	0.96	2.38
60	85 95 95	17 23 27	17 23 27	14 17.5 21	1 1.5 1.5	1 1.5 1.5	46.2 86.1 101	78.2 127 162	4 100 3 900 3 900	5 500 5 200 5 200	32912JR 32012JR 33012JR	2BC 4CC 2CE	15.6 21.0 20.1	65.5 68.5 68.5	66 67 67	79.5 86.5 86.5	77 85 85	81 91 90	3 4 5	3 5.5 6	1 1.5 1.5	1 1.5 1.5	0.33 0.43 0.33	1.81 1.39 1.83	1.00 0.77 1.01	0.306 0.621 0.719
	100 110 110	30 23.75 23.75	30 22 22	23 17 19	1.5 2 2	1.5 1.5 1.5	118 102 106	170 123 127	3 700 3 500 3 500	5 000 4 700 4 700	33112JR 30212CR 30212JR	3CE 3EB	23.7 26.2 21.9	68.5 70 70	67 70 70	91.5 100 100	88 93 96	96 104 103	5 4 4	7 6.5 4.5	1.5 2 2	1.5 1.5 1.5	0.40 0.55 0.40	1.51 1.10 1.48	0.83 0.60 0.81	0.923 0.930 0.945
	110 110 110	29.75 29.75 38	28 28 38	22 24 29	2 2 2	1.5 1.5 1.5	128 132 174	164 167 239	3 600 3 500 3 600	4 700 4 700 4 700	32212CR 32212JR 33212JR	3EC 3EE	28.6 25.1 27.2	70 70 70	68 69 69	100 100 100	91 95 93	105 104 105	4 4 6	7.5 5.5 9	2 2 2	1.5 1.5 1.5	0.55 0.40 0.40	1.10 1.48 1.48	0.60 0.81 0.82	1.20 1.19 1.57
	115 115 125	39 40 37	38 39 33.5	31 33 26	4 2.5 3	2.5 2.5 3	158 183 153	227 242 194	3 400 3 400 2 800	4 600 4 600 3 900	T5ED060 T2EE060 T7FC060	5ED 2EE 7FC	32.4 27.6 40.8	78 72 74	70 70 71	103 103 111	92 98 94	110 109 119	5 6 4	8 7 11	3 2 2.5	2 2 2.5	0.53 0.33 0.82	1.13 1.80 0.73	0.62 0.99 0.40	1.81 1.80 2.03
	130 130	33.5 33.5	31 31	22 23	3 3	2.5 2.5	153 169	179 196	2 600 3 100	3 700 4 200	30312DJR 30312CR	7FB	40.8 31.9	74 74	73 75	118 118	103 105	124 121	4 5	11.5 10.5	2.5 2.5	2 2	0.83 0.55	0.73 1.10	0.40 0.60	2.01 1.99

d (60) ~ (70) mm

Koyo

		Bounda	ry dime	ensions			Basic loa		Limiting (mi			Dimension series to	Load center				Mounti	ing dim (mm)	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	B	С	r min.	r_1 min.	C _r	C_{0r}	Grease lub.	Oil lub.	Bearing No. ¹⁾	ISO355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	max.	D _a min.	$D_{ m b}$ min.	S_{a} min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y ₀	Mass (kg)
60	130	33.5	31	26	3	2.5	173	201	3 100	4 100	30312JR	2FB	26.9	74	77	118	112	120	4	7.5	2.5	2	0.35	1.74	0.96	2.08
	130	48.5	46	37	3	2.5	229	310	3 200	4 300	32312CR	5FD	38.3	74	73	118	98	122	5	11	2.5	2	0.55	1.10	0.60	3.15
	130	48.5	46	37	3	2.5	221	275	3 100	4 200	32312J	2FD	32.3	74	74	118	107	120	4	11.5	2.5	2	0.35	1.74	0.96	2.87
	130	48.5	46	37	3	2.5	244	315	3 100	4 200	32312JR	2FD	32.3	74	74	118	107	120	4	11.5	2.5	2	0.35	1.74	0.96	2.99
65	90	17	17	14	1	1	47.4	83.1	3 900	5 200	32913JR	2BC	16.8	70.5	70	84.5	81	86	3	3	1	1	0.35	1.70	0.93	0.327
	100	23	23	17.5	1.5	1.5	90.0	137	3 600	4 800	32013JR	4CC	22.5	73.5	72	91.5	90	97	4	5.5	1.5	1.5	0.46	1.31	0.72	0.664
	100	27	27	21	1.5	1.5	103	169	3 600	4 800	33013JR	2CE	21.1	73.5	72	91.5	89	96	5	6	1.5	1.5	0.35	1.72	0.95	0.762
	110	34	34	26.5	1.5	1.5	152	223	3 400	4 600	33113JR	3DE	25.9	73.5	73	101.5	96	106	6	7.5	1.5	1.5	0.39	1.55	0.85	1.33
	120	24.75	23	18	2	1.5	116	139	3 200	4 300	30213CR	—	28.1	75	77	110	102	114	4	6.5	2	1.5	0.55	1.10	0.60	1.15
	120	24.75	23	20	2	1.5	128	156	3 200	4 300	30213JR	3EB	24.2	75	77	110	106	113	4	4.5	2	1.5	0.40	1.48	0.81	1.18
	120	32.75	31	24	2	1.5	151	198	3 200	4 300	32213CR		31.3	75	75	110	99	114	4	8.5	2	1.5	0.55	1.10	0.60	1.55
	120	32.75	31	27	2	1.5	157	203	3 200	4 300	32213JR	3EC	26.6	75	76	110	104	115	4	5.5	2	1.5	0.40	1.48	0.81	1.58
	120	39	38	31	4	2.5	151	232	3 200	4 300	T5ED065	5ED	34.1	83	75	108	96	115	5	8	3	2	0.56	1.07	0.59	1.93
	120	41	41	32	2	1.5	200	277	3 200	4 300	33213JR	3EE	30.0	75	74	110	102	115	7	9	2	1.5	0.39	1.54	0.85	2.02
	130	37	33.5	26	3	3	148	211	2 600	3 600	T7FC065	7FC	44.4	79	78	116	98	124	4	11	2.5	2.5	0.87	0.69	0.38	2.17
	140	36	33	23	3	2.5	176	209	2 400	3 400	30313DJR	7GB	44.3	79	79	128	111	133	4	13	2.5	2	0.83	0.73	0.40	2.44
	140	36	33	25	3	2.5	193	227	2 900	3 900	30313CR		34.3	79	81	128	113	130	5	11	2.5	2	0.55	1.10	0.60	2.44
	140	36	33	28	3	2.5	204	239	2 800	3 800	30313JR	2GB	29.3	79	83	128	122	130	4	8	2.5	2	0.35	1.74	0.96	2.56
	140	51	48	39	3	2.5	258	361	2 900	3 900	32313CR	5GD	40.9	79	79	128	106	131	5	12	2.5	2	0.55	1.10	0.60	3.85
	140	51	48	39	3	2.5	250	312	2 900	3 900	32313J	2GD	34.7	79	80	128	117	130	4	12	2.5	2	0.35	1.74	0.96	3.49
	140	51	48	39	3	2.5	276	357	2 900	3 900	32313JR	2GD	34.7	79	80	128	117	130	4	12	2.5	2	0.35	1.74	0.96	3.64
70	100	20	20	16	1	1	71.0	115	3 500	4 700	32914JR	2BC	17.8	75.5	77	94.5	91	96	4	4	1	1	0.32	1.90	1.05	0.496
	110	25	25	19	1.5	1.5	108	163	3 300	4 400	32014JR	4CC	23.6	78.5	78	101.5	98	105	5	6	1.5	1.5	0.43	1.38	0.76	0.884
	110	31	31	25.5	1.5	1.5	134	208	3 300	4 400	33014JR	2CE	22.1	78.5	78	101.5	99	105	5	5.5	1.5	1.5	0.28	2.11	1.16	1.09
	120	37	37	29	2	1.5	181	266	3 100	4 200	33114JR	3DE	28.0	80	79	110	104	115	6	8	2	1.5	0.38	1.58	0.87	1.71
	125	26.25	24	19	2	1.5	126	158	3 000	4 000	30214CR		29.9	80	82	116.5	107	119	4	7	2	1.5	0.55	1.10	0.60	1.30
	125	26.25	24	21	2	1.5	138	173	3 100	4 100	30214JR	3EB	25.9	80	81	116.5	110	118	4	5	2	1.5	0.42	1.43	0.79	1.32

d (**70**) ~ (**75**) mm

Koyo

		Bounda	ary dim	ensions				nd ratings	Limiting (mi	speeds		Dimensio				I	Mount	ing dim	ension	s			Con-	Axial		(Refer.)
d	D	T	(mm) B	С	r min.	r_1 min.	(K Cr	C_{0r}	Grease lub.	Oil lub.	Bearing No. 1)	series to ISO355 (Refer.)	(mm) a	d_{a} min.	$d_{ m b}$ max.		D _a min.	(mm) D _b min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e e	fact Y_1	Y_0	Mass (kg)
70	125 125 125	33.25 33.25 41	31 31 41	24 27 32	2 2 2	1.5 1.5 1.5	157 169 206	212 225 294	3 100 3 100 3 100	4 100 4 100 4 100	32214CR 32214JR 33214JR	 3EC 3EE	32.6 29.2 31.2	80 80 80	80 80 79	116.5 116.5 116.5	108	120 119 120	4 4 7	9.5 6 9	2 2 2	1.5 1.5 1.5	0.55 0.42 0.41	1.10 1.43 1.47	0.60 0.79 0.81	1.65 1.71 2.16
	130 140 140	43 39 52	42 35.5 51	35 27 43	3 3 5	2.5 3 3	233 177 264	319 242 382	3 000 2 400 2 900	4 000 3 400 3 800	T2ED070 T7FC070 T4FE070	2ED 7FC 4FE	30.2 46.5 37.7	84 84 92	81 82 82	118 126 126	111 106 111	123 133 133	1 5 7	1 12 9	2.5 2.5 4	2 2.5 2.5	0.33 0.87 0.45	1.80 0.69 1.34	0.99 0.38 0.74	2.48 2.64 3.69
	150 150 150	38 38 38	35 35 35	25 30 30	3 3 3	2.5 2.5 2.5	197 224 230	235 256 273	2 300 2 700 2 600	3 200 3 600 3 500	30314DJR 30314CR 30314JR	7GB — 2GB	47.1 37.0 30.5	84 84 84	84 87 89	138 138 138	118 123 130	142 141 140	4 6 4	13 8 8	2.5 2.5 2.5	2 2 2	0.83 0.55 0.35	0.73 1.10 1.74	0.40 0.60 0.96	2.97 3.10 3.08
	150 150 150	54 54 54	51 51 51	42 42 42	3 3 3	2.5 2.5 2.5	257 297 317	315 391 414	2 700 2 700 2 700	3 600 3 600 3 600	32314 32314C 32314JR		37.0 44.4 37.4	84 84 84	86 84 86	138 138 138	125 115 125	140 142 140	4 5 4	12 12 12	2.5 2.5 2.5	2 2 2	0.35 0.55 0.35	1.73 1.10 1.74	0.95 0.60 0.96	4.11 4.50 4.50
75	105 115 115	20 25 31	20 25 31	16 19 25.5	1 1.5 1.5	1 1.5 1.5	73.6 110 141	123 169 225	3 300 3 100 3 200	4 400 4 200 4 200	32915JR 32015JR 33015JR	2BC 4CC 2CE	18.9 25.1 22.9	80.5 83.5 83.5	81 83 83	99.5 106.5 106.5	103	101 110 110	4 5 6	4 6 5.5	1 1.5 1.5	1 1.5 1.5	0.33 0.46 0.30	1.80 1.31 2.01	0.99 0.72 1.11	0.526 0.930 1.16
	125 130 130	37 27.25 27.25	37 25 25	29 20 22	2 2 2	1.5 1.5 1.5	186 136 142	280 178 181	3 000 2 900 2 900	4 000 3 800 3 900	33115JR 30215CR 30215JR	3DE 	29.3 31.0 27.6	85 85 85	84 87 86	121.5	111	120 124 124	6 5 4	8 7 5	2 2 2	1.5 1.5 1.5	0.40 0.55 0.44	1.51 1.10 1.38	0.83 0.60 0.76	1.84 1.40 1.42
	130 130 130	33.25 33.25 41	31 31 41	24 27 31	2 2 2	1.5 1.5 1.5	163 174 212	225 234 310	2 900 2 900 2 900	3 900 3 900 3 900	32215CR 32215JR 33215JR		33.7 30.2 32.5	85 85 85	85 85 83	121.5 121.5 121.5	114	125 125 125	4 4 7	9 6 10	2 2 2	1.5 1.5 1.5	0.55 0.44 0.43	1.10 1.38 1.40	0.60 0.76 0.77	1.75 1.77 2.26
	150 160 160	42 40 40	38 37 37	29 26 26	3 3 3	3 2.5 2.5	191 213 222	270 254 266	2 200 2 100 2 100	3 100 2 900 2 900	T7FC075 30315DJR 30315DR	7FC 7GB —	50.6 49.9 48.8	89 89 89	89 91 91	136 148 148	114 127 127	143 151 151	5 6 6	13 14 14	2.5 2.5 2.5	2.5 2 2	0.87 0.83 0.81	0.69 0.73 0.74	0.38 0.40 0.41	3.24 3.45 3.48
	160 160 160	40 40 40	37 37 37	31 31 31	3 3 3	2.5 2.5 2.5	248 260 251	296 311 298	2 500 2 500 2 500	3 400 3 300 3 300	30315CR 30315JR 30315R	2GB	39.2 32.5 31.9	89 89 89	94 95 95	148 148 148	130 139 139	150 149 149	6 4 4	9 9 9	2.5 2.5 2.5	2 2 2	0.55 0.35 0.35	1.10 1.74 1.73	0.60 0.96 0.95	3.80 3.65 3.52

d (**75**) ~ (**85**) mm

Koyo

		Bounda	(mm)	ensions			Basic loa		Limiting (mi			Dimension series to	Load center				Mount	ing dim (mm)	ension	s			Con-	Axial fact		(Refer.)
d	D	T	B	С	r min.	r_1 min.	C _r	C_{0r}	Grease lub.	Oil lub.	Bearing No. ¹⁾	ISO355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	max.	D _a min.	D _b min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e e	Y_1	Y_0	Mass (kg)
75	160 160 160	58 58 58	55 55 55	43 45 45	3 3 3	2.5 2.5 2.5	357 363 340	474 481 444	2 500 2 500 2 500	3 400 3 300 3 300	32315CR 32315JR 32315R	 2GD 	46.6 40.0 39.5	89 89 89	90 91 91	148 148 148	125 133 133	154 149 149	6 4 4	15 13 13	2.5 2.5 2.5	2 2 2	0.55 0.35 0.35	1.10 1.74 1.73	0.60 0.96 0.95	5.50 5.41 5.30
80	110 125 125	20 29 36	20 29 36	16 22 29.5	1 1.5 1.5	1 1.5 1.5	76.1 147 173	131 225 288	3 100 2 900 2 900	4 200 3 900 3 900	32916JR 32016JR 33016JR	2BC 3CC 2CE	20.1 26.7 25.1	85.5 88.5 88.5	86 89 90	104.5 116.5 116.5	112	106 120 119	4 6 6	4 7 6.5	1 1.5 1.5	1 1.5 1.5	0.35 0.42 0.28	1.71 1.42 2.16	0.94 0.78 1.19	0.556 1.32 1.63
	130 140 140	37 28.25 35.25	37 26 33	29 22 28	2 2.5 2.5	1.5 2 2	191 161 203	294 202 271	2 800 2 700 2 700	3 800 3 600 3 600	33116JR 30216JR 32216JR	3DE 3EB 3EC	30.5 28.6 31.7	90 92 92	89 91 90	121.5 130 130	114 124 122	126 132 134	6 4 4	8 6 7	2 2 2	1.5 2 2	0.42 0.42 0.42	1.44 1.43 1.43	0.79 0.79 0.79	1.93 1.72 2.17
	140 145 170	46 46 42.5	46 45 39	35 38 27	2.5 3 3	2 2.5 2.5	250 266 236	371 381 282	2 700 2 600 2 000	3 600 3 500 2 800	33216JR T2ED080 30316DJR	3EE 2ED 7GB	35.7 32.7 53.5	92 94 94	89 92 97	130 133 158	119 125 134	135 137 159	7 7 6	11 8 15.5	2 2.5 2.5	2 2 2	0.43 0.32 0.83	1.41 1.88 0.73	0.78 1.03 0.40	2.99 3.20 4.12
	170 170 170	42.5 42.5 61.5	39 39 58	33 33 48	3 3 3	2.5 2.5 2.5	294 277 347	355 330 440	2 300 2 300 2 300	3 100 3 100 3 100	30316JR 30316R 32316J	2GB 2GD	34.8 33.9 43.5	94 94 94	102 102 98	158 158 158	148 148 142	159 159 159	4 4 4	9.5 9.5 13.5	2.5 2.5 2.5	2 2 2	0.35 0.35 0.35	1.74 1.73 1.74	0.96 0.95 0.96	4.46 4.26 6.04
85	170 120 130 130	61.5 23 29 36	58 23 29 36	48 18 22 29.5	3 1.5 1.5 1.5	2.5 1.5 1.5 1.5	383 97.1 150 177	503 165 234 300	2 300 2 900 2 800 2 800	3 100 3 900 3 700 3 700	32316JR 32917JR 32017JR 33017JR	2GD 2BC 4CC 2CE	43.5 21.2 28.0 26.3	94 93.5 93.5 93.5	98 93 94 94	158 111.5 121.5 121.5	117	159 115 125 125	4 5 6	13.5 5 7 6.5	2.5 1.5 1.5 1.5	2 1.5 1.5 1.5	0.35 0.33 0.44 0.29	1.74 1.83 1.36 2.06	0.96 1.01 0.75 1.13	6.31 0.794 1.38 1.72
	140 150 150	41 30.5 38.5	41 28 36	32 24 30	2.5 2.5 2.5	2 2 2	224 182 232	346 231 315	2 600 2 500 2 500	3 500 3 400 3 400	33117JR 30217JR 32217JR	3DE 3EB 3EC	33.2 30.4 34.2	97 97 97	95 97 96	130 140 140	122 132 130	135 141 142	7 5 5	9 6.5 8.5	2 2 2	2 2 2	0.41 0.42 0.42	1.48 1.43 1.43	0.81 0.79 0.79	2.43 2.17 2.80
	150 180 180	49 44.5 44.5	49 41 41	37 28 28	2.5 4 4	2 3 3	294 231 263	439 265 317	2 500 1 900 1 900	3 400 2 600 2 600	33217JR 30317D 30317DJR	3EE 7GB	37.1 56.0 56.3	97 103 103	95 103 103	140 166 166	128 143 143	144 169 169	7 6 6	12 16.5 16.5	2 3 3	2 2.5 2.5	0.42 0.81 0.83	1.43 0.74 0.73	0.79 0.41 0.40	3.63 4.54 4.81
	180 180	44.5 44.5	41 41	34 34	4 4	3 3	316 305	384 367	2 200 2 200	2 900 2 900	30317JR 30317R	2GB 	36.0 35.8	103 103	107 107	166 166	156 156	167 167	5 5	10.5 10.5	3 3	2.5 2.5	0.35 0.35	1.74 1.73	0.96 0.95	5.15 4.97

d (85) ~ 95 mm

		Bounda	ary dimo	ensions				ad ratings	Limiting (min					Load center			I	Mount	ing dim (mm)	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	r min.	r_1 min.	C _r	C_{0r}	Grease lub.	Oil lub.	Bearing No.	ISO3		(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	1 max.	D _a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y_0	Mass (kg)
85	180	63.5	60	49	4	3	439	587	2 200	3 000	32317JR	2G	GD	43.8	103	103	166	150	167	5	14.5	3	2.5	0.35	1.74	0.96	7.42
90	125 140 140	23 32 39	23 32 39	18 24 32.5	1.5 2 2	1.5 1.5 1.5	101 178 221	175 276 367	2 800 2 600 2 600	3 700 3 500 3 400	32918JR 32018JR 33018JR	2B 3C 2C	CC	22.3 29.8 27.1	98.5 100 100	97 100 100	116.5 131.5 131.5	125	120 134 135	5 6 7	5 8 6.5	1.5 2 2	1.5 1.5 1.5	0.34 0.42 0.27	1.75 1.42 2.23	0.96 0.78 1.23	0.834 1.80 2.22
	150 155 160	45 46 32.5	45 46 30	35 38 26	2.5 3 2.5	2 3 2	258 273 204	413 405 261	2 500 2 400 2 400	3 300 3 200 3 200	33118JR T2ED090 30218JR	3D 2E 3F	ED	35.4 33.5 32.6	102 104 102	100 102 103	140 141 150	130 135 140	144 147 150	7 7 5	10 8 6.5	2 2.5 2	2 2.5 2	0.40 0.33 0.42	1.51 1.84 1.43	0.83 1.01 0.79	3.13 3.47 2.65
	160 160 190	42.5 55 46.5	40 55 43	34 42 30	2.5 2.5 4	2 2 3	263 343 288	362 527 350	2 400 2 400 1 700	3 200 3 200 2 400	32218JR 33218JR 30318DJR	3F 3F 7G	FE	37.0 40.8 59.6	102 102 108	102 101 109	150 150 176	138 135 151	152 154 179	5 9 6	8.5 13 16.5	2 2 3	2 2 2.5	0.42 0.42 0.83	1.43 1.43 0.73	0.79 0.78 0.40	3.47 4.76 5.57
	190 190 190 190	46.5 46.5 46.5 67.5	43 43 43 64	30 36 36 53	4 4 4	3 3 3 3	282 345 336 461	336 420 407 614	1 700 2 100 2 100 2 100 2 100	2 400 2 700 2 700 2 700 2 800	30318DR 30318JR 30318R 32318JR	2G 26 26	GB —	59.1 38.1 37.2 46.6	108 108 108 108	109 113 113 108	176 176 176 176	151 165 165 157	179 177 177 177	6 5 5 5	16.5 10.5 10.5 14.5	3 3 3 3	2.5 2.5 2.5 2.5	0.81 0.35 0.35 0.35	0.74 1.74 1.73 1.74	0.41 0.96 0.95 0.96	5.60 6.04 5.78 8.61
95	130 145 145	23 32 39	23 32 39	18 24 32.5	4 1.5 2 2	1.5 1.5 1.5	104 182 226	186 287 382	2 600 2 500 2 500 2 500	3 500 3 300 3 300 3 300	32919JR 32019JR 33019JR	28 28 40 20	BC CC	23.5 31.2 27.8	103.5 105 105		121.5 136.5 136.5	119 130	125 140 139	5 6 7	5 8 6.5	1.5 2 2	1.5 1.5 1.5	0.36 0.44 0.28	1.68 1.36 2.16	0.90 0.92 0.75 1.19	0.876 1.88 2.31
	160 160 170	46 49 34.5	46 49 32	38 38 27	3 2.5 3	3 2 2.5	281 304 231	427 473 299	2 300 2 300 2 200	3 100 3 100 3 000	T2ED095 33119JR 30219JR	2E 3E 3F	EE	34.6 37.3 34.9	109 107 109	107 106 110	146 150 158	140 138 149	152 154 159	7 8 5	8 11 7.5	2.5 2 2.5	2.5 2 2	0.34 0.39 0.42	1.77 1.54 1.43	0.97 0.85 0.79	3.62 3.89 3.20
	170 170 200	45.5 58 49.5	43 58 45	37 44 32	3 3 4	2.5 2.5 3	311 374 319	439 582 391	2 200 2 200 1 700	3 000 2 900 2 300	32219JR 33219JR 30319DJR	3F 3F 7G	FE	38.9 42.8 62.7	109 109 113	108 107 113	158 158 186	145 144 157	161 163 187	5 9 6	8.5 14 17.5	2.5 2.5 3	2 2 2.5	0.42 0.41 0.83	1.43 1.47 0.73	0.79 0.81 0.40	4.34 5.66 6.68
	200 200 200	49.5 49.5 71.5	45 45 67	38 38 55	4 4 4	3 3 3	317 372 427	368 455 544	2 000 2 000 2 000	2 600 2 600 2 600	30319 30319JR 32319	2G	GB	39.8 40.8 49.1	113 113 113	118 118 115	186 186 186	172 172 166	186 186 186	5 5 5	11.5 11.5 16.5	3 3 3	2.5 2.5 2.5	0.35 0.35 0.35	1.73 1.74 1.73	0.95 0.96 0.95	6.32 6.96 9.35
	200	71.5	67	55	4	3	517	695	2 000	2 600	32319JR	2G	GD	49.8	113	115	186	166	186	5	16.5	3	2.5	0.35	1.74	0.96	10.1

d 100 ~ (105) mm

		Bounda	ary dime (mm)	ensions				ad ratings		s speeds (n^{-1})	D . N	Dimension series to	Load center				Mount	ing dim (mm)	ension	S			Con- stant	Axial fact		(Refer.) Mass
d	D	Т	В	С	r min.	r_1 min.	C_{r}	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	IS0355 (Refer.)	(mm) a	d_{a} min.	$d_{ m b}$ max.	max.	D _a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	(kg)
100	140 145 150	25 24 32	25 22.5 32	20 17.5 24	1.5 3 2	1.5 3 1.5	126 116 185	217 167 298	2 400 2 400 2 400	3 300 3 200 3 200	32920JR T4CB100 32020JR	2CC 4CB 4CC	24.0 29.9 32.6	109 112 110	108 109 109	131 133 141	128 132 134	135 140 144	5 4 6	5 6.5 8	1.5 2.5 2	1.5 2.5 1.5	0.33 0.47 0.46	1.82 1.27 1.31	1.00 0.70 0.72	1.19 1.12 1.95
	150 165 165	39 47 52	39 46 52	32.5 39 40	2 3 2.5	1.5 3 2	231 293 325	397 458 523	2 400 2 200 2 200	3 200 3 000 3 000	33020JR T2EE100 33120JR	2CE 2EE 3EE	28.6 35.1 40.1	110 114 112	108 112 111	141 151 155	135 145 142	143 157 159	7 7 8	6.5 8 12	2 2.5 2	1.5 2.5 2	0.29 0.32 0.41	2.09 1.88 1.48	1.15 1.04 0.81	2.40 3.86 4.29
	180 180 180	37 49 63	34 46 63	29 39 48	3 3 3	2.5 2.5 2.5	258 347 431	338 495 680	2 100 2 100 2 100	2 800 2 800 2 800	30220JR 32220JR 33220JR	3FB 3FC 3FE	36.8 42.1 45.7	114 114 114	116 114 112	168 168 168	157 154 151	168 171 172	5 5 10	8 10 15	2.5 2.5 2.5	2 2 2	0.42 0.42 0.40	1.43 1.43 1.48	0.79 0.79 0.82	3.83 5.21 6.92
	215 215 215	51.5 51.5 51.5	47 47 47	34 39 39	4 4 4	3 3 3	318 344 422	374 400 521	1 500 1 800 1 800	2 100 2 400 2 400	30320D 30320 30320JR	 2GB	65.9 41.4 42.7	118 118 118	121 127 127	201 201 201	183 184 184	204 200 200	5 6 6	17 12.5 12.5	3 3 3	2.5 2.5 2.5	0.81 0.35 0.35	0.74 1.73 1.74	0.41 0.95 0.96	8.02 7.76 8.49
	215 215 215	56.5 77.5 77.5	51 73 73	35 60 60	4 4 4	3 3 3	373 491 579	459 637 783	1 500 1 800 1 800	2 200 2 400 2 400	31320JR 32320 32320JR	7GB 2GD	67.7 52.6 53.9	118 118 118	120 123 123	201 201 201	183 177 177	202 200 200	6 8 8	17.5 17.5 17.5	3 3 3	2.5 2.5 2.5	0.83 0.35 0.35	0.73 1.73 1.74	0.40 0.95 0.96	8.72 12.2 13.0
105	145 160 160	25 35 43	25 35 43	20 26 34	1.5 2.5 2.5	1.5 2 2	128 215 267	224 344 461	2 400 2 200 2 200	3 100 3 000 3 000	32921JR 32021JR 33021JR	2CC 4DC 2DE	25.1 34.5 30.9	113.5 117 117	113 116 116	136.5 150 150	133 143 145	140 154 153	5 6 7	5 9 9	1.5 2 2	1.5 2 2	0.34 0.44 0.28	1.75 1.35 2.12	0.96 0.74 1.17	1.23 2.45 3.08
	175 190 190	56 39 53	56 36 50	44 30 43	2.5 3 3	2 2.5 2.5	360 288 392	607 380 567	2 100 2 000 2 000	2 800 2 600 2 700	33121JR 30221JR 32221JR	3EE 3FB 3FC	43.2 39.0 44.8	117 119 119	116 122 120	165 178 178	150 165 161	169 178 180	9 6 6	12 9 10	2 2.5 2.5	2 2 2	0.40 0.42 0.42	1.48 1.43 1.43	0.82 0.79 0.79	5.33 4.49 6.37
	190 225 225	68 53.5 53.5	68 49 49	52 36 41	3 4 4	2.5 3 3	497 339 371	790 396 432	2 000 1 400 1 700	2 600 2 000 2 300	33221JR 30321D 30321	3FE 	48.8 69.1 43.1	119 123 123	117 127 132	178 211 211	159 193 193	182 209 209	10 6 7	16 17 12.5	2.5 3 3	2 2.5 2.5	0.40 0.81 0.35	1.49 0.74 1.73	0.82 0.41 0.95	8.43 8.76 8.74
	225 225 225	53.5 58 81.5	49 53 77	41 36 63	4 4 4	3 3 3	464 397 543	578 489 707	1 700 1 500 1 800	2 300 2 100 2 300	30321JR 31321JR 32321	2GB 7GB —	44.1 70.3 55.7	123 123 123	132 126 128	211 211 211	193 193 185	209 211 209	7 6 8	12.5 18 18.5	3 3 3	2.5 2.5 2.5	0.35 0.83 0.35	1.74 0.73 1.73	0.96 0.40 0.95	9.73 9.72 13.9

d (105) \sim 120 mm

		Bounda	ary dime	ensions				ad ratings kN)	Limiting (mi			Dimension series to	Load center				Mount	ing dim (mm)	ension	s			Con- stant	Axial facto		(Refer.)
d	D	Т	В	C	r min.	r_1 min.	$C_{ m r}$	C_{0r}	Grease lub.	Oil lub.	Bearing No.	IS0355 (Refer.)	(mm) a	d_{a} min.	$d_{ m b}$ max.	max.	D _a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	<i>Y</i> ₀	Mass (kg)
105	225	81.5	77	63	4	3	635	866	1 800	2 300	32321JR	2GD	56.1	123	128	211	185	209	8	18.5	3	2.5	0.35	1.74	0.96	14.9
110	150 160 170	25 27 38	25 25.5 38	20 19.5 29	1.5 3 2.5	1.5 3 2	129 146 248	231 225 395	2 300 2 200 2 100	3 000 2 900 2 800	32922JR T4CB110 32022JR	2CC 4CB 4DC	26.3 31.8 36.1	119 124 122	118 120 122	141 146 160	138 145 152	145 154 163	5 5 7	5 7.5 9	1.5 2.5 2	1.5 2.5 2	0.36 0.44 0.43	1.69 1.36 1.39	0.93 0.75 0.77	1.28 1.63 3.12
	170 180 200	47 56 41	47 56 38	37 43 32	2.5 2.5 3	2 2 2.5	287 369 324	502 634 434	2 100 2 000 1 900	2 800 2 700 2 500	33022JR 33122JR 30222JR	2DE 3EE 3FB	33.4 44.5 40.8	122 122 124	123 121 129	160 170 188	152 155 174	161 174 188	7 9 6	10 13 9	2 2 2.5	2 2 2	0.29 0.42 0.42	2.09 1.43 1.43	1.15 0.79 0.79	3.81 5.52 5.33
	200 240 240	56 54.5 54.5	53 50 50	46 36 42	3 4 4	2.5 3 3	438 365 407	640 429 475	1 900 1 400 1 600	2 500 1 900 2 100	32222JR 30322D 30322	3FC — —	46.7 71.5 44.8	124 128 128	126 135 141	188 226 226	170 205 206	190 222 222	6 6 8	10 18 12.5	2.5 3 3	2 2.5 2.5	0.42 0.81 0.35	1.43 0.74 1.73	0.79 0.41 0.95	7.45 10.2 10.4
	240 240 240 240	54.5 63 84.5 84.5	50 57 80 80	42 38 65 65	4 4 4	3 3 3 3	481 452 607 691	590 563 797 943	1 600 1 400 1 600 1 600	2 100 1 900 2 200 2 200	30322JR 31322JR 32322 32322JR	2GB 7GB — 2GD	46.3 76.2 57.3 59.3	128 128 128 128	141 135 137 137	226 226 226 226	206 205 198 198	222 224 222 222	8 6 9 9	12.5 21 19.5 19.5	3 3 3 3	2.5 2.5 2.5 2.5	0.35 0.83 0.35 0.35	1.74 0.73 1.73 1.74	0.96 0.40 0.95 0.96	11.4 12.2 16.6 17.8
120	165 170 180	29 27 38	29 25 38	23 19.5 29	1.5 3 2.5	1.5 3 2	172 164 258	298 262 427	2 100 2 000 2 000	2 700 2 700 2 700 2 600	32924JR T4CB120 32024JR	200 2CC 4CB 4DC	29.4 34.6 38.8	129 134 132	128 130 131	156 156 170	152 155 161	160 164 173	6 4 7	6 7.5 9	1.5 2.5 2	1.5 2.5 2	0.35 0.47 0.46	1.72 1.27 1.31	0.95 0.70 0.72	1.77 1.76 3.34
	180 200 215	48 62 43.5	48 62 40	38 48 34	2.5 2.5 3	2 2 2.5	299 462 347	540 785 473	2 000 1 800 1 700	2 600 2 400 2 300	33024JR 33124JR 30224JR	2DE 3FE 4FB	36.2 47.8 44.2	132 132 134	132 133 140	170 190 203	160 172 187	171 192 203	6 9 6	10 14 9.5	2 2 2.5	2 2 2	0.31 0.40 0.44	1.97 1.51 1.38	1.08 0.83 0.76	4.16 7.73 6.36
	215 260 260	61.5 59.5 59.5	58 55 55	50 38 46	3 4 4	2.5 3 3	470 430 505	691 512 611	1 700 1 200 1 500	2 300 1 700 2 000	32224JR 30324D 30324	4FD — —	51.6 77.8 48.9	134 138 138	136 145 152	203 246 246	181 219 221	204 239 239	7 6 10	11.5 21 13.5	2.5 3 3	2 2.5 2.5	0.44 0.81 0.35	1.38 0.74 1.73	0.76 0.41 0.95	9.04 13.0 13.7
	260 260 260	59.5 68 90.5	55 62 86	46 42 69	4 4 4	3 3 3	569 526 800	714 665 1 110	1 500 1 300 1 500	2 000 1 800 2 000	30324JR 31324JR 32324JR	2GB 7GB 2GD	50.2 81.9 62.7	138 138 138	152 145 148	246 246 246	221 221 213	239 244 239	10 6 9	13.5 21 21.5	3 3 3	2.5 2.5 2.5	0.35 0.83 0.35	1.74 0.73 1.74	0.96 0.40 0.96	14.5 15.4 22.2
	260	90.5	86	69	4	3	797	1 110	1 500	2 000	32324R		61.1	138	148	246	213	239	9	21.5	3	2.5	0.35	1.73	0.95	21.8

d 130 ~ (150) mm

		Bounda	ry dime (mm)	ensions				ad ratings kN)	Limiting (mi	speeds n^{-1}		Dimension series to	Load center				Mount	ing dim (mm)	ension	s			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	ISO355 (Refer.)	(mm) a	$d_{ m a}$ min.	$d_{ m b}$ max.	max.	D_{a} min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	e	Y_1	Y_0	Mass (kg)
130	180 185 200	32 29 45	32 27 45	25 21 34	2 3 2.5	1.5 3 2	200 183 340	368 282 563	1 900 1 800 1 800	2 500 2 500 2 300	32926JR T4CB130 32026JR	2CC 4CB 4EC	31.4 37.8 42.9	140 144 142	141 141 144	171 171 190	165 170 178	174 179 192	6 5 8	7 8 11	2 2.5 2	1.5 2.5 2	0.34 0.47 0.43	1.77 1.27 1.38	0.97 0.70 0.76	2.42 2.22 5.04
	200 230 230	55 43.75 67.75	55 40 64	43 34 54	2.5 4 4	2 3 3	390 377 554	705 511 830	1 700 1 600 1 600	2 300 2 100 2 200	33026JR 30226JR 32226JR	2EE 4FB 4FD	42.5 46.2 56.0	142 148 148	143 152 146	190 216 216	178 203 193	192 218 219	8 7 7	12 9.5 13.5	2 3 3	2 2.5 2.5	0.34 0.44 0.44	1.76 1.38 1.38	0.97 0.76 0.76	6.19 7.24 11.5
	280 280 280 280	63.75 63.75 72 98.75	58 58 66 93	41 49 44 78	5 5 5 5	4 4 4	485 657 589 852	582 834 748 1 160	1 200 1 400 1 200 1 400	1 600 1 800 1 600 1 800	30326D 30326JR 31326JR 32326	 2GB 7GB	84.0 54.0 87.3 69.1	152 152 152 152	155 164 155 163	262 262 262 262	240 239 236 226	261 255 261 259	7 8 7 10	22 14.5 23 15	4 4 4	3 3 3 3	0.81 0.35 0.83 0.35	0.74 1.74 0.73 1.73	0.41 0.96 0.40 0.95	16.3 18.1 18.9 26.5
140	190 195 210	32 29 45	32 27 45	25 21 34	2 3 2.5	1.5 3 2	206 185 346	390 293 585	1 800 1 700 1 700	2 300 2 300 2 200	32928JR T4CB140 32028JR	2CC 4CB 4DC	33.6 40.9 45.6	150 154 152	150 151 153	181 181 200	174 180 187	184 189 202	6 5 8	7 8 11	2 2.5 2	1.5 2.5 2	0.36 0.50 0.46	1.67 1.19 1.31	0.92 0.66 0.72	2.57 2.36 5.28
	210 250 250	56 45.75 71.75	56 42 68	44 36 58	2.5 4 4	2 3 3	406 420 636	758 570 961	1 600 1 500 1 500	2 200 1 900 2 000	33028JR 30228JR 32228JR	2DE 4FB 4FD	45.6 49.4 60.0	152 158 158	152 163 158	200 236 236	186 219 210	202 237 238	7 9 9	12 9.5 13.5	2 3 3	2 2.5 2.5	0.36 0.44 0.44	1.67 1.38 1.38	0.92 0.76 0.76	6.61 8.97 14.7
	300 300 300 300	67.75 67.75 77 107.75	62 62 70 102	44 53 47 85	5 5 5 5	4 4 4	525 749 674 1 110	627 962 865 1 570	1 100 1 300 1 100 1 300	1 500 1 700 1 500 1 700	30328D 30328JR 31328JR 32328R	2GB 7GB	90.2 56.9 93.8 74.2	162 162 162 162	169 179 167 175	282 282 282 282 282	254 254 254 246	280 273 280 280	7 10 8 10	23 14.5 26 17	4 4 4	3 3 3 3	0.81 0.35 0.83 0.35	0.74 1.74 0.73 1.74	0.41 0.96 0.40 0.96	20.0 22.6 23.3 35.1
150	210 225 225	38 48 59	38 48 59	30 36 46	2.5 3 3	2 2.5 2.5	286 391 459	536 668 869	1 600 1 500 1 500	2 100 2 000 2 000	32930JR 32030JR 33030JR	2DC 4EC 2EE	36.1 48.8 47.8	162 162 164 164	163 164 164	200 213 213	194 200 200	202 216 217	7 8 8	8 12 13	2 2.5 2.5	2 2 2	0.33 0.46 0.36	1.83 1.31 1.65	1.01 0.72 0.90	3.96 6.41 8.09
	270 270 320	49 77 72	45 73 65	38 60 46	4 4 5	3 3 4	483 704 616	664 1 070 750	1 300 1 300 970	1 800 1 800 1 400	30230JR 32230JR 30330D	4GB 4GD 	52.4 65.2 96.0	168 168 172	175 170 183	256 256 302	234 226 270	255 254 301	9 8 9	11 17 26	3 3 4	2.5 2.5 3	0.44 0.44 0.81	1.38 1.38 0.74	0.76 0.76 0.41	11.6 18.2 23.9
	320	72	65	55	5	4	837	1 080	1 200	1 500	30330JR	2GB	60.8	172	193	302	272	292	12	17	4	3	0.35	1.74	0.96	26.6

d (150) ~ (190) mm

		Bound	lary dim	ensions				ad ratings	Limiting (mi			Dimens					Mount	ing dim (mm)	ension	ıs			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	<i>r</i> min.	r_1 min.	Cr	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	ISO35 (Refe	5 (mm		$d_{ m b}$ max.	max.	D _a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Mass (kg)
150	320 320	82 114	75 108	50 90	5 5	4 4	763 1 240	989 1 790	980 1 200	1 400 1 600	31330JR 32330R	7GE	100.1 78.4	172 172	179 187	302 302	272 263	301 298	9 10	27 17	4 4	3 3	0.83 0.35	0.73 1.74	0.40 0.96	28.0 42.0
160	220 220 240	32 38 51	30 38 51	23 30 38	3 2.5 3	3 2 2.5	225 295 440	379 568 758	1 500 1 500 1 400	2 000 2 000 1 900	T4DB160 32932JR 32032JR	4DE 2DC 4EC	38.4	174 172 174	172 173 175	206 210 228	204 204 213	213 212 231	5 7 8	9 8 13	2.5 2 2.5	2.5 2 2	0.49 0.35 0.46	1.23 1.73 1.31	0.68 0.95 0.72	3.23 4.19 7.75
	290 290 340	52 84 75	48 80 68	40 67 48	4 4 5	3 3 4	542 795 742	750 1 210 933	1 200 1 200 900	1 600 1 700 1 300	30232JR 32232JR 30332D	4GE 4GE		178 178 182	189 182 195	276 276 322	252 242 290	269 274 320	8 10 9	12 17 27	3 3 4	2.5 2.5 3	0.44 0.44 0.81	1.38 1.38 0.74	0.76 0.76 0.41	14.1 23.2 29.1
	340 340	75 121	68 114	58 95	5 5	4 4	938 1 220	1 220 1 720	1 100 1 100	1 400 1 400	30332JR 32332	2GE	63.3 83.0	182 182	205 200	322 322	289 277	310 316	12 10	17 18	4 4	3 3	0.35 0.35	1.74 1.73	0.96 0.95	31.8 47.9
170	230 260 310	38 57 57	38 57 52	30 43 43	2.5 3 5	2 2.5 4	296 526 620	606 905 867	1 400 1 300 1 100	1 900 1 700 1 500	32934JR 32034JR 30234JR	3DC 4EC 4GE	55.8	184	183 187 202	220 248 292	213 230 269	222 249 288	7 10 8	8 14 14	2 2.5 4	2 2 3	0.38 0.44 0.44	1.57 1.35 1.38	0.86 0.74 0.76	4.49 10.5 17.8
	310 360 360	91 80 80	86 72 72	71 50 62	5 5 5	4 4 4	898 762 1 040	1 380 1 040 1 370	1 100 830 1 000	1 500 1 200 1 300	32234JR 30334D 30334JR	4GE 2GE	108.3	192 192 192	195 211 218	292 342 342	259 310 306	294 333 329	10 9 13	20 30 18	4 4 4	3 3 3	0.44 0.81 0.35	1.38 0.74 1.74	0.76 0.41 0.96	28.9 34.3 37.5
	360	127	120	100	5	4	1 310	1 830	1 000	1 300	32334		86.1	192	200	342	295	337	14	26	4	3	0.35	1.73	0.95	56.9
180	250 280 320	45 64 57	45 64 52	34 48 43	2.5 3 5	2 2.5 4	357 644 615	735 1 100 870	1 300 1 200 1 100	1 700 1 600 1 400	32936JR 32036JR 30236JR	4DC 3FD 4GE	59.5	194	193 199 211	240 268 302	225 247 278	241 268 297	8 10 9	11 16 14	2 2.5 4	2 2 3	0.48 0.42 0.45	1.25 1.42 1.33	0.69 0.78 0.73	6.64 14.1 18.3
	320 380 380	91 83 83	86 75 75	71 52 64	5 5 5	4 4 4	957 833 901	1 520 1 150 1 110	1 100 780 940	1 500 1 100 1 300	32236JR 30336D 30336	4GE	77.8 112.8 71.0	202 202 202	204 225 227	302 362 362	267 330 318	303 351 346	10 10 13	20 31 19	4 4 4	3 3 3	0.45 0.81 0.35	1.33 0.74 1.73	0.73 0.41 0.95	29.9 40.1 39.7
	380	134	126	106	5	4	1 410	1 980	960	1 300	32336		91.8	202	215	362	310	355	14	27	4	3	0.35	1.73	0.95	67.0
190	260 290	45 64	45 64	34 48	2.5 3	2 2.5	366 654	789 1 170	1 200 1 100	1 600 1 500	32938JR 32038JR	4DC 4FD		202 204	204 209	250 278	235 257	252 279	8 10	11 16	2 2.5	2 2	0.48 0.44	1.26 1.36	0.69 0.75	6.89 14.7

d (190) ~ 260 mm

		Bound	ary dime	ensions				ad ratings kN)	Limiting (mi	(speeds)		Dimension series to	Load center				Mount	ing dim (mm)	ension	IS			Con- stant	Axial fact		(Refer.)
d	D	Т	В	С	<i>r</i> min.	r_1 min.	$C_{\rm r}$	C_{0r}	Grease lub.	Oil lub.	Bearing No.	ISO355 (Refer.)	(mm) a	d_{a} min.	$d_{ m b}$ max.	max.	D_{a} min.	$D_{ m b}$ min.	S_{a} min.	$S_{ m b}$ min.	r _a max.	$r_{ m b}$ max.	e	Y_1	Y_0	Mass (kg)
190	340 340	60 97	55 92	46 75	5 5	4 4	729 1 090	1 030 1 740	1 000 1 000	1 300 1 300	30238JR 32238JR	4GB 4GD	66.4 81.9	212 212	225 216	322 322	298 286	318 323	12 12	13 22	4 4	3 3	0.44 0.44	1.38 1.38	0.76 0.76	21.9 36.6
	400	86	78	52	6	5	950	1 210	740	1 000	30338D	-	119.2	218	232	378	350	372	11	34	5	4	0.81	0.74	0.41	44.8
	400 400	86 140	78 132	65 109	6 6	5 5	1 010 1 550	1 250 2 190	880 890	1 200 1 200	30338 32338		73.2 96.5	218 218	241 225	378 378	342 330	370 375	10 14	20 30	5 5	4 4	0.35 0.35	1.73 1.73	0.95 0.95	46.2 76.6
200	280 310	51 70	51 70	39 53	3 3	2.5 2.5	486 755	958 1 340	1 100 1 100	1 500 1 400	32940JR 32040JR	3EC 4FD	53.6 66.9	214 214	216 221	268 298	257 273	271 297	9 11	12 17	2.5 2.5	2 2	0.39 0.43	1.52 1.39	0.84 0.77	9.44 19.1
	360	64	58	48	5	4	792	1 120	940	1 200	30240JR	4GB	70.3	222	238	342	315	336	12	15	4	3	0.44	1.38	0.76	26.4
	360 420 420	104 89 89	98 80 80	82 56 67	5 6 6	4 5 5	1 240 904 1 120	1 880 1 230 1 450	960 690 820	1 300 970 1 100	32240JR 30340D 30340	3GD 	84.6 122.6 79.8	222 228 228	225 248 255	342 398 398	302 365 354	340 385 385	11 11 11	22 33 21	4 5 5	3 4 4	0.41 0.81 0.35	1.48 0.74 1.73	0.81 0.41 0.95	44.2 50.6 53.5
	420	146	138	115	6	5	1 790	2 580	830	1 100	32340	_	102.9	228	240	398	345	395	16	30	5	4	0.35	1.73	0.95	91.0
220	300 340 400	51 76 72	51 76 65	39 57 54	3 4 5	2.5 3 4	498 894 1 010	1 010 1 620 1 440	1 000 940 830	1 400 1 300 1 100	32944JR 32044JR 30244JR	3EC 4FD	58.6 72.8 76.5	234 238 242	234 243 263	288 326 382	275 300 344	290 326 371	9 12 14	12 19 17	2.5 3 4	2 2.5 3	0.43 0.43 0.44	1.41 1.39 1.43	0.78 0.77 0.79	10.1 25.2 35.9
	400 460	114 97	108 88	90 73	5 6	4 5	1 190 1 260	1 930 1 680	830 730	1 100 980	32244 30344		95.9 84.6	242 248	260 282	382 438	333 386	377 420	16 12	14 23	4 5	3 4	0.43 0.35	1.39 1.73	0.77 0.95	56.8 69.0
240	320 360 440	51 76 79	51 76 72	39 57 60	3 4 5	2.5 3 4	515 924 1 230	1 090 1 720 1 790	940 870 730	1 300 1 200 980	32948JR 32048JR 30248R	4EC 4FD —	64.5 78.5 82.7	254 258 262	254 261 287	308 346 422	294 318 377	311 346 409	9 12 14	12 19 18	2.5 3 4	2 2.5 3	0.46 0.46 0.42	1.31 1.31 1.43	0.72 0.72 0.79	10.9 26.8 49.5
	440	127	120	100	5	4	1 530	2 480	740	980	32248	–	106.1	262	282	422	365	415	16	14	4	3	0.43	1.39	0.77	76.4
260	360 400 480	63.5 87 89	63.5 87 80	48 65 67	3 5 6	2.5 4 5	741 1 170 1 210	1 550 2 170 1 860	830 770 650	1 100 1 000 870	32952JR 32052JR 30252	3EC 4FC —	69.6 85.0 93.6	274 282 288	279 287 310	348 382 458	328 352 415	347 383 450	11 14 14	15.5 22 21	2.5 4 5	2 3 4	0.41 0.43 0.42	1.48 1.38 1.44	0.81 0.76 0.79	18.9 39.5 64.9
	480	137	130	106	6	5	1 760	2 870	660	880	32252	—	115.2	288	300	458	400	455	16	30	5	4	0.43	1.39	0.77	102

d **280** ~ **360 mm**

		Bound	ary dime (mm)	ensions				ad ratings	Limiting (min		December No.		nension ries to	Load center				Mounti	ng dim (mm)	ension	s			Con- stant	Axial facto		(Refer.) Mass
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.		0355 efer.)	(mm) a	d_{a} min.	$d_{ m b}$ max.	max.	D _a min.	$D_{ m b}$ min.	$S_{ m a}$ min.	$S_{ m b}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	(kg)
280	380 420 500	63.5 87 89	63.5 87 80	48 65 67	3 5 6	2.5 4 5	760 1 200 1 260	1 630 2 280 1 920	770 720 610	1 000 960 810	32956JR 32056JR 30256	4	IEC IFC —	75.1 91.1 96.2	294 302 308	298 305 325	368 402 478	347 370 440	368 402 475	11 14 14	15.5 22 21	2.5 4 5	2 3 4	0.43 0.46 0.42	1.39 1.31 1.44	0.76 0.72 0.79	20.1 41.7 67.6
300	500 420	137 76	130 76	106 57	6	3	1 860	3 150 2 210	610 680	810 910	32256 32960JR			117.2 79.9	308 318	325 324	478 406	420 383	474	16 12	30 19	5	4	0.43	1.39	0.77	32.4
	460 540	100 96	100 85	74 71	5 6	4 5	1 430 1 510	2 660 2 360	640 550	850 730	32060JR 30260		1GD —	97.9 103.9	322 328	329 350	442 518	404 475	439 505	15 14	26 24	4 5	3 4	0.43 0.42	1.38 1.44	0.76 0.79	57.5 84.7
320	440 480 580	76 100 104	76 100 92	57 74 75	4 5 6	3 4 5	1 060 1 510 1 740	2 270 2 810 2 770	640 600 490	850 800 660	32964JR 32064JR 30264	4	BFD IGD	85.0 103.0 111.9	338 342 348	342 344 370	426 462 558	401 418 505	426 461 540	12 16 14	19 26 28	3 4 5	2.5 3 4	0.42 0.46 0.42	1.44 1.31 1.44	0.79 0.72 0.79	34.0 58.7 108
340	460	76	76	57	4	3	1 070	2 340	590	790	32968JR	4	1FD	90.5	358	361	446	420	446	12	19	3	2.5	0.44	1.37	0.75	35.6
360	480	76	76	57	4	3	1 080	2 400	560	740	32972JR	4	1FD	96.2	378	379	466	438	466	12	19	3	2.5	0.46	1.31	0.72	37.1

d 9.525 ~ (22.225) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load (kN		Limiting (min		Bea	ring No.	Load center		Mou	nting (m		ions		Con- stant	Axial fact			fer.) s (kg)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	$d_{ m b}$	$D_{\rm a}$	D_{b}	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
9.525	31.991	10.008	10.785	7.938	1.2	1.2	10.7	9.30	14 000	19 000	A2037	A2126	7.1	15.0	13.5	26.0	29.0	1.2	1.2	0.40	1.48	0.82	0.029	0.017
11.986	31.991	10.008	10.785	7.938	0.8	1.2	10.7	9.30	14 000	19 000	A2047	A2126	7.1	16.5	15.5	26.0	29.0	0.8	1.2	0.40	1.48	0.82	0.023	0.017
12.700	34.988	10.998	10.988	8.730	1.2	1.2	12.6	11.9	12 000	17 000	A4050	A4138	8.3	18.5	17.0	29.0	32.0	1.2	1.2	0.45	1.33	0.73	0.033	0.022
14.989	34.988	10.998	10.988	8.730	0.8	1.2	12.6	11.9	12 000	17 000	A4059	A4138	8.3	19.5	19.0	29.0	32.0	0.8	1.2	0.45	1.33	0.73	0.029	0.022
15.875	34.988 41.275 42.862	10.998 14.288 16.670	10.998 14.681 16.670	8.712 11.112 13.495	1.2 1.2 1.6	1.2 2.0 1.6	14.5 21.8 30.6	14.3 20.5 29.5	12 000 11 000 10 000	16 000 14 000 14 000	L21549 03062 17580R	L21511 03162 17520	7.6 9.3 10.9	21.5 21.5 23.0	19.5 20.0 21.0	29.0 34.0 36.5	32.5 37.5 39.0	1.2 1.2 1.6	1.2 2.0 1.6	0.32 0.31 0.33	1.88 1.93 1.81	1.04 1.06 1.00	0.031 0.060 0.078	0.018 0.035 0.048
	49.225 53.975	19.845 22.225	21.539 21.839	14.288 15.875	0.8 0.8	1.2 2.4	37.7 42.0	37.7 41.2	8 900 8 400	12 000 11 000	09062 21063	09195 21212	10.6 16.6	22.0 29.0	21.5 26.5	42.0 43.0	44.5 50.0	0.8 0.8	1.2 2.4	0.27 0.59	2.26 1.02		0.139 0.163	0.065 0.097
16.000	47.000	21.000	21.000	16.000	1.0	2.0	36.3	37.7	9 800	13 000	HM81649	HM81610	15.0	27.5	23.0	37.5	43.0	1.0	2.0	0.55	1.10	0.60	0.111	0.080
17.462	39.878	13.843	14.605	10.668	1.2	1.2	25.4	26.0	11 000	14 000	LM11749R	R LM11710	8.6	23.0	21.5	34.0	37.0	1.2	1.2	0.29	2.10	1.15	0.058	0.028
19.050	45.237 49.225 49.225	15.494 19.845 21.209	16.637 21.539 19.050	12.065 14.288 17.462	1.2 1.2 1.2	1.2 1.2 1.6	29.4 37.7 37.7	30.1 37.7 37.7	9 400 8 900 8 900	13 000 12 000 12 000	LM11949 09078 09067	LM11910 09195 09196	10.0 10.6 13.8	25.0 25.5 25.5	23.5 24.0 24.0	39.5 42.0 41.5	41.5 44.5 44.5	1.2	1.2 1.2 1.6	0.30 0.27 0.27	2.00 2.26 2.26	1.24	0.081 0.124 0.114	0.044 0.065 0.084
20.000	50.005	13.495	14.260	9.525	1.6	1.0	26.7	28.8	7 900	11 000	07079	07196	10.8	27.5	26.0	44.5	47.0	1.6	1.0	0.40	1.49	0.82	0.104	0.034
20.638	49.225	19.845	19.845	15.875	1.6	1.6	36.4	37.7	8 600	12 000	12580	12520	12.7	28.5	26.0	42.5	45.5	1.6	1.6	0.32	1.86	1.02	0.116	0.067
21.430	50.005	17.526	18.288	13.970	1.2	1.2	39.1	40.7	8 500	11 000	M12649	M12610	11.1	27.5	25.5	44.0	46.0	1.2	1.2	0.28	2.16	1.19	0.119	0.058
21.987	45.974	15.494	16.637	12.065	1.2	1.2	30.1	34.6	8 900	12 000	LM12749	LM12711	10.0	27.5	26.0	40.0	42.5	1.2	1.2	0.31	1.96	1.08	0.078	0.043
22.225	50.005 52.388 53.975	17.526 19.368 19.368	18.288 20.168 20.168	13.970 14.288 14.288	1.2 1.6 1.6	1.2 1.6 1.6	39.1 36.7 36.7	40.7 37.9 37.9	8 500 8 000 8 000	11 000 11 000 11 000	M12648 1380 1380	M12610 1328 1329	11.1 11.6 11.6	28.5 29.5 29.5	26.5 29.5 29.5	44.0 45.0 46.0	46.0 48.5 49.0	1.2 1.6 1.6	1.2 1.6 1.6	0.28 0.29 0.29	2.16 2.05 2.05	1.19 1.13 1.13		0.058 0.066 0.082

d (22.225) ~ (26.988) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load (kN		Limiting (min		Be	earing No.	Load center		Mou	nting d		ons		Con- stant	Axial facto		(Refe Mass	
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	ng Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	r _a max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
22.225	56.896 57.150 66.421	19.368 22.225 23.812	19.837 22.225 25.433	15.875 17.462 19.050	1.2 0.8 1.6	1.2 1.6 1.2	40.0 52.6 67.0	43.1 55.7 75.2	7 600 7 600 6 500	10 000 10 000 8 700	1755 1280 2684	1729 1220 2631	12.5 15.3 13.9	29.0 29.5 31.5	27.5 29.0 29.0	49.0 49.0 58.0	51.0 52.0 60.0	1.2 0.8 1.6	1.2 1.6 1.2	0.31 0.35 0.25	1.95 1.73 2.36	1.07 0.95 1.30	0.150 0.189 0.295	0.100 0.105 0.163
22.606	47.000	15.500	15.500	12.000	1.6	1.0	28.0	32.8	8 700	12 000	LM72849	9 LM72810	12.3	30.0	28.0	40.5	44.0	1.6	1.0	0.47	1.27	0.70	0.076	0.047
23.812	50.292 56.896	14.224 19.368	14.732 19.837	10.668 15.875	1.6 0.8	1.2 1.2	31.2 40.0	37.0 43.1	7 800 7 600	10 000 10 000	L44640R 1779	L44610 1729	10.8 12.5	30.5 29.5	28.5 28.5	44.5 49.0		1.6 0.8	1.2 1.2	0.37 0.31	1.60 1.95	0.88 1.07	0.099 0.141	0.034 0.100
24.981	50.005 62.000	13.495 16.002	14.260 16.566	9.525 14.288	1.6 1.6	1.0 1.6	26.7 38.0	28.8 40.6	7 900 6 700	11 000 8 900	07098 17098	07196 17244	10.8 12.7	31.0 33.0	29.0 30.5	44.5 54.0		1.6 1.6	1.0 1.6	0.40 0.38	1.49 1.57	0.82 0.86	0.084 0.162	0.034 0.090
25.000	50.005	13.495	14.260	9.525	1.6	1.0	26.7	28.8	7 900	11 000	07097	07196	10.8	31.0	29.0	44.5	47.0	1.6	1.0	0.40	1.49	0.82	0.085	0.035
25.400	50.005 50.005 50.292 51.994 58.738 59.530 61.912 62.000 63.500 64.292 66.421 68.262 72.233	13.495 13.495 14.224 15.011 19.050 23.368 19.050 19.050 21.432 23.812 22.225 25.400	14.260 14.260 14.732 14.260 19.355 23.114 20.638 20.638 20.638 21.432 25.433 22.225 25.400	9.525 9.525 10.668 12.700 15.080 18.288 14.288 14.288 14.288 16.670 19.050 17.462 19.842	1.0 1.6 1.2 1.0 1.2 0.8 0.8 3.6 0.8 1.6 1.2 0.8 0.8 0.8	1.0 1.0 1.2 1.2 1.2 1.2 1.6 2.0 1.2 1.2 1.2 1.6 1.2 1.6 2.4	26.7 26.7 31.2 26.7 48.8 50.4 44.6 44.6 44.6 55.2 67.0 51.0 66.9	28.8 28.8 37.0 28.8 57.1 57.1 50.7 50.7 50.7 70.7 75.2 61.1 87.4	7 900 7 900 7 800 7 900 7 000 7 200 6 400 6 400 6 400 6 400 6 400 6 500 6 000 5 700	11 000 11 000 10 000 11 000 9 300 9 600 8 600 8 600 8 600 8 500 8 700 8 000 7 600	07100 07100S L44643R 07100 1986R M84249 15101 15100 15101 M86643R 2687 02473 HM88630	07204 1932 M84210 15243 15245 15250R R M86610 2631 02420	10.8 10.8 10.8 12.3 13.1 18.2 13.2 13.2 13.2 13.2 13.2 13.9 17.1 20.7	30.5 31.5 31.5 32.5 36.0 32.5 38.0 32.5 38.0 32.5 38.0 33.5 34.5 39.5	29.5 29.5 29.5 30.5 32.5 31.5 31.5 31.5 36.5 31.5 33.5 39.5	44.5 44.5 45.0 52.0 49.5 55.0 55.0 55.0 55.0 55.0 55.0 55.0 5	47.0 47.0 48.0 54.0 56.0 58.0 58.0 59.0 61.0 60.0 63.0	1.0 1.6 1.2 1.0 1.2 0.8 0.8 3.6 0.8 1.6 1.2 0.8 0.8	1.0 1.0 1.2 1.2 1.2 1.6 2.0 1.2 1.2 1.6 1.2 1.6 2.4	0.40 0.40 0.37 0.40 0.33 0.55 0.35 0.35 0.35 0.25 0.42 0.55	1.49 1.60 1.49 1.82 1.10 1.71 1.71 1.71 1.71 1.10 2.36 1.44	0.82 0.82 0.88 0.82 1.00 0.60 0.94 0.94 0.94 0.94 0.60 1.30 0.79 0.60	0.084 0.082 0.092 0.075 0.179 0.194 0.215 0.215 0.215 0.215 0.248 0.272 0.275 0.391	0.035 0.035 0.039 0.065 0.088 0.128 0.080 0.081 0.097 0.127 0.163 0.150 0.185
26.162	66.421	23.812	25.433	19.050	1.6	1.2	67.0	75.2	6 500	8 700	2682	2631	13.9	34.5	32.0	58.0	60.0	1.6	1.2	0.25	2.36	1.30	0.268	0.163
26.988	50.292	14.224	14.732	10.668	3.6	1.2	31.2	37.0	7 800	10 000	L44649R	L44610	10.8			44.5			1.2	0.37	1.60		0.083	0.039

d (26.988) ~ (30.162) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (mir		Beari	ing No.	Load center		Mou	nting o	limensi m)	ons		Con- stant	Axial fact			fer.) s (kg)
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
26.988	60.325 62.000 66.421	19.842 19.050 23.812	17.462 20.638 25.433	15.875 14.288 19.050	3.6 0.8 1.6	1.6 1.2 1.2	37.8 44.6 67.0	42.7 50.7 75.2	7 000 6 400 6 500	9 400 8 600 8 700	15580 15106 2688	15523 15245 2631	15.1 13.2 13.9	38.5 33.5 35.0	32.0 33.0 33.0	51.0 55.0 58.0	54.0 58.0 60.0	3.6 0.8 1.6	1.6 1.2 1.2	0.35 0.35 0.25	1.73 1.71 2.36	0.95 0.94 1.30	0.140 0.206 0.262	0.122 0.081 0.163
28.575	57.150 57.150 62.000 62.000	17.462 19.845 19.050 19.050	17.462 19.355 20.638 20.638	13.495 15.875 14.288 14.288	3.6 3.6 3.6 0.8	1.6 1.6 1.2 1.2	37.8 48.8 44.6 44.6	42.7 57.1 50.7 50.7	7 000 7 000 6 400 6 400	9 400 9 300 8 600 8 600	15590 1988R 15112 15113	15520 1922 15245 15245	12.7 13.9 13.2 13.2	39.0 39.5 40.0 34.5	33.5 33.5 34.0 34.0	51.0 51.0 55.0 55.0	53.0 53.5 58.0 58.0	3.6 3.6 3.6 0.8	1.6 1.6 1.2 1.2	0.35 0.33 0.35 0.35	1.73 1.82 1.71 1.71	0.95 1.00 0.94 0.94	0.131 0.151 0.193 0.195	0.069 0.076 0.081 0.081
	64.292 66.421 68.262	21.432 23.812 22.225	21.432 25.433 22.225	16.670 19.050 17.462	1.6 1.2 0.8	1.6 1.2 1.6	55.2 67.0 51.0	70.7 75.2 61.1	6 400 6 500 6 000	8 500 8 700 8 000	M86647R 2689 02474	M86610 2631 02420	18.0 13.9 17.1	40.0 36.0 36.5	38.0 34.0 36.0	54.0 58.0 59.0	61.0 60.0 63.0	1.6 1.2 0.8	1.6 1.2 1.6	0.55 0.25 0.42	1.10 2.36 1.44	0.60 1.30 0.79	0.225 0.249 0.252	0.127 0.165 0.150
	72.000 72.626	19.000 24.608	18.923 24.257	15.875 17.462	1.6 4.8	1.6 1.6	47.5 61.8	49.6 60.5	5 900 6 100	7 800 8 100	26112 41125	26283 41286	15.3 20.7	37.0 48.0	35.0 36.5	62.0 61.0	65.0 68.0	1.6 4.8	1.6 1.6	0.36 0.60	1.67 1.00	0.92 0.55	0.217 0.292	0.163 0.177
	72.626 72.626 72.626	24.608 30.162 30.162	24.257 29.997 29.997	17.462 23.812 23.812	1.6 3.6 1.2	1.6 3.2 3.2	61.8 78.8 78.8	60.5 89.3 89.3	6 100 5 800 5 800	8 100 7 700 7 700	41126 3192 3198	41286 3120 3120	20.7 20.3 20.3	41.5 42.5 39.0	36.5 37.0 37.0	61.0 61.0 61.0	68.0 67.0 67.0	1.6 3.6 1.2	1.6 3.2 3.2	0.60 0.33 0.33	1.00 1.80 1.80	0.55 0.99 0.99	0.295 0.401 0.410	0.177 0.222 0.222
29.000	73.025	22.225	22.225	17.462	0.8	3.2 1.2	55.0 28.9	65.7 37.2	5 500 7 600	7 400	 02872 L45449	02820 L45410	18.4 10.9	37.5 39.5	37.0 33.0	62.0 44.5	68.0 48.0	0.8	3.2	0.45	1.32	0.73	0.319	0.158
29.367	66.421	23.812	25.433	19.050	3.6	1.2	67.0	75.2	6 500	8 700	2690	2631	13.9	41.0	35.0	58.0	60.0	3.6	1.2	0.25	2.36	1.30	0.242	
29.987	62.000 62.000	16.002 19.050	16.566 20.638	14.288 14.288	1.6 1.2	1.6 1.2	38.0 44.6	40.6 50.7	6 700 6 400	8 900 8 600	17118 15117	17244 15245	12.7 13.2	37.0 36.5	34.5 35.0	54.0 55.0	57.0 58.0	1.6 1.2	1.6 1.2	0.38 0.35	1.57 1.71	0.86 0.94	0.135 0.184	0.090 0.081
30.000	69.012	19.845	19.583	15.875	3.6	1.2	46.1	55.0	5 900	7 800	14117A	14276	15.5	42.5	39.5	60.0	63.0	3.6	1.2	0.38	1.57	0.86	0.225	0.135
30.112	62.000	19.050	20.638	14.288	0.8	1.2	44.6	50.7	6 400	8 600	15116	15245	13.2	36.0	35.5	55.0	58.0	0.8	1.2	0.35	1.71	0.94	0.184	0.081
30.162	62.000 64.292	16.002 21.432	16.566 21.432	14.288 16.670	1.6 1.6	1.6 1.6	38.0 55.2	40.6 70.7	6 700 6 400	8 900 8 500	17119 M86649R	17244 M86610	12.7 18.0	37.0 41.0	34.5 38.0	54.0 54.0	57.0 61.0	1.6 1.6	1.6 1.6	0.38 0.55	1.57 1.10	0.86 0.60	0.139 0.213	0.091 0.127

d (30.162) ~ (34.925) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (mir		Be	aring No.	Load center		Μοι	inting d		ions		Con- stant	Axial fact		(Ref Mass	fer.) 5 (kg)
d	D	Т	В	С	r ¹⁾ min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	da	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
30.162	68.262	22.225	22.225	17.462	2.4	1.6	56.1	71.1	6 000	7 900	M88043	M88010	19.2	43.5	39.5	58.0	65.0	2.4	1.6	0.55	1.10	0.60	0.258	0.144
30.213	62.000	19.050	20.638	14.288	3.6	1.2	44.6	50.7	6 400	8 600	15118	15245	13.2	41.5	35.5	55.0	58.0	3.6	1.2	0.35	1.71	0.94	0.181	0.081
	62.000	19.050	20.638	14.288	1.6	1.2	44.6	50.7	6 400	8 600	15119	15245	13.2	37.5	35.5	55.0	58.0	1.6	1.2	0.35	1.71	0.94	0.183	0.081
	62.000	19.050	20.638	14.288	0.8	1.2	44.6	50.7	6 400	8 600	15120	15245	13.2	36.0	35.5	55.0	58.0	0.8	1.2	0.35	1.71	0.94	0.183	0.081
30.226	69.012	19.845	19.583	15.875	0.8	3.2	46.1	55.0	5 900	7 800	14116	14274	15.5	37.0	36.5	59.0	63.0	0.8	3.2	0.38	1.57	0.86	0.226	0.131
31.750	58.738	14.684	15.080	10.716	1.0	1.0	29.5	33.3	6 600	8 900	08125	08231	13.5	37.5	36.0	52.0	55.0	1.0	1.0	0.48	1.26	0.69	0.109	0.056
	59.131	15.875	16.764	11.811	SP	1.2	35.8	43.1	6 600	8 800	LM67048	LM67010	13.0	42.5	36.0	52.0	56.0	3.5	1.2	0.41	1.46	0.80	0.120	0.062
	62.000	18.161	19.050	14.288	SP	1.2	44.6	50.7	6 400	8 600	15123	15245	13.2	42.5	36.5	55.0	58.0	3.5	1.2	0.35	1.71	0.94	0.157	0.081
	62.000	19.050	20.638	14.288	3.6	1.2	44.6	50.7	6 400	8 600	15125	15245	13.2	42.5	36.5	55.0	58.0	3.6	1.2	0.35	1.71	0.94	0.169	0.081
	62.000	19.050	20.638	14.288	0.8	1.2	44.6	50.7	6 400	8 600	15126	15245	13.2	37.0	36.5	55.0	58.0	0.8	1.2	0.35	1.71	0.94	0.171	0.081
	66.421	25.400	25.357	20.638	0.8	3.2	71.4	85.1	6 000	8 000	2580	2520	16.0	38.5	37.5	57.0	62.5	0.8	3.2	0.27	2.19	1.21	0.281	0.123
	68.262	22.225	22.225	17.462	3.6	1.6	51.0	61.1	6 000	8 000	02475	02420	17.1	44.5	38.5	59.0	63.0	3.6	1.6	0.42	1.44	0.79	0.224	0.150
	68.262	22.225	22.225	17.462	0.8	1.6	51.0	61.1	6 000	8 000	02476	02420	17.1	39.0	38.5	59.0	63.0	0.8	1.6	0.42	1.44	0.79	0.226	0.150
	68.262	22.225	22.225	17.462	1.6	1.6	56.1	71.1	6 000	7 900	M88046	M88010	19.2	43.0	40.5	58.0	65.0	1.6	1.6	0.55	1.10	0.60	0.245	0.144
	73.025	22.225	22.225	17.462	3.6	3.2	55.0	65.7	5 600	7 400	02875	02820	17.1	45.5	39.5	62.0	68.0	3.6	3.2	0.45	1.32	0.73	0.293	0.158
	73.025	22.225	22.225	17.462	0.8	3.2	55.0	65.7	5 500	7 400	02876	02820	17.1	40.0	39.5	62.0	68.0	0.8	3.2	0.45	1.32	0.73	0.293	0.158
	73.025	29.370	27.783	23.020	1.2	3.2	74.3	101	5 600	7 500	HM88542	HM88510	23.4	45.5	42.5	59.0	70.0	1.2	3.2	0.55	1.10	0.60	0.377	0.238
	73.812	29.370	27.783	23.020	1.2	3.2	74.3	101	5 600	7 500	HM88542	HM88512	23.4	45.5	42.5	59.0	70.0	1.2	3.2	0.55	1.10	0.60	0.377	0.254
33.338	68.262	22.225	22.225	17.462	0.8	1.6	56.1	71.1	6 000	7 900	M88048	M88010	19.2	42.5	41.0	58.0	65.0	0.8	1.6	0.55	1.10	0.60	0.231	0.144
	72.000	19.000	18.923	15.875	3.6	1.6	47.5	49.6	5 900	7 800	26131	26283	15.3	44.5	38.5	62.0	65.0	3.6	1.6	0.36	1.67	0.92	0.200	0.163
	73.025	29.370	27.783	23.020	0.8	3.2	74.3	101	5 600	7 500	HM88547	HM88510	23.4	45.5	42.6	59.0	70.0	0.8	3.2	0.55	1.10	0.60	0.360	0.238
	76.200	29.370	28.575	23.020	0.8	3.2	79.5	107	5 400	7 200	HM89443	HM89410	23.9	46.5	44.6	62.0	73.0	0.8	3.2	0.55	1.10	0.60	0.415	0.254
34.925	65.088	18.034	18.288	13.970	SP	1.2	48.0	58.5	6 000	8 000	LM48548	LM48510	14.3	46.0	40.0	58.0	61.0	3.5	1.2	0.38	1.59	0.88	0.164	0.086
	69.012	26.982	26.721	15.875	0.8	1.2	46.1	55.0	5 900	7 800	14136A	14276	22.6	40.0	38.0	60.0	63.0	0.8	1.2	0.38	1.57	0.86	0.254	0.133
	72.233	25.400	25.400	19.842	2.4	2.4	66.9	87.4	5 700	7 600	HM88649	HM88610	20.7	48.5	42.5	60.0	69.0	2.4	2.4	0.55	1.10	0.60	0.301	0.185

[Note] 1) SP indicates the specially chamfered from.

d (34.925) ~ (38.100) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (min			Bearir	ng No. 2)	Load center		Mou	nting d	imensi n)	ons		Con- stant	Axial fact		(Ref Mass	
d	D	Т	В	С	$r^{1)}$ min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inn	ner ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
34.925	72.238 73.025 73.025	20.638 22.225 22.225	20.638 22.225 22.225	15.875 17.462 17.462	3.6 3.6 0.8	1.2 3.2 3.2	49.7 55.0 55.0	61.3 65.7 65.7	5 600 5 500 5 500	7 400 7 400 7 400	1613 0287 0287	377	16284 02820 02820	16.6 18.4 18.4	46.5 48.5 42.5	40.5 42.0 42.0	63.0 62.0 62.0	67.0 68.0 68.0	3.6 3.6 0.8	1.2 3.2 3.2	0.40 0.45 0.45	1.49 1.32 1.32	0.82 0.73 0.73	0.236 0.262 0.265	0.144 0.158 0.158
	73.025 73.025 76.200	23.812 26.988 20.638	24.608 26.975 20.940	19.050 22.225 15.507	1.6 3.6 1.6	0.8 1.6 1.2	72.2 77.8 57.3	87.3 94.1 65.9	5 600 5 700 5 300	7 400 7 600 7 000	2587 2369 2813	690	25821 23620 28300	15.8 18.8 16.5	43.0 49.0 43.5	40.5 42.0 41.0	65.0 64.0 68.0	68.0 68.0 71.0	1.6 3.6 1.6	0.8 1.6 1.2	0.29 0.37 0.40	2.07 1.62 1.49	1.14 0.89 0.82	0.310 0.326 0.315	0.165 0.212 0.137
	76.200 76.200 79.375	23.812 29.370 29.370	25.654 28.575 29.771	19.050 23.812 23.812	3.6 1.6 3.6	3.2 3.2 3.2	74.1 80.9 87.4	92.2 97.4 105	5 400 5 400 5 200	7 200 7 200 6 900	2796 3159 3478	594	2720 31520 3420	15.9 21.6 20.8	47.5 46.0 50.0	41.0 43.5 43.5	66.0 64.0 67.0	70.0 72.0 74.0	3.6 1.6 3.6	3.2 3.2 3.2	0.30 0.40 0.37	1.98 1.49 1.64	1.09 0.82 0.90	0.344 0.388 0.462	0.185 0.232 0.256
	87.312 95.250	30.162 27.783	30.886 29.901	23.812 22.225	3.6 0.8	3.2 2.4	95.8 103	120 122	4 600 4 500	6 200 5 900	3581 449		3525 432	20.5 18.4	48.0 44.0	45.5 43.5	75.0 83.0	81.0 87.0	3.6 0.8	3.2 2.4	0.31 0.28	1.96 2.11	1.08 1.16	0.622 0.686	0.300 0.384
34.980	59.131 59.975	15.875 15.875	16.764 16.764	11.938 11.938	SP SP	1.2 1.2	35.7 35.7	48.5 48.5	6 400 6 400	8 500 8 500	L681 L681		L68110 L68111	13.2 13.2	45.5 45.5	39.0 39.0	53.0 53.0	56.0 56.0		1.2 1.2	0.42 0.42	1.44 1.44	0.79 0.79	0.112 0.112	0.056 0.063
35.000	79.375 80.000	23.812 21.000	25.400 22.403	19.050 17.826	0.8 0.8	0.8 1.2	81.1 68.0	105 74.8	5 000 4 900	6 700 6 600	2688 339		26822 332	16.4 15.1	42.5 42.5	42.0 41.5		74.0 75.0		0.8 1.2	0.32 0.27	1.88 2.20	1.04 1.21	0.414 0.385	0.186 0.144
35.717	72.233	25.400	25.400	19.842	3.6	2.4	66.9	87.4	5 700	7 600	нма	88648	HM88610	20.7	52.0	42.5	60.0	69.0	3.6	2.4	0.55	1.10	0.60	0.291	0.185
36.487	73.025 73.025	23.812 23.812	24.608 25.654	19.050 19.050	1.6 3.6	0.8 0.8	72.2 74.1	87.3 92.2	5 600 5 400	7 400 7 200	2588 2794		25821 2735X	15.8 15.9	44.0 49.0	42.0 42.5	65.0 66.0		1.6 3.6	0.8 0.8	0.29 0.30	2.07 1.98	1.14 1.09	0.294 0.344	0.165 0.134
36.512	76.200 79.375 79.375 85.725	29.370 23.812 29.370 30.162	28.575 25.400 29.771 30.162	23.020 19.050 23.812 23.812	3.6 0.8 0.8 0.8	0.8 0.8 3.2 3.2	79.5 81.1 87.4 108	107 105 105 136	5 400 5 000 5 200 4 800	7 200 6 700 6 900 6 400	HM8 2687 3479 3878	79	HM89411 26822 3420 3820	23.9 16.4 20.8 22.9	54.0 44.0 45.5 48.0	44.5 43.0 44.5 47.0	65.0 71.0 67.0 73.0	74.0 74.0	3.6 0.8 0.8 0.8	0.8 0.8 3.2 3.2	0.55 0.32 0.37 0.40	1.10 1.88 1.64 1.49	0.60 1.04 0.90 0.82	0.386 0.404 0.429 0.605	0.258 0.186 0.259 0.285
38.000	63.000	17.000	17.000	13.500	SP	SP	43.5	58.2	6 000	8 000	JL69	9349	JL69310	14.6	49.0	41.0	60.0	56.5	3.5	1.2	0.42	1.44	0.79	0.128	0.070
38.100	63.500	12.700	11.908	9.525	1.6	0.8	25.5	33.1	5 800	7 700	1388	389	13830	11.9	45.0	42.5	59.0	60.0	1.6	0.8	0.35	1.73	0.95	0.104	0.045

[Notes]

SP indicates the specially chamfered from.
 To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

d (38.100) ~ (40.000) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (mir			Bearing	g No.	Load center		Mou	nting d	limens m)	ions		Con- stant	Axial fact		(Ref Mass	
d	D	Т	В	С	$r^{1)}$ min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner	er ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
38.100	65.088 65.088 65.088	12.700 18.034 19.812	11.908 18.288 18.288	9.525 13.970 15.748	1.6 SP 2.4	0.8 1.2 1.2	25.5 42.9 42.9	33.1 56.5 56.5	5 800 5 800 5 800	7 700 7 800 7 800	13889 LM297 LM297	748 L	13836 LM29710 LM29711	11.9 13.8 15.6	45.0 49.0 46.0	42.5 42.5 42.5	59.0 59.0 58.0	61.0 62.0 62.0	1.6 3.5 2.4	0.8 1.2 1.2	0.35 0.33 0.33	1.73 1.80 1.80	0.95 0.99 0.99	0.104 0.154 0.159	0.046 0.079 0.092
	69.012 71.438 71.996	19.050 15.875 17.018	19.050 16.520 16.520	15.083 11.908 14.288	2.0 1.6 1.6	2.4 1.0 1.6	49.2 46.1 46.1	62.0 53.8 53.8	5 600 5 700 5 700	7 500 7 600 7 600	13687 19150 19150	OR 1 OR 1	13621 19281 19283	16.1 14.5 15.7	46.5 45.0 45.0	43.0 43.0 43.0	61.0 63.0 63.0	65.0 66.0 66.0	2.0 1.6 1.6	2.4 1.0 1.6	0.40 0.44 0.44	1.49 1.35 1.35	0.82 0.74 0.74	0.191 0.167 0.167	0.102 0.105 0.132
	71.996 72.238 72.238	19.000 20.638 23.812	20.638 20.638 20.638	14.237 15.875 19.050	3.6 3.6 3.6	1.6 1.2 2.4	49.7 49.7 49.7	61.3 61.3 61.3	5 600 5 600 5 600	7 400 7 400 7 400	16150 16150 16150	0 1	16282 16284 16283	15.0 16.6 19.8	49.5 49.5 49.5	43.0 43.0 43.0	63.0 63.0 61.0	67.0 67.0 67.0	3.6 3.6 3.6	1.6 1.2 2.4	0.40 0.40 0.40	1.49 1.49 1.49	0.82 0.82 0.82	0.207 0.207 0.207	0.121 0.144 0.183
	73.025 76.200 79.375	23.812 23.812 29.370	25.654 25.654 29.771	19.050 19.050 23.812	3.6 3.6 3.6	0.8 0.8 3.2	74.1 74.1 87.4	92.2 92.2 105	5 400 5 400 5 200	7 200 7 200 6 900	2788R 2788R 3490	R 2	2735X 2729 3420	15.9 15.9 20.8	50.0 50.0 52.0	43.5 43.5 45.9	66.0 68.0 67.0	69.0 70.0 74.0	3.6 3.6 3.6	0.8 0.8 3.2	0.30 0.30 0.37	1.98 1.98 1.64	1.09 1.09 0.90	0.308 0.308 0.419	0.134 0.189 0.256
	80.035 80.035 80.035	21.432 24.608 24.608	20.940 23.698 23.698	15.875 18.512 18.512	1.6 0.8 3.6	1.6 1.6 1.6	57.3 73.2 73.2	65.9 91.6 91.6	5 300 5 200 5 200	7 000 6 900 6 900	28150 27880 27881	0 2	28317 27820 27820	16.9 22.2 22.2	45.5 48.0 53.0	43.5 47.0 47.0	69.0 68.0 68.0	73.0 75.0 75.0	1.6 0.8 3.6	1.6 1.6 1.6	0.40 0.56 0.56	1.49 1.07 1.07	0.82 0.59 0.59	0.285 0.378 0.378	0.201 0.208 0.208
	82.550 82.550 82.931	29.370 29.370 23.812	28.575 28.575 25.400	23.020 23.020 19.050	0.8 2.4 0.8	3.2 3.2 0.8	87.3 87.3 77.2	117 117 100	4 900 4 900 4 800	6 600 6 600 6 300	HM801 HM801 25572	01346X H	HM801310 HM801310 25520	24.4 24.4 17.5	51.0 54.0 46.0	49.0 49.0 46.0	68.0 68.0 74.0	78.0 78.0 77.0	0.8 2.4 0.8	3.2 3.2 0.8	0.55 0.55 0.33	1.10 1.10 1.79	0.60 0.60 0.99	0.483 0.483 0.437	0.282 0.282 0.203
	88.501 90.488 101.600	26.988 39.688 34.925	29.083 40.386 36.068	22.225 33.338 26.988	3.6 1.6 3.6	1.6 3.2 3.2	98.2 132 131	112 169 159	4 900 4 500 4 000	6 500 6 000 5 300	418 4375 525	4	414 4335 522	16.9 25.6 22.2	51.0 51.0 54.0	44.5 48.5 48.0	77.0 77.0 89.0	80.0 85.0 95.0	3.6 1.6 3.6	1.6 3.2 3.2	0.26 0.28 0.29	2.28 2.11 2.10	1.25 1.16 1.16	0.523 0.841 1.05	0.325 0.459 0.411
39.688	73.025 73.025 80.167	16.667 23.812 29.370	17.462 25.654 30.391	12.700 19.050 23.812	0.8 3.6 0.8	1.6 0.8 3.2	45.9 74.1 91.0	55.8 92.2 106	5 200 5 400 5 000	6 900 7 200 6 700	18587 2789R 3386	R 2	18520 2735X 3320	14.5 15.9 18.7	46.0 52.0 46.5	46.0 45.0 45.5	66.0 66.0 70.0	69.0 69.0 75.0	0.8 3.6 0.8	1.6 0.8 3.2	0.35 0.30 0.27	1.71 1.98 2.20	0.94 1.09 1.21	0.215 0.288 0.442	0.085 0.134 0.217
40.000	84.138 76.200 80.000	29.370 20.638 21.000	30.391 20.940 22.403	23.812 15.507 17.826	3.6 1.6 3.6	3.2 1.2 1.2	91.0 57.3 68.0	106 65.9 74.8	5 000 5 300 4 900	6 700 7 000 6 600	3382 28158 344	8 2	3328 28300 332	18.7 16.5 15.1	52.0 47.5 52.0	45.5 45.0 45.5	72.0 68.0 73.0	76.0 71.0 75.0	3.6 1.6 3.6	3.2 1.2 1.2	0.27 0.40 0.27	2.20 1.49 2.20	1.21 0.82 1.21	0.438 0.266 0.334	0.312 0.137 0.144

[Note] 1) SP indicates the specially chamfered from.

d (40.000) ~ 42.070 mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic loa		Limiting (mir		I	Bearing N		Load center		Mou		dimensi m)	ions		Con- stant	Axial fact		(Ref Mass	
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner r	ring 0	Outer ring	(mm) a	d_{a}	$d_{ m b}$	$D_{\rm a}$	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
40.000	80.000 85.000 88.501 107.950	21.000 20.638 26.988 36.512	22.403 21.692 29.083 36.957	17.826 17.462 22.225 28.575	0.8 0.8 3.6 3.6	1.2 1.2 1.6 3.2	68.0 71.8 98.2 138	74.8 81.7 112 172	4 900 4 600 4 900 3 800	6 600 6 200 6 500 5 100	344A 350A 420 543	333 354 414 533	64A .4	15.1 15.5 16.9 23.9	46.0 47.5 52.0 57.0	45.5 46.5 46.0 50.0	73.0 77.0 77.0 94.0	75.0 80.0 80.0 100.0	0.8 0.8 3.6 3.6	1.2 1.2 1.6 3.2	0.27 0.31 0.26 0.30	2.20 1.96 2.28 2.03	1.21 1.08 1.25 1.11	0.334 0.416 0.465 1.17	0.144 0.162 0.325 0.570
40.483	82.550	29.370	28.575	23.020	3.6	3.2	87.3	117	4 900	6 600	HM801		M801310	24.4	58.0	49.0	68.0		3.6	3.2	0.55		0.60	0.450	0.282
41.275	73.025 73.431 73.431 73.431	16.667 19.558 21.430 23.012	17.462 19.812 19.812 19.812	12.700 14.732 16.604 18.186	3.6 3.6 3.6 3.6	1.6 0.8 0.8 2.4	45.9 57.8 57.8 57.8	55.8 73.0 73.0 73.0	5 200 5 200 5 200 5 200 5 200	6 900 7 000 7 000 7 000	18590 LM5013 LM5013 LM5013	.349 LM .349 LM .349 LM	8520 1501310 1501314 1501311	14.5 16.1 18.0 16.1	53.0 53.0 53.0 53.0	46.0 46.5 46.5 46.5	66.0 67.0 66.0 64.0	69.0 70.0 70.0 70.0	3.6 3.6 3.6 3.6	1.6 0.8 0.8 2.4	0.35 0.40 0.40 0.40	1.71 1.50 1.50 1.50	0.94 0.83 0.83 0.83	0.199 0.227 0.227 0.227	0.085 0.107 0.126 0.140
	76.200 76.200	18.009 22.225	17.384 23.020	14.288 17.462	1.6 3.6	1.6 0.8	51.6 66.3	63.3 83.3	5 200 5 200	6 900 6 900	11162R 24780R	R 243	.300 720	17.5 17.4	49.0 54.0	46.5 47.0	67.0 68.0	72.0 72.0	1.6 3.6	1.6 0.8	0.49 0.39	1.23 1.53	0.68 0.84	0.221 0.275	0.127 0.148
	80.000 80.000 82.550	21.000 21.000 26.543	22.403 22.403 25.654	17.826 17.826 20.193	0.8 3.6 3.6	1.2 1.2 3.2	68.0 68.0 83.7	74.8 74.8 105	4 900 4 900 4 900	6 600 6 600 6 500	336 342 M80204	332 332 048 M8		15.1 15.1 23.3	47.0 53.0 57.0	46.0 46.0 50.6	73.0 73.0 70.0	75.0 75.0 79.0	0.8 3.6 3.6	1.2 1.2 3.2	0.27 0.27 0.55	2.20 2.20 1.10	1.21 1.21 0.60	0.325 0.317 0.403	0.144 0.144 0.227
	85.725 87.312 88.501	30.162 30.162 26.988	30.162 30.886 29.083	23.812 23.812 22.225	3.6 0.8 3.6	1.2 3.2 1.6	108 95.8 98.2	136 120 112	4 800 4 600 4 900	6 400 6 200 6 500	3877 3576R 419	382 352 414	525	22.9 20.5 16.9	57.0 49.0 54.0	50.3 48.0 47.0	75.0 75.0 77.0	81.0 81.0 80.0	3.6 0.8 3.6	1.2 3.2 1.6	0.40 0.31 0.26	1.49 1.96 2.28	0.82 1.08 1.25	0.506 0.533 0.441	0.324 0.300 0.325
	88.900 88.900 88.900	20.638 30.162 30.162	22.225 29.370 29.370	16.513 23.020 23.020	3.6 0.8 3.6	1.2 3.2 3.2	74.3 99.6 99.6	87.3 125 125	4 400 4 600 4 600	5 800 6 100 6 100	365A HM803 HM803		52A M803110 M803110	16.1 26.1 26.1	55.0 54.0 60.0	48.5 53.0 53.0	81.0 74.0 74.0		3.6 0.8 3.6	1.2 3.2 3.2	0.32 0.55 0.55	1.88 1.10 1.10	1.03 0.60 0.60	0.458 0.577 0.574	0.164 0.318 0.318
	90.488 93.662 95.250	39.688 31.750 30.162	40.386 31.750 29.370	33.338 26.195 23.020	3.6 0.8 3.6	3.2 3.2 3.2	132 105 104	169 134 140	4 500 4 400 3 300	6 000 5 800 4 400	4388 46162 HM8044		835 5368 M804810	25.6 24.0 26.5	57.0 52.0 61.0	51.0 51.0 54.0	77.0 79.0 81.0	85.0 87.0 91.0	3.6 0.8 3.6	3.2 3.2 3.2	0.28 0.40 0.55	2.11 1.49 1.10	1.16 0.82 0.60	0.775 0.695 0.719	0.454 0.403 0.351
	101.600 104.775	34.925 36.512	36.068 36.512	26.988 28.575	3.6 1.6	3.2 3.2	131 141	159 195	4 000 3 800	5 300 5 100	526 HM8070	52: 7035 HM	22 M807010	22.2 29.3	57.0 60.0	50.0 57.0	89.0 89.0	95.0 100.0	3.6 1.6	3.2 3.2	0.29 0.49	2.10 1.23	1.16 0.68	1.02 1.19	0.411 0.497
42.070	90.488	39.688	40.386	33.338	3.6	3.2	132	169	4 500	6 000	4395	43	335	25.6	58.0	51.0	77.0	85.0	3.6	3.2	0.28	2.11	1.16	0.751	0.459

d 42.862 ~ 45.000 mm

Koyo

		Bounda	(mm)	sions			Basic loa (kl		Limiting (mir		Bear	ring No.	Load center		Mou	inting ((m	dimens m)	ions		Con- stant	Axial fact		(Ref Mass	fer.) 5 (kg)
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
42.862	76.992	17.463	17.145	11.908	1.6	1.6	48.4	62.2	5 000	6 600	12168	12303	17.5	51.0	48.5	68.0	73.0	1.6	1.6	0.51	1.19	0.65	0.220	0.097
42.875	79.375 82.931	23.812 23.812	25.400 25.400	19.050 19.050	3.6 3.6	0.8 0.8	81.1 77.2	105 100	5 000 4 800	6 700 6 300	26884R 25577	26822 25520	16.1 17.5	55.0 55.0	48.5 49.0			3.6 3.6	0.8 0.8	0.32 0.33	1.88 1.79		0.314 0.382	0.186 0.200
44.450	73.025 76.992 79.375 82.931 84.138 85.000	18.258 17.463 17.462 23.812 30.162 20.638	18.258 17.145 17.462 25.400 30.886 21.692	15.083 11.908 13.495 19.050 23.812 17.462	1.6 1.6 2.8 5.2 3.6 2.4	1.6 1.6 1.6 0.8 3.2 1.2	47.2 48.4 47.1 77.2 95.8 71.8	65.5 62.2 59.1 100 120 81.7	5 100 5 000 4 800 4 800 4 600 4 600	6 800 6 600 6 400 6 300 6 200 6 200	L102849 12175 18685 25582 3578R 355	L102810 12303 18620 25520 3520 354A	14.6 17.5 16.0 17.5 20.5 15.5	51.0 52.0 54.0 59.0 57.0 54.0	49.0 49.5 49.5 51.0 51.0 50.0	66.0 68.0 71.0 74.0 74.0 77.0	69.0 73.0 74.0 77.0 79.5 80.0	1.6 1.6 2.8 5.2 3.6 2.4	1.6 1.6 1.6 0.8 3.2 1.2	0.32 0.51 0.37 0.33 0.31 0.31	1.88 1.19 1.60 1.79 1.96 1.96	0.88	0.183 0.206 0.214 0.361 0.479 0.344	0.102 0.097 0.126 0.200 0.221 0.160
	85.000 88.900 93.662	20.638 30.162 31.750	21.692 29.370 31.750	17.462 23.020 25.400	0.8 3.6 3.6	1.2 3.2 3.2	71.8 99.6 105	81.7 125 123	4 600 4 600 4 400	6 200 6 100 5 900	355A HM803149 49175	354A HM803110 49368	15.5 26.1 22.9	51.0 62.0 59.0	50.0 53.4 53.0	77.0 74.0 82.0	80.0 85.0 87.0	0.8 3.6 3.6	1.2 3.2 3.2	0.31 0.55 0.36	1.96 1.10 1.67	1.08 0.60 0.92	0.344 0.525 0.645	0.160 0.318 0.371
	93.662 93.662 95.250	31.750 31.750 27.783	31.750 31.750 28.575	26.195 26.195 22.225	0.8 3.6 0.8	3.2 3.2 2.4	105 105 108	134 134 141	4 400 4 400 4 100	5 800 5 800 5 400	46175 46176 33885	46368 46368 33821	24.0 24.0 20.4	55.0 60.0 53.0	54.0 54.0 53.0	79.0 79.0 85.0	87.0 87.0 90.0	0.8 3.6 0.8	3.2 3.2 2.4	0.40 0.40 0.33	1.49 1.49 1.82	0.82 0.82 1.00	0.609 0.609 0.714	0.403 0.403 0.264
	95.250 95.250 95.250	27.783 30.162 30.162	29.901 29.370 29.370	22.225 23.020 23.020	3.6 0.8 3.6	0.8 2.4 2.4	103 104 104	122 140 140	4 500 3 300 3 300	5 900 4 400 4 400	438 HM804842 HM804843	432A HM804810 HM804810	18.4 26.5 26.5	57.0 57.0 63.0	51.0 57.0 57.0	84.0 81.0 81.0	87.0 91.0 91.0	3.6 0.8 3.6	0.8 2.4 2.4	0.28 0.55 0.55	2.11 1.10 1.10		0.555 0.673 0.670	0.375 0.351 0.351
	98.425 101.600 104.775	30.162 34.925 36.512	31.750 36.068 36.512	25.400 26.988 28.575	0.8 3.6 3.6	3.2 3.2 3.2	114 131 141	143 159 195	3 900 4 000 3 800	5 200 5 300 5 100	49576 527 HM807040	49520 522 HM807010	24.1 22.2 29.3	55.0 59.0 66.0	54.0 53.0 59.0	88.0 89.0 89.0	96.0 95.0 100.0	0.8 3.6 3.6	3.2 3.2 3.2	0.40 0.29 0.49	1.50 2.10 1.23		0.856 0.939 1.13	0.384 0.411 0.497
	111.125 120.650	38.100 41.275	36.957 41.275	30.162 31.750	3.6 3.6	3.2 3.2	138 174	172 217	3 800 3 500	5 100 4 600	535 615	532A 612	23.9 27.3	60.0 62.0	54.0 56.0	95.0 105.0	100.0 110.0	3.6 3.6	3.2 3.2	0.30 0.31	2.03 1.91	1.11 1.05	1.09 1.48	0.746 0.853
44.983	93.264	30.162	30.302	23.812	3.6	3.2	103	137	4 200	5 500	3776	3720	22.2	59.0	53.0	82.0	88.0	3.6	3.2	0.34	1.77	0.97	0.650	0.288
45.000	85.000	20.638	21.692	17.462	1.6	1.2	71.8	81.7	4 600	6 200	358	354A	15.5	52.5	50.0	77.0	80.0	1.6	1.2	0.31	1.96	1.08	0.338	0.162

d **45.242** ~ **49.212** mm

Koyo

		Bounda	(mm)	sions			Basic load		Limiting (min		Bear	ing No.	Load center		Mou	nting d (m		ions		Con- stant	Axial fact			fer.) s (kg)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
45.242	73.431 77.788 77.788	19.558 19.842 21.430	19.812 19.842 19.842	15.748 15.080 16.667	3.6 3.6 3.6	0.8 0.8 0.8	55.6 57.1 57.1	78.1 73.5 73.5	5 100 4 900 4 900	6 700 6 500 6 500	LM102949 LM603049 LM603049 LM603049	LM102910 LM603011 LM603012 LM603014	14.7 17.5 19.1	56.0 57.0 57.0	50.0 50.0 50.0	68.0 71.0 71.0		3.6 3.6 3.6	0.8 0.8 0.8	0.31 0.43 0.43	1.97 1.41 1.41	1.08 0.77 0.77	0.209 0.243 0.243	0.100 0.120 0.138 0.152
45.618	79.974 85.000	19.842 23.812	19.842 25.400	15.080 19.050	3.6 3.6	0.8	57.1 77.2	73.5	4 900 4 800	6 500 6 300	25590	25526	17.5 17.5	57.0 58.0	50.0 51.0	71.0 74.0	74.0 78.0	3.6 3.6	0.8	0.43	1.41 1.79	0.77	0.243	
45.987	74.976	18.000	18.000	14.000	2.4	1.6	52.6	74.6	5 000	6 600	LM503349F	R LM503310	16.0	53.0	51.0	67.0	72.0	2.4	1.6	0.40	1.49	0.82	0.207	0.095
46.038	79.375 85.000 85.000 85.000	17.462 20.638 20.638 25.400	17.462 21.692 21.692 25.608	13.495 17.462 17.462 20.638	2.8 3.6 2.4 3.6	1.6 1.2 1.2 1.2	47.1 71.8 71.8 80.0	59.1 81.7 81.7 106	4 800 4 600 4 600 4 600	6 400 6 200 6 200 6 100	18690 359A 359S 2984	18620 354A 354A 2924	16.0 15.5 15.5 18.9	56.0 57.0 55.0 58.0	51.0 51.0 51.0 51.0		74.0 80.0 80.0 80.0	2.8 3.6 2.4 3.6	1.6 1.2 1.2 1.2	0.37 0.31 0.31 0.35	1.60 1.96 1.96 1.73	0.88 1.08 1.08 0.95	0.208 0.323 0.323 0.389	0.123 0.160 0.160 0.220
47.625	88.900 88.900 95.250	20.638 25.400 30.162	22.225 25.400 29.370	16.513 19.050 23.020	3.6 3.6 3.6	1.2 3.2 3.2	74.3 87.1 104	87.3 112 140	4 400 4 400 3 300	5 800 5 900 4 400	369A M804049 HM804846	362A M804010 HM804810	16.1 23.6 26.5	60.0 62.0 64.0	53.0 55.0 57.0	81.0 76.0 81.0	84.0 85.0 91.0	3.6 3.6 3.6	1.2 3.2 3.2	0.32 0.55 0.55	1.88 1.10 1.10	1.03 0.60 0.60	0.373 0.450 0.617	0.164 0.216 0.351
	96.838 101.600 104.775	21.000 34.925 30.162	21.946 36.068 29.317	15.875 26.988 24.605	0.8 3.6 4.8	0.8 3.2 3.2	80.4 131 109	101 159 144	3 900 4 000 3 700	5 200 5 300 4 900	386A 528 463	382A 522 453X	17.4 22.2 23.6	56.0 62.0 65.0	55.0 55.0 56.0	89.0 89.0 92.0	92.0 95.0 98.0	0.8 3.6 4.8	0.8 3.2 3.2	0.35 0.29 0.34	1.69 2.10 1.79	0.93 1.16 0.98	0.563 0.871 0.838	0.177 0.411 0.372
	104.775 104.775	30.162 30.162	29.317 30.958	24.605 23.812	0.8 3.6	3.2 3.2	109 126	144 165	3 700 3 700	4 900 4 900	467 45282	453X 45220	23.6 22.2	57.0 64.0	56.0 59.0	92.0 93.0	98.0 99.0	0.8 3.6	3.2 3.2	0.34 0.33	1.79 1.80	0.98 0.99	0.844 0.940	0.372 0.345
48.412	95.250 95.250	30.162 30.162	29.370 29.370	23.020 23.020	2.4 3.6	3.2 3.2	104 104	140 140	3 300 3 300	4 400 4 400	HM804848 HM804849	HM804810 HM804810	26.5 26.5	63.0 66.0	57.5 57.5	81.0 81.0		2.4 3.6	3.2 3.2	0.55 0.55	1.10 1.10	0.60 0.60	0.606 0.604	0.351 0.351
49.212	88.900 104.775 114.300	20.638 36.512 44.450	22.225 36.512 44.450	16.513 28.575 34.925	0.8 3.6 3.6	1.2 3.2 3.2	74.3 141 189	87.3 195 230	4 400 3 800 3 800	5 800 5 100 5 000	365S HM807044 65390	362A HM807010 65320	16.1 29.3 31.7	55.0 69.0 70.0	54.0 63.0 60.0		100.0	0.8 3.6 3.6	1.2 3.2 3.2	0.32 0.49 0.43	1.88 1.23 1.40	1.03 0.68 0.77	0.366 1.03 1.28	0.164 0.497 0.894
	114.300	44.450	44.450	36.068	3.6	3.2	212	263	3 700	5 000	HH506348	HH506310	30.6	71.0		97.0			3.2	0.40	1.49	0.82	1.49	0.834

d **49.987** ~ (**50.800**) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (mir		Bear	ing No. $^{1)}$	Load center		Mou	nting (m	limens m)	ions		Con- stant	Axial fact		(Ref Mass	
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	$d_{ m b}$	$D_{\rm a}$	D_{b}	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
49.987	92.075	24.608	25.400	19.845	2.4	0.8	84.8	119	4 200	5 600	28579R	28521	19.9	60.0	56.0	83.0	87.0	2.4	0.8	0.38	1.59	0.87	0.463	0.247
50.000	82.000 88.900 88.900	21.501 20.638 20.638	21.501 22.225 22.225	17.000 16.513 16.513	3.0 2.0 2.4	0.5 1.2 1.2	71.7 74.3 74.3	97.9 87.3 87.3	4 500 4 400 4 400	6 000 5 800 5 800	JLM104948 365 366 JM205149	3 JLM104910 362A 362A JM205110	16.2 16.1 16.1	60.0 58.0 59.0	55.0 55.0 55.0	76.0 81.0 81.0	78.0 84.0 84.0	3.0 2.0 2.4	0.5 1.2 1.2	0.31 0.32 0.32	1.97 1.88 1.88	1.08 1.03 1.03	0.304 0.346 0.351	0.128 0.164 0.166
	90.000 105.000 110.000	28.000 37.000 22.000	28.000 36.000 21.996	23.000 29.000 18.824	3.0 3.0 0.8	2.5 2.8 1.2	105 149 86.4	138 205 116	4 300 3 800 3 400	5 800 5 100 4 500	JM205149 JHM807045 396		20.2 29.4 21.3	62.0 69.0 61.0	57.0 63.0 60.0	80.0 90.0 101.0	85.0 100.0 105.0	3.0 3.0 0.8	2.5 2.8 1.2	0.33 0.49 0.40	1.82 1.23 1.49	1.00 0.68 0.82	0.508 1.01 0.777	0.243 0.523 0.264
50.800	80.962	18.258	18.258	14.288	1.6	1.6	54.0	81.1	4 600	6 100	L305649R	L305610	16.0	58.0	56.0	73.0	77.0	1.6	1.6	0.35	1.69	0.93	0.228	0.119
	82.550	21.590	22.225	16.510	3.6	1.2	61.2	84.3	4 500	6 000	LM104949	LM104911	16.4	62.0	55.0	75.0	78.0	3.6	1.2	0.31	1.97	1.08	0.287	0.131
	85.725	19.050	18.263	12.700	1.6	1.6	50.7	66.4	4 400	5 900	18200	18337	22.7	59.0	56.0	76.0	81.0	1.6	1.6	0.57	1.06	0.58	0.268	0.134
	88.900	17.462	17.462	13.495	3.6	1.2	49.7	65.5	4 400	5 900	18790	18724	17.4	62.0	56.0	78.0	82.0	3.6	1.2	0.41	1.48	0.81	0.226	0.190
	88.900	20.638	22.225	16.513	1.6	1.2	74.3	87.3	4 400	5 800	368	362A	16.1	58.0	56.0	81.0	84.0	1.6	1.2	0.32	1.88	1.03	0.333	0.164
	88.900	20.638	22.225	16.513	3.6	1.2	74.3	87.3	4 400	5 800	368A	362A	16.1	62.0	56.0	81.0	84.0	3.6	1.2	0.32	1.88	1.03	0.331	0.164
	88.900	20.638	22.225	16.513	5.2	1.2	74.3	87.3	4 400	5 800	370A	362A	16.1	65.0	56.0	81.0	84.0	5.2	1.2	0.32	1.88	1.03	0.326	0.164
	92.075	24.608	25.400	19.845	3.6	0.8	84.8	119	4 200	5 600	28580R	28521	19.9	63.0	57.0	83.0	87.0	3.6	0.8	0.38	1.59	0.87	0.453	0.247
	93.264	20.638	22.225	15.083	2.4	1.2	84.4	98.5	4 200	5 600	375	374	17.1	60.0	57.0	85.0	88.0	2.4	1.2	0.34	1.77	0.97	0.416	0.174
	93.264	30.162	30.302	23.812	3.6	3.2	103	137	4 200	5 500	3780	3720	22.2	64.0	58.0	82.0	88.0	3.6	3.2	0.34	1.77	0.97	0.547	0.288
	93.264	30.162	30.302	23.812	3.6	0.8	103	137	4 200	5 500	3780	3730	22.2	64.0	58.0	84.0	88.0	3.6	0.8	0.34	1.77	0.97	0.547	0.293
	95.250	27.783	28.575	22.225	3.6	0.8	108	141	4 100	5 400	33889	33822	20.4	64.0	58.0	86.0	90.0	3.6	0.8	0.33	1.82	1.00	0.604	0.267
	96.838	21.000	21.946	15.875	0.8	0.8	80.4	101	3 900	5 200	385AX	382A	17.4	59.0	58.0	89.0	92.0	0.8	0.8	0.35	1.69	0.93	0.521	0.177
	97.630	24.608	24.608	19.446	3.6	0.8	89.6	131	3 900	5 200	28678	28622	21.2	65.0	58.0	88.0	92.0	3.6	0.8	0.40	1.49	0.82	0.569	0.267
	98.425	30.162	30.302	23.812	3.6	3.2	103	137	4 200	5 500	3780	3732	22.2	64.0	58.0	84.0	90.0	3.6	3.2	0.34	1.77	0.97	0.547	0.433
	101.600	31.750	31.750	25.400	3.6	3.2	114	143	3 900	5 200	49585	49520	24.1	66.0	59.0	88.0	96.0	3.6	3.2	0.40	1.50	0.82	0.736	0.384
	101.600	34.925	36.068	26.988	0.8	3.2	131	159	4 000	5 300	529	522	22.2	59.0	58.0	89.0	95.0	0.8	3.2	0.29	2.10	1.16	0.806	0.411
	101.600	34.925	36.068	26.988	3.6	3.2	131	159	4 000	5 300	529X	522	22.2	65.0	58.0	89.0	95.0	3.6	3.2	0.29	2.10	1.16	0.802	0.411
_	104.775	30.162	30.958	23.812	6.4	3.2	126	165	3 700	4 900	45284	45220	22.2	71.0	59.0	93.0	99.0	6.4	3.2	0.33	1.80	0.99	0.873	0.345
	104.775	36.512	36.512	28.575	3.6	3.2	148	187	3 900	5 100	59200	59412	26.9	68.0	61.0	92.0	99.0	3.6	3.2	0.40	1.49	0.82	0.767	0.623

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied. [Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog "large size ball & roller bearings".

d (50.800) ~ (55.000) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (mir		Bear	ing No. 1)	Load center		Mou	nting (m	dimensi m)	ons		Con- stant	Axial fact		(Ref Mass	fer.) 6 (kg)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
50.800	104.775 104.775 107.950	36.512 39.688 36.512	36.512 40.157 36.957	28.575 33.338 28.575	3.6 3.6 3.6	3.2 3.2 3.2	141 151 138	195 211 172	3 800 3 800 3 800	5 100 5 100 5 100	HM807046 4580 537	HM807010 4535 532X	29.3 27.3 23.9	70.0 67.0 65.0	63.0 61.0 59.0	90.0	100.0 99.0 100.0	3.6 3.6 3.6	3.2 3.2 3.2	0.49 0.34 0.30	1.23 1.79 2.03	0.68 0.98 1.11	0.995 1.06 0.969	0.497 0.576 0.569
	112.712 120.650 127.000	30.162 41.275 44.450	30.162 41.275 44.450	23.812 31.750 34.925	3.6 3.6 3.6	3.2 3.2 3.2	147 174 208	207 217 269	3 300 3 500 3 300	4 500 4 600 4 400	39575 619 65200	39520 612 65500	23.3 27.3 35.2	68.0 67.0 75.0	61.0	101.0 105.0 107.0		3.6 3.6 3.6	3.2 3.2 3.2	0.34 0.31 0.49	1.77 1.91 1.23	0.97 1.05 0.68	1.13 1.44 1.86	0.355 0.853 1.03
51.592	88.900	20.638	22.225	16.513	2.0	1.2	74.3	87.3	4 400	5 800	3685	362A	16.1	59.0	56.0	81.0	84.0	2.0	1.2	0.32	1.88	1.03	0.321	0.164
52.388	92.075 104.775	24.608 30.162	25.400 29.317	19.845 24.605	3.6 1.6	0.8 3.2	84.8 109	119 144	4 200 3 700	5 600 4 900	28584R 468	28521 453X	19.9 23.6	65.0 62.0	58.0 60.0	83.0 92.0	87.0 98.0	3.6 1.6	0.8 3.2	0.38 0.34	1.59 1.79	0.87 0.98	0.435 0.748	0.247 0.372
53.975	88.900 95.250 104.775	19.050 27.783 30.162	19.050 28.575 29.317	13.492 22.225 24.605	2.4 1.6 3.6	2.0 0.8 3.2	62.9 108 109	86.8 141 144	4 200 4 100 3 700	5 600 5 400 4 900	LM806649 33895 456	LM806610 33822 453X	21.5 20.4 23.6	63.0 63.0 68.0	60.0 60.0 61.0	80.0 86.0 92.0	85.0 90.0 98.0	2.4 1.6 3.6	2.0 0.8 3.2	0.55 0.33 0.34	1.10 1.82 1.79	0.60 1.00 0.98	0.312 0.550 0.728	0.135 0.267 0.372
	104.775 104.775 107.950	36.512 39.688 36.512	36.512 40.157 36.957	28.575 33.338 28.575	3.6 3.6 3.6	3.2 3.2 3.2	141 151 138	195 211 172	3 800 3 800 3 800	5 100 5 100 5 100	HM807049 4595 539	HM807010 4535 532X	29.3 27.3 23.9	73.0 70.0 68.0	63.0 63.0 61.0	90.0	100.0 99.0 100.0	3.6 3.6 3.6	3.2 3.2 3.2	0.49 0.34 0.30	1.23 1.79 2.03	0.68 0.98 1.11	0.921 0.981 0.894	0.497 0.576 0.569
	107.950 117.475 120.650	36.512 33.338 41.275	36.957 31.750 41.275	28.575 23.812 31.750	5.6 3.6 3.6	3.2 3.2 3.2	138 129 174	172 152 217	3 800 3 500 3 500	5 100 4 600 4 600	539A 66212R 621	532X 66462 612	23.9 33.2 27.3	72.0 73.0 70.0		94.0 100.0 105.0		5.6 3.6 3.6	3.2 3.2 3.2	0.30 0.63 0.31	2.03 0.96 1.91	1.11 0.53 1.05	0.861 1.03 1.36	0.569 0.552 0.853
	122.238 122.238 123.825	33.338 43.658 38.100	31.750 43.764 36.678	23.812 36.512 30.162	3.6 3.6 3.6	3.2 3.2 3.2	128 221 162	153 318 223	3 300 3 200 3 200	4 300 4 300 4 200	66584 5578R 557S	66520 5535 552A	35.4 31.1 28.7	75.0 73.0 71.0	67.0	105.0 106.0 109.0	116.0	3.6 3.6 3.6	3.2 3.2 3.2	0.67 0.36 0.35	0.90 1.67 1.73	0.50 0.92 0.95	1.25 1.84 1.47	0.551 0.807 0.756
	127.000	44.450	44.450	34.925	3.6	3.2	208	269	3 300	4 400	65212	65500	35.2	77.0	71.0	107.0	119.0	3.6	3.2	0.49	1.23	0.68	1.78	1.02
54.988	104.775	30.162	29.317	24.605	2.4	3.2	109	144	3 700	4 900	466	453X	23.6	67.0	61.0	92.0	98.0	2.4	3.2	0.34	1.79	0.98	0.708	0.372
54.991	135.755	53.975	56.007	44.450	3.6	3.2	266	357	3 000	4 000	6381	6320	34.8	76.0	70.0	117.0	126.0	3.6	3.2	0.32	1.85	1.02	2.75	1.37
55.000	90.000	23.000	23.000	18.500	1.6	0.5	81.4	115	4 200	5 500	JLM506849	JLM506810	20.1	63.0	61.0	82.0	86.0	1.6	0.5	0.40	1.49	0.82	0.370	0.183

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

[Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog "large size ball & roller bearings".

d (55.000) ~ (60.000) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic loa (k)		Limiting (min		Bea	earing No. $^{1)}$	Load center		Mou	-	dimens m)	ions		Con- stant	Axial fact		(Ref Mass	
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	ng Outer ring	(mm) a	d_{a}	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
55.000	95.000 96.838	29.000 21.000	29.000 21.946	23.500 15.875	1.6 2.4	2.8 0.8	110 80.4	150 101	4 000 3 900	5 300 5 200	JM207049 385	49 JM207010 382A	21.3 17.4	64.0 65.0	62.0 61.0	85.0 89.0	91.0 92.0	1.6 2.4	2.8 0.8	0.33 0.35	1.79 1.69	0.99 0.93	0.567 0.461	0.256 0.177
	96.838	21.000	21.946	15.875	3.6	0.8	80.4	101	3 900	5 200	385X	382A	17.4	67.0	61.0	89.0			0.8	0.35	1.69	0.93	0.459	0.177
	110.000	39.000	39.000	32.000	3.0	2.5	176	224	3 600	4 900	JH307749	I9 JH307710	26.8	71.0	64.0	97.0	104.0	3.0	2.5	0.35	1.73	0.95	1.16	0.560
55.562	97.630	24.608	24.608	19.446	3.6	0.8	89.6	131	3 900	5 200	28680	28622	21.2	68.0	62.0	88.0	92.0	3.6	0.8	0.40	1.49	0.82	0.492	0.267
	122.238	43.658	43.764	36.512	1.2	3.2	221	318	3 200	4 300	5566R	5535	31.1	70.0			116.0		3.2	0.36	1.67	0.92	1.82	0.807
	127.000	36.512	36.512	26.988	3.6	3.2	166	235	3 000	4 000	HM813840	40 HM813810	32.9	76.0	70.0	111.0	121.0	3.6	3.2	0.50	1.20	0.66	1.72	0.606
55.575	96.838	21.000	21.946	15.875	2.4	0.8	80.4	101	3 900	5 200	389	382A	17.4	65.0	61.0	89.0	92.0	2.4	0.8	0.35	1.69	0.93	0.452	0.177
57.150	96.838	21.000	21.946	15.875	2.4	0.8	80.4	101	3 900	5 200	387	382A	17.4	66.0	62.0	89.0	92.0	2.4	0.8	0.35	1.69	0.93	0.428	0.177
	96.838	21.000	21.946	15.875	3.6	0.8	80.4	101	3 900	5 200	387A	382A	17.4	69.0	62.0	89.0	92.0		0.8	0.35	1.69	0.93	0.426	0.177
	96.838	21.000	21.946	15.875	5.2	0.8	80.4	101	3 900	5 200	387AS	382A	17.4	72.0	62.0	89.0	92.0	5.2	0.8	0.35	1.69	0.93	0.422	0.177
	96.838	21.000	21.946	15.875	0.8	0.8	80.4	101	3 900	5 200	387S	382A	17.4	63.0	62.0	89.0	92.0	0.8	0.8	0.35	1.69	0.93	0.431	0.177
	98.425	21.000	21.946	17.826	2.4	0.8	80.4	101	3 900	5 200	387	382	17.4	66.0	62.0	89.0	92.0	2.4	0.8	0.35	1.69	0.93	0.428	0.223
	104.775	30.162	29.317	24.605	2.4	3.2	109	144	3 700	4 900	462	453X	23.6	67.0	63.0	92.0	98.0	2.4	3.2	0.34	1.79	0.98	0.685	0.372
	104.775	30.162	29.317	24.605	3.6	3.2	109	144	3 700	4 900	469	453X	23.6	70.0	63.0	92.0	98.0	3.6	3.2	0.34	1.79	0.98	0.682	0.372
	104.775	30.162	30.958	23.812	6.4	0.8	126	165	3 700	4 900	45291	45221	22.2	76.0	65.0	95.0	99.0	6.4	0.8	0.33	1.80	0.99	0.742	0.350
	112.712	30.162	30.048	23.812	3.6	3.2	111	164	3 400	4 500	3979	3920	25.9	72.0	66.0	99.0	106.0	3.6	3.2	0.40	1.49	0.82	0.916	0.448
	112.712	30.162	30.162	23.812	3.6	3.2	147	207	3 300	4 500	39580	39520	23.3	72.0	66.0	101.0	107.0	3.6	3.2	0.34	1.77	0.97	1.05	0.355
	112.712	30.162	30.162	23.812	7.9	3.2	147	207	3 300	4 500	39581	39520	23.3	81.0			107.0		3.2	0.34	1.77	0.97	1.03	0.355
	117.475	30.162	30.162	23.812	3.6	3.2	118	179	3 200	4 200	33225	33462	27.8	74.0	68.0	104.0	112.0	3.6	3.2	0.44	1.38	0.76	1.13	0.442
	120.650	41.275	41.275	31,750	3.6	3.2	174	217	3 500	4 600	623	612	27.3	72.0	66 0	105.0	110.0	36	3.2	0.31	1.91	1.05	1.27	0.853
	127.000	44.450	44.450	34.925	3.6	3.2	208	269	3 300	4 400	65225	65500	35.2				119.0		3.2	0.49	1.23		1.69	1.02
57.531	96.838	21.000	21.946	15.875	3.6	0.8	80.4	101	3 900	5 200	388A	382A	17.4	69.0	63.0	89.0	92.0	3.6	0.8	0.35	1.69	0.93	0.420	0.177
59.972	122.238	33.338	31.750	23.812	0.8	3.2	128	153	3 300	4 300	66589	66520	35.4	74.0	73.0	105.0	116.0	0.8	3.2	0.67	0.90	0.50	1.11	0.551
60.000	95.000	24.000	24.000	19.000	5.0	2.5	86.1	125	3 900	5 200	JLM508748	748 JLM508710	21.2	75.0	66.0	85.0	91.0	5.0	2.5	0.40	1.49	0.82	0.402	0.196

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

[Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog "large size ball & roller bearings".

d (60.000) ~ (65.000) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (min	speeds n ⁻¹)	Bea	ring No. 1)	Load center		Mou		dimens nm)	ions		Con- stant	Axial fact		(Ref Mass	
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
60.000	107.950 110.000	25.400 22.000	25.400 21.996	19.050 18.824	3.6 0.8	3.2 1.2	92.8 86.4	143 116	3 400 3 400	4 500 4 500	29580 397	29520 394A	24.7 21.3	74.0 69.0			103.0 104.5	3.6 0.8	3.2 1.2	0.46 0.40	1.31 1.49	0.72 0.82	0.713 0.637	0.277 0.259
60.325	100.000 101.600 122.238	25.400 25.400 43.658	25.400 25.400 43.764	19.845 19.845 36.512	3.6 3.6 3.6	3.2 3.2 3.2	91.4 91.4 221	137 137 318	3 700 3 700 3 200	4 900 4 900 4 300	28985 28985 5583R	28921 28920 5535	22.8 22.8 31.1	73.0 73.0 78.0	67.0 67.0 72.0	89.0		3.6 3.6 3.6	3.2 3.2 3.2	0.43 0.43 0.36	1.41 1.41 1.67	0.78 0.78 0.92	0.533 0.533 1.66	0.230 0.269 0.807
	127.000 127.000 127.000	36.512 36.512 44.450	36.512 36.512 44.450	26.988 26.988 34.925	3.6 1.6 3.6	1.6 3.2 3.2	166 166 208	235 235 269	3 000 3 000 3 300	4 000 4 000 4 400	HM813841 HM813841 65237	HM813811 A HM813810 65500	32.9 32.9 35.2	80.0 74.0 82.0	71.0	110.0	121.0	3.6 1.6 3.6	1.6 3.2 3.2	0.50 0.50 0.49	1.20 1.20 1.23	0.66 0.66 0.68	1.60 1.62 1.59	0.622 0.606 1.02
	127.000 136.525	44.450 46.038	44.450 46.038	34.925 36.512	1.6 3.6	3.2 3.2	208 231	269 369	3 300 2 800	4 400 3 700	65237A H715332	65500 H715311	35.2 37.0	78.0 84.0			119.0 132.0	1.6 3.6	3.2 3.2	0.49 0.47	1.23 1.27	0.68 0.70	1.59 2.56	1.02 0.950
61.912	110.000	22.000	21.996	18.824	0.8	1.2	86.4	116	3 400	4 500	392	394A	21.3	70.0	69.0	101.0	104.5	0.8	1.2	0.40	1.49	0.82	0.606	0.259
63.500	107.950 110.000 110.000	25.400 22.000 22.000	25.400 21.996 21.996	19.050 18.824 18.824	1.6 1.6 3.6	3.2 1.2 1.2	92.8 86.4 86.4	143 116 116	3 400 3 400 3 400	4 500 4 500 4 500	29586 390A 395	29520 394A 394A	24.7 21.3 21.3	73.0 73.0 77.0	70.0	101.0	103.0 104.5 104.5		3.2 1.2 1.2	0.46 0.40 0.40	1.31 1.49 1.49	0.72 0.82 0.82	0.649 0.579 0.575	0.277 0.259 0.259
	110.000 112.712 120.000	25.400 30.162 29.794	25.400 30.162 29.007	19.050 23.812 24.237	3.6 3.6 0.8	1.2 3.2 2.0	92.8 147 118	143 207 161	3 400 3 300 3 200	4 500 4 500 4 200	29585 39585 477	29521 39520 472	24.7 23.3 25.7	77.0 77.0 73.0	71.0	101.0	104.0 107.0 113.0	3.6	1.2 3.2 2.0	0.46 0.34 0.38	1.31 1.77 1.56	0.72 0.97 0.86	0.644 0.908 0.967	0.333 0.355 0.493
	122.238 122.238 127.000	38.354 43.658 36.512	38.100 43.764 36.170	29.718 36.512 28.575	3.6 3.6 3.6	3.2 3.2 3.2	191 221 156	249 318 226	3 200 3 200 3 000	4 300 4 300 4 000	HM212046 5584R 565	6 HM212011 5535 563	27.6 31.1 28.6	80.0 81.0 80.0	75.0	106.0	116.0 116.0 120.0	3.6	3.2 3.2 3.2	0.34 0.36 0.36	1.78 1.67 1.65	0.98 0.92 0.91	1.36 1.56 1.43	0.591 0.807 0.648
	135.755 136.525	53.975 41.275	56.007 41.275	44.450 31.750	4.3 3.6	3.2 3.2	266 241	357 308	3 000 2 900	4 000 3 800	6382 H414235	6320 H414210	34.8 30.3	84.0 82.0			126.0 129.0	4.3 3.6	3.2 3.2	0.32 0.36	1.85 1.67	1.02 0.92	2.29 2.11	1.39 0.796
64.986	112.712	30.162	30.924	23.812	2.4	3.2	147	207	3 300	4 500	39586	39520	23.3	76.0	72.0	101.0	107.0	2.4	3.2	0.34	1.77	0.97	0.845	0.355
65.000	105.000 110.000	24.000 28.000	23.000 28.000	18.500 22.500	3.0 3.0	1.0 2.8	95.3 136	129 191	3 500 3 400	4 700 4 600	JLM71094 JM511946		23.8 24.5	77.0 78.0	71.0 72.0		100.5 105.0	3.0 3.0	1.0 2.8	0.45 0.40	1.32 1.49		0.513 0.733	0.234 0.338

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

d (65.000) ~ 68.262 mm

Koyo

		Bounda	(mm)	sions			Basic load (kN		Limiting (min		Bear	ing No. $^{1)}$	Load center		Mou		dimens 1m)	ions		Con- stant	Axial fact		(Ref Mass	fer.) s (kg)
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
65.000	120.000 120.000	39.000 39.000	38.500 38.500	32.000 32.000	3.0 7.1	2.8 2.8	189 189	255 255	3 200 3 200	4 300 4 300	JH211749 JH211749A	JH211710 JH211710	27.9 27.9				114.0 114.0	3.0 7.1	2.8 2.8	0.34 0.34		0.98 0.98	1.27 1.27	0.618 0.618
65.088	135.755 136.525	53.975 46.038	56.007 46.038	44.450 36.512	3.6 3.6	3.2 3.2	266 231	357 369	3 000 2 800	4 000 3 700	6379 H715340	6320 H715311	34.8 37.0				126.0 132.0		3.2 3.2	0.32 0.47	1.85 1.27	1.02 0.70	2.34 2.39	1.37 0.950
65.883	122.238	43.658	43.764	36.512	3.6	3.2	221	318	3 200	4 300	5595R	5535	31.1	83.0	77.0	106.0	116.0	3.6	3.2	0.36	1.67	0.92	1.48	0.807
66.675	110.000 110.000 112.712	22.000 22.000 30.162	21.996 21.996 30.048	18.824 18.824 23.812	0.8 3.6 3.6	1.2 1.2 0.8	86.4 86.4 111	116 116 164	3 400 3 400 3 400	4 500 4 500 4 500	395A 395S 3984	394A 394A 3925	21.3 21.3 25.9	73.0 79.0 80.0	73.0	101.0	104.5 104.5 106.0	0.8 3.6 3.6	1.2 1.2 0.8	0.40 0.40 0.40		0.82 0.82 0.82	0.524 0.519 0.700	0.259 0.259 0.454
	112.712 112.712 117.475	30.162 30.162 30.162	30.162 30.162 30.162	23.812 23.812 23.812	3.6 3.6 3.6	3.2 0.8 3.2	147 147 118	207 207 179	3 300 3 300 3 200	4 500 4 500 4 200	39590 39590 33262	39520 39521 33462	23.3 23.3 27.8	80.0 80.0 81.0	74.0	103.0	107.0 107.0 112.0	3.6 3.6 3.6	3.2 0.8 3.2	0.34 0.34 0.44	1.77 1.77 1.38	0.97 0.97 0.76	0.832 0.832 0.910	0.355 0.360 0.436
	122.238 127.000 130.175	38.100 36.512 41.275	38.354 36.512 41.275	29.718 26.988 31.750	3.6 3.6 3.6	1.6 1.6 3.2	191 166 197	249 235 267	3 200 3 000 3 000	4 300 4 000 3 900	HM212049 HM813844 641	HM212010 HM813811 633	27.3 32.9 30.3	82.0 85.0 83.0	78.0	113.0	116.0 121.0 124.0	3.6 3.6 3.6	1.6 1.6 3.2	0.34 0.50 0.36	1.78 1.20 1.66	0.98 0.66 0.91	1.26 1.42 1.68	0.596 0.622 0.703
	135.755 135.755 136.525	53.975 53.975 41.275	56.007 56.007 41.275	44.450 44.450 31.750	4.3 6.4 3.6	3.2 3.2 3.2	266 266 241	357 357 308	3 000 3 000 2 900	4 000 4 000 3 800	6386 6389 H414242	6320 6320 H414210	34.8 34.8 30.3	87.0 91.0 85.0	77.5	117.0	126.0 126.0 129.0	4.3 6.4 3.6	3.2 3.2 3.2	0.32 0.32 0.36	1.85 1.85 1.67	1.02 1.02 0.92	2.27 2.15 2.01	1.37 1.37 0.796
	136.525	46.038	46.038	36.512	3.6	3.2	231	369	2 800	3 700	H715341	H715311	37.0	89.0	83.0	118.0	132.0	3.6	3.2	0.47	1.27	0.70	2.33	0.950
68.262	110.000 110.000 117.475	22.000 22.000 30.162	21.996 21.996 30.162	18.824 18.824 23.812	2.4 5.2 3.6	1.2 1.2 3.2	86.4 86.4 118	116 116 179	3 400 3 400 3 200	4 500 4 500 4 200	399A 399AS 33269	394A 394A 33462	21.3 21.3 27.8	78.0 83.0 82.0	74.0	101.0	104.5 104.5 112.0	2.4 5.2 3.6	1.2 1.2 3.2	0.40 0.40 0.44	1.49 1.49 1.38	0.82 0.82 0.76	0.493 0.485 0.870	0.259 0.259 0.436
	127.000 136.525 136.525	36.512 41.275 46.038	36.170 41.275 46.038	28.575 31.750 36.512	3.6 3.6 3.6	3.2 3.2 3.2	156 241 231	226 308 369	3 000 2 900 2 800	4 000 3 800 3 700	570 H414245 H715343	563 H414210 H715311	28.6 30.3 37.0	83.0 86.0 90.0	82.0	121.0	120.0 129.0 132.0	3.6 3.6 3.6	3.2 3.2 3.2	0.36 0.36 0.47	1.65 1.67 1.27	0.91 0.92 0.70	1.29 1.92 2.27	0.648 0.788 0.950
	152.400	47.625	46.038	31.750	3.6	3.2	244	278	2 700	3 600	9185	9121	44.5	94.0			145.0	3.6	3.2	0.66	0.91	0.50	2.67	1.20

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

d 69.850 ~ (73.025) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load (kN		Limiting (mir		Bear	ing No. $^{1)}$	Load center		Μοι	0	dimensi m)	ons		Con- stant	Axial fact			fer.) s (kg)
d	D	Т	В	С	<i>r</i> min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	r _a max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
69.850	98.425 112.712 112.712	13.495 22.225 25.400	13.495 21.996 25.400	9.525 15.875 19.050	1.6 1.6 1.6	1.6 0.8 3.2	39.3 91.6 97.0	59.8 127 155	3 500 3 300 3 200	4 700 4 400 4 300	LL713049 LM613449 29675	LL713010 LM613410 29620	18.4 21.9 26.2	77.0 78.0 80.0		92.0 104.0 101.0		1.6 1.6 1.6	1.6 0.8 3.2	0.44 0.42 0.49	1.37 1.44 1.23	0.75 0.79 0.68	0.205 0.562 0.676	0.086 0.238 0.270
	117.475 120.000 120.000	30.162 29.002 29.794	30.162 29.007 29.007	23.812 23.444 24.237	3.6 3.6 3.6	3.2 3.2 2.0	118 118 118	179 161 161	3 200 3 200 3 200	4 200 4 200 4 200	33275 482 482	33462 472A 472	27.8 24.9 25.7	84.0 83.0 83.0	77.0	104.0 106.0 108.0	114.0	3.6 3.6 3.6	3.2 3.2 2.0	0.44 0.38 0.38	1.38 1.56 1.56	0.76 0.86 0.86	0.830 0.791 0.791	0.436 0.462 0.487
	120.000 120.650 123.825	32.545 32.545 30.162	32.545 32.545 29.007	26.195 26.195 24.605	3.6 3.6 3.6	3.2 0.8 3.2	150 150 118	218 218 161	3 100 3 100 3 200	4 200 4 200 4 200	47487R 47487R 482	47420 47423 472X	26.6 26.6 26.0	84.0 84.0 83.0	78.0	107.0 109.0 109.0	114.0	3.6 3.6 3.6	3.2 0.8 3.2	0.36 0.36 0.38	1.67 1.67 1.56	0.92 0.92 0.86	1.01 1.01 0.791	0.476 0.513 0.625
	127.000 146.050 150.089	36.512 41.275 44.450	36.170 41.275 46.672	28.575 31.750 36.512	3.6 3.6 3.6	3.2 3.2 3.2	156 208 264	226 301 368	3 000 2 600 2 500	4 000 3 400 3 400	566 655 745AR	563 653 742	28.6 33.4 32.4	85.0 88.0 88.0	82.0	112.0 131.0 134.0	139.0	3.6 3.6 3.6	3.2 3.2 3.2	0.36 0.41 0.33	1.65 1.47 1.84	0.91 0.81 1.01	1.24 2.35 2.79	0.648 0.891 1.07
	168.275	53.975	56.363	41.275	3.6	3.2	344	467	2 300	3 100	835R	832	35.0	91.0		149.0		3.6	3.2	0.30	2.00	1.10	4.32	1.72
69.952	121.442	24.608	23.012	17.462	2.0	2.0	90.0	127	3 000	4 000	34274	34478	26.8	81.0	78.0	110.0	116.0	2.0	2.0	0.45	1.33	0.73	0.764	0.316
70.000	110.000 115.000	26.000 29.000	25.000 29.000	20.500 23.000	1.0 3.0	2.5 2.5	103 123	158 173	3 300 3 200	4 400 4 300	JLM813049 JM612949	JLM813010 JM612910	26.1 26.2			98.0 103.0	105.0 110.0	1.0 3.0	2.5 2.5	0.49 0.43	1.23 1.39	0.68 0.77	0.590 0.776	0.300 0.358
71.438	117.475 120.000 127.000	30.162 32.545 36.512	30.162 32.545 36.170	23.812 26.195 28.575	3.6 3.6 3.6	3.2 3.2 3.2	118 150 156	179 218 226	3 200 3 100 3 000	4 200 4 200 4 000	33281 47490R 567A	33462 47420 563	27.8 26.6 28.6	85.0 86.0 86.0	79.0			3.6 3.6 3.6	3.2 3.2 3.2	0.44 0.36 0.36	1.38 1.67 1.65	0.76 0.92 0.91	0.789 0.964 1.19	0.436 0.476 0.648
	127.000 136.525 136.525	36.512 41.275 46.038	36.512 41.275 46.038	26.988 31.750 36.512	3.6 3.6 3.6	1.6 3.2 3.2	166 241 231	235 308 369	3 000 2 900 2 800	4 000 3 800 3 700	HM813849 H414249 H715345	HM813811 H414210 H715311	32.9 30.3 37.0	89.0 89.0 93.0	83.3	113.0 121.0 118.0	129.0	3.6 3.6 3.6	1.6 3.2 3.2	0.50 0.36 0.47	1.20 1.67 1.27	0.66 0.92 0.70	1.28 1.80 2.15	0.622 0.788 0.950
73.025	112.712 117.475 127.000	25.400 30.162 36.512	25.400 30.162 36.170	19.050 23.812 28.575	3.6 3.6 3.6	3.2 3.2 3.2	97.0 118 156	155 179 226	3 200 3 200 3 000	4 300 4 200 4 000	29685 33287 567	29620 33462 563	26.2 27.8 28.6	86.0 87.0 88.0	80.0	101.0 104.0 112.0		3.6 3.6 3.6	3.2 3.2 3.2	0.49 0.44 0.36	1.23 1.38 1.65	0.68 0.76 0.91	0.602 0.747 1.14	0.270 0.436 0.648
[N] + 1 = 1)	139.992	36.512	36.098	28.575	3.6	3.2	175	262	2 700	3 600	576R	572	31.0	90.0	83.0	125.0	133.0	3.6	3.2	0.40	1.49	0.82	1.74	0.779

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied. [Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog "large size ball & roller bearings".

d (73.025) ~ 76.200 mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic load		Limiting (mir		Bear	ing No. 1)	Load center		Мо		dimens nm)	ions		Con- stant	Axial fact		(Ref Mass	fer.) s (kg)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	$D_{\rm a}$	D_{b}	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
73.025	146.050 149.225 150.089	41.275 53.975 44.450	41.275 54.229 46.672	31.750 44.450 36.512	3.6 3.6 3.6	3.2 3.2 3.2	208 285 264	301 404 368	2 600 2 700 2 500	3 400 3 500 3 400	657 6460 744R	653 6420 742	33.4 39.3 32.4	90.0 93.0 91.0	87.0	129.0	139.0 141.0 142.0	3.6 3.6 3.6	3.2 3.2 3.2	0.41 0.36 0.33	1.47 1.66 1.84	0.81 0.91 1.01	2.28 2.79 2.66	0.880 1.61 1.07
	161.925	47.625	48.260	38.100	3.6	3.2	273	391	2 400	3 200	762	752	35.5	92.0	97.0	144.0	150.0	3.6	3.2	0.34	1.76	0.97	3.18	1.61
73.817	112.712 127.000	25.400 36.512	25.400 36.170	19.050 28.575	1.6 0.8	3.2 3.2	97.0 156	155 226	3 200 3 000	4 300 4 000	29688 568	29620 563	26.2 28.6	83.0 83.0			109.0 120.0	1.6 0.8	3.2 3.2	0.49 0.36	1.23 1.65	0.68 0.91	0.588 1.12	0.270 0.648
74.612	139.992	36.512	36.098	28.575	3.6	3.2	175	262	2 700	3 600	577R	572	31.0	91.0	85.0	125.0	133.0	3.6	3.2	0.40	1.49	0.82	1.69	0.779
75.000	115.000 120.000 145.000	25.000 31.000 51.000	25.000 29.500 51.000	19.000 25.000 42.000	3.0 3.0 3.0	2.8 2.8 2.5	101 145 290	151 216 412	3 100 3 100 2 700	4 200 4 100 3 600	JLM714149 JM714249 JH415647	JLM714110 JM714210 JH415610	25.5 30.0 36.6	87.0 88.0 94.0	82.9	108.0	110.0 115.0 139.0		2.8 2.8 2.5	0.46 0.44 0.36	1.31 1.35 1.66	0.72 0.74 0.91	0.612 0.846 2.66	0.269 0.430 1.18
76.200	121.442 127.000 127.000	24.608 30.162 30.162	23.012 31.000 31.000	17.462 22.225 22.225	3.6 3.6 6.4	2.0 3.2 3.2	90.0 143 143	127 225 225	3 000 2 400 2 400	4 000 3 200 3 200	34301 42687 42688	34478 42620 42620	26.8 27.1 27.1	89.0 90.0 96.0	84.0	114.0	116.0 121.0 121.0	3.6 3.6 6.4	2.0 3.2 3.2	0.45 0.42 0.42	1.33 1.43 1.43	0.73 0.79 0.79	0.617 1.05 1.04	0.313 0.434 0.434
	133.350 133.350 133.350	30.162 33.338 33.338	29.769 33.338 33.338	22.225 26.195 26.195	6.4 6.4 0.8	3.2 3.2 3.2	133 154 154	198 245 245	2 700 2 700 2 700	3 600 3 700 3 700	495AX 47678R 47680R	492A 47620 47620	29.8 29.2 29.2	98.0 97.0 86.0	90.0	119.0	128.0 128.0 128.0	6.4 6.4 0.8	3.2 3.2 3.2	0.44 0.40 0.40	1.35 1.48 1.48	0.74 0.82 0.82	1.20 1.29 1.39	0.430 0.577 0.577
	135.733 136.525 139.992	44.450 30.162 36.512	46.101 29.769 36.098	34.925 22.225 28.575	3.6 3.6 3.6	3.2 3.2 3.2	213 133 175	337 198 262	2 800 2 700 2 700	3 700 3 600 3 600	5760 495A 575R	5735 493 572	33.0 29.8 31.0	94.0 92.0 92.0	86.0	122.0	130.0 130.0 133.0	3.6 3.6 3.6	3.2 3.2 3.2	0.41 0.44 0.40	1.48 1.35 1.49	0.81 0.74 0.82	1.85 1.26 1.64	0.877 0.544 0.779
	139.992 149.225 149.225	36.512 53.975 53.975	36.098 54.229 54.229	28.575 44.450 44.450	6.7 3.6 9.5	3.2 3.2 3.2	175 285 285	262 404 404	2 700 2 700 2 700	3 600 3 500 3 500	575SR 6461 6461A	572 6420 6420	31.0 39.3 39.3	99.0 96.0 105.0	89.5	129.0	133.0 141.0 141.0	6.7 3.6 9.5	3.2 3.2 3.2	0.40 0.36 0.36	1.49 1.66 1.66	0.82 0.91 0.91	1.61 2.64 2.60	0.779 1.61 1.61
	150.089 152.400 190.500	44.450 41.275 57.150	46.672 41.275 57.531	36.512 31.750 46.038	3.6 3.6 3.6	3.2 3.2 3.2	264 208 440	368 301 602	2 500 2 600 2 000	3 400 3 400 2 700	748SR 659 HH221430	742 652 HH221410	32.4 33.4 42.5	93.0 93.0 101.0	87.0	134.0	142.0 141.0 179.0	3.6 3.6 3.6	3.2 3.2 3.2	0.33 0.41 0.33	1.84 1.47 1.79	1.01 0.81 0.99	2.51 2.16 6.33	1.06 1.25 2.21

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

d **77.788** ~ (**83.345**) mm

Koyo

		Bounda	(mm)	sions			Basic loa		Limiting (mir		Bear	ring No. 1)	Load center		Μοι	•	dimens im)	ons		Con- stant	Axial fact		(Refe Mass	
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
77.788	117.475 121.442 121.442 127.000	25.400 24.608 24.608 30.162	25.400 23.012 23.012 31.000	19.050 17.462 17.462 22.225	3.6 3.6 6.4 3.6	3.2 2.0 2.0 3.2	101 90.0 90.0 143	166 127 127 225	3 100 3 000 3 000 2 400	4 100 4 000 4 000 3 200	LM814849 34306 34307 42690	LM814810 34478 34478 42620	27.6 26.8 26.8 27.1	91.0 90.0 96.0 91.0	84.0 84.0	110.0 110.0	113.0 116.0 116.0 121.0	3.6 3.6 6.4 3.6	3.2 2.0 2.0 3.2	0.51 0.45 0.45 0.42	1.18 1.33 1.33 1.43	0.65 0.73 0.73 0.79	0.619 0.583 0.571 1.00	0.295 0.313 0.313 0.434
79.375	146.050 161.925 190.500	41.275 47.625 57.150	41.275 48.260 57.531	31.750 38.100 46.038	3.6 7.9 3.6	3.2 3.2 3.2	208 273 440	301 391 602	2 600 2 400 2 000	3 400 3 200 2 700	661 756A HH221431	653 752 HH221410	33.4 35.5 42.5	96.0 106.0 103.0	91.0	144.0	139.0 150.0 179.0	7.9	3.2 3.2 3.2	0.41 0.34 0.33	1.47 1.76 1.79	0.81 0.97 0.99	2.04 2.95 6.16	0.880 1.59 2.21
80.000	130.000 200.000	35.000 52.761	34.000 49.212	28.500 34.925	3.2 3.6	2.5 3.2	168 347	256 471	2 800 1 400	3 800 1 900	JM515649 98316	JM515610 98788	29.6 54.5				125.0 188.0	3.2 3.6	2.5 3.2	0.39 0.63	1.54 0.95	0.85 0.52	1.19 5.73	0.575 2.28
80.962	133.350 133.350 139.992 150.089	30.162 33.338 36.512 44.450	29.769 33.338 36.098 46.672	22.225 26.195 28.575 36.512	3.6 3.6 3.6 5.2	3.2 3.2 3.2 3.2	133 154 175 264	198 245 262 368	2 700 2 700 2 700 2 700 2 500	3 600 3 700 3 600 3 400	496 47681R 581R 740R	492A 47620 572 742	29.8 29.2 31.0 32.4	95.0 95.0 96.0 101.0	89.0 90.0	119.0 125.0	128.0 128.0 133.0 142.0	3.6	3.2 3.2 3.2 3.2	0.44 0.40 0.40 0.33	1.35 1.48 1.49 1.84	0.74 0.82 0.82 1.01	1.12 1.17 1.47 2.30	0.429 0.577 0.779 1.06
82.550	133.350 133.350	25.400 30.162 33.338	25.400 29.769 33.338	19.845 22.225 26.195	3.6 3.6 3.6	1.6 3.2 0.8	101 133 154	162 198 245	2 900 2 700 2 700	3 800 3 600 3 700	27687 495 47686R	27620 492A 47620A	24.7 29.8 29.2	96.0 97.0 97.0	90.0 90.0	120.0 121.0	120.0 128.0 128.0	3.6 3.6	1.6 3.2 0.8	0.42 0.44 0.40	1.44 1.35 1.48	0.79 0.74 0.82	0.710 1.08 1.13	0.344 0.429 0.577
	133.350 139.700 139.992	39.688 36.512 36.512	39.688 36.098 36.098	32.545 28.575 28.575	6.7 3.6 3.6	3.2 3.2 3.2	177 175 175	306 262 262	2 800 2 700 2 700	3 700 3 600 3 600	HM516448 580R 580R	HM516410 572X 572	32.2 31.0 31.0	105.0 98.0 98.0	91.0 91.0	125.0 125.0		3.6 3.6	3.2 3.2 3.2	0.40 0.40 0.40	1.49 1.49 1.49	0.82 0.82 0.82	1.33 1.41 1.41	0.763 0.765 0.779
	139.992 146.050 150.089 150.089	36.512 41.275 44.450 44.450	36.098 41.275 46.672 46.672	28.575 31.750 36.512 36.512	6.7 3.6 3.6 6.7	3.2 3.2 3.2 3.2	175 208 264 264	262 301 368 368	2 700 2 600 2 500 2 500	3 600 3 400 3 400 3 400	582R 663 749AR 750AR	572 653 742 742	31.0 33.4 32.4 32.4	104.0 99.0 99.0 106.0	92.0 93.0	131.0		6.7 3.6 3.6 6.7	3.2 3.2 3.2 3.2	0.40 0.41 0.33 0.33	1.49 1.47 1.84 1.84	0.82 0.81 1.01 1.01	1.40 1.91 2.23 2.19	0.779 0.880 1.06 1.06
	161.925	47.625	48.260	38.100	3.6	3.2	273	391	2 400	3 200	757	752	35.5	100.0	94.0	144.0	150.0	3.6	3.2	0.34	1.76	0.97	2.83	1.59
83.345	125.412	25.400	25.400	19.845	0.8	1.6	101	162	2 900	3 800	27689	27620	24.7	90.0	90.0	115.0	120.0	0.8	1.6	0.42	1.44	0.79	0.746	0.344

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

d (83.345) ~ (88.900) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic loa (kl		Limiting (mir		Bear	ing No. $^{1)}$	Load center		Μοι	-	dimens nm)	ions		Con- stant	Axial fact		(Ref Mass	fer.) s (kg)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
83.345	125.412 125.412	25.400 25.400	25.400 25.400	19.845 19.845	3.6 6.4	1.6 1.6	101 101	162 162	2 900 2 900	3 800 3 800	27690 27691	27620 27620	24.7 24.7				120.0 120.0		1.6 1.6	0.42 0.42	1.44 1.44	0.79 0.79	0.689 0.646	0.344 0.344
84.138	133.350	30.162	29.769	22.225	3.6	3.2	133	198	2 700	3 600	498	492A	29.8	98.0	91.0	120.0	128.0	3.6	3.2	0.44	1.35	0.74	1.04	0.429
85.000	130.000 140.000 150.000 200.000	30.000 39.000 46.000 52.761	29.000 38.000 46.000 49.212	24.000 31.500 38.000 34.925	3.0 3.0 3.0 3.6	2.5 2.5 2.5 3.2	142 203 274 347	228 308 390 471	2 800 2 700 2 500 1 400	3 700 3 500 3 400 1 900	JM716649 JHM516849 JH217249 98335	JM716610) JHM516810 JH217210 98788	29.1 32.8 33.6 54.5	98.0 100.0 101.0 115.0	93.9 95.2	125.0 134.0	125.0 134.0 142.0 188.0	3.0 3.0	2.5 2.5 2.5 3.2	0.44 0.41 0.33 0.63	1.35 1.47 1.80 0.95	0.74 0.81 0.99 0.52	0.937 1.54 2.28 5.47	0.456 0.759 1.08 2.28
85.026	150.089 150.089	44.450 44.450	46.672 46.672	36.512 36.512	3.6 5.2	3.2 3.2	264 264	368 368	2 500 2 500	3 400 3 400	749R 749SR	742 742	32.4 32.4	101.0 104.0			142.0 142.0		3.2 3.2	0.33 0.33	1.84 1.84	1.01 1.01	2.12 2.08	1.06 1.06
85.725	133.350 136.525 142.138	30.162 30.162 42.862	29.769 29.769 42.862	22.225 22.225 34.133	3.6 6.4 4.8	3.2 3.2 3.2	133 133 219	198 198 351	2 700 2 700 2 600	3 600 3 600 3 500	497 497A HM617049	492A 493 HM617010	29.8 29.8 35.2	99.0 105.0 106.0	93.0	122.0	128.0 130.0 137.0	6.4	3.2 3.2 3.2	0.44 0.44 0.43	1.35 1.35 1.39	0.74 0.74 0.76	0.978 0.965 1.72	0.429 0.544 0.902
	146.050 146.050 152.400	41.275 41.275 39.688	41.275 41.275 36.322	31.750 31.750 30.162	3.6 6.4 3.6	3.2 3.2 3.2	208 208 183	301 301 287	2 600 2 600 2 400	3 400 3 400 3 300	665 665A 596	653 653 592A	33.4 33.4 37.1	102.0 107.0 102.0	95.0	131.0	139.0 139.0 144.0		3.2 3.2 3.2	0.41 0.41 0.44	1.47 1.47 1.36	0.81 0.81 0.75	1.77 1.76 1.83	0.880 0.880 1.04
	161.925 168.275 168.275	47.625 41.275 53.975	48.260 41.275 56.363	38.100 30.162 41.275	3.6 3.6 3.6	3.2 3.2 3.2	273 224 344	391 349 467	2 400 2 200 2 300	3 200 3 000 3 100	758 677 841R	752 672 832	35.5 38.6 35.0	103.0 105.0 104.0	99.0	149.0	150.0 160.0 155.0	3.6	3.2 3.2 3.2	0.34 0.47 0.30	1.76 1.28 2.00	0.97 0.70 1.10	2.67 2.89 3.47	1.59 1.22 1.72
88.900	123.825 152.400 161.925	20.638 39.688 47.625	20.638 39.688 48.260	16.670 30.162 38.100	1.6 6.4 3.6	1.6 3.2 3.2	81.8 248 273	145 359 391	2 800 2 400 2 400	3 700 3 200 3 200	L217849 HM518445 759	L217810 HM518410 752	20.7 33.1 35.5	97.0 110.0 106.0	98.0	135.0	119.0 114.0 150.0	6.4	1.6 3.2 3.2	0.33 0.40 0.34	1.82 1.49 1.76	1.00 0.82 0.97	0.507 2.10 2.50	0.235 0.768 1.59
	161.925 161.925 168.275	47.625 53.975 41.275	48.260 55.100 41.275	38.100 42.862 30.162	7.1 3.6 3.6	3.2 3.2 3.2	273 316 224	391 471 349	2 400 2 400 2 200	3 200 3 200 3 000	766 6580R 679	752 6535 672	35.5 49.8 38.6	113.0 109.0 107.0	98.0	141.0	150.0 154.0 160.0	3.6	3.2 3.2 3.2	0.34 0.40 0.47	1.76 1.50 1.28	0.97 0.82 0.70	2.48 3.09 2.75	1.59 1.65 1.22
	190.500	57.150	57.531	44.450	7.9	3.2	385	565	2 100	2 700	855R	854	40.0	118.0	103.0	170.0	174.0	7.9	3.2	0.33	1.79	0.99	5.05	2.66

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.
Single-row tapered roller bearings inch series

 $\phi D = \phi d$

88.900	190.500	57.150	57.531	46.038	7.9	3.2	440	602	2 000	2 700
	200.000	52.761	49.212	34.925	3.6	3.2	347	471	1 400	1 900
89.974	146.975	40.000	40.000	32.500	7.1	3.6	206	310	2 500	3 300
90.000	145.000	35.000	34.000	27.000	3.0	2.5	194	291	2 500	3 400
	155.000	44.000	44.000	35.500	3.0	2.5	290	407	2 400	3 200
	161.925	53.975	55.100	42.862	3.0	3.2	316	471	2 400	3 200
90.488	161.925	47.625	48.260	38.100	3.6	3.2	273	391	2 400	3 200
92.075	146.050	33.338	34.925	26.195	3.6	3.2	178	293	2 500	3 300
	168.275	41.275	41.275	30.162	3.6	3.2	224	349	2 200	3 000
	168.275	41.275	41.275	30.162	6.4	3.2	224	349	2 200	3 000
	180.975	47.625	48.006	38.100	3.6	3.2	288	438	2 100	2 800
	190.500	57.150	57.531	44.450	7.9	3.2	385	565	2 100	2 700
95.000	150.000	35.000	34.000	27.000	3.0	2.5	187	294	2 400	3 300

HH221434	HH221410	42.5	120.0	105.0	171.0	179.0	7.9	3.2	0.33	1.79	0.99	5.57	2.21
98350	98788	54.5	118.0	112.0	174.0	188.0	3.6	3.2	0.63	0.95	0.52	5.27	2.28
HM218248	HM218210	30.8	112.0	99.0	133.0	141.0	7.1	3.6	0.33	1.80	0.99	1.66	0.784
JM718149	JM718110	32.7	105.0	99.0	131.0	139.0	3.0	2.5	0.44	1.35	0.74	1.47	0.652
JHM318448	JHM318410	34.5	106.0	100.0	140.0	148.0	3.0	2.5	0.34	1.76	0.97	2.37	1.00
6581XR	6535	41.0	102.0	98.0	141.0	154.0	3.0	3.2	0.40	1.50	0.82	3.02	1.65
760	752	35.5	107.0	101.0	144.0	150.0	3.6	3.2	0.34	1.76	0.97	2.42	1.59
47890R	47820	32.6	107.0	101.0	131.0	140.0	3.6	3.2	0.45	1.34	0.74	1.46	0.657
681	672	38.6	110.0	104.0	149.0	160.0	3.6	3.2	0.47	1.28	0.70	2.61	1.22
681A	672	38.6	116.0	104.0	149.0	160.0	6.4	3.2	0.47	1.28	0.70	2.60	1.22
778	772	39.5	111.0	105.0	161.0	168.0	3.6	3.2	0.39	1.56	0.86	3.65	1.92
857R	854	39.9	121.0	106.0	170.0	174.0	7.9	3.2	0.33	1.79	0.99	4.86	2.66

Single-row tapered roller bearings inch series

d 99.982 ~ (107.950) mm

Koyo

		Bounda	ry dimen (mm)	sions			Basic loa (k)		Limiting (mir		Bear	ing No. 1)	Load center		Μοι		dimens m)	ions		Con- stant	Axial fact		(Ref Mass	ier.) s (kg)
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	d_{a}	d_{b}	$D_{\rm a}$	$D_{ m b}$	r _a max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
99.982	190.500	57.150	57.531	46.038	6.4	3.2	440	602	2 000	2 700	HH221447	HH221410	42.5	126.0	114.0	171.0	179.0	6.4	3.2	0.33	1.79	0.99	4.84	2.21
100.000	155.000 160.000	36.000 41.000	35.000 40.000	28.000 32.000	3.0 3.0	2.5 2.5	204 237	328 378	2 300 2 300	3 100 3 000	JM720249 JHM720249	JM720210 JHM720210	35.6 38.3				148.0 153.0		2.5 2.5	0.47 0.47	1.27 1.28	0.70 0.70	1.64 2.11	0.763 0.964
100.012	157.162	36.512	36.116	26.195	3.6	3.2	180	288	2 300	3 000	52393	52618	36.0	113.0	115.0	142.0	150.0	3.6	3.2	0.47	1.26	0.69	1.74	0.694
101.600	157.162 157.162 168.275	36.512 36.512 41.275	36.116 36.116 41.275	26.195 26.195 30.162	3.6 7.9 3.6	3.2 3.2 3.2	180 180 224	288 288 349	2 300 2 300 2 200	3 000 3 000 3 000	52400 52401 687	52618 52618 672	36.0 36.0 38.6	126.0	111.0	142.0	150.0 152.0 156.0	7.9	3.2 3.2 3.2	0.47 0.47 0.47	1.26 1.26 1.28	0.69 0.69 0.70	1.67 1.64 2.15	0.694 0.694 1.22
	180.975 190.500 190.500	47.625 57.150 57.150	48.006 57.531 57.531	38.100 44.450 46.038	3.6 7.9 7.9	3.2 3.2 3.2	288 385 440	438 565 602	2 100 2 100 2 000	2 800 2 700 2 700	780 861R HH221449	772 854 HH221410	39.5 39.9 42.5	129.0	114.0	170.0	165.0 174.0 178.0	7.9	3.2 3.2 3.2	0.39 0.33 0.33	1.56 1.79 1.79	0.86 0.99 0.99	3.09 4.20 4.72	1.92 2.66 2.21
	200.000 212.725 212.725	52.761 66.675 66.675	49.212 66.675 66.675	34.925 53.975 53.975	3.6 7.1 7.1	3.2 3.2 3.2	347 450 513	471 674 699	1 400 1 800 1 800	1 900 2 400 2 400	98400 941 HH224335	98788 932 HH224310	54.5 47.6 47.6	121.0	135.0	181.0	185.0 192.0 201.0	7.1	3.2 3.2 3.2	0.63 0.33 0.33	0.95 1.84 1.84	0.52 1.01 1.01	4.55 7.07 7.76	2.28 4.07 3.03
104.775	180.975 180.975 180.975 180.975 190.500	47.625 47.625 47.625 47.625	48.006 48.006 48.006 49.212	38.100 38.100 38.100 34.925	3.6 6.4 7.1 3.6	3.2 3.2 3.2 3.2	288 288 288 303	438 438 438 483	2 100 2 100 2 100 1 900	2 800 2 800 2 800 2 800 2 600	782 786 787 71412	772 772 772 71750	39.5 39.5 39.5 40.9	123.0 129.0	120.0 116.0	156.0 161.0	165.0 165.0 168.0 177.0	6.4 7.1	3.2 3.2 3.2 3.2 3.2	0.39 0.39 0.39 0.42	1.56 1.56 1.56 1.44	0.86 0.86 0.86 0.79	2.90 2.88 2.87 3.96	1.92 1.92 1.92 1.72
106.362		36.512		26.988	3.6	3.2	195	325	2 200	2 900	56418R	56650	38.6				159.0		3.2	0.50		0.75	1.84	0.852
107.950	146.050 158.750 159.987 161.925	21.432 23.020 34.925 34.925	21.432 21.438 34.925 34.925	16.670 15.875 26.988 26.988	1.6 3.6 3.6 3.6	1.6 3.2 3.2 3.2	86.4 104 184 173	167 169 319 293	2 300 2 200 2 200 2 200 2 200	3 100 3 000 2 900 2 900	L521949R 37425 LM522546 48190	L521910 37625 LM522510 48120	26.2 36.5 32.9 39.1	121.0 122.0	121.0 116.0	141.0 146.0	141.0 148.0 154.0 154.0	3.6 3.6	1.6 3.2 3.2 3.2	0.39 0.61 0.40 0.51	1.53 0.99 1.50 1.19	0.84 0.54 0.82 0.65	0.665 0.893 1.64 1.57	0.325 0.484 0.784 0.820
	165.100 168.275	36.512 36.512	36.512 36.512	26.988 26.988	3.6 3.6	3.2 3.2	195 195	325 325	2 200 2 200	2 900 2 900	56425R 56425R	56650 56662	38.6 38.6	123.0 123.0	117.0 117.0	149.0 150.0	159.0 160.0	3.6 3.6	3.2 3.2	0.50 0.50	1.21 1.21	0.66 0.66	1.76 1.76	0.852 1.03
	190.500	47.625	49.212	34.925	3.6	3.2	303	483	1 900	2 600	71425	71750	40.9	-			177.0		3.2	0.42	1.44	0.79	3.76	1.72

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

[Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog 'large size ball & roller bearings'.

B 275

Single-row tapered roller bearings inch series

d (107.950) ~ 127.000 mm

Koyo

		Bounda	ry dimen (mm)	sions				ad ratings	Limiting (min		Bear	ing No. $^{1)}$	Load center		Μοι	inting d		ons		Con- stant	Axial facto			fer.) s (kg)
d	D	T	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	da	$d_{ m b}$	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
107.950	212.725 212.725	66.675 66.675	66.675 66.675	53.975 53.975	7.9 7.9	3.2 3.2	450 513	674 699	1 800 1 800	2 400 2 400	936 HH224340	932 HH224310	47.6 47.6			187.0 189.0			3.2 3.2	0.33 0.33	1.84 1.84	1.01 1.01	6.52 7.21	4.07 3.03
109.538	158.750	23.020	21.438	15.875	6.4	6.4	104	169	2 200	3 000	37431	37625	36.5	123.0	116.0	143.0	152.0	6.4	6.4	0.61	0.99	0.54	0.848	0.484
109.987	159.987 159.987	34.925 34.925	34.925 34.925	26.988 26.988	7.9 3.6	3.2 3.2	184 184	319 319	2 200 2 200	2 900 2 900	LM522548 LM522549	LM522510 LM522510	32.9 32.9			146.0 146.0			3.2 3.2	0.40 0.40	1.50 1.50		1.52 1.55	0.784 0.784
109.992	177.800	41.275	41.275	30.162	3.6	3.2	234	380	2 000	2 700	64433R	64700	42.8	128.0	121.0	160.0	172.6	3.6	3.2	0.52	1.16	0.64	2.69	1.10
110.000	165.000 180.000	35.000 47.000	35.000 46.000	26.500 38.000	3.0 3.0	2.5 2.5	195 306	325 487	2 200 2 000	2 900 2 700	JM822049 JHM522649	JM822010 JHM522610	38.1 40.6			148.0 160.0			2.5 2.5	0.50 0.41	1.21 1.48		1.64 3.08	0.826 1.49
114.300	177.800 180.975 190.500	41.275 34.925 47.625	41.275 31.750 49.212	30.162 25.400 34.925	3.6 3.6 3.6	3.2 3.2 3.2	234 171 303	380 247 483	2 000 2 000 1 900	2 700 2 700 2 600	64450R 68450 71450	64700 68712 71750	42.8 40.6 40.9	127.0	131.0	160.0 161.0 167.0	169.0	3.6	3.2 3.2 3.2	0.52 0.50 0.42	1.21	0.64 0.66 0.79	2.45 1.89 3.33	1.10 1.04 1.72
	212.725 212.725 273.050	66.675 66.675 82.550	66.675 66.675 82.550	53.975 53.975 53.975	7.1 7.1 6.4	3.2 3.2 6.4	450 513 707	674 699 898	1 800 1 800 1 500	2 400 2 400 1 900	938 HH224346 HH926744	932 HH224310 HH926710	47.6 47.6 76.1	134.0	134.0	187.0 189.0 230.0	201.0	7.1	3.2 3.2 6.4	0.33 0.33 0.63	1.84 1.84 0.95	1.01 1.01 0.52	5.96 6.64 15.0	4.07 3.03 6.97
114.976	212.725	66.675	66.675	53.975	7.1	3.2	513	699	1 800	2 400	HH224349	HH224310	47.6	135.0	134.0	189.0	201.0	7.1	3.2	0.33	1.84	1.01	6.58	3.03
115.087	190.500 190.500	47.625 47.625	49.212 49.212	34.925 34.925	3.6 7.9	3.2 3.2	303 303	483 483	1 900 1 900	2 600 2 600	71453 71455	71750 71750	40.9 40.9			171.0 167.0			3.2 3.2	0.42 0.42	1.44 1.44			1.72 1.72
117.475	180.975 180.975	34.925 34.925	31.750 31.750	25.400 25.400	3.6 7.9	3.2 3.2	171 171	247 247	2 000 2 000	2 700 2 700	68462 68463	68712 68712	40.6 40.6			161.0 163.0			3.2 3.2	0.50 0.50		0.66 0.66	1.75 1.61	1.04 1.05
120.650	190.500 254.000	46.038 77.788	46.038 82.550	34.925 61.912	3.6 9.5	1.6 6.4	313 717	512 1 050	1 900 1 500	2 500 2 000	HM624749 HH228340	HM624710 HH228310	41.6 54.3			174.0 223.0			1.6 6.4	0.43 0.32	1.41 1.87			1.44 6.00
127.000	254.000	77.788	82.550	61.912	9.5	6.4	717	1 050	1 500	2 000	HH228349	HH228310	54.3	164.0	148.0	223.0	234.0	9.5	6.4	0.32	1.87	1.03	11.8	6.00

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

[Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog "large size ball & roller bearings".

B 277

Single-row tapered roller bearings inch series

d 133.350 ~ 292.100 mm

Koyo

		Bounda	ry dimen (mm)	sions				ad ratings	Limiting (mir		Bear	ing No. 1)	Load center		Μοι	0	dimensi 1m)	ons		Con- stant	Axial fact		(Ref Mass	
d	D	Т	В	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Inner ring	Outer ring	(mm) a	da	d_{b}	D_{a}	$D_{ m b}$	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_1	Y_0	Inner ring	Outer ring
133.350	177.008	25.400	26.195	20.638	1.6	1.6	141	278	1 900	2 500	L327249	L327210	29.1	142.0	145.0	164.0	169.0	1.6	1.6	0.35	1.72	0.95	1.14	0.543
142.875	200.025 200.025	41.275 41.275	39.688 39.688	34.130 34.130	7.9 3.6	3.3 3.3	246 246	491 491	1 700 1 700	2 200 2 200	48684 48685	48620 48620	38.4 38.4				193.0 190.0		3.3 3.3	0.34 0.34	1.78 1.78	0.98 0.98	2.43 2.46	1.38 1.38
170.000	230.000 240.000	39.000 46.000	38.000 44.500	31.000 37.000	3.0 3.0	2.5 2.5	291 353	558 666	1 400 1 400	1 900 1 800	JHM534149 JM734449) JHM534110 JM734410	43.6 50.6				222.0 231.0		2.5 2.5	0.38 0.44	1.57 1.37	0.86 0.75	3.17 4.31	1.29 2.00
171.450	222.250	25.400	24.608	19.050	1.6	1.6	157	299	1 400	1 900	L435049	L435010	36.0	181.0	179.0	211.0	215.0	1.6	1.6	0.38	1.60	0.88	1.63	0.697
180.000	250.000	47.000	45.000	37.000	3.0	2.5	365	705	1 300	1 700	JM736149	JM736110	55.2	191.0	193.0	230.0	242.0	3.0	2.5	0.48	1.25	0.69	4.47	2.10
190.000	260.000	46.000	44.000	36.500	3.0	2.5	369	723	1 200	1 700	JM738249	JM738210	56.0	201.0	203.0	240.0	251.0	3.0	2.5	0.48	1.26	0.69	4.71	2.18
196.850	254.000	28.575	27.783	21.433	1.6	1.6	188	387	1 200	1 600	L540049	L540010	43.1	206.0	214.0	238.0	243.0	1.6	1.6	0.40	1.51	0.83	2.34	1.02
200.000	300.000	65.000	62.000	51.000	3.6	2.5	617	1 140	1 100	1 500	JHM840449	JHM840410	72.1	213.0	218.0	270.0	288.0	3.6	2.5	0.52	1.15	0.63	9.97	5.13
220.878	317.500	47.625	52.388	36.513	3.2	3.2	488	928	970	1 300	LM245833	LM245810	50.5	234.0	253.0	296.0	304.0	3.2	3.2	0.33	1.80	0.99	9.56	2.78
228.600	358.775	71.438	71.438	53.975	3.6	3.2	773	1 590	840	1 100	M249732	M249710	64.4	242.0	279.0	330.0	342.0	3.6	3.2	0.33	1.80	0.99	20.1	6.44
230.188	317.500	47.625	52.388	36.513	3.2	3.2	488	928	970	1 300	LM245846	LM245810	50.5	242.0	238.0	309.0	312.0	3.2	3.2	0.33	1.80	0.99	8.25	2.78
231.775	317.500 336.550 358.775	47.625 65.088 71.438	52.388 65.088 71.438	36.513 50.800 53.975	3.2 6.4 6.4	3.2 3.2 3.2	488 708 773	928 1 380 1 590	970 920 920	1 300 1 200 1 200	LM245848 M246942 M249734	LM245810 M246910 M249710	50.5 59.9 64.4	258.0	249.0	313.0	312.0 322.0 343.0	6.4	3.2 3.2 3.2	0.33 0.33 0.33	1.80 1.80 1.80	0.99 0.99 0.99	13.1	2.78 5.44 6.44
254.000	358.775	71.438	71.438	53.975	3.6	3.2	773	1 590	840	1 100	M249749	M249710	64.4	268.0	279.0	330.0	342.0	3.6	3.2	0.33	1.80	0.99	14.8	6.44
257.175	342.900	57.150	57.150	44.450	6.4	3.2	612	1 280	870	1 200	M349549	M349510	60.1	276.0	276.0	320.0	330.0	6.4	3.2	0.35	1.73	0.95	9.27	3.99
292.100	374.650	47.625	47.625	34.925	3.6	3.2	468	971	760	1 000	L555249	L555210	64.7	306.0	309.0	351.0	360.0	3.6	3.2	0.40	1.49	0.82	7.97	3.53

[Note] 1) To the bearings with supplementary code "J" attached at the front of bearing number, tolerances shown in table 7-8 on page A66 are applied.

[Remark] Inch series tapered roller bearings with bore diameter larger than 100 mm are shown in catalog 'large size ball & roller bearings'.

d **25** ~ (60) mm

Koyo

		Boundary (m	dimensions	6		Basic loa		Limiting (min				Mounti	ng dime (mm)	nsions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	T	C	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
25	62	40	29.5	1.5	0.6	68.3	84.9	4 500	6 400	46T30305DJR/29.5	33.5	58.5	5	1.5	0.6	0.83	0.82	1.22	0.8	0.592
30	72	45	31.5	1.5	0.6	87.3	110	3 900	5 400	46T30306DJR/31.5	38.5	68	6.5	1.5	0.6	0.83	0.82	1.22	0.8	0.872
35	80	51	35.5	2	0.6	108	138	3 400	4 800	46T30307DJR/35.5	45	76.5	7.5	2	0.6	0.83	0.82	1.22	0.8	1.2
40	80 80 90 90	45 55 56 56	37.5 43.5 39.5 45.5	1.5 1.5 2 2	0.6 0.6 0.6 0.6	108 133 138 155	138 182 180 202	4 000 4 000 3 000 3 600	5 300 5 300 4 200 4 900	46T30208JR/37.5 46T32208JR/43.5 46T30308DJR/39.5 46T30308JR/45.5	48.5 48.5 50 50	75 75 86.5 82	3.5 5.5 8 5	1.5 1.5 2 2	0.6 0.6 0.6 0.6	0.37 0.37 0.83 0.35	1.8 1.8 0.82 1.96	2.68 2.68 1.22 2.91	1.76 1.76 0.8 1.91	0.954 1.19 1.67 1.67
45	85 85 100 100	47 55 60 60	37.5 43.5 41.5 49.5	1.5 1.5 2 2	0.6 0.6 0.6 0.6	115 144 163 193	155 207 214 256	3 700 3 700 2 700 3 300	4 900 4 900 3 800 4 300	46T30209JR/37.5 46T32209JR-1/43.5 46T30309DJR/41.5 46T30309JR/49.5	53.5 53.5 55 55	80 81 96 93	4.5 5.5 9 5	1.5 1.5 2 2	0.6 0.6 0.6 0.6	0.4 0.4 0.83 0.35	1.67 1.67 0.82 1.96	2.48 2.48 1.22 2.91	1.63 1.63 0.8 1.91	1.1 1.31 2.15 2.2
50	90 90 110 110 110	49 55 64 73 90	39.5 43.5 51.5 52.5 71.5	1.5 1.5 2 2 2	0.6 0.6 0.6 0.6 0.6	131 146 236 198 302	183 211 305 266 440	3 400 3 500 3 000 2 500 3 000	4 600 4 600 4 000 3 500 4 000	46T30210JR/39.5 46T32210JR/43.5 46T30310JR/51.5 46T30310DJR/52.5 46T32310JR/71.5	58.5 58.5 62 62 62 62	85 85 102 105 102	4.5 5.5 6 10 9	1.5 1.5 2 2 2	0.6 0.6 0.6 0.6 0.6	0.42 0.42 0.35 0.83 0.35	1.61 1.61 1.96 0.82 1.96	2.39 2.39 2.91 1.22 2.91	1.57 1.57 1.91 0.8 1.91	1.22 1.39 2.68 3.11 3.95
55	100 100 120 120 120	51 60 70 70 97	41.5 48.5 49 57 76	2 2 2 2 2	0.6 0.6 0.6 0.6 0.6	162 184 221 256 343	226 266 297 341 500	3 100 3 100 2 300 2 700 2 700	4 100 4 100 3 200 3 600 3 600	46T30211JR/41.5 46T32211JR-1/48.5 46T30311DJR/49 46T30311JR/57 46T32311JR/76	65 65 67 67 67	94 95 113 111 111	4.5 5.5 10.5 6.5 10.5	2 2 2 2 2 2	0.6 0.6 0.6 0.6 0.6	0.4 0.4 0.83 0.35 0.35	1.67 1.67 0.82 1.96 1.96	2.48 2.48 1.22 2.91 2.91	1.63 1.63 0.8 1.91 1.91	1.6 1.87 3.54 3.57 4.98
60	110 110 130 130	53 66 74 74	43.5 54.5 51 59	2 2 2.5 2.5	0.6 0.6 1 1	182 226 262 297	254 334 359 401	2 800 2 800 2 100 2 500	3 800 3 800 2 900 3 300	46T30212JR/43.5 46T32212JR/54.5 46T30312DJR/51 46T30312JR/59	70 70 74 74	103 104 124 120	4.5 5.5 11.5 7.5	2 2 2.5 2.5	0.6 0.6 1 1	0.4 0.4 0.83 0.35	1.67 1.67 0.82 1.96	2.48 2.48 1.22 2.91	1.63 1.63 0.8 1.91	2.04 4.45 4.46

d (60) ~ (90) mm

Koyo

			dimension nm)	s			ad ratings	Limiting (min				Mounti	ng dime (mm)	nsions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	T	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	D_{a} min.	S_{a} min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
60	130	104	81	2.5	1	419	629	2 500	3 300	46T32312JR/81	74	120	11.5	2.5	1	0.35	1.96	2.91	1.91	6.45
65	120 120 140	56 73 79	46.5 61.5 53	2 2 2.5	0.6 0.6 1	220 270 302	311 406 417	2 600 2 600 1 900	3 400 3 400 2 700	46T30213JR/46.5 46T32213JR/61.5 46T30313DJR/53	75 75 79	113 115 133	4.5 5.5 13	2 2 2.5	0.6 0.6 1	0.4 0.4 0.83	1.67 1.67 0.82	2.48 2.48 1.22	1.63 1.63 0.8	 3.4 5.3
	140 140	79 108	63 84	2.5 2.5	1 1	349 474	478 714	2 300 2 300	3 000 3 100	46T30313JR/63 46T32313JR/84	79 79	130 130	8 12	2.5 2.5	1 1	0.35 0.35	1.96 1.96	2.91 2.91	1.91 1.91	5.51 7.71
70	125 125 150	59 74 83	48.5 61.5 57	2 2 2.5	0.6 0.6 1	236 290 338	346 450 470	2 400 2 400 1 800	3 300 3 300 2 500	46T30214JR/48.5 46T32214JR/61.5 46T30314DJR/57	80 80 84	118 119 142	5 6 13	2 2 2.5	0.6 0.6 1	0.42 0.42 0.83	1.61 1.61 0.82	2.39 2.39 1.22	1.57 1.57 0.8	
	150 150	83 116	67 92	2.5 2.5	1 1	394 543	546 829	2 100 2 200	2 800 2 900	46T30314JR/67 46T32314JR/92	84 84	140 140	8 12	2.5 2.5	1 1	0.35 0.35	1.96 1.96	2.91 2.91	1.91 1.91	6.65 9.46
75	115 115 130	30 38 62	26 30 51.5	1.5 1.5 2	0.6 0.6 0.6	71.7 122 244	105 207 362	2 500 2 500 2 300	3 300 3 300 3 100	46215 46215A 46T30215JR/51.5	83.5 83.5 85	106.5 107.4 124	2 4 5	1.5 1.5 2	0.6 0.6 0.6	0.32 0.32 0.44	2.12 2.12 1.55	3.15 3.15 2.31	2.07 2.07 1.52	0.994 1.32 3.12
	130 160 160	74 87 125	61.5 69 99	2 2.5 2.5	0.6 1 1	298 445 622	469 621 963	2 300 2 000 2 000	3 100 2 600 2 700	46T32215JR/61.5 46T30315JR/69 46T32315JR/99	85 89 89	125 149 149	6 9 13	2 2.5 2.5	0.6 1 1	0.44 0.35 0.35	1.55 1.96 1.96	2.31 2.91 2.91	1.52 1.91 1.91	3.85 7.8 11.5
80	125 140 140 170	34 64 78 92	30 51.5 63.5 73	1.5 2 2 2.5	0.6 0.6 0.6 1	108 277 347 504	155 405 542 711	2 300 2 200 2 200 1 800	3 100 2 900 2 900 2 500	46216 46T30216JR/51.5 46T32216JR/63.5 46T30316JR/73	88.5 92 92 94	116.9 132 134 159	2 6 7 9.5	1.5 2 2 2.5	0.6 0.6 0.6 1	0.35 0.42 0.42 0.35	1.95 1.61 1.61 1.96	2.90 2.39 2.39 2.91	1.91 1.57 1.57 1.91	1.38 3.76 4.71 9.44
85	150 150 180 180	70 86 98 137	57 69 77 108	2 2 3 3	0.6 0.6 1	313 398 543 752	463 630 768 1 170	2 000 2 000 1 700 1 800	2 700 2 700 2 300 2 400	46T30217JR/57 46T32217JR/69 46T30317JR/77 46T32317JR/108	97 97 103 103	141 142 167 167	6.5 8.5 10.5 14.5	2 2 3 3	0.6 0.6 1	0.42 0.42 0.35 0.35	1.61 1.61 1.96 1.96	2.39 2.39 2.91 2.91	1.57 1.57 1.91 1.91	4.79 6.05 11 16
90	140	37	33	2	0.6	136	199	2 100	2 800	46218	100	130.6	2	2	0.6	0.35	1.95	2.90	1.91	1.89

d (90) ~ 110 mm

Koyo

			dimensior nm)	IS			ad ratings kN)	Limiting					Mounti	ng dime	nsions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	Т	С	<i>r</i> min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.		Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
90	140 160 160	46 74 94	37 61 77	2 2 2	0.6 0.6 0.6	157 350 451	266 522 724	2 000 1 900 1 900	2 700 2 500 2 500	461	6218A 6T30218JR/61 6T32218JR/77	100 102 102	129.9 150 152	4.5 6.5 8.5	2 2 2	0.6 0.6 0.6	0.32 0.42 0.42	2.12 1.61 1.61	3.15 2.39 2.39	2.07 1.57 1.57	2.37 5.85 7.53
	190 190	102 144	81 115	3 3	1 1	592 791	841 1 230	1 600 1 700	2 200 2 200	461	6T30318JR/81 6T32318JR/115	108 108	177 177	10.5 14.5	3 3	1 1	0.35 0.35	1.96 1.96	2.91 2.91	1.91 1.91 1.91	13 18.6
95	170 170 200 200	78 100 108 151	63 83 85 118	2.5 2.5 3 3	1 1 1	396 533 638 886	598 877 909 1 390	1 800 1 800 1 600 1 600	2 400 2 400 2 100 2 100	461 461	6T30219JR/63 6T32219JR/83 6T30319JR/85 6T32319JR/118	109 109 113 113	159 161 186 186	7.5 8.5 11.5 16.5	2.5 2.5 3 3	1 1 1	0.42 0.42 0.35 0.35	1.61 1.61 1.96 1.96	2.39 2.39 2.91 2.91	1.57 1.57 1.91 1.91	7.01 9.25 14.8 21.4
100	150 165 165	46 52 65	37 46 52	2 2.5 2.5	0.6 0.6 0.6	180 198 265	293 305 443	1 900 1 700 1 800	2 500 2 300 2 300	463	6220A 6320 6320A	110 112 112	142 154 153	4.5 3 6.5	2 2 2	0.6 0.6 0.6	0.35 0.35 0.35	1.95 1.95 1.95	2.90 2.90 2.90	1.91 1.91 1.91	2.53 4.03 4.97
	180 180 215 215	83 107 112 162	67 87 87 127	2.5 2.5 3 3	1 1 1	443 596 724 993	676 990 1 040 1 570	1 700 1 700 1 500 1 500	2 200 2 200 1 900 2 000	461 461	6T30220JR/67 6T32220JR/87 6T30320JR/87 6T32320JR/127	114 114 118 118	168 171 200 200	8 10 12.5 17.5	2.5 2.5 3 3	1 1 1	0.42 0.42 0.35 0.35	1.61 1.61 1.96 1.96	2.39 2.39 2.91 2.91	1.57 1.57 1.91 1.91	8.33 11.1 18.1 27.2
105	190 190 225 225	88 115 116 170	70 95 91 133	2.5 2.5 3 3	1 1 1	494 672 796 1 090	761 1 130 1 160 1 730	1 600 1 600 1 400 1 400	2 100 2 100 1 800 1 900	461 461 461	6T30221JR/70 6T32221JR/95 6T30321JR/91 6T32321JR/133	119 119 123 123	178 180 209 209	9 10 12.5 18.5	2.5 2.5 3 3	1 1 1	0.42 0.42 0.35 0.35	1.61 1.61 1.96 1.96	2.39 2.39 2.91 2.91	1.57 1.57 1.91 1.91	9.87 13.5 20.7 30.9
110	170 180 180	45 56 70	40 50 56	2.5 2.5 2.5	0.6 0.6 0.6	175 245 324	304 388 533	1 700 1 600 1 600	2 200 2 100 2 100	463	6222 6322 6322A	122 122 122	158 168 168	2.5 3 7	2 2 2	0.6 0.6 0.6	0.35 0.35 0.35	1.95 1.95 1.92	2.90 2.90 2.86	1.91 1.91 1.88	3.58 5.13 6.43
	200 200 240	92 121 118	74 101 93	2.5 2.5 3	1 1 1	556 750 824	868 1 280 1 180	1 500 1 500 1 300	2 000 2 000 1 700	461	6T30222JR/74 6T32222JR/101 6T30322JR/93	124 124 128	188 190 222	9 10 12.5	2.5 2.5 3	1 1 1	0.42 0.42 0.35	1.61 1.61 1.96	2.39 2.39 2.91	1.57 1.57 1.91	11.6 15.9 23.8
	240	181	142	3	1	1 190	1 890	1 300	1 700	461	6T32322JR/142	128	222	19.5	3	1	0.35	1.96	2.91	1.91	37.3

d **120** ~ (**150**) mm

Koyo

			dimension nm)	6			ad ratings kN)	Limiting (min		De suis a No		Mount	ing dime (mm)	nsions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	T	С	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
120	180 180 200	46 58 62	41 46 55	2.5 2.5 2.5	0.6 0.6 0.6	185 247 292	317 460 470	1 500 1 500 1 400	2 000 2 100 1 900	46224 46224A 46324	132 132 132	170 169 184	2.5 6 3.5	2 2 2	0.6 0.6 0.6	0.35 0.35 0.35	1.95 1.95 1.95	2.90 2.90 2.90	1.91 1.91 1.91	3.81 4.66 7.28
	200 200 215	78 100 97	62 84 78	2.5 2.5 2.5	0.6 0.6 1	387 533 595	672 1 010 945	1 400 1 400 1 400	1 900 1 900 1 800	46324A 46324AS 46T30224JR/78	132 132 134	185 190 203	8 8 9.5	2 2 2.5	0.6 0.6 1	0.35 0.35 0.44	1.95 1.95 1.55	2.90 2.90 2.31	1.91 1.91 1.52	9.14 12.0 13.9
	215 260 260	132 128 188	109 101 145	2.5 3 4	1 1 1.5	806 976 1 370	1 380 1 430 2 210	1 400 1 200 1 200	1 900 1 600 1 600	46T32224JR/109 46T30324JR/101 46T32324JR/145	134 138 142	204 239 239	11.5 13.5 21.5	2.5 3 4	1 1 1.5	0.44 0.35 0.35	1.55 1.96 1.96	2.31 2.91 2.91	1.52 1.91 1.91	19.8 30.6 45.9
130	200 200 210	52 65 64	46 52 57	2.5 2.5 2.5	0.6 0.6 0.6	239 319 322	425 618 535	1 400 1 400 1 400	1 800 1 900 1 800	46226 46226A 46326	142 142 142	187 185 196	3 6.5 3.5	2 2 2	0.6 0.6 0.6	0.35 0.35 0.36	1.95 1.95 1.87	2.90 2.90 2.79	1.91 1.91 1.83	5.57 7.06 7.81
	210 230 230 280	80 98 145 137	64 78.5 117.5 107.5	2.5 3 3 4	0.6 1 1 1.5	424 646 949 1 130	723 1 020 1 660 1 670	1 300 1 300 1 300 1 300	1 800 1 700 1 700 1 400	46326A 46T30226JR/78.5 46T32226JR/117.5 46T30326JR/107.5	142 148 148 152	198 218 219 255	8 9.5 14 15	2 3 3 4	0.6 1 1 1.5	0.36 0.44 0.44 0.35	1.87 1.55 1.55 1.96	2.79 2.31 2.31 2.91	1.83 1.52 1.52 1.91	9.57 15.7 24.1 38.1
140	210 210 210 225	53 66 68	47 53 61	2.5 2.5 3	0.6 0.6 1	239 360 360	404 639 564	1 300 1 300 1 200	1 800 1 800 1 800 1 700	46228 46228A 46328	152 152 152 154	196 199 210	3 6.5 3.5	2 2 2.5	0.6 0.6 1	0.33 0.47 0.35	2.03 1.43 1.95	3.02 2.12 2.90	1.98 1.40 1.91	5.85 7.18 9.56
	225 250 250 300	85 102 153 145	68 82.5 125.5 115.5	3 3 3 4	1 1 1 1.5	475 720 1 090 1 280	836 1 140 1 920 1 920	1 200 1 200 1 200 1 200	1 700 1 500 1 600 1 300	46328A 46T30228JR/82.5 46T32228JR/125.5 46T30328JR/115.5	154 158 158 162	212 237 238 273	8 9.5 14 15	2.5 3 3 4	1 1 1 1.5	0.35 0.44 0.44 0.35	1.95 1.55 1.55 1.96	2.90 2.31 2.31 2.91	1.91 1.52 1.52 1.91	11.8 19.7 30.2 46.6
150	225 225 250	56 70 80	50 56 71	3 3 3	1.3 1 1 1	278 377 467	476 703 786	1 200 1 200 1 200 1 100	1 600 1 600 1 500	46230 46230A 46330	164 164 164 164	213 213 213 233	3 7 4.5	2.5 2.5 2.5	1 1 1 1	0.33 0.33 0.35	2.03 2.03 1.95	3.02 3.02 2.90	1.98 1.98 1.91	7.09 8.82 14.6
	250 270	100 109	80 87	3 3	1 1	595 827	1 070 1 330	1 100 1 100	1 500 1 400	46330A 46T30230JR/87	164 168	234 255	10 11	2.5 3	1 1	0.35 0.44	1.95 1.55	2.90 2.31	1.91 1.52	17.6 24.6

d (150) ~ (200) mm

Koyo

			dimension nm)	S			ad ratings kN)	Limiting (min		D : N		Mount	ing dime (mm)	ensions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	T	C	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{ m a}$ min.	r _a max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
150	270 320	164 154	130 120	3 4	1 1.5	1 210 1 430	2 130 2 160	1 100 930	1 400 1 200	46T32230JR/130 46T30330JR/120	168 172	254 292	17 17	3 4	1 1.5	0.44 0.35	1.55 1.96	2.31 2.91	1.52 1.91	38 56
160	240 240 270	60 75 86	53 60 76	3 3 3	1 1 1	324 406 592	565 756 950	1 100 1 100 1 000	1 500 1 500 1 400	46232 46232A 46332	174 174 174	228 226 252	3.5 7.5 5	2.5 2.5 2.5	1 1 1	0.33 0.33 0.35	2.03 2.03 1.95	3.02 3.02 2.90	1.98 1.98 1.91	8.71 10.6 18.8
	270 290 290	108 115 178	86 91 144	3 3 3	1 1 1	727 929 1 360	1 270 1 500 2 420	1 000 980 1 000	1 400 1 300 1 300	46332A 46T30232JR/91 46T32232JR/144	174 178 178	252 269 274	11 12 17	2.5 3 3	1 1 1	0.35 0.44 0.44	1.95 1.55 1.55	2.90 2.31 2.31	1.91 1.52 1.52	23.1 29.9 47.6
170	260 260 280	67 84 88	60 67 78	3 3 3	1 1 1	382 502 599	642 969 1 050	1 000 1 000 970	1 400 1 400 1 300	46234 46234A 46334	184 184 184	243 244 263	3.5 8.5 5	2.5 2.5 2.5	1 1 1	0.33 0.33 0.33	2.03 2.03 2.06	3.02 3.02 3.06	1.98 1.98 2.01	11.4 14.7 19.8
	280 310 310	110 125 192	88 97 152	3 4 4	1 1.5 1.5	776 1 060 1 540	1 390 1 730 2 760	980 900 910	1 300 1 200 1 200	46334A 46T30234JR/97 46T32234JR/152	184 192 192	260 288 294	11 14 20	2.5 4 4	1 1.5 1.5	0.33 0.44 0.44	2.06 1.55 1.55	3.06 2.31 2.31	2.01 1.52 1.52	24.7 37.5 58.8
180	280 280 300	74 93 96	66 74 85	3 3 4	1 1 1.5	464 584 693	801 1 080 1 240	950 960 910	1 300 1 300 1 200	46236 46236A 46336	194 194 198	263 261 277	4 9.5 5.5	2.5 2.5 3	1 1 1.5	0.33 0.33 0.33	2.03 2.03 2.06	3.02 3.02 3.06	1.98 1.98 2.01	15.5 19.0 25.8
	300 320 320	120 127 192	96 99 152	4 4 4	1.5 1.5 1.5	894 1 060 1 640	1 630 1 740 3 030	900 860 880	1 200 1 200 1 200	46336A 46T30236JR/99 46T32236JR/152	198 202 202	279 297 303	12 14 20	3 4 4	1.5 1.5 1.5	0.33 0.45 0.45	2.06 1.5 1.5	3.06 2.23 2.23	2.01 1.47 1.47	31.3 40.1 62.5
190	290 290 320	75 94 104	67 75 92	3 3 4	1 1 1.5	487 632 808	866 1 170 1 450	910 900 830	1 200 1 200 1 100	46238 46238A 46338	204 204 208	272 274 298	4 9.5 6	2.5 2.5 3	1 1 1.5	0.32 0.33 0.35	2.12 2.03 1.95	3.15 3.02 2.90	2.07 1.98 1.91	16.5 20.0 31.9
	320 340 340	130 133 204	104 105 160	4 4 4	1.5 1.5 1.5	1 020 1 250 1 870	1 860 2 060 3 480	840 800 810	1 100 1 100 1 100	46338A 46T30238JR/105 46T32238JR/160	208 212 212	298 318 323	13 14 22	3 4 4	1.5 1.5 1.5	0.35 0.44 0.44	1.95 1.55 1.55	2.90 2.31 2.31	1.91 1.52 1.52	39.0 47.8 75.1
200	310	82	73	3	1	572	1 040	850	1 100	46240	214	288	4.5	2.5	1	0.32	2.12	3.15	2.07	21.4

d (200) \sim (300) mm

Koyo

		Boundary (n	dimension nm)	S			ad ratings	Limiting (min		D : N		Mount	ing dime (mm)	nsions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	Т	C	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	D_{a} min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
200	310 340 340	103 112 140	82 100 112	3 4 4	1 1.5 1.5	713 939 1 110	1 380 1 580 2 040	840 780 770	1 100 1 000 1 000	46240A 46340 46340A	214 218 218	289 316 319	10.5 6 14	2.5 3 3	1 1.5 1.5	0.32 0.35 0.35	2.12 1.95 1.95	3.15 2.90 2.90	2.07 1.91 1.91	26.3 39.6 48.2
	360 360	142 218	110 174	4 4	1.5 1.5	1 360 2 130	2 240 3 760	750 770	1 000 1 000	46T30240JR/110 46T32240JR/174	222 222	336 340	16 22	4 4	1.5 1.5	0.44 0.41	1.55 1.66	2.31 2.47	1.52 1.62	56.5 88.2
220	340 340 370	90 113 120 150	80 90 107	4 4 5 5	1.5 1.5 1.5	677 832 1 070	1 240 1 620 1 810 2 470	750 750 700 710	990 1 000 930	46244 46244A 46344 46344A	238 238 242	319 318 346 343	5 11.5 6.5	3 3 4	1.5 1.5 1.5	0.32 0.32 0.35	2.12 2.12 1.95	3.15 3.15 2.90	2.07 2.07 1.91	27.8 34.2 49.1
	370 400	150 150	120 114	5 4	1.5 1.5	1 330 1 730	2 880	660	940 890	46344A 46T30244JR/114	242 242	343 371	15 18	4 4	1.5 1.5	0.35 0.42	1.95 1.61	2.90 2.39	1.91 1.57	60.1 75.8
240	360 360 400 400	92 115 128 160	82 92 114 128	4 4 5 5	1.5 1.5 1.5 1.5	768 990 1 190 1 540	1 430 1 980 2 180 3 060	690 690 630 630	920 920 840 850	46248 46248A 46348 46348A	258 258 262 262	338 341 377 373	5 11.5 7 16	3 3 4 4	1.5 1.5 1.5 1.5	0.32 0.32 0.35 0.35	2.12 2.12 1.95 1.95	3.15 3.15 2.90 2.90	2.07 2.07 1.91 1.91	29.6 36.9 59.0 76.2
260	400 400 400 440 440	100 104 130 144 180	92 104 128 144	5 5 5 5 5	1.5 1.5 1.5 1.5 1.5	935 1 210 1 510 2 010	1 830 2 480 2 880 3 960	610 610 560 570	820 810 750 760	46252 46252A 46352 46352A	282 282 282 282 282 282	373 376 410 409	6 13 8 18	4 4 4 4 4	1.5 1.5 1.5 1.5 1.5	0.33 0.32 0.35 0.35	2.03 2.12 1.95 1.95	3.02 3.15 2.90 2.90	1.98 2.07 1.91 1.91	44.6 54.8 83.8 105
280	420 420 460 460	106 133 146 183	94 106 130 146	5 5 6 6	1.5 1.5 2 2	1 010 1 250 1 550 2 040	1 970 2 610 2 930 3 940	570 570 530 520	760 760 700 690	46256 46256A 46356 46356A	302 302 308 308	395 394 430 434	6 13.5 8 18.5	4 4 5 5	1.5 1.5 2 2	0.33 0.33 0.35 0.35	2.03 2.03 1.95 1.95	3.02 3.02 2.90 2.90	1.98 1.98 1.91 1.91	46.9 58.9 90.0 111
300	460 460 500 500	118 148 160 200	105 118 142 160	5 5 6	1.5 1.5 2 2	1 290 1 630 1 980 2 270	2 400 3 230 3 540 4 630	500 510 470 470	670 680 620 630	46260 46260A 46360 46360A	322 322 328 328	436 433 469 466	6.5 15 9 20	4 4 5 5	1.5 1.5 2 2	0.32 0.32 0.35 0.35	2.12 2.12 1.95 1.95	3.15 3.15 2.90 2.90	2.07 2.07 1.91 1.91	64.6 80.2 116 144

d (300) ~420 mm

Koyo

		Boundary (n	dimension nm)	S			ad ratings	Limiting (mir		De suiz e Na		Mount	ing dime (mm)	nsions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	T	C	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Bearing No.	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
300	500	200	160	6	1.5	2 500	4 650	—	_	46360D	328	475	20	5	1.5	0.40	1.68	2.50	1.64	139
320	480 480 540 540	121 151 176 220	108 121 157 176	5 5 6	1.5 1.5 2 2	1 430 1 650 2 440 2 610	2 700 3 410 4 570 5 390	480 470 420 430	640 630 560 570	46264 46264A 46364 46364A	342 342 348 348	452 454 502 497	6.5 15 9.5 22	4 4 5 5	1.5 1.5 2 2	0.32 0.32 0.35 0.35	2.12 2.12 1.95 1.95	3.15 3.15 2.90 2.90	2.07 2.07 1.91 1.91	71.6 87.7 154 190
340	520 520 580 580	133 165 190 238	118 133 169 190	6 6 6	2 2 2 2	1 550 1 930 2 540 3 160	3 070 4 060 4 620 6 340	420 420 380 370	570 560 510 500	46268 46268A 46368 46368A	368 368 368 368	489 491 539 543	7.5 16 10.5 24	5 5 5 5	2 2 2 2	0.32 0.32 0.35 0.35	2.12 2.12 1.95 1.95	3.15 3.15 2.90 2.90	2.07 2.07 1.91 1.91	95.3 117 198 244
360	540 540 600 600	134 169 192 240	120 134 171 192	6 6 6	2 2 2 2	1 660 2 020 2 680 3 660	3 290 4 230 4 880 7 230	400 390 360 360	530 530 480 480	46272 46272A 46372 46372A	388 388 388 388 388	510 512 557 568	7 17.5 10.5 24	5 5 5 5	2 2 2 2	0.32 0.32 0.35 0.39	2.12 2.12 1.95 1.74	3.15 3.15 2.90 2.59	2.07 2.07 1.91 1.70	93.0 124 206 254
380	560 560 620 620	135 171 194 243	122 135 173 194	6 6 6	2 2 2 2	1 740 2 240 2 870 3 490	3 560 4 670 5 220 7 360	370 380 340 330	500 500 450 440	46276 46276A 46376 46376A	408 408 408 408	530 531 582 587	6.5 18 10.5 24.5	5 5 5 5	2 2 2 2	0.32 0.39 0.39 0.39	2.12 1.74 1.74 1.95	3.15 2.59 2.59 2.90	2.07 1.70 1.70 1.91	100 129 215 265
400	600 600 650 650	148 185 200 250	132 148 178 200	6 6 6	2 2 3 3	1 870 2 420 2 980 4 060	3 720 5 150 5 920 8 850	340 340 320 310	460 460 420 420	46280 46280A 46380 46380A	428 428 428 428 428	560 563 605 610	8 18.5 11 25	5 5 5 5	2 2 2.5 2.5	0.32 0.32 0.35 0.35	2.12 2.12 1.95 1.95	3.15 3.15 2.90 2.90	2.07 2.07 1.91 1.91	135 167 243 306
420	620 620 700 700	150 188 224 280	134 150 200 224	6 6 6	2 2 3 3	2 010 2 700 3 700 4 810	4 130 5 660 6 880 9 620	320 320 290 290	420 430 380 380	46284 46284A 46384 46384A	448 448 448 448	590 589 656 659	8 19 12 28	5 5 5	2 2 2.5 2.5	0.33 0.39 0.39 0.39	2.03 1.74 1.74 1.74	3.02 2.59 2.59 2.59	1.98 1.70 1.70 1.70	142 176 325 400

d **440** ~ **500** mm

Koyo

		Boundary (n	dimension	IS			ad ratings	Limiting (mi		Bearing No.		Mount	ing dime (mm)	ensions		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	T	С	<i>r</i> min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	bearing No.	$d_{ m a}$ min.	$D_{ m a}$ min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
440	650	157	140	6	3	2 260	4 430	300	390	46288	468	622	8.5	5	2.5	0.33	2.03	3.02	1.98	156
	650	196	157	6	3	3 000	6 370	300	400	46288A	468	620	19.5	5	2.5	0.39	1.74	2.59	1.70	198
	720	226	201	6	3	3 940	8 110	270	360	46388	468	676	12.5	5	2.5	0.39	1.74	2.59	1.70	354
	720	283	226	6	3	4 940	10 100	270	360	46388A	468	679	28.5	5	2.5	0.40	1.68	2.51	1.65	418
460	680	163	145	6	3	2 500	5 340	280	370	46292	488	637	9	5	2.5	0.37	1.83	2.72	1.78	196
	680	204	163	6	3	3 220	6 850	280	370	46292A	488	646	20.5	5	2.5	0.39	1.74	2.59	1.70	232
	760	240	214	7.5	4	4 580	9 000	250	330	46392	496	710	13	6	3	0.39	1.74	2.59	1.70	424
	760	300	240	7.5	4	5 680	11 600	250	330	46392A	496	718	30	6	3	0.39	1.74	2.59	1.70	506
480	700	165	147	6	3	2 530	5 300	260	340	46296	508	672	9	5	2.5	0.33	2.03	3.02	1.98	186
	700	206	165	6	3	3 220	7 230	260	340	46296A	508	666	20.5	5	2.5	0.33	2.03	3.02	1.98	240
	790	248	221	7.5	4	4 640	8 920	230	310	46396	516	742	13.5	6	3	0.39	1.74	2.59	1.70	457
	790	310	248	7.5	4	5 990	12 400	230	310	46396A	516	749	31	6	3	0.39	1.74	2.59	1.70	560
500	720	167	149	6	3	2 580	5 690	250	330	462/500	528	679	9	5	2.5	0.40	1.71	2.54	1.67	210
	720	209	167	6	3	3 500	7 850	250	330	462/500A	528	690	21	5	2.5	0.42	1.62	2.41	1.58	258
	830	264	235	7.5	4	5 220	10 900	210	280	463/500	536	776	14.5	6	3	0.39	1.74	2.59	1.70	559
	830	330	264	7.5	4	6 780	14 000	210	280	463/500A	536	784	33	6	3	0.39	1.74	2.59	1.70	669

d 100 ~ (220) mm

Koyo

	E	Boundary o (m		s			ad ratings kN)	Limiting (mi	; speeds n^{-1})	Bearing No.		М	ounting (n	dimensio m)	ons		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	В	T	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	bearing No.	$d_{ m a}$ max.	max.	D _a min.	S_{a} min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
100	165	52	52	2	2.5	237	384	1 800	2 300	45320	119	155	148	3.9	2	2	0.35	1.95	2.90	1.91	4.26
110	180	56	56	2	2.5	300	505	1 600	2 100	45322	128	170	160	4	2	2	0.35	1.95	2.90	1.91	5.40
120	180 200	46 62	46 62	2 2	2.5 2.5	229 353	424 598	1 500 1 400	2 100 1 900	45224 45324	138 142	170 190	163 178	4 4	2 2	2 2	0.26 0.35	2.55 1.95	3.80 2.90	2.50 1.91	4.08
130	200 210	52 64	52 64	2 2	2.5 2.5	300 412	548 657	1 400 1 300	1 800 1 800	45226 45326	152 153	190 200	179 185	4 4	2 2	2 2	0.27 0.36	2.47 1.87	3.67 2.79	2.41 1.83	5.96 8.41
140	210 225	53 68	53 68	2 2.5	2.5 3	311 486	564 807	1 300 1 200	1 800 1 700	45228 45328	159 160	200 213	188 210	4 4	2 2	2 2.5	0.27 0.40	2.47 1.68	3.67 2.50	2.41 1.64	6.45 10.0
150	225 250	56 80	56 80	2.5 2.5	3 3	355 593	686 955	1 200 1 100	1 600 1 500	45230 45330	174 179	213 238	203 220	4 4	2 2	2.5 2.5	0.26 0.35	2.55 1.95	3.80 2.90	2.50 1.91	7.87 15.5
160	240 270	60 86	60 86	2.5 2.5	3 3	421 678	705 1 100	1 100 1 000	1 500 1 400	45232 45332	184 193	228 258	217 237	5 4	2 2	2.5 2.5	0.24 0.35	2.79 1.95	4.15 2.90	2.73 1.91	9.22 19.8
170	260 280	67 88	67 88	2.5 2.5	3 3	521 723	956 1 210	1 000 970	1 400 1 300	45234 45334	195 201	248 268	233 247	5 5	2 2	2.5 2.5	0.31 0.33	2.21 2.03	3.29 3.02	2.16 1.98	12.4 21.6
180	280 300	74 96	74 96	2.5 3	3 4	575 860	1 050 1 370	950 910	1 300 1 200	45236 45336	208 210	268 286	250 263	5 5	2 2.5	2.5 3	0.28 0.35	2.43 1.95	3.61 2.90	2.37 1.91	16.8 26.5
190	290 320	75 104	75 104	2.5 3	3 4	599 981	1 130 1 590	900 840	1 200 1 100	45238 45338	219 224	278 306	260 280	5 5	2 2.5	2.5 3	0.26 0.35	2.55 1.95	3.80 2.90	2.50 1.91	17.7 34.0
200	310 340	82 112	82 112	2.5 3	3 4	728 1 080	1 410 1 840	830 770	1 100 1 000	45240 45340	234 244	298 326	280 300	5 5	2 2.5	2.5 3	0.26 0.35	2.55 1.95	3.80 2.90	2.50 1.91	22.9 41.9
220	340	90	90	3	4	805	1 460	740	990	45244	259	326	306	5	2.5	3	0.28	2.43	3.61	2.37	28.5

d (220) ~ (420) mm

Koyo

	E	Boundary c		S			ad ratings	Limiting (min		Bearing No.		М	ounting ((m	dimensio m)	ons		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	В	T	<i>r</i> min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	bearing ino.	$d_{ m a}$ max.	max.	D _a min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
220	370	120	120	4	5	1 210	2 060	700	930	45344	263	352	324	5	3	4	0.35	1.95	2.90	1.91	50.8
230	350	90	90	3	4	791	1 560	710	950	45246	267	336	318	6	2.5	3	0.28	2.43	3.61	2.37	30.6
240	360 400	92 128	92 128	3 4	4 5	915 1 430	1 790 2 470	690 630	920 840	45248 45348	271 286	346 382	325 354	5 5	2.5 3	3 4	0.32 0.35	2.12 1.95	3.15 2.90	2.07 1.91	32.2 65.4
260	400 440	104 144	104 144	4 4	5 5	1 140 1 890	2 120 3 440	610 560	810 750	45252 45352	302 313	382 422	360 386	6 6	3 3	4 4	0.25 0.35	2.74 1.95	4.08 2.90	2.68 1.91	48.1 92.2
280	420 460	106 146	106 146	4 5	5 6	1 190 1 930	2 470 3 320	560 520	750 700	45256 45356	321 323	402 438	370 409	6 6	3 4	4 5	0.25 0.39	2.69 1.74	4.00 2.59	2.63 1.70	51.9 93.1
300	460 500	118 160	118 160	4 5	5 6	1 610 2 120	3 150 4 240	500 470	670 630	45260 45360	350 356	442 478	418 440	6 6	3 4	4 5	0.25 0.35	2.74 1.95	4.08 2.90	2.68 1.91	78.5 129
320	480 540	121 176	121 176	4 5	5 6	1 630 2 690	3 180 5 280	470 430	630 570	45264 45364R	368 378	462 518	434 474	6 6	3 4	4 5	0.26 0.32	2.55 2.12	3.80 3.15	2.50 2.07	77.8 167
340	520 580	133 190	133 190	5 5	6 6	1 880 3 290	3 850 5 470	420 390	570 510	45268 45368	398 401	498 558	464 515	6 6	4 4	5 5	0.26 0.32	2.55 2.12	3.80 3.15	2.50 2.07	104 202
360	540 600	134 192	134 192	5 5	6 6	2 050 3 360	3 910 6 750	400 360	540 490	45272 45372	408 419	518 578	488 528	11 10	4 4	5 5	0.32 0.32	2.12 2.12	3.15 3.15	2.07 2.07	101 228
380	560 620	135 194	135 194	5 5	6 6	2 060 3 070	3 790 6 360	380 340	500 450	45276 45376	428 445	538 598	510 545	6 6	4 4	5 5	0.27 0.32	2.47 2.12	3.67 3.15	2.41 2.07	112 234
400	600 650	148 200	148 200	5 6	6 6	2 410 3 850	4 960 7 810	340 320	450 420	45280 45380	452 458	578 622	545 580	6 11	4 5	5 5	0.33 0.39	2.03 1.74	3.02 2.59	1.98 1.70	143 265
420	620	150	150	5	6	2 600	5 200	320	430	45284	475	598	564	6	4	5	0.33	2.03	3.02	1.98	152

d (420) ~ 500 mm

Koyo

	B	Soundary o (m:		S			ad ratings kN)	Limiting (mir		Bearing No.		М	ounting (m	dimensionm)	ons		Con- stant	Axial	load fa	ctors	(Refer.) Mass
d	D	В	T	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Dearing 140.	$d_{ m a}$ max.	max.	D _a min.	$S_{ m a}$ min.	$r_{ m a}$ max.	$r_{ m b}$ max.	е	Y_2	Y_3	Y_0	(kg)
420	700	224	224	6	6	4 710	8 380	280	380	45384	488	672	623	7	5	5	0.39	1.74	2.59	1.70	352
440	650 720	157 226	157 226	6 6	6 6	2 750 4 990	5 500 9 130	300 270	390 360	45288 45388	500 506	622 692	592 642	10 7	5 5	5 5	0.28 0.39	2.43 1.74	3.61 2.59	2.37 1.70	182 367
460	680 760	163 240	163 240	6 7.5	6 7.5	3 000 5 230	5 660 10 400	280 250	370 330	45292 45392	510 532	652 724	616 677	6 7	5 6	5 6	0.39 0.39	1.74 1.74	2.59 2.59	1.70 1.70	197 444
480	700 790	165 248	165 248	6 7.5	6 7.5	3 060 5 710	6 710 11 600	260 230	350 310	45296 45396	531 555	672 754	625 703	6 7	5 6	5 6	0.40 0.39	1.68 1.74	2.50 2.59	1.64 1.70	215 494
500	720 830	167 264	167 264	6 7.5	6 7.5	3 430 6 280	7 350 12 300	250 210	330 280	452/500 453/500	545 587	692 794	645 729	8 7	5 6	5 6	0.39 0.33	1.74 2.03	2.59 3.02	1.70 1.98	222 586

Spherical roller bearings feature a large load rating capacity and self-aligning capability.

This type of bearing is suitable for low- or medium-speed applications which involve heavy or impact loading.

- These bearings are divided into R(RR), RH(RHR) and RHA types, which differ in internal structure. (refer to Table 1.)
- Each type can be produced with a cylindrical bore or tapered bore.

Bearings with a tapered bore can be fit and removed easily using an adapter assembly or withdrawal sleeve. The rate of taper is equivalent among all bearing series. 240 and 241 series ... 1 : 30 (supplementary code "K30") Others ... 1 : 12 (supplementary code "K")

Kovo

	Table 1 Spherical roller	bearings : types and str	ructures
Structure	F		
	R, RR type	RH, RHR type	RHA type
Roller	Convex asymmetrical roller	Convex symmetrical roller	Convex symmetrical roller
Cage	Copper alloy prong type machined cage	Pressed steel cage	Copper alloy integral type machined cage
Inner ring	With center rib	Without center rib (guide ring)	Without center rib (guide ring)
(with or without rib)	With ribs on both sides (to prevent rollers from falling)	Without ribs on both sides	With ribs on both sides (to prevent rollers from falling)
Characteristics	Superior to RH, RHR and RHA types in high-speed performance.	The load rating capacity is larg (There are some exceptional specifications.)	

Spherical roller bearings for shaker screens

- These bearings consist of convex asymmetric rollers and a prong type, copper alloy, outer ring guided, machined cage. This cage possesses optimum characteristics for use with shaker screens.
- The bearings most commonly used with shaker screens are 223 series spherical roller bearings.
 They are identified by the supplementary code "ROVS W502." The outer ring outside diameter tolerance of these bearings is held to a small allowable variation.

Bearings with lubrication holes and a lubrication groove

• Outer rings can be provided with lubrication holes, a lubrication groove and an anti-rotation pin hole. (Specifications are given in Table 4.)

bear	blementary codes f ings with lubrication ve and anti-rotation	ion holes,	lubrication											
Supplementary code Number With lubrication of lubri- holes, lubrication of lubri-														
With lubrication holes and lubri- cation groove	With lubrication holes, lubrication groove and anti- rotation pin hole	of lubri-	Hole layout											
W33	W3N	3 ¹⁾	3 equally spaced positions ¹⁾											
W33A	W3NA	4	4 equally spaced positions											
-	W3NB	5	6 equally spaced positions ²⁾											
W33C	W3NC	6	6 equally spaced positions											
-	W3ND	7	8 equally spaced positions ²⁾											
W33T	_	8	8 equally spaced positions											

• Inner rings can also be provided with lubrication holes and a lubrication groove.

Table 3	of bearing		es for iden prication ho re	
	Innei	r ring	Oute	r ring
Supplemen- tary code	Number of lubri- cation holes	Lubri- cation groove	Number of lubri- cation holes	Lubri- cation groove
W513	3	-	3	0
W518	3	_	3	-
W26	3	_	_	_

[Notes] 1) Also 4 or 6 holes are provided in smaller size bearings, consult with JTEKT. 2) One hole is used for the antirotation pin.

[Remark] Boldfaced codes indicate JTEKT standards.

	Table 4 (1) Lubrication hole and lubrication groove dimensions Unit : mm Reve Nominal 239 230 240 231 241 222 232 213 223																											
Bore			239			230			240			231			241			222			232			213			223	
diameter number	bore diameter d	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h
5	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.7	-	-	-	-	-	-	-	-	-
6	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.7	-	-	-	3	4	0.7	-	-	-
7	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.8	-	-	-	3	4	0.7	3	4	1
8	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.8	-	-	-	3	4	0.7	4	5	1
9	45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.8	-	-	-	3	4	0.7	4	6	1
10	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.8	-	-	-	3	4	0.7	4	6	1
11	55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	0.8	-	-	-	3	4	0.7	4	6	1.1
12	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	1	-	-	-	3	4	1	4	6	1.1
13	65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	1	-	-	-	3	4	1	4	6	1.2
14	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	1	-	-	-	3	4	1	5	7	1.3
15	75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	1	-	-	-	3	4	1	5	7	1.3
16	80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	1	4	6	1.2	4	6	1	5	7	1.3
17	85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	5	1	4	6	1.2	4	6	1.2	6	8	1.3
18	90	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	4	5	1	5	8	1.2	4	6	1.2	6	8	1.3
19	95	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	5	6	1.2	5	8	1.2	4	6	1.2	6	8	2
20	100	-	-	-	4	5	1	-	-	-	5	6	1.4	-	-	-	5	6	1.2	5	8	1.2	4	6	1.2	6	8	2
22	110	-	-	-	5	7	1	-	-	-	5	6	1.4	6	8	1.5	5	7	1.5	6	8	1.7	4	6	1.2	6	8	2
24	120	-	-	-	5	7	1	5	6	1.4	5	6	1.4	6	8	1.5	5	7	1.5	6	10	1.7	-	-	-	8	10	2.5
26	130	-	-	-	5	7	1.2	6	8	1.5	5	6	1.5	6	8	1.5	5	7	1.5	6	10	1.7	-	-	-	8	12	2.5
28	140	4	5	1	5	7	1.2	6	8	1.5	6	8	1.5	8	10	2	6	8	1.8	8	10	2.5	-	-	-	12	14	3
30	150	5	7	1	5	8	1.2	6	8	1.5	6	10	1.5	8	10	2	6	10	1.8	8	10	2.5	-	-	-	12	14	3
32	160	5	7	1.2	5	8	1.2	6	8	1.5	8	12	2	10	12	2	10	12	2.5	10	12	2.5	-	-	-	12	14	3
34	170	5	7	1.2	6	10	1.5	8	10	2	8	12	2	10	12	2	12	14	3	10	12	2.5	-	-	-	12	14	3
36	180	6	7	1.3	8	12	1.5	10	12	2.5	10	12	2.5	10	12	2	12	14	3	10	12	2.5	-	-	-	14	16.5	4
38	190	5	7	1.2	10	12	2.5		12	2.5	10	12	2.5	10	12	2	12	14	3	12	14	3	-	-	-	14	16.5	4
40	200	6	8	1.5	10	12	2.5		12	2.5	12	14	3	12	14	3	12	14	3	12	14	3	-	_	-	14	16.5	4
44	220	6	8	1.5	10	12	2.5		12	2.5	12	14	3	12	14	3	12	14	3	12	14	3	-	_	-	14	16.5	4
48	240	6	8	1.5	10	12	2.5		12	2.5	12	14	3	12	14	3	14	16.5	4	14	16.5	4	-	_	-	14	16.5	4
52	260	10	12	2.5	12	14	3	12	14	3	12	14	3	12	14	3	14	16.5	4	14	16.5	4	-	-	-	14	16.5	4
56	280	10	12	2.5	12	14	3	12	14	3	12	14	3	12	14	3	14	16.5	4	14	16.5	4	-	_	-	14	16.5	4
60	300	10	12	2.5	12	14	3	12	14	3	12	14	3	12	14	3	14	16.5	4	14	16.5	4	-	_	-	14	16.5	4
64	320	10	12	2.5	12	14	3	12	14	3	14	16.5	4	14	16.5	4	14	16.5	4	14	16.5	4	_	_	_	14	16.5	4
68	340	12	14	3	14	16.5	4	14	16.5	3	14	16.5	4	14	16.5	4	14	16.5	4	14	16.5	4	-	-	-	14	16.5	4
72	360	12	14	3	14	16.5	4	14	16.5	3	14	16.5	4	14	16.5	4	14	16.5	4	14	16.5	4	_	_	_	14	16.5	4
16	000	12	14	0	14	10.3	7	14	10.0	J	14		4 30		10.5	7	14	10.5	7	14	10.5	7	1		1	14	10.5	7

	Т	'ab	le 4	4 (2)	Lu	bri	cat	ion	ı ho	ole	an	d lı	ıbr	ica	tio	n g	roc	ove	di	me	nsi	ons	5	ι	Jnit	: m	m
Bore	Nominal		239			230			240			231			241			222			232			213			223	_
diameter number	bore diameter d	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h	d_0	w	h
76	380	12	14	3	14	16.5	4	14	16.5		14	16.5		14	16.5	4	-	-	-	14	16.5		-	-	-	-	-	-
80	400	12	14	3	14	16.5	4	14	16.5		14	16.5	4	14	16.5	4	-	-	-	14	16.5	4	-	-	-	-	-	-
84	420 440	12	14	3	14 14	16.5	4	14	16.5		14	16.5		14	16.5	4	-	-	-	14	16.5	4	-	-	-	-	-	-
88	440	14	16.5	4	14	16.5 16.5	4	14	16.5 16.5		14	16.5 16.5		14	16.5 16.5	4	-	-	-	14	16.5 16.5	4	-	-	-	-	-	-
96	480	14	16.5	4	14	16.5	4	14	16.5		14	16.5		14	16.5	4	_	_		14	16.5		_				_	
/500	500	14	16.5	4	14	16.5	l .	14	16.5		14	16.5		14	16.5	L .	_	_	_	14	16.5		_	_	_	_	_	-
	oundary dimensions				Re	fer t	o Ta	able	7-1	1 0	٦p.	A 7	0 fo	r th	e tol	era	to T	of ta	ape	red	bore		54 -	- A	57.)			
Radial	internal	clea	ranc	e	As	spe	cifie	d in	JIS	5 B ·	1520). (I	refe	r to	Tab	le 1	0-9	on	р. А	102	2.)							
Recon	nmende	ed fi	ts		Re	fer t	о Та	able	9-4	on	pp.	A 8	5, 8	6.														
Standa	ard cag	es			Re	fer t	о Та	able	5.																			
Allowal	ble align	ing a	angl	e	Re	fer t	о Та	able	5.	(vai	ies	dep	end	ling	on b	bear	ring	seri	ies.))								
Equiva	Equivalent radial load					nam	ic e	quiv																				
									(\	Nhe	en -	$\frac{F_{a}}{F_{r}} \leq$	e	P_{r}	$=F_{\rm r}$	+Y	$f_1 F_a$		w	hen	$\frac{F_s}{F_r}$	$e^{\frac{1}{2}} > e$	$e \int F$	$P_r = 0$	0.67	$F_{\rm r}$	$+Y_2$	F_{a}
							equi	vale	ent ra	adia	l loa	ad	P	0r =	$F_r +$	Y_0	F_{a}											
							Ref	er te	o the	e sp	ecif	icat	on	table	e foi	r the	e val	ues	of a	axia	l loa	ld fa	ctor	's Y	$_{1}, Y$	2 an	$d Y_0$)

and of constant e.

[Remark] If the ratio of axial load to radial load exceeds the value e given in the specification table $(F_a/F_r > e)$, slippage occurs between rollers in rows that are not axial-loaded and the raceway.

This may cause smearing, especially when the bearing is large. Consult with JTEKT on the use of bearings under such conditions.

Table 5 Application of standard cages and allowable aligning angle

Bearing series	Standa	ard cages	Allowable aligning
bearing series	Pressed cage	Machined cage	angle
239 R		23930R - 239/500R	0.026 rad (1.5°)
230 R RH RHA	23022RH – 23036RH	23038R – 230/500R 23038RHA – 23096RHA	0.026 rad (1.5°)
240 R(RR) RH RHA	24024RH – 24034RH	24036R – 240/500R 24038RHA – 24096RHA	0.035 rad (2°)
231 R RH RHA	23122RH – 23134RH	23136R – 231/500R 23136RHA – 23196RHA	0.026 rad (1.5°)
241 R(RR) RH RHA	24122RH – 24130RH	24132R – 241/500R 24136RHA – 24196RHA	0.044 rad (2.5°)
222 R(RR) RH(RHR) RHA	22205RHR – 22230RH	22232RR – 22272R 22232RHA – 22260RHA	0.026 rad (1.5°)
232 R RH RHA	23218RH – 23230RH	23232R – 232/500R 23232RHA – 23296RHA	0.044 rad (2.5°)
213 R RH	 21311RH – 21322RH	21322R – 21328R	0.017 rad (1°)
223 R(RR) RH(RHR) RHA	22308RHR – 22326RH	22328R – 22360R 22328RHA – 22356RHA	0.035 rad (2°)

d **25** ~ **70 mm**

Koyo

501	0	5	01e		DOIE	DOIE		DOIG	5010									
Βοι	undary ((m		ons		d ratings N)	Limiting (mir		Bearir	ng No.	Mount	ing dimen (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) Ma	
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
25	52	18	1	45.4	48.1	7 000	9 300	22205RHR	22205RHRK	31	46	1	0.35	1.91	2.85	1.87	0.188	0.184
30	62 72	20 19	1 1.1	61.2 59.3	65.9 62.7	5 900 5 200	7 900 7 000	22206RHR 21306RH	22206RHRK 21306RHK	36 37	56 65	1 1	0.33 0.27	2.04 2.49	3.04 3.71	2.00 2.43	0.296 0.430	0.290 0.424
35	72 80	23 21	1.1 1.5	80.3 69.6	88.7 75.3	5 000 4 500	6 700 6 000	22207RHR 21307RH	22207RHRK 21307RHK	42 43.5	65 71.5	1 1.5	0.32 0.27	2.09 2.49	3.11 3.71	2.04 2.43	0.459 0.572	0.449 0.564
40	80 90 90	23 23 33	1.1 1.5 1.5	90.9 85.7 136	102 95.5 152	4 500 4 100 4 100	6 000 5 500 5 500	22208RHR 21308RH 22308RHR	22208RHRK 21308RHK 22308RHRK	47 48.5 48.5	73 81.5 81.5	1 1.5 1.5	0.28 0.26 0.37	2.37 2.55 1.83	3.53 3.80 2.72	2.32 2.50 1.79	0.602 0.781 1.08	0.591 0.770 1.06
45	85 100 100	23 25 36	1.1 1.5 1.5	95.6 108 166	110 124 183	4 200 3 600 3 700	5 600 4 900 4 900	22209RHR 21309RH 22309RHR	22209RHRK 21309RHK 22309RHRK	52 53.5 53.5	78 91.5 91.5	1 1.5 1.5	0.26 0.26 0.37	2.55 2.62 1.83	3.80 3.90 2.72	2.50 2.56 1.79	0.602 1.05 1.42	0.590 1.04 1.39
50	90 110 110	23 27 40	1.1 2 2	103 128 204	122 151 237	3 900 3 300 3 300	5 200 4 400 4 500	22210RHR 21310RH 22310RHR	22210RHRK 21310RHK 22310RHRK	57 60 60	83 100 100	1 2 2	0.24 0.25 0.36	2.79 2.71 1.85	4.15 4.04 2.76	2.73 2.65 1.81	0.648 1.37 1.92	0.634 1.35 1.88
55	100 120 120	25 29 43	1.5 2 2	124 144 236	144 165 264	3 400 3 000 3 000	4 600 4 100 4 000	22211RHR 21311RH 22311RHR	22211RHRK 21311RHK 22311RHRK	63.5 65 65	91.5 110 110	1.5 2 2	0.24 0.25 0.36	2.84 2.71 1.85	4.23 4.03 2.76	2.78 2.65 1.81	0.867 1.69 2.40	0.849 1.67 2.35
60	110 130 130	28 31 46	1.5 2.1 2.1	153 168 283	181 193 334	3 100 2 800 2 800	4 200 3 700 3 700	22212RHR 21312RH 22312RHR	22212RHRK 21312RHK 22312RHRK	68.5 72 72	101.5 118 118	1.5 2 2	0.25 0.24 0.36	2.74 2.78 1.86	4.08 4.14 2.77	2.68 2.72 1.82	1.19 2.11 3.06	1.17 2.08 2.99
65	120 140 140	31 33 48	1.5 2.1 2.1	178 194 305	211 232 360	2 900 2 600 2 600	3 800 3 400 3 400	22213RHR 21313RH 22313RHR	22213RHRK 21313RHK 22313RHRK	73.5 77 77	111.5 128 128	1.5 2 2	0.25 0.24 0.34	2.69 2.83 1.98	4.00 4.21 2.94	2.63 2.76 1.93	1.55 2.62 3.66	1.52 2.58 3.58
70	125 150 150	31 35 51	1.5 2.1 2.1	187 215 348	222 260 413	2 700 2 400 2 400	3 600 3 200 3 200	22214RHR 21314RH 22314RHR	22214RHRK 21314RHK 22314RHRK	78.5 82 82	116.5 138 138	1.5 2 2	0.24 0.24 0.34	2.87 2.84 1.98	4.27 4.23 2.94	2.80 2.78 1.93	1.64 3.19 4.45	1.61 3.15 4.36

d **75** ~ (**110**) mm

Koyo

			ле		DOTE	DOIE		bore	bole	_								
Bo	undary ((m	dimensi m)	ons		oad ratings (kN)	Limiting (min		Beariı	ng No.	Mount	ing dimer (mm)	isions	Con- stant	Axial	load fa	ctors	(Refer.) M	ass (kg)
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	d _a min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
75	130 160 160	31 37 55	1.5 2.1 2.1	193 246 393	236 298 473	2 600 2 200 2 200	3 400 3 000 3 000	22215RHR 21315RH 22315RHR	22215RHRK 21315RHK 22315RHRK	83.5 87 87	121.5 148 148	1.5 2 2	0.22 0.24 0.35	3.07 2.87 1.95	4.57 4.27 2.90	3.00 2.80 1.91	1.73 3.81 5.45	1.69 3.76 5.33
80	140 170 170	33 39 58	2 2.1 2.1	217 275 431	271 339 521	2 400 2 100 2 100	3 200 2 800 2 800	22216RHR 21316RH 22316RHR	22216RHRK 21316RHK 22316RHRK	90 92 92	130 158 158	2 2 2	0.22 0.23 0.35	3.07 2.88 1.95	4.57 4.29 2.90	3.00 2.82 1.91	2.17 4.53 6.44	2.13 4.47 6.30
85	150 180 180	36 41 60	2 3 3	258 300 481	324 372 586	2 200 2 000 2 000	3 000 2 600 2 600	22217RHR 21317RH 22317RHR	22217RHRK 21317RHK 22317RHRK	95 99 99	140 166 166	2 2.5 2.5	0.22 0.23 0.33	3.01 2.89 2.02	4.48 4.33 3.00	2.94 2.83 1.97	2.75 5.32 7.47	2.69 5.25 7.31
90	160 160 190 190	40 52.4 43 64	2 2 3 3	298 336 330 538	381 482 416 662	2 100 2 100 1 900 1 900	2 800 2 800 2 500 2 500	22218RHR 23218RH 21318RH 22318RHR	22218RHRK 23218RHK 21318RHK 22318RHRK	100 100 104 104	150 150 176 176	2 2 2.5 2.5	0.24 0.32 0.23 0.34	2.79 2.14 2.91 2.00	4.15 3.19 4.30 2.98	2.73 2.09 2.84 1.96	3.50 4.63 6.20 8.82	3.43 4.50 6.11 8.63
95	170 200 200	43 45 67	2.1 3 3	334 362 586	422 461 726	2 000 1 800 1 800	2 600 2 300 2 300	22219RHR 21319RH 22319RHR	22219RHRK 21319RHK 22319RHRK	107 109 109	158 186 186	2 2.5 2.5	0.24 0.23 0.33	2.76 2.92 2.02	4.11 4.35 3.00	2.70 2.86 1.97	4.24 7.16 10.2	4.15 7.06 9.98
100	150 180 180 215 215	37 46 60.3 47 73	1.5 2.1 2.1 3 3	208 377 425 416 700	332 481 629 524 877	2 100 1 900 1 900 1 600 1 600	2 800 2 500 2 500 2 200 2 200	23020RH 22220RHR 23220RH 21320RH 22320RHR	23020RHK 22220RHRK 23220RHK 21320RHK 22320RHRK	117 112 112 114 114	141 168 168 201 201	1.5 2 2 2.5 2.5	0.22 0.25 0.32 0.22 0.22	3.01 2.74 2.09 3.02 1.95	4.48 4.08 3.11 4.49 2.90	2.94 2.68 2.04 2.95 1.91	2.34 5.11 6.85 8.79 13.2	2.27 5.00 6.66 8.68 12.9
110	170 180 180	45 56 69	2 2 2 2.1	300 385 469	486 605 778	1 900 1 800 1 800 1 700	2 500 2 400 2 400 2 200	23022RH 23122RH 24122RH 22222RHR	23022RHK 23122RHK 24122RHK30 22222RHRK	120 120 120 120	160 170 170 188	2 2 2	0.24 0.29 0.37 0.26	2.84 2.36 1.84	4.23 3.51 2.74	2.78 2.31 1.80	3.85 5.72 6.98 7.37	3.74 5.54 6.87
	200 200 240	53 69.8 50	2.1 2.1 3	491 537 484	642 792 616	1 700 1 700 1 400	2 200 2 200 1 900	22222RHR 23222RH 21322RH	22222RHRK 23222RHK 21322RHK	122 122 124	188 188 226	2 2 2.5	0.26 0.34 0.21	2.64 1.99 3.19	3.93 2.96 4.75	2.58 1.94 3.12	9.76 11.8	7.21 9.48 11.7

d (110) ~ (150) mm

Koyo

00	ie	D	ore		DOLE	DOLE		Dore	DOLE									
Bo		dimensi m)	ons		oad ratings (kN)	Limiting (min		Beari	ng No.	Mour	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) M	ass (kg)
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
110	240	80	3	828	1 040	1 400	1 900	22322RHR	22322RHRK	124	226	2.5	0.33	2.03	3.02	1.98	18.1	17.7
120	180 180 200	46 60 62	2 2 2	314 397 454	524 709 714	1 700 1 700 1 600	2 300 2 300 2 200	23024RH 24024RH 23124RH	23024RHK 24024RHK30 23124RHK	130 130 130	170 170 190	2 2 2	0.23 0.30 0.29	2.95 2.23 2.34	4.40 3.32 3.49	2.89 2.18 2.29	4.20 5.43 7.98	4.07 5.34 7.74
	200 215 215 260	80 58 76 86	2 2.1 2.1 3	605 565 616 896	1 020 764 956 1 130	1 600 1 500 1 500 1 300	2 200 2 000 2 100 1 800	24124RH 22224RHR 23224RH 22324RHR	24124RHK30 22224RHRK 23224RHK 22324RHRK	130 132 132 134	190 203 203 246	2 2 2 2.5	0.38 0.26 0.34 0.33	1.75 2.60 1.97 2.03	2.61 3.87 2.94 3.02	1.72 2.54 1.93 1.98	10.2 9.31 12.2 22.8	10.0 9.10 11.8 22.3
130	200 200 210 210 230 230	52 69 64 80 64 80	2 2 2 3 3	404 512 494 620 658 702	674 914 799 1 080 914 1 090	1 600 1 600 1 500 1 500 1 400 1 400	2 100 2 100 2 000 2 000 1 900 1 900	23026RH 24026RH 23126RH 24126RH 22226RHR 23226RH	23026RHK 24026RHK30 23126RHK 24126RHK30 22226RHK 23226RHK	140 140 140 140 144 144	190 190 200 200 216 216	2 2 2 2.5 2.5 2.5	0.24 0.32 0.28 0.36 0.26 0.33	2.87 2.14 2.42 1.90 2.55 2.05	4.27 3.18 3.61 2.83 3.80 3.05 3.02	2.80 2.09 2.37 1.86 2.50 2.00	6.15 8.03 8.71 10.8 11.6 14.4	5.97 7.90 8.44 10.6 11.3 14.0 27.9
140	280 210 225 225 250 250 300	93 53 69 68 85 68 88 88 102	4 2 2.1 2.1 3 3 4	1 040 422 524 565 702 759 811 1 170	1 340 723 957 940 1 220 1 030 1 290 1 570	1 200 1 500 1 500 1 400 1 400 1 300 1 300 1 100	1 600 2 000 2 000 1 900 1 900 1 700 1 700 1 500	22326RHR 23028RH 24028RH 23128RH 24128RH 22228RHR 23228RH 22328RH	22326RHRK 23028RHK 24028RHK30 23128RHK 24128RHK30 22228RHK 23228RHK 22328RHK	148 150 150 152 152 154 154 154	262 200 213 213 236 236 236 282	3 2 2 2 2.5 2.5 2.5 3	0.33 0.23 0.30 0.28 0.36 0.26 0.34 0.35	2.03 2.98 2.28 2.45 1.89 2.60 1.99 1.95	4.44 3.39 3.65 2.82 3.87 2.96 2.90	1.98 2.92 2.23 2.40 1.85 2.54 1.95 1.90	28.5 6.62 8.49 10.6 13.1 14.5 19.0 35.7	6.42 8.35 10.3 12.9 14.2 18.4 34.9
150	210 225 225 250 250	45 56 75 80 100	2 2.1 2.1 2.1 2.1	334 461 593 717 915	622 797 1 100 1 230 1 590	1 600 1 400 1 400 1 400 1 300 1 300	2 100 1 800 1 800 1 700 1 700	23930R 23030RH 24030RH 23130RH 24130RH	23930RK 23030RHK 24030RHK30 23130RHK 24130RHK30	160 162 162 162 162 162	200 213 213 238 238	2 2 2 2 2 2	0.20 0.22 0.30 0.30 0.30 0.38	3.44 3.04 2.23 2.24 1.77	5.12 4.53 3.32 3.34 2.64	3.36 2.97 2.18 2.19 1.73	5.09 8.01 10.6 16.4 19.9	4.93 7.77 10.4 15.9 19.6

d (150) ~ (180) mm

Koyo

00		0	JIE		DOIE	DOIE		DOIE	DOIE									
Bo		dimensi m)	ons		ad ratings	Limiting (min		Bearir	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) M	. 0.
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
150	270 270 320 320	73 96 108 108	3 3 4 4	865 959 1 230 1 290	1 200 1 540 1 600 1 740	1 200 1 200 1 200 1 200 1 200	1 600 1 600 1 500 1 500	22230RHR 23230RH 22330R 22330RHA	22230RHRK 23230RHK 22330RK 22330RHAK	164 164 168 168	256 256 302 302	2.5 2.5 3 3	0.25 0.34 0.38 0.35	2.69 1.96 1.78 1.93	4.00 2.93 2.64 2.87	2.63 1.92 1.74 1.88	18.9 24.5 43.6 40.3	18.5 23.8 42.7 39.4
160	220 240 240	45 60 80	2 2.1 2.1	341 531 679	649 924 1 270	1 500 1 300 1 300	2 000 1 700 1 700	23932R 23032RH 24032RH	23932RK 23032RHK 24032RHK30	170 172 172	210 228 228	2 2 2	0.19 0.22 0.30	3.60 3.01 2.24	5.37 4.48 3.34	3.52 2.94 2.19	5.37 9.74 12.9	5.20 9.44 12.7
	270 290 290	86 80 80	2.1 3 3	848 885 897	1 430 1 270 1 320	1 200 1 200 1 200	1 600 1 600 1 600	23132RH 22232R 22232RHA	23132RHK 22232RK 22232RHAK	172 174 174	258 276 276	2 2.5 2.5	0.30 0.28 0.27	2.22 2.40 2.49	3.30 3.57 3.71	2.17 2.35 2.44	20.8 23.4 21.9	20.2 22.9 21.4
	290 290 340 340	104 104 114 114	3 3 4 4	1 030 1 100 1 380 1 420	1 650 1 780 1 790 1 940	1 200 1 200 1 100 1 100	1 600 1 600 1 400 1 400	23232R 23232RHA 22332R 22332R	23232RK 23232RHAK 22332RK 22332RHAK	174 174 178 178	276 276 322 322	2.5 2.5 3 3	0.38 0.36 0.38 0.35	1.79 1.87 1.76 1.94	2.66 2.78 2.62 2.89	1.75 1.83 1.72 1.90	31.0 29.4 51.9 48.0	30.1 28.5 51.0 47.1
170	230 260 260	45 67 90	2 2.1 2.1	353 632 828	691 1 090 1 540	1 400 1 200 1 200	1 900 1 600 1 600	23934R 23034RH 24034RH	23934RK 23034RHK 24034RHK30	180 182 182	220 248 248	2 2 2	0.18 0.23 0.32	3.78 2.90 2.11	5.63 4.31 3.15	3.70 2.83 2.07	5.67 13.2 17.5	5.49 12.8 17.2
	280 280 310	88 109 86	2.1 2.1 4	916 1 050 952	1 550 1 820 1 390	1 100 1 600 1 100	1 500 1 200 1 500	23134RH 24134RR 22234R	23134RHK 24134RRK30 22234RK	182 182 188	268 268 292	2 2 3	0.29 0.37 0.29	2.30 1.80 2.29	3.43 2.68 3.41	2.25 1.76 2.24	21.9 27.2 29.0	21.2 26.8 28.4
	310 310 310 360	86 110 110 120	4 4 4 4	1 010 1 150 1 210 1 460	1 490 1 870 1 940 1 920	1 100 1 100 1 100 1 000	1 500 1 500 1 500 1 300	22234RHA 23234R 23234RHA 22334R	22234RHAK 23234RK 23234RHAK 22334RHAK	188 188 188 188	292 292 292 342	3 3 3 3	0.28 0.37 0.36 0.38	2.45 1.81 1.89 1.77	3.64 2.70 2.82 2.64	2.39 1.77 1.85 1.73	27.1 37.5 35.6 62.0	26.5 36.5 34.6 60.8
	360	120	4	1 590	2 200	1 000	1 300	22334RHA	22334RHAK	188	342	3	0.35	1.95	2.91	1.91	57.3	56.1
180	250 280	52 74	2 2.1	479 768	939 1 330	1 300 1 100	1 700 1 400	23936R 23036RH	23936RK 23036RHK	190 192	240 268	2 2	0.19 0.24	3.55 2.84	5.29 4.23	3.48 2.78	8.22 17.4	7.97 16.9

d (180) ~ (200) mm

Koyo

	-				bore			Dore	bole			<u> </u>						
Boi	undary (m	dimens i nm)	ions	Basic	load ratings (kN)	Limiting (min		Bearin	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) M	ass (kg)
d	D	В	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	d_{a} min.	D_{a} max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
180	280 300 300	100 96 96	2.1 3 3	933 1 000 1 060	1 710 1 800 1 790	1 600 1 100 1 100	1 200 1 500 1 500	24036RR 23136R 23136RHA	24036RRK30 23136RK 23136RHAK	192 194 194	268 286 286	2 2.5 2.5	0.34 0.33 0.31	2.00 2.04 2.19	2.98 3.04 3.25	1.96 2.00 2.14	23.4 28.4 26.5	23.0 27.5 25.6
	300 300 320	118 118 86	3 3 4	1 220 1 250 978	2 120 2 240 1 450	1 100 1 100 1 100	1 500 1 500 1 400	24136RR 24136RHA 22236R	24136RRK30 24136RHAK30 22236RK	194 194 198	286 286 302	2.5 2.5 3	0.38 0.38 0.28	1.78 1.79 2.37	2.65 2.66 3.53	1.74 1.75 2.32	34.4 31.8 30.5	33.9 31.2 29.8
	320 320 320	86 112 112	4 4 4	1 060 1 190 1 320	1 610 1 980 2 170	1 100 1 100 1 100	1 400 1 400 1 400	22236RHA 23236R 23236RHA	22236RHAK 23236RK 23236RHAK	198 198 198	302 302 302	3 3 3	0.26 0.37 0.34	2.55 1.84 1.97	3.80 2.74 2.93	2.50 1.80 1.92	28.5 39.8 37.7	27.8 38.6 36.5
	380 380	126 126	4 4	1 740 1 740	2 360 2 410	920 930	1 200 1 200	22336R 22336RHA	22336RK 22336RHAK	198 198	362 362	3 3	0.36 0.34	1.89 1.97	2.81 2.94	1.84 1.93	71.4 66.0	69.9 64.5
190	260 290 290	52 75 75	2 2.1 2.1	486 736 789	969 1 370 1 430	1 200 1 100 1 100	1 600 1 500 1 500	23938R 23038R 23038RHA	23938RK 23038RK 23038RHAK	200 202 202	250 278 278	2 2 2	0.18 0.25 0.25	3.69 2.67 2.75	5.50 3.97 4.10	3.61 2.61 2.69	8.40 18.8 17.2	8.10 18.2 16.6
	290 290 320	100 100 104	2.1 2.1 3	989 1 010 1 090	1 840 1 920 2 000	1 100 1 100 1 000	1 500 1 500 1 400	24038RR 24038RHA 23138R	24038RRK30 24038RHAK30 23138RK	202 202 204	278 278 306	2 2 2.5	0.33 0.32 0.34	2.06 2.14 1.96	3.07 3.19 2.92	2.02 2.09 1.92	24.5 22.4 35.5	24.1 22.0 34.4
	320 320 320	104 128 128	3 3 3	1 210 1 400 1 460	2 080 2 470 2 630	1 000 1 000 1 000	1 400 1 400 1 400	23138RHA 24138RR 24138RHA	23138RHAK 24138RRK30 24138RHAK30	204 204 204	306 306 306	2.5 2.5 2.5	0.31 0.39 0.38	2.14 1.74 1.76	3.19 2.59 2.63	2.10 1.70 1.72	33.2 43.0 40.1	32.1 42.4 39.5
	340 340 340	92 92 120	4 4 4	1 110 1 150 1 410	1 730 1 770 2 210	1 000 1 000 1 000	1 300 1 300 1 300	22238R 22238RHA 23238R	22238RK 22238RHAK 23238RK	208 208 208	322 322 322	3 3 3	0.29 0.27 0.36	2.29 2.52 1.87	3.41 3.76 2.79	2.24 2.46 1.83	37.4 34.9 47.4	36.6 34.1 46.0
	340 400 400	120 132 132	4 5 5	1 490 1 900 1 940	2 470 2 610 2 810	990 880 870	1 300 1 200 1 200	23238RHA 22338R 22338RHA	23238RHAK 22338RK 22338RHAK	208 212 212	322 378 378	3 4 4	0.35 0.38 0.34	1.94 1.79 1.99	2.89 2.66 2.97	1.90 1.75 1.95	44.9 84.1 77.7	43.5 82.4 76.0
200	280 310 310	60 82 82	2.1 2.1 2.1	601 890 940	1 190 1 670 1 680	1 100 1 000 1 100	1 500 1 400 1 400	23940R 23040R 23040RHA	23940RK 23040RK 23040RHAK	212 212 212	268 298 298	2 2 2	0.20 0.26 0.25	3.44 2.62 2.68	5.13 3.90 3.99	3.37 2.56 2.62	12.0 24.1 22.0	11.6 23.4 21.3

d (200) ~ (240) mm

Koyo

	10	5	010		bore	bolc		bore	5010									
Bo	undary (m	dimensi m)	ons	Basic	load ratings (kN)	Limiting (min		Beari	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors		ass (kg)
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
200	310 310 340	109 109 112	2.1 2.1 3	1 140 1 180 1 240	2 110 2 230 2 250	1 100 1 100 980	1 400 1 400 1 300	24040RR 24040RHA 23140R	24040RRK30 24040RHAK30 23140RK	212 212 214	298 298 326	2 2 2.5	0.33 0.33 0.34	2.02 2.06 1.97	3.00 3.07 2.94	1.97 2.02 1.93	31.2 28.5 43.7	30.7 28.0 42.4
	340 340 340	112 140 140	3 3 3	1 380 1 620 1 660	2 340 2 820 2 970	970 990 990	1 300 1 300 1 300	23140RHA 24140RR 24140RHA	23140RHAK 24140RRK30 24140RHAK30	214 214 214	326 326 326	2.5 2.5 2.5	0.32 0.40 0.41	2.10 1.68 1.65	3.13 2.49 2.46	2.06 1.64 1.62	40.8 53.3 49.5	39.5 52.5 48.7
	360 360 360	98 98 128	4 4 4	1 230 1 310 1 550	1 930 2 030 2 610	930 940 940	1 200 1 300 1 300	22240R 22240RHA 23240R	22240RK 22240RHAK 23240RK	218 218 218	342 342 342	3 3 3	0.30 0.27 0.38	2.26 2.50 1.79	3.36 3.72 2.67	2.21 2.45 1.75	45.0 42.0 58.1	44.0 41.0 56.4
	360 420 420	128 138 138	4 5 5	1 660 2 010 2 060	2 780 2 750 2 920	930 830 820	1 200 1 100 1 100	23240RHA 22340R 22340RHA	23240RHAK 22340RK 22340RHAK	218 222 222	342 398 398	3 4 4	0.35 0.38 0.34	1.92 1.80 1.99	2.86 2.68 2.97	1.88 1.76 1.95	55.1 95.4 88.1	53.4 93.5 86.2
220	300 340 340	60 90 90	2.1 3 3	634 984 1 090	1 300 1 890 1 950	1 000 940 940	1 400 1 300 1 200	23944R 23044R 23044RHA	23944RK 23044RK 23044RHAK	232 234 234	288 326 326	2 2.5 2.5	0.18 0.26 0.25	3.70 2.55 2.69	5.50 3.80 4.01	3.61 2.50 2.63	13.0 31.5 28.8	12.6 30.6 27.9
	340 340 370	118 118 120	3 3 4	1 320 1 380 1 440	2 480 2 630 2 700	950 950 880	1 300 1 300 1 200	24044RR 24044RHA 23144R	24044RRK30 24044RHAK30 23144RK	234 234 238	326 326 352	2.5 2.5 3	0.33 0.33 0.34	2.04 2.08 2.00	3.04 3.09 2.98	2.00 2.03 1.96	40.5 37.0 54.8	39.8 36.4 53.2
	370 370 370	120 150 150	4 4 4	1 590 1 880 1 920	2 790 3 390 3 550	870 880 880	1 200 1 200 1 200	23144RHA 24144RR 24144RHA	23144RHAK 24144RRK30 24144RHAK30	238 238 238	352 352 352	3 3 3	0.31 0.39 0.40	2.15 1.71 1.69	3.20 2.55 2.52	2.10 1.67 1.65	51.2 67.3 62.0	49.6 66.2 61.0
	400 400 400	108 108 144	4 4 4	1 560 1 590 1 880	2 400 2 440 3 200	820 820 830	1 100 1 100 1 100	22244R 22244RHA 23244R	22244RK 22244RHAK 23244RK	238 238 238	382 382 382	3 3 3	0.28 0.27 0.39	2.40 2.52 1.71	3.57 3.76 2.55	2.34 2.47 1.68	63.0 58.8 81.6	61.7 57.5 79.2
	400 460 460	144 145 145	4 5 5	2 020 2 380 2 370	3 350 3 380 3 470	810 720 730	1 100 960 970	23244RHA 22344R 22344RHA	23244RHAK 22344RK 22344RHAK	238 242 242	382 438 438	3 4 4	0.36 0.34 0.32	1.89 2.00 2.08	2.81 2.99 3.09	1.85 1.96 2.03	77.4 124 115	75.0 122 113
240	320	60	2.1	651	1 380	940	1 300	23948R	23948RK	252	308	2	0.17	3.95	5.88	3.86	14.0	13.5

d (240) ~ 260 mm

Koyo

50	10	Ũ	010		5010	5010		5010	5010									
Bo		dimensi 1m)	ions		ad ratings	Limiting (min		Bearir	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	octors	(Refer.) M	ass (kg)
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
240	360 360 360	92 92 118	3 3 3	1 100 1 170 1 390	2 170 2 180 2 710	860 860 870	1 100 1 100 1 200	23048R 23048RHA 24048RR	23048RK 23048RHAK 24048RRK30	254 254 254	346 346 346	2.5 2.5 2.5	0.25 0.24 0.31	2.71 2.83 2.20	4.04 4.21 3.27	2.65 2.77 2.15	34.9 31.9 43.5	33.8 30.9 42.9
	360 400 400	118 128 128	3 4 4	1 430 1 630 1 810	2 840 3 080 3 200	870 790 790	1 200 1 100 1 000	24048RHA 23148R 23148RHA	24048RHAK30 23148RK 23148RHAK	254 258 258	346 382 382	2.5 3 3	0.30 0.33 0.31	2.24 2.05 2.19	3.33 3.05 3.25	2.19 2.00 2.14	39.6 67.6 63.1	39.0 65.6 61.1
	400 400 440	160 160 120	4 4 4	2 100 2 200 1 920	3 850 4 130 2 940	800 800 730	1 100 1 100 970	24148RR 24148RHA 22248R	24148RRK30 24148RHAK30 22248RK	258 258 258	382 382 422	3 3 3	0.39 0.39 0.29	1.75 1.72 2.35	2.60 2.56 3.50	1.71 1.68 2.30	82.7 76.6 85.0	81.4 75.3 83.2
	440 440 440 500	120 160 160 155	4 4 5	1 920 2 340 2 460 2 610	2 990 3 990 4 130 4 020	730 730 730 650	970 970 970 870	22248RHA 23248R 23248RHA 22348R	22248RHAK 23248RK 23248RHAK 22348RK	258 258 258 258 262	422 422 422 478	3 3 3 4	0.27 0.39 0.36 0.35	2.49 1.73 1.87 1.94	3.71 2.57 2.78 2.89	2.43 1.69 1.83 1.90	79.4 110 104 157	77.6 107 101 154
	500	155	5	2 720	4 020 3 990	650	870	22348R 22348RHA	22348RHAK	262	478	4	0.35	2.12	3.16	2.07	145	142
260	360 400 400	75 104 104	2.1 4 4	914 1 330 1 470	1 880 2 570 2 720	820 760 760	1 100 1 000 1 000	23952R 23052R 23052RHA	23952RK 23052RK 23052RHAK	272 278 278	348 382 382	2 3 3	0.19 0.25 0.25	3.54 2.65 2.75	5.27 3.95 4.10	3.46 2.59 2.69	24.0 50.7 46.3	23.3 49.3 44.9
	400 400 440	140 140 144	4 4 4	1 810 1 860 2 100	3 570 3 670 3 860	770 770 710	1 000 1 000 940	24052RR 24052RHA 23152R	24052RRK30 24052RHAK30 23152RK	278 278 278	382 382 422	3 3 3	0.33 0.33 0.33	2.02 2.06 2.03	3.01 3.07 3.02	1.98 2.02 1.98	66.3 60.3 93.6	65.2 59.4 90.8
	440 440 440	144 180 180	4 4 4	2 220 2 590 2 650	4 000 4 700 4 950	700 720 720	930 950 950	23152RHA 24152RR 24152RHA	23152RHAK 24152RRK30 24152RHAK30	278 278 278	422 422 422	3 3 3	0.32 0.40 0.41	2.12 1.69 1.66	3.16 2.51 2.47	2.08 1.65 1.62	87.4 114 106	84.6 112 105
	480 480 480	130 130 174	5 5 5	2 240 2 230 2 750	3 460 3 430 4 640	650 650 640	870 870 860	22252R 22252RHA 23252R	22252RK 22252RHAK 23252RK	282 282 282	458 458 458	4 4 4	0.28 0.27 0.40	2.40 2.50 1.69	3.57 3.72 2.51	2.35 2.44 1.65	110 103 144	108 101 140
	480 540 540	174 165 165	5 6 6	2 870 2 830 3 120	4 900 4 380 4 620	650 590 580	860 780 780	23252RHA 22352R 22352RHA	23252RHAK 22352RK 22352RHAK	282 288 288	458 512 512	4 5 5	0.36 0.35 0.31	1.87 1.94 2.15	2.78 2.89 3.21	1.83 1.90 2.11	137 196 181	133 192 177

d **280** ~ **300 mm**

Koyo

	10		010		bore	bolc		bore	bore									
Во		dimens nm)	ions		oad ratings (kN)	(mi	n^{-1}	Bearir	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors		ass (kg)
d	D	В	r min.	Cr	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
280	380 420 420	75 106 106	2.1 4 4	928 1 430 1 550	1 960 2 860 2 950	760 710 700	1 000 950 940	23956R 23056R 23056RHA	23956RK 23056RK 23056RHAK	292 298 298	368 402 402	2 3 3	0.18 0.25 0.24	3.74 2.74 2.87	5.57 4.08 4.27	3.66 2.68 2.80	26.0 54.5 49.8	25.2 52.9 48.2
	420 420 460	140 140 146	4 4 5	1 890 1 960 2 140	3 780 4 000 4 280	710 710 660	950 950 880	24056RR 24056RHA 23156R	24056RRK30 24056RHAK30 23156RK	298 298 302	402 402 438	3 3 4	0.31 0.31 0.33	2.15 2.20 2.04	3.21 3.28 3.03	2.11 2.15 1.99	70.2 64.0 100	69.1 62.9 96.9
	460 460 460	146 180 180	5 5 5	2 340 2 700 2 740	4 290 5 140 5 240	650 660 660	870 880 880	23156RHA 24156RR 24156RHA	23156RHAK 24156RRK30 24156RHAK30	302 302 302	438 438 438	4 4 4	0.30 0.38 0.38	2.22 1.79 1.76	3.30 2.67 2.62	2.17 1.75 1.72	93.4 122 113	90.3 120 112
	500 500 500	130 130 176	5 5 5	2 100 2 320 2 690	3 380 3 670 4 910	610 610 610	810 810 820	22256R 22256RHA 23256R	22256RK 22256RHAK 23256RK	302 302 302	478 478 478	4 4 4	0.28 0.26 0.37	2.42 2.64 1.83	3.60 3.93 2.72	2.37 2.58 1.79	114 106 153	112 104 149
	500 580 580	176 175 175	5 6 6	3 010 3 150 3 510	5 300 4 910 5 260	600 530 530	800 710 700	23256RHA 22356R 22356RHA	23256RHAK 22356RK 22356RHAK	302 308 308	478 552 552	4 5 5	0.35 0.34 0.31	1.95 1.98 2.19	2.91 2.95 3.25	1.91 1.93 2.14	145 229 212	141 225 208
300	420 460 460	90 118 118	3 4 4	1 280 1 750 1 940	2 610 3 480 3 700	680 630 630	910 840 840	23960R 23060R 23060RHA	23960RK 23060RK 23060RHAK	314 318 318	406 442 442	2.5 3 3	0.20 0.25 0.24	3.42 2.69 2.79	5.09 4.00 4.16	3.34 2.63 2.73	40.0 75.8 68.9	38.8 73.7 66.8
	460 460 500	160 160 160	4 4 5	2 350 2 420 2 490	4 690 4 910 4 850	640 640 590	850 850 790	24060RR 24060RHA 23160R	24060RRK30 24060RHAK30 23160RK	318 318 322	442 442 478	3 3 4	0.33 0.32 0.33	2.04 2.09 2.02	3.04 3.11 3.01	2.00 2.04 1.98	99.5 90.7 132	97.9 89.1 128
	500 500 500	160 200 200	5 5 5	2 730 3 320 3 320	4 970 6 280 6 420	580 590 590	780 790 790	23160RHA 24160RR 24160RHA	23160RHAK 24160RRK30 24160RHAK30	322 322 322	478 478 478	4 4 4	0.31 0.40 0.39	2.18 1.67 1.72	3.25 2.49 2.56	2.13 1.63 1.68	123 162 150	119 160 148
	540 540 540	140 140 192	5 5 5	2 690 2 650 3 430	4 330 4 360 5 910	550 550 540	740 740 720	22260R 22260RHA 23260R	22260RK 22260RHAK 23260RK	322 322 322	518 518 518	4 4 4	0.27 0.26 0.37	2.48 2.62 1.83	3.69 3.90 2.72	2.43 2.56 1.79	145 135 197	142 132 192
	540 620	192 185	5 7.5	3 540 3 910	6 310 5 430	540 470	720 630	23260RHA 22360R	23260RHAK 22360RK	322 336	518 584	4 6	0.35 0.32	1.93 2.09	2.88 3.10	1.89 2.04	187 289	182 284

d 320 ~ (360) mm

Koyo

		10				bore	boic			5010									
d D B rm. Cz. Cub. Oil ID. Cymmania Inspectatore rm.	Bo			ions					Bearir	ng No.	Moun		nsions		Axial	load fa	ctors	(Refer.) M	ass (kg)
480 121 4 1830 3740 590 7790 23064RH 23064RK 333 462 3 0.24 2.76 4.11 2.70 71.5 72.1 480 121 4 1980 3650 590 7790 23064RHA 23064RHA 338 462 3 0.24 2.87 4.27 2.80 71.5 72.1 480 160 4 2400 490 500 7790 24064RHA 24064RK30 338 462 3 0.31 2.21 3.17 2.06 71.7 76 5 2900 5700 700 23164RHA 24064RK30 342 518 4 0.33 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 3.04 2.00 171 166 160 15 2.730 4.540 400 6.60 2.21 4.11 2.76 4.11 2.76 4.11 2.70 171 166 19	d	D	В	-	Cr	$C_{0\mathrm{r}}$		Oil lub.	Cylindrical bore	Tapered bore				е	Y_1	Y_2	Y_0		Tapered bore
480 121 4 1980 3 850 590 780 23064RHA 23064RHAK 338 462 3 0.24 2.87 4.27 2.80 74.5 72.1 480 160 4 2400 4920 590 790 24064RHA 24064RHA 24064RHA 23164RK 338 462 3 0.31 216 3.22 2.11 105 103 540 176 5 3220 5960 530 700 23164RHA 23164RHA 23164RHA 23164RHA 23164RHA 23164RHA 23164RHA 24164RHA 342 518 4 0.32 2.13 3.17 2.08 105 170 2.52 1.66 199 196 196 150 5 3760 7190 530 710 23264R 23264RK 342 558 4 0.38 1.76 2.61 1.72 2.41 2.49 2.42 2.43 1.76 2.61 1.76 2.62 <t< th=""><th>320</th><th>440</th><th>90</th><th>3</th><th>1 330</th><th>2 870</th><th>630</th><th>840</th><th>23964R</th><th>23964RK</th><th>334</th><th>426</th><th>2.5</th><th>0.19</th><th>3.61</th><th>5.38</th><th>3.53</th><th>43.0</th><th>41.7</th></t<>	320	440	90	3	1 330	2 870	630	840	23964R	23964RK	334	426	2.5	0.19	3.61	5.38	3.53	43.0	41.7
480 160 4 2400 490 590 790 24064RR 24064RHA 24064RHA 24064RHA 		480	121	4	1 830	3 740	590	790	23064R	23064RK	338	462	3	0.24	2.76	4.11	2.70	81.2	78.8
480 160 4 2510 5200 590 790 23064RHA 24064RHAK3O 338 462 3 0.31 2.21 3.29 2.16 93.4 91.4 540 176 5 2300 5700 530 700 23164RHAK 23164RHAK 342 518 4 0.33 2.21 3.29 2.16 93.4 91.4 540 218 5 3700 6950 530 710 23164RHAK 23164RHAK 342 518 4 0.33 2.21 3.9 2.56 1.60 155 540 218 5 3700 7190 530 710 22164RR 23264RK 342 518 4 0.38 1.76 2.25 1.77 249 242 580 208 5 3630 6550 500 670 23264R 23264RK 342 558 4 0.28 1.86 236 249 242 588		480	121	4	1 980	3 850	590	780	23064RHA	23064RHAK	338	462	3	0.24	2.87	4.27	2.80	74.5	72.1
540 176 5 2900 5700 530 700 23164Rk 23164Rk 342 518 4 0.33 2.04 3.04 2.00 171 166 540 176 5 3220 5960 530 710 23164RhA 23164RhA 342 518 4 0.33 1.72 2.06 160 155 540 218 5 3760 7190 23164RhA 24164RhA 24164RhA 342 518 4 0.39 1.72 2.52 1.66 199 196 540 218 5 3760 650 670 23264R 22264Rk 342 558 4 0.38 1.76 2.62 1.72 249 242 540 133 5 2130 4330 550 710 23068R 23968R 364 446 2.5 0.18 3.82 5.69 3.74 45.0 43.6 520 133 5		480	160	4	2 400	4 920	590	790	24064RR	24064RRK30	338	462	3	0.31	2.16	3.22	2.11	105	103
540 176 5 3 220 5 960 530 700 23164RHA 24164RR 23164RHA 24164RR 23164RHA 24164RRA30 342 518 4 0.32 2.13 3.17 2.08 160 155 540 218 5 3700 6950 530 710 24164RR 24164RR 24164RRA30 342 518 4 0.39 1.72 2.56 1.68 208 205 580 150 5 2730 4 540 490 660 22264R 22264RK 23264RK 342 558 4 0.38 1.76 2.62 1.72 2.49 242 580 208 5 4010 7.03 490 650 23264R 23264RK 342 558 4 0.38 1.76 2.62 1.60 1.95 236 236 230 23068RK 322 568 4 0.22 2.69 4.00 2.74 95.7 95.7 520 130 5		480	160	4	2 510	5 230	590	790	24064RHA	24064RHAK30	338	462	3	0.31	2.21	3.29	2.16	93.4	91.4
540 218 5 3730 6 950 530 710 24164RR 24164RRK30 342 518 4 0.39 1.72 2.56 1.68 208 205 580 150 5 2730 4 540 490 660 22264R 23264RK 342 558 4 0.28 2.41 3.59 2.35 1.75 1.75 1.74 2.36 2.264RK 3.42 558 4 0.28 2.41 3.59 2.35 1.75		540	176	5	2 900	5 700	530	700	23164R	23164RK	342	518	4	0.33	2.04	3.04	2.00	171	166
540 218 5 3760 7190 530 710 24164RHA 24164RHA30 342 518 4 0.40 1.70 2.52 1.66 199 196 580 150 5 2730 4540 490 660 22264R 23264RLA 23264RLA 342 558 4 0.38 1.76 2.62 1.72 249 242 580 208 5 4010 7030 490 650 23264RLA 23264RLA 342 558 4 0.38 1.96 2.62 1.72 249 242 540 460 90 3 1350 2.980 590 790 23968R 23968RK 362 446 2.5 0.18 3.82 5.69 3.74 45.0 43.0 43.0 53.0 710 23068RLA 23068RK 362 498 4 0.32 2.01 3.42 5.0 1.8 2.74 98.7 95.7		540	176	5	3 220	5 960	530	700	23164RHA	23164RHAK	342	518	4	0.32	2.13	3.17	2.08	160	155
580 150 5 2730 4 540 490 660 22264R 23264RK 23264RK 342 558 4 0.28 2.41 3.59 2.35 175 171 340 400 90 3 1350 2 980 590 790 23968R 23264RHA 23264RHA 23264RHA 23264RHA 354 446 2.5 0.18 3.82 5.69 3.74 45.0 43.6 520 133 5 2 130 4 330 530 710 23068R 23068RK 362 498 4 0.25 2.69 4.00 2.63 108 105 520 133 5 2 300 530 710 24068RK 24068RKA 362 498 4 0.23 2.06 3.00 2.01 142 140 520 180 5 3040 630 530 710 24068RKA30 362 498 4 0.32 2.01 142 <th></th> <th>540</th> <th>218</th> <th>5</th> <th>3 730</th> <th>6 950</th> <th>530</th> <th>710</th> <th>24164RR</th> <th>24164RRK30</th> <th>342</th> <th>518</th> <th>4</th> <th>0.39</th> <th>1.72</th> <th>2.56</th> <th>1.68</th> <th>208</th> <th>205</th>		540	218	5	3 730	6 950	530	710	24164RR	24164RRK30	342	518	4	0.39	1.72	2.56	1.68	208	205
580 208 5 3 630 6 550 700 490 660 23264RL 23264RLA 342 558 4 0.38 1.76 2.62 1.72 249 242 229 340 460 90 3 1 350 2 980 590 790 23968R 23068RL 364 446 2.5 0.18 3.82 5.69 3.74 45.0 43.6 520 133 5 2 300 470 530 710 23068RL 23068RLA 362 498 4 0.25 2.69 4.01 2.67 98.7 95.7 520 133 5 2 304 640 23068RLA 24068RLAS 362 498 4 0.24 2.80 4.118 2.16 110 128 520 180 5 3040 6300 530 710 24068RLAS 23168RLA 362 498 4 0.32 2.11 3.14 2.06 3.06		540	218	5	3 760	7 190	530	710	24164RHA	24164RHAK30	342	518	4	0.40	1.70	2.52	1.66	199	196
580 208 5 4010 7 030 490 650 23264RHA 23264RHAK 342 558 4 0.36 1.90 2.83 1.86 236 229 340 460 90 3 1350 2.980 590 790 23968R 23968RK 364 446 2.5 0.18 3.82 5.69 3.74 45.0 43.6 520 133 5 230 4470 530 710 23068R 23068RK 362 498 4 0.25 2.69 4.00 2.63 108 105 520 180 5 2920 5970 530 710 24068RRA 24068RAK30 362 498 4 0.33 2.06 3.06 2.01 142 140 520 180 5 3040 630 480 640 23168RA 23168RK 362 498 4 0.32 2.11 3.14 2.06 130 <td< th=""><th></th><th>580</th><th>150</th><th>5</th><th>2 730</th><th>4 540</th><th>490</th><th>660</th><th>22264R</th><th>22264RK</th><th>342</th><th>558</th><th>4</th><th>0.28</th><th>2.41</th><th>3.59</th><th>2.35</th><th>175</th><th>171</th></td<>		580	150	5	2 730	4 540	490	660	22264R	22264RK	342	558	4	0.28	2.41	3.59	2.35	175	171
340 460 90 3 1 350 2 90 590 790 23968R 23968R 23968RK 354 446 2.5 0.18 3.82 5.69 3.74 45.0 43.0 5.0 710 23068RK 23068RK 364 446 2.5 0.18 3.82 5.69 3.74 45.0 43.0 5.0 710 23068RK 23068RK 362 498 4 0.25 2.69 4.00 2.40 108 105 520 180 5 2.920 5.970 530 710 24068RR 23068RHA 23068RHAK 362 498 4 0.32 2.11 3.14 2.06 130 128 520 180 5 3.240 6.330 480 640 23168RR 23168RK 362 498 4 0.32 2.11 3.14 2.06 120 120 580 190 5 3.680 6720 480 640 2316		580	208	5	3 630	6 550	500	670	23264R	23264RK	342	558	4	0.38	1.76	2.62	1.72	249	242
520 133 5 2130 4330 530 710 23068R 23068RK 23068RK 362 498 4 0.25 2.69 4.00 2.63 108 105 520 133 5 2300 4470 530 710 23068RHA 23068RKA 362 498 4 0.25 2.69 4.00 2.63 108 105 520 180 5 2920 5 970 530 710 24068RR 24068RR430 362 498 4 0.33 2.06 3.06 2.01 142 140 520 180 5 3 280 6 430 480 640 23168R 23168RK 23168RK 362 588 4 0.32 2.11 3.14 2.06 130 128 580 190 5 3 680 6 720 480 640 23168RHA 23168RKA 23168RK30 362 558 4 0.41 164 2.45 1.61 2.70 266 580 243 5 4 540 8 8		580	208	5	4 010	7 030	490	650	23264RHA	23264RHAK	342	558	4	0.36	1.90	2.83	1.86	236	229
520 133 5 230 4470 530 710 23068RHA 23068RHAK 362 498 4 0.24 2.80 4.18 2.74 98.7 95.7 520 180 5 2920 5970 530 710 24068RR 24068RRA30 362 498 4 0.33 2.06 3.06 2.01 142 140 520 180 5 3040 6330 530 710 24068RR 23168R 24068RRA30 362 498 4 0.33 2.06 3.06 2.01 142 140 580 190 5 3680 6720 480 640 23168R 23168RRA 23168RHAK 362 58 4 0.32 2.11 3.14 2.06 130 128 580 190 5 3680 6720 480 640 23168RHA 23168RHAK30 362 58 4 0.41 1.64 2.45 1.61 270 266 580 243 5 4440 8400 490 </th <th>340</th> <th>460</th> <th>90</th> <th>3</th> <th>1 350</th> <th>2 980</th> <th>590</th> <th>790</th> <th>23968R</th> <th>23968RK</th> <th>354</th> <th>446</th> <th>2.5</th> <th>0.18</th> <th>3.82</th> <th>5.69</th> <th>3.74</th> <th>45.0</th> <th>43.6</th>	340	460	90	3	1 350	2 980	590	790	23968R	23968RK	354	446	2.5	0.18	3.82	5.69	3.74	45.0	43.6
520 180 5 2 920 5 970 530 710 240688R 240688RK30 362 498 4 0.33 2.06 3.06 2.01 142 </th <th></th> <th>520</th> <th>133</th> <th>5</th> <th>2 130</th> <th>4 330</th> <th>530</th> <th>710</th> <th>23068R</th> <th>23068RK</th> <th>362</th> <th>498</th> <th>4</th> <th>0.25</th> <th>2.69</th> <th>4.00</th> <th>2.63</th> <th>108</th> <th>105</th>		520	133	5	2 130	4 330	530	710	23068R	23068RK	362	498	4	0.25	2.69	4.00	2.63	108	105
520 180 5 3 040 6 330 530 710 24068RHA 24068RHAK3O 362 498 4 0.32 2.11 3.14 2.06 130 128 580 190 5 3 280 6 430 480 640 23168R 23168R 23168RK 362 558 4 0.32 2.11 3.14 2.06 120 126 210 580 190 5 3 680 6 720 480 640 23168RHA 23168RHA 23168RHAK 362 558 4 0.32 2.11 3.14 2.06 202 196 580 243 5 4 440 8 400 490 650 24168RR 24168RRA 24168RHASO 362 558 4 0.41 1.64 2.45 1.61 270 266 580 243 5 4 440 8 400 490 650 22268R 23268RK 368 592 5 0.38 1.77 2.63 1.73 306 297 620 224 6 <		520	133	5	2 330	4 470	530	710	23068RHA	23068RHAK	362	498	4	0.24	2.80	4.18	2.74	98.7	95.7
580 190 5 3 280 6 430 480 640 23168R 23168RK 362 558 4 0.34 1.97 2.93 1.93 216 210 580 190 5 3 680 6 720 480 640 23168RHA 23168RHA 23168RHAK 362 558 4 0.32 2.11 3.14 2.06 202 196 580 243 5 4 440 8 400 490 650 24168RR 24168RRA 23168RHA 23168RHA 362 558 4 0.41 1.64 2.45 1.61 270 266 580 243 5 4 540 8 810 440 590 22268R 24168RRA30 362 558 4 0.42 1.61 2.39 1.57 259 255 620 165 6 3 550 5 430 440 590 22268RK 23268RK 23268RK 368 592 5 0.38 1.77 2.63 1.73 306 297 620 224 6		520	180	5	2 920	5 970	530	710	24068RR	24068RRK30	362	498	4	0.33	2.06	3.06	2.01	142	140
580 190 5 3 680 6 720 480 640 23168RHA 23168RHA 23168RHAK 362 558 4 0.32 2.11 3.14 2.06 202 196 580 243 5 4400 8400 490 650 24168RR 24168RR 24168RRK30 362 558 4 0.41 1.64 2.45 1.61 2.70 266 580 243 5 4540 8810 440 590 22168R 24168RHA 24168RRK30 362 558 4 0.42 1.61 2.39 1.57 259 255 620 165 6 3 550 5 430 440 590 22268R 23268RK 23268RK 368 592 5 0.38 1.77 2.63 1.73 306 297 281 620 224 6 4500 300 440 590 23268R 23268RK 23268RK 23268RK 23268RK 368 592 5 0.36 1.88 2.81 1.84 290 281 <th></th> <th>520</th> <th>180</th> <th>5</th> <th>3 040</th> <th>6 330</th> <th>530</th> <th>710</th> <th>24068RHA</th> <th>24068RHAK30</th> <th>362</th> <th>498</th> <th>4</th> <th>0.32</th> <th>2.11</th> <th>3.14</th> <th>2.06</th> <th>130</th> <th>128</th>		520	180	5	3 040	6 330	530	710	24068RHA	24068RHAK30	362	498	4	0.32	2.11	3.14	2.06	130	128
580 243 5 4 440 8 400 490 650 24168RR 24168RRK30 362 558 4 0.41 1.64 2.45 1.61 270 266 620 165 6 3 550 5 430 440 590 22268R 23268R 23268RK 368 592 5 0.28 2.43 3.61 2.37 221 216 620 224 6 4500 7500 450 600 23268R 23268RK 23072RK 23072RK 23072RK 23072RK 23072RK 23072RK 23072RK 23072RK 382 518		580	190	5	3 280	6 430	480	640	23168R	23168RK	362	558	4	0.34	1.97	2.93	1.93	216	210
580 243 5 4 540 8 810 490 650 24168RHA 24168RHAK30 362 558 4 0.42 1.61 2.39 1.57 259 255 620 165 6 3 550 5 430 440 590 22268R 23268R 23268RK 368 592 5 0.38 1.77 2.63 1.73 306 297 620 224 6 4500 8030 440 590 23268R 23268RK 23268RK 23268RK 23268RK 23268RK 23268RK 23268RHAK 23268RKA 23268RHAK 23268RHAK 23268RHAK 23268RK 23268RK 23268RHA 23267R 23972R 23972R 23972R 23072RHA 23072RHA 23072RHA 382 518 4 0.23 2.92 4.34 2.85 105 101 540 180 5 3030 6 300		580	190	5	3 680	6 720	480	640	23168RHA	23168RHAK	362	558	4	0.32	2.11	3.14	2.06	202	196
620 165 6 3 550 5 430 440 590 22268R 23268R 23268RK 23272RK 23972R 23972RK 23972RK 23072RK 368 550 600 550 600 23072RK 23072RK 23072RK 382 518 4<		580			4 440		490						4	0.41				1	
620 224 6 4 090 7 560 450 600 23268R 23268RK 23268RK 368 592 5 0.38 1.77 2.63 1.73 306 297 281 360 480 90 3 1 360 3 060 550 730 23972R 23972R 23972RK 23072RK 2		580	243	5	4 540	8 810	490	650	24168RHA	24168RHAK30	362	558	4	0.42	1.61	2.39	1.57	259	255
620 224 6 4 550 8 030 440 590 23268RHA 23268RHAK 368 592 5 0.36 1.88 2.81 1.84 290 281 360 480 90 3 1 360 3 060 550 730 23972R 23972R 23972RK 23072RK 382 518 4 0.24 2.76 4.11 2.70 115 111 540 134 5 2 280 4 800 500 660 23072R 23072RK 23072RK 382 518 4 0.24 2.76 4.11 2.70 115 111 540 134 5 2 420 4 770 500 660 23072R 23072RK 23072RK 23072RK 23072RK 23072RK 23072RK 23072RK 23072RK 382 518 4 0.23 2.92 4.34 2.85 105 101 540 180 5 3 030 6 300 500 660 24072RR 24072RRK30 382 518 4 0.31 2.15 <		620	165	6	3 550	5 430	440	590	22268R	22268RK	368	592	5	0.28	2.43	3.61	2.37	221	216
360 480 90 3 1 360 3 060 550 730 23972R 23972R 23972RK 374 466 2.5 0.17 3.95 5.88 3.86 46.5 45.0 540 134 5 2 280 4 800 500 660 23072R 23072RK 23072RK 382 518 4 0.24 2.76 4.11 2.70 115 111 540 134 5 2 420 4 770 500 660 23072RHA 23072RHAK 382 518 4 0.23 2.92 4.34 2.85 105 101 540 180 5 3 030 6 300 500 660 24072RR 24072RRK30 382 518 4 0.31 2.15 3.21 2.11 149 147		620	224	6	4 090	7 560	450				368		5	0.38	1.77	2.63	1.73	306	297
540 134 5 2 280 4 800 500 660 23072R 23072RK 382 518 4 0.24 2.76 4.11 2.70 115 111 540 134 5 2 420 4 770 500 660 23072RHA 23072RHAK 382 518 4 0.24 2.76 4.11 2.70 115 111 540 180 5 3 030 6 300 500 660 23072RR 24072RRK30 382 518 4 0.23 2.92 4.34 2.85 105 101 540 180 5 3 030 6 300 500 660 24072RR 24072RRK30 382 518 4 0.31 2.15 3.21 2.11 149 147		620	224	6	4 550	8 030	440	590	23268RHA	23268RHAK	368	592	5	0.36	1.88	2.81	1.84	290	281
540 134 5 2 420 4 770 500 660 23072RHA 23072RHAK 382 518 4 0.23 2.92 4.34 2.85 105 101 540 180 5 3 030 6 300 500 660 24072RR 24072RRK30 382 518 4 0.23 2.92 4.34 2.85 105 101	360	480	90	3	1 360	3 060	550	730	23972R	23972RK	374	466	2.5	0.17	3.95	5.88	3.86	46.5	45.0
540 180 5 3 030 6 300 500 660 24072RR 24072RRK30 382 518 4 0.31 2.15 3.21 2.11 149 147		540	134	5	2 280	4 800	500	660	23072R	23072RK	382	518	4	0.24	2.76	4.11	2.70	115	111
		540	134	5	2 420	4 770	500	660	23072RHA	23072RHAK	382	518	4	0.23	2.92	4.34	2.85	105	101
540 180 5 3 120 6 620 500 660 24072RHA 24072RHAK30 382 518 4 0.30 2.22 3.30 2.17 135 133		540	180	5	3 030	6 300	500	660	24072RR	24072RRK30	382	518	4	0.31	2.15	3.21	2.11	149	147
		540	180	5	3 120	6 620	500	660	24072RHA	24072RHAK30	382	518	4	0.30	2.22	3.30	2.17	135	133

d (360) ~ (400) mm

Koyo

		Ũ	010		5010	5010		5010	5010									
Bo	-	dimens i nm)	ons		oad ratings (kN)	Limiting (min		Bearir	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors		ass (kg)
d	D	В	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
360	600 600 600	192 192 243	5 5 5	3 770 3 850 4 080	7 040 7 210 7 690	440 450 450	590 590 600	23172R 23172RHA 24172R	23172RK 23172RHAK 24172RK30	382 382 382	578 578 578	4 4 4	0.33 0.31 0.39	2.07 2.19 1.74	3.09 3.25 2.59	2.03 2.14 1.70	228 213 287	221 206 283
	600 650 650 650	243 170 232 232	5 6 6	4 600 3 770 4 850 4 960	9 180 5 830 8 810 9 050	460 410 410 410	610 550 540 550	24172RHA 22272R 23272R 23272RHA	24172RHAK30 22272RK 23272RK 23272RHAK	382 388 388 388	578 622 622 622	4 5 5 5	0.40 0.27 0.37 0.35	1.69 2.47 1.83 1.92	2.51 3.68 2.72 2.85	1.65 2.42 1.79 1.87	274 248 346 328	270 243 336 318
380	520 560 560	106 135 135	4 5 5	1 780 2 320 2 520	3 940 4 970 5 080	500 470 460	660 630 620	23976R 23076R 23076RHA	23976RK 23076RK 23076RHAK	398 402 402	502 538 538	3 4 4	0.19 0.24 0.22	3.62 2.79 3.03	5.39 4.16 4.51	3.54 2.73 2.96	70.0 122 112	67.9 118 108
	560 560 620	180 180 194	5 5 5	3 110 3 190 3 590	6 590 6 910 7 320	470 470 420	620 620 560	24076RR 24076RHA 23176R	24076RRK30 24076RHAK30 23176RK	402 402 402	538 538 598	4 4 4	0.30 0.29 0.31	2.26 2.32 2.18	3.36 3.45 3.24	2.21 2.27 2.13	156 142 240	154 139 233
	620 620 620	194 243 243	5 5 5	4 000 4 220 4 830	7 700 8 220 9 840	420 430 420	560 570 560	23176RHA 24176R 24176RHA	23176RHAK 24176RK30 24176RHAK30	402 402 402	598 598 598	4 4 4	0.30 0.38 0.38	2.26 1.78 1.78	3.36 2.65 2.65	2.21 1.74 1.74	224 302 288	217 297 283
	680 680	240 240	6 6	5 200 5 320	9 500 9 760	380 380	500 510	23276R 23276RHA	23276RK 23276RHAK	408 408	652 652	5 5	0.36 0.35	1.85 1.94	2.76 2.89	1.81 1.90	386 365	375 354
400	540 600 600	106 148 148	4 5 5	1 880 2 710 2 930	4 300 5 790 5 860	470 420 420	620 560 560	23980R 23080R 23080RHA	23980RK 23080RK 23080RHAK	418 422 422	522 578 578	3 4 4	0.18 0.24 0.23	3.76 2.84 2.94	5.59 4.23 4.37	3.67 2.78 2.87	73.0 155 142	70.7 151 138
	600 600 650	200 200 200	5 5 6	3 830 3 780 4 110	8 110 8 140 7 780	430 420 390	570 570 520	24080R 24080RHA 23180R	24080RK30 24080RHAK30 23180RK	422 422 428	578 578 622	4 4 5	0.32 0.31 0.31	2.09 2.21 2.19	3.12 3.29 3.25	2.05 2.16 2.14	206 192 273	203 189 265
	650 650 650	200 250 250	6 6 6	4 310 4 640 5 180	8 300 9 140 10 600	390 390 390	520 530 520	23180RHA 24180R 24180RHA	23180RHAK 24180RK30 24180RHAK30	428 428 428	622 622 622	5 5 5	0.29 0.37 0.37	2.30 1.82 1.82	3.43 2.70 2.71	2.25 1.78 1.78	255 338 322	247 333 317
	720	256	6	5 210	9 850	350	470	23280R	23280RK	428	692	5	0.37	1.80	2.69	1.76	468	454

d (400) ~ (460) mm

Koyo

00	C	0	ore		DOIE	DOIE		DOLE	DOIE									
Βοι		dimensi m)	ons		oad ratings (kN)	Limiting (min		Bearir	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) M	ass (kg)
<i>d</i>	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
400	720	256	6	5 850	10 600	350	460	23280RHA	23280RHAK	428	692	5	0.35	1.92	2.86	1.88	441	427
420	560 620 620	106 150 150	4 5 5	1 880 2 800 3 050	4 320 6 120 6 230	430 400 400	580 530 530	23984R 23084R 23084RHA	23984RK 23084RK 23084RHAK	438 442 442	542 598 598	3 4 4	0.17 0.23 0.22	3.91 2.90 3.02	5.82 4.31 4.49	3.82 2.83 2.95	76.0 164 150	73.6 159 145
	620 620 700	200 200 224	5 5 6	3 590 3 870 4 470	7 600 8 490 9 110	400 400 350	530 530 470	24084R 24084RHA 23184R	24084RK30 24084RHAK30 23184RK	442 442 448	598 598 672	4 4 5	0.30 0.29 0.33	2.23 2.31 2.03	3.32 3.44 3.02	2.18 2.26 1.98	212 198 363	209 195 352
	700 700 700	224 280 280	6 6 6	5 040 5 450 6 120	9 630 10 600 12 400	350 360 350	470 480 470	23184RHA 24184R 24184RHA	23184RHAK 24184RK30 24184RHAK30	448 448 448	672 672 672	5 5 5	0.31 0.40 0.39	2.19 1.71 1.72	3.25 2.54 2.56	2.14 1.67 1.68	339 445 425	328 438 418
	760 760	272 272	7.5 7.5	6 500 6 580	11 500 11 900	320 320	430 430	23284R 23284RHA	23284RK 23284RHAK	456 456	724 724	6 6	0.37 0.36	1.84 1.90	2.74 2.83	1.80 1.86	556 525	540 508
440	600 650 650	118 157 157	4 6 6	2 330 3 030 3 370	5 330 6 540 6 910	400 370 370	530 500 490	23988R 23088R 23088RHA	23988RK 23088RK 23088RHAK	458 468 468	582 622 622	3 5 5	0.18 0.24 0.22	3.75 2.76 3.04	5.58 4.11 4.53	3.66 2.70 2.97	101 188 172	97.8 183 167
	650 650 720	212 212 226	6 6 6	3 910 4 330 5 040	8 320 9 560 9 600	370 370 330	490 490 440	24088R 24088RHA 23188R	24088RK30 24088RHAK30 23188RK	468 468 468	622 622 692	5 5 5	0.29 0.30 0.33	2.35 2.28 2.08	3.50 3.39 3.09	2.30 2.23 2.03	247 231 378	243 227 366
	720 720 720	226 280 280	6 6 6	5 250 5 640 6 200	10 300 11 200 12 900	330 340 330	440 450 440	23188RHA 24188R 24188RHA	23188RHAK 24188RK30 24188RHAK30	468 468 468	692 692 692	5 5 5	0.30 0.38 0.38	2.25 1.76 1.79	3.34 2.62 2.67	2.20 1.72 1.75	353 460 439	341 453 432
	790 790	280 280	7.5 7.5	6 860 6 930	12 300 12 700	300 300	400 390	23288R 23288RHA	23288RK 23288RHAK	476 476	754 754	6 6	0.36 0.35	1.86 1.93	2.77 2.88	1.82 1.89	613 580	595 562
460	620 680 680	118 163 163	4 6 6	2 330 3 240 3 600	5 350 7 170 7 430	370 340 340	500 460 460	23992R 23092R 23092RHA	23992RK 23092RK 23092RHAK	478 488 488	602 652 652	3 5 5	0.17 0.23 0.22	3.89 2.92 3.04	5.79 4.34 4.53	3.80 2.85 2.97	107 215 197	104 209 191
	680	218	6	4 570	10 100	340	460	24092R	24092RK30	488	652	5	0.30	2.23	3.32	2.18	277	272

d (460) ~ 500 mm

Koyo

	ore		loie		bole	DOIE		Dore	bole									
B	oundary (n	dimens nm)	ions	Basic	load ratings (kN)	Limiting (mi	s speeds n^{-1})	Bearin	ng No.	Moun	ting dime (mm)	nsions	Con- stant	Axial	load fa	ctors	(Refer.) N	lass (kg)
d	D	В	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Grease lub.	Oil lub.	Cylindrical bore	Tapered bore	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	е	Y_1	Y_2	Y_0	Cylindrical bore	Tapered bore
460	680 760	218 240	6 7.5	4 640 5 180	10 300 10 800	340 310	460 410	24092RHA 23192R	24092RHAK30 23192RK	488 496	652 724	5 6	0.29 0.33	2.33 2.07	3.46 3.09	2.27 2.03	259 450	254 436
	760 760 760	240 300 300	7.5 7.5 7.5	5 760 6 040 6 920	11 200 12 200 14 200	300 310 310	400 410 410	23192RHA 24192R 24192RHA	23192RHAK 24192RK30 24192RHAK30	496 496 496	724 724 724	6 6 6	0.30 0.35 0.38	2.22 1.95 1.75	3.31 2.90 2.61	2.17 1.91 1.72	420 550 525	406 541 516
	830 830	296 296	7.5 7.5	7 610 7 670	13 700 14 200	270 270	370 360	23292R 23292RHA	23292RK 23292RHAK	496 496	794 794	6 6	0.36 0.35	1.85 1.92	2.76 2.85	1.81 1.87	720 679	699 658
480	650 700 700	128 165 165	5 6 6	2 630 3 350 3 730	6 130 7 540 7 860	350 320 320	460 430 430	23996R 23096R 23096RHA	23996RK 23096RK 23096RHAK	502 508 508	628 672 672	4 5 5	0.18 0.22 0.22	3.75 3.01 3.12	5.59 4.47 4.64	3.67 2.94 3.05	123 225 206	119 218 199
	700 700 790	218 218 248	6 6 7.5	4 420 4 750 5 440	9 650 10 700 11 500	320 320 280	430 430 380	24096R 24096RHA 23196R	24096RK30 24096RHAK30 23196RK	508 508 516	672 672 754	5 5 6	0.29 0.28 0.32	2.32 2.41 2.09	3.45 3.59 3.12	2.26 2.35 2.05	287 268 503	282 263 488
	790 790 790	248 308 308	7.5 7.5 7.5	6 160 7 190 7 360	12 000 14 800 15 200	280 280 290	380 380 380	23196RHA 24196R 24196RHA	23196RHAK 24196RK30 24196RHAK30	516 516 516	754 754 754	6 6 6	0.30 0.39 0.38	2.24 1.74 1.78	3.34 2.59 2.65	2.19 1.70 1.74	470 606 580	455 597 568
	870 870	310 310	7.5 7.5	8 380 8 450	15 100 15 700	250 250	340 340	23296R 23296RHA	23296RK 23296RHAK	516 516	834 834	6 6	0.36 0.35	1.85 1.91	2.75 2.85	1.81 1.87	831 785	807 761
500	670 720 720	128 167 218	5 6 6	2 670 3 580 4 600	6 310 8 090 10 300	330 310 310	440 410 410	239/500R 230/500R 240/500R	239/500RK 230/500RK 240/500RK30	522 528 528	648 692 692	4 5 5	0.17 0.23 0.28	3.87 2.94 2.39	5.76 4.37 3.56	3.79 2.87 2.34	131 235 297	127 228 292
	830 830 920	264 325 336	7.5 7.5 7.5	6 160 7 710 8 770	13 000 15 900 16 700	260 260 230	350 350 310	231/500R 241/500R 232/500R	231/500RK 241/500RK30 232/500RK	536 536 536	794 794 884	6 6 6	0.33 0.36 0.39	2.05 1.85 1.74	3.05 2.76 2.59	2.00 1.81 1.70	595 712 1 020	577 701 992

 d_1 **20** ~ **65** mm

Bo	undaı	'y dim (mm)	ensio	ns	Brg. bore	Designations Bearing + adapter	Мо	unting ((m	dimens m)	ions	Mass Brg.+adapter	(Ref	er.)
d_1	B_1	d_2	B_2	B_3	d (mm)	ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknu No.
20	29	38	8		25	22205RHRK+ H305X	15	45	29	5	0.269	A305X	AN05
25	31 31	45 45	8 8	_	30 30	22206RHRK+ H306X 21306RHK+ H306X	15 15	50 50	34 34	5 6	0.404 0.538	A306X A306X	AN06 AN06
30	35 35	52 52	9 9	_	35 35	22207RHRK+ H307X 21307RHK+ H307X	17 17	58 58	39 39	5 7	0.610 0.725	A307X A307X	AN07 AN07
35	36 36 46	58 58 58	10 10 10		40 40 40	22208RHRK+ H308X 21308RHK+ H308X 22308RHRK+ H2308X	17 17 17	65 65 65	44 44 45	5 5 5	0.793 0.972 1.30	A308X A308X A2308X	AN08 AN08 AN08
40	39 39 50	65 65 65	11 11 11		45 45 45	22209RHRK+ H309X 21309RHK+ H309X 22309RHRK+ H2309X	17 17 17	72 72 72	49 49 50	8 5 5	0.855 1.31 1.70	A309X A309X A2309X	AN09 AN09 AN09
45	42 42 55	70 70 70	12 12 12		50 50 50	22210RHRK+ H310X 21310RHK+ H310X 22310RHRK+ H2310X	19 19 19	76 76 76	54 54 56	10 5 5	0.953 1.67 2.26	A310X A310X A2310X	AN10 AN10 AN10
50	45 45 59	75 75 75	12 12 12		55 55 55	22211RHRK+ H311X 21311RHK+ H311X 22311RHRK+ H2311X	19 19 19	85 85 85	60 60 61	11 6 6	1.22 2.04 2.80	A311X A311X A2311X	AN11 AN11 AN11
55	47 47 62	80 80 80	13 13 13		60 60 60	22212RHRK+ H312X 21312RHK+ H312X 22312RHRK+ H2312X	20 20 20	90 90 90	65 65 66	9 5 5	1.59 2.50 3.50	A312X A312X A2312X	AN12 AN12 AN12
60	50 50 65	85 85 85	14 14 14		65 65 65	22213RHRK+ H313X 21313RHK+ H313X 22313RHRK+ H2313X	21 21 21	96 96 96	70 70 72	8 5 5	2.01 3.07 4.17	A313X A313X A2313X	AN13 AN13 AN13
65	55 55 73	98 98 98	15 15 15		75 75 75	22215RHRK+ H315X 21315RHK+ H315X 22315RHRK+ H2315X	23 23 23	110 110 110	80 80 82	12 5 5	2.58 4.65 6.44	A315X A315X A2315X	AN15 AN15 AN15

d_1 70 ~ 110 mm

Bo	1 2 2 5 59 105 17 59 105 17 78 105 17 78 105 17 5 63 110 18 63 110 18 82 110 18 65 120 18 86 120 18 86 120 18 86 120 18 86 120 18 65 120 18 70 68 125 90 125 19 90 125 19 90 125 19 90 125 19 90 125 19 90 130 20 97 130 20 97 130 20 97 145 21 105 145 21		ns	Brg.	Designations	Мо		dimens m)	ions	Mass Brg.+adapter	(Re	fer.)	
		(mm)			bore	Bearing + adapter				,	U U U	Adapter	Laslowat
d_1	B_1	d_2	B_2	B_3	d	ass'y		K	$d_{ m e}$	Ь	ass'y	Adapter	Locknut
					(mm)		min.	min.	min.	min.	(kg)	sleeve No.	No.
70	59	105	17		80	22216RHRK+ H316X	25	120	86	12	3.22	A316X	AN16
	59	105	17		80	21316RHK+ H316X	25	120	86	5	5.56	A316X	AN16
	78	105	17	—	80	22316RHRK+ H2316X	25	120	87	5	7.64	A2316X	AN16
75	63	110	18	_	85	22217RHRK+ H317X	27	128	91	12	3.93	A317X	AN17
	63	110	18	_	85	21317RHK+ H317X	27	128	91	6	6.49	A317X	AN17
	82	110	18	—	85	22317RHRK+ H2317X	27	128	94	6	8.83	A2317X	AN17
80	65	120	18	_	90	22218RHRK+ H318X	28	139	96	10	4.88	A318X	AN18
	86	120	18		90	23218RHK+ H2318X	28	139	99	18	6.20	A2318X	AN18
	65	120	18		90	21318RHK+ H318X	28	139	96	6	7.56	A318X	AN18
	86	120	18	_	90	22318RHRK+ H2318X	28	139	99	6	10.3	A2318X	AN18
85	68	125	19		95	22219RHRK+ H319X	29	145	102	9	5.77	A319X	AN19
	68	125	19		95	21319RHK+ H319X	29	145	102	7	8.68	A319X	AN19
	90	125	19	—	95	22319RHRK+ H2319X	29	145	105	7	12.0	A2319X	AN19
90	71	130	20	_	100	22220RHRK+ H320X	30	150	107	8	6.80	A320X	AN20
	97	130	20		100	23220RHK+ H2320X	30	150	110	19	8.94	A2320X	AN20
	71	130	20	_	100	21320RHK+ H320X	30	150	107	7	10.5	A320X	AN20
	97	130	20	_	100	22320RHRK+ H2320X	30	150	110	7	15.2	A2320X	AN20
100	81	145	21	_	110	23122RHK+ H3122X	32	170	117	7	7.91	A3122X	AN22
	77	145	21	_	110	22222RHRK+ H322X	32	170	117	6	9.50	A322X	AN22
	105	145	21		110	23222RHK+ H2322X	32	170	121	17	12.4	A2322X	AN22
	77	145	21	_	110	21322RHK+ H322X	32	170	117	9	14.0	A322X	AN22
	105	145	21	—	110	22322RHRK+ H2322X	32	170	121	7	20.6	A2322X	AN22
110	72	145	22	_	120	23024RHK+ H3024X	33	180	127	7	6.12	A3024	ANL24
	88	155	22	_	120	23124RHK+ H3124X	33	180	128	7	10.5	A3124	AN24
	88	155	22	_	120	22224RHRK+ H3124X	33	180	128	11	11.9	A3124	AN24
	112	155	22	_	120	23224RHK+ H2324X	33	180	131	17	15.1	A2324	AN24
	112	155	22	_	120	22324RHRK+ H2324X	33	180	131	7	25.6	A2324	AN24

 d_1 115 ~ (150) mm

Bo		r y dim (mm)	ensio	ns	Brg. bore	Designations Bearing + adapter	Mo		dimens m)	ions	Mass Brg.+adapter	(Re	fer.)
d_1	B_1	d_2	B_2	B_3	d (mm)	ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknut No.
115	80	155	23		130	23026RHK+ H3026	34	190	137	8	9.01	A3026	ANL26
	92	165	23	_	130	23126RHK+ H3126	34	190	138	8	12.3	A3126	AN26
	92	165	23	—	130	22226RHRK+ H3126	34	190	138	8	15.1	A3126	AN26
	121	165	23		130	23226RHK+ H2326	34	190	142	21	18.8	A2326	AN26
	121	165	23	—	130	22326RHRK+ H2326	34	190	142	8	32.7	A2326	AN26
125	82	165	24	_	140	23028RHK+ H3028	36	205	147	8	9.79	A3028	ANL28
	97	180	24	—	140	23128RHK+ H3128	36	205	149	8	14.9	A3128	AN28
	97	180	24	_	140	22228RHRK+ H3128	36	205	149	8	18.8	A3128	AN28
	131	180	24	_	140	23228RHK+ H2328	36	205	152	22	24.3	A2328	AN28
	131	180	24	—	140	22328RHK+ H2328	36	205	152	8	40.8	A2328	AN28
135	87	180	26		150	23030RHK+ H3030	37	220	158	8	11.9	A3030	ANL30
	111	195	26	—	150	23130RHK+ H3130	37	220	160	8	21.7	A3130	AN30
	111	195	26	—	150	22230RHRK+ H3130	37	220	160	15	24.3	A3130	AN30
	139	195	26	_	150	23230RHK+ H2330	37	220	163	20	30.8	A2330	AN30
	139	195	26	—	150	22330RK+ H2330	37	220	163	8	49.7	A2330	AN30
	139	195	26	—	150	22330RHAK+ H2330	37	220	163	8	46.4	A2330	AN30
140	93	190	28	_	160	23032RHK+ H3032	39	230	168	8	15.0	A3032	ANL32
	119	210	28	_	160	23132RHK+ H3132	39	230	170	8	27.9	A3132	AN32
	119	210	28	_	160	22232RK+ H3132	39	230	170	14	30.6	A3132	AN32
	119	210	28	_	160	22232RHAK+ H3132	39	230	170	14	29.1	A3132	AN32
	147	210	28	—	160	23232RK+ H2332	39	230	174	18	39.6	A2332	AN32
	147	210	28	_	160	23232RHAK+ H2332	39	230	174	18	38.0	A2332	AN32
	147	210	28	_	160	22332RK+ H2332	39	230	174	8	60.5	A2332	AN32
	147	210	28	—	160	22332RHAK+ H2332	39	230	174	8	56.6	A2332	AN32
150	101	200	29	_	170	23034RHK+ H3034	40	250	179	8	19.2	A3034	ANL34
	122	220	29	—	170	23134RHK+ H3134	40	250	180	8	30.0	A3134	AN34
	122	220	29	—	170	22234RK+ H3134	40	250	180	10	37.2	A3134	AN34
	122	220	29		170	22234RHAK+ H3134	40	250	180	10	35.3	A3134	AN34

 d_1 (150) ~ (180) mm

Bo	unda	ry dim (mm)	ensio	ns	Brg.	Designations	Mo		dimens m)	ions	Mass Brg.+adapter	(Re	fer.)
		(mm)			bore	Bearing + adapter				7	ass'y	Adaptar	الموارس
d_1	B_1	d_2	B_2	B_3	d	ass'y		K	$d_{ m e}$	Ь	,	Adapter	Locknu
					(mm)	-	min.	min.	min.	min.	(kg)	sleeve No.	No.
150	154	220	29	_	170	23234RK+ H2334	40	250	185	18	47.2	A2334	AN34
	154	220	29		170	23234RHAK+ H2334	40	250	185	18	45.3	A2334	AN34
	154	220	29	_	170	22334RK+ H2334	40	250	185	8	71.5	A2334	AN34
	154	220	29	_	170	22334RHAK+ H2334	40	250	185	8	66.8	A2334	AN34
160	109	210	30		180	23036RHK+ H3036	41	260	189	8	24.2	A3036	ANL36
	131	230	30	_	180	23136RK+ H3136	41	260	191	8	37.1	A3136	AN36
	131	230	30	_	180	23136RHAK+ H3136	41	260	191	8	35.2	A3136	AN36
	131	230	30		180	22236RK+ H3136	41	260	191	18	39.4	A3136	AN36
	131	230	30	_	180	22236RHAK+ H3136	41	260	191	18	37.4	A3136	AN36
	161	230	30	_	180	23236RK+ H2336	41	260	195	22	50.5	A2336	AN36
	161	230	30	_	180	23236RHAK+ H2336	41	260	195	22	48.4	A2336	AN36
	161	230	30	_	180	22336RK+ H2336	41	260	195	8	81.8	A2336	AN36
	161	230	30	—	180	22336RHAK+ H2336	41	260	195	8	76.4	A2336	AN36
170	112	220	31		190	23038RK+ H3038	43	270	199	9	26.1	A3038	ANL38
	112	220	31		190	23038RHAK+ H3038	43	270	199	9	24.5	A3038	ANL38
	141	240	31		190	23138RK+ H3138	43	270	202	9	45.3	A3138	AN38
	141	240	31	_	190	23138RHAK+ H3138	43	270	202	9	43.0	A3138	AN38
	141	240	31	_	190	22238RK+ H3138	43	270	202	21	47.5	A3138	AN38
	141	240	31	_	190	22238RHAK+ H3138	43	270	202	21	45.0	A3138	AN38
	169	240	31	_	190	23238RK+ H2338	43	270	206	21	59.2	A2338	AN38
	169	240	31		190	23238RHAK+ H2338	43	270	206	21	56.7	A2338	AN38
	169	240	31	_	190	22338RK+ H2338	43	270	206	9	95.6	A2338	AN38
	169	240	31	_	190	22338RHAK+ H2338	43	270	206	9	89.2	A2338	AN38
180	120	240	32	_	200	23040RK+ H3040	46	280	210	10	32.8	A3040	ANL40
	120	240	32	_	200	23040RHAK+ H3040	46	280	210	10	30.7	A3040	ANL40
	150	250	32		200	23140RK+ H3140	46	280	212	10	54.7	A3140	AN40
	150	250	32	_	200	23140RHAK+ H3140	46	280	212	10	51.8	A3140	AN40
	150	250	32	_	200	22240RK+ H3140	46	280	212	24	56.3	A3140	AN40
	150	250	32		200	22240RHAK+ H3140	46	280	212	24	53.3	A3140	AN40

 d_1 (180) ~ (240) mm

Bo	ounda	r y dim (mm)	ensio	ns	Brg. bore	Designations Bearing + adapter	Мо		dimens m)	ions	Mass Brg.+adapter	(Ref	ier.)
d_1	B_1	d_2	B_2	B_3	d (mm)	ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknut No.
180	176	250	32	_	200	23240RK+ H2340	46	280	216	20	71.0	A2340	AN40
	176	250	32	_	200	23240RHAK+ H2340	46	280	216	20	68.0	A2340	AN40
	176	250	32		200	22340RK+ H2340	46	280	216	10	108	A2340	AN40
	176	250	32	—	200	22340RHAK+ H2340	46	280	216	10	101	A2340	AN40
200	128	260	30	41	220	23044RK+ H3044	_	_	231	12	41.4	A3044	ANL44
	128	260	30	41	220	23044RHAK+ H3044	—	—	231	12	38.7	A3044	ANL44
	158	280	32	44	220	23144RK+ H3144		_	233	10	68.4	A3144	AN44
	158	280	32	44	220	23144RHAK+ H3144	—	_	233	10	64.8	A3144	AN44
	158	280	32	44	220	22244RK+ H3144	—	_	233	22	76.9	A3144	AN44
	158	280	32	44	220	22244RHAK+ H3144	—	—	233	22	72.7	A3144	AN44
	183	280	32	44	220	23244RK+ H2344	_	_	236	11	96.5	A2344	AN44
	183	280	32	44	220	23244RHAK+ H2344	—	—	236	11	92.3	A2344	AN44
	183	280	32	44	220	22344RK+ H2344	—	_	236	10	139	A2344	AN44
	183	280	32	44	220	22344RHAK+ H2344	—	—	236	10	130	A2344	AN44
220	133	290	34	46	240	23048RK+ H3048		_	251	11	47.7	A3048	ANL48
	133	290	34	46	240	23048RHAK+ H3048	—	_	251	11	44.8	A3048	ANL48
	169	300	34	46	240	23148RK+ H3148	—	—	254	11	83.6	A3148	AN48
	169	300	34	46	240	23148RHAK+ H3148	_	_	254	11	79.1	A3148	AN48
	169	300	34	46	240	22248RK+ H3148	—	—	254	19	101	A3148	AN48
	169	300	34	46	240	22248RHAK+ H3148	—	_	254	19	95.6	A3148	AN48
	196	300	34	46	240	23248RK+ H2348	_	_	257	6	128	A2348	AN48
	196	300	34	46	240	23248RHAK+ H2348	_	_	257	6	122	A2348	AN48
	196	300	34	46	240	22348RK+ H2348	—	—	257	11	175	A2348	AN48
	196	300	34	46	240	22348RHAK+ H2348	_		257	11	163	A2348	AN48
240	147	310	34	46	260	23052RK+ H3052		_	272	13	65.4	A3052	ANL52
	147	310	34	46	260	23052RHAK+ H3052		—	272	13	61.0	A3052	ANL52
	187	330	36	49	260	23152RK+ H3152		—	276	11	114	A3152	AN52
	187	330	36	49	260	23152RHAK+ H3152		_	276	11	108	A3152	AN52

B 334

 d_1 (240) ~ (300) mm

Bo		ry dim (mm)	ensio	ns	Brg. bore	Designations	Mo		dimens m)	ions	Mass Brg.+adapter	(Re	fer.)
d_1	B_1	d_2	B_2	B_3	d (mm)	Bearing + adapter ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknut No.
240	187 187	330 330	36 36	49 49	260 260	22252RK+ H3152 22252RHAK+ H3152	_	_	276 276	25 25	131 124	A3152 A3152	AN52 AN52
	208	330	36	49	260	23252RK+ H2352	—	—	278	2	165	A2352	AN52
	208	330	36	49	260	23252RHAK+ H2352		—	278	2	158	A2352	AN52
	208 208	330 330	36 36	49 49	260 260	22352RK+ H2352 22352RHAK+ H2352	_	_	278 278	11 11	217 202	A2352 A2352	AN52 AN52
260	152	330	38	50	280	23056RK+ H3056	_	_	292	12	71.5	A3056	ANL56
	152 192	330 350	38 38	50 51	280 280	23056RHAK+ H3056 23156RK+ H3156	_	_	292 296	12 12	66.8 123	A3056 A3156	ANL56 AN56
	192	350	38	51	280	23156RHAK+ H3156	_	_	296	12	116	A3156	AN56
	192 192	350 350	38 38	51 51	280 280	22256RK+ H3156 22256RHAK+ H3156	_	_	296 296	28 28	138 130	A3156 A3156	AN56 AN56
	221	350	38	51	280	23256RK+ H2356	_		299	11	178	A2356	AN56
	221 221	350 350	38 38	51 51	280 280	23256RHAK+ H2356 22356RK+ H2356	_		299 299	11 12	170 254	A2356 A2356	AN56 AN56
	221	350	38	51	280	22356RHAK+ H2356	_	_	299	12	237	A2356	AN56
280	168	360	42	54	300	23060RK+ H3060	_	_	313	12	97.7	A3060	ANL60
	168	360	42	54	300	23060RHAK+ H3060	-	_	313	12	90.8	A3060	ANL60
	208	380	40	53	300	23160RK+ H3160	-	_	317	12	159	A3160	AN60
	208 208	380 380	40 40	53 53	300 300	23160RHAK+ H3160 22260RK+ H3160	—	—	317 317	12 32	150 173	A3160 A3160	AN60 AN60
	208	380 380	40 40	53	300	22260RHAK+ H3160	_	_	317	32 32	163	A3160 A3160	AN60 AN60
	240	380	40	53	300	23260RK+ H3260	_	_	321	12	227	A3260	AN60
	240	380	40	53	300	23260RHAK+ H3260	—	_	321	12	217	A3260	AN60
300	171	380	42	55	320	23064RK+ H3064	_	_	334	13	105	A3064	ANL64
	171 226	380 400	42 42	55 56	320 320	23064RHAK+ H3064 23164RK+ H3164		_	334 339	13 13	98.1 202	A3064 A3164	ANL64 AN64
	226	400	42	56	320	23164RHAK+ H3164	_		339	13	191	A3164	AN64
	226	400	42	56	320	22264RK+ H3164	-	—	339	39	207	A3164	AN64

 d_1 (300) ~ (400) mm

Bo	ounda	r y dim (mm)	ensio	ns	Brg. bore	Designations Bearing + adapter	Мо		dimens m)	ions	Mass Brg.+adapter	(Re	fer.)
d_1	B_1	d_2	B_2	B_3	d (mm)	ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknu No.
300	258 258	400 400	42 42	56 56	320 320	23264RK+ H3264 23264RHAK+ H3264		_	343 343	13 13	283 270	A3264 A3264	AN64 AN64
320	187 187 254	400 400 440	45 45 55	58 58 72	340 340 340	23068RK+ H3068 23068RHAK+ H3068 23168RK+ H3168		_	355 355 360	14 14 14	135 126 262	A3068 A3068 A3168	ANL68 ANL68 AN68
	254 288 288	440 440 440	55 55 55	72 72 72	340 340 340	23168RHAK+ H3168 23268RK+ H3268 23268RHAK+ H3268			360 364 364	14 14 14	248 355 339	A3168 A3268 A3268	AN68 AN68 AN68
340	188 188 259	420 420 460	45 45 58	58 58 75	360 360 360	23072RK+ H3072 23072RHAK+ H3072 23172RK+ H3172			375 375 380	14 14 14	143 133 278	A3072 A3072 A3172	ANL72 ANL72 AN72
	259 299 299	460 460 460	58 58 58	75 75 75	360 360 360	23172RHAK+ H3172 23272RK+ H3272 23272RHAK+ H3272			380 385 385	14 14 14	263 400 382	A3172 A3272 A3272	AN72 AN72 AN72
360	193 193 264	450 450 490	48 48 60	62 62 77	380 380 380	23076RK+ H3076 23076RHAK+ H3076 23176RK+ H3176			396 396 401	15 15 15	156 146 298	A3076 A3076 A3176	ANL76 ANL76 AN76
	264 310 310	490 490 490	60 60 60	77 77 77	380 380 380	23176RHAK+ H3176 23276RK+ H3276 23276RHAK+ H3276			401 405 405	15 15 15	282 448 427	A3176 A3276 A3276	AN76 AN76 AN76
380	210 210 272	470 470 520	52 52 62	66 66 82	400 400 400	23080RK+ H3080 23080RHAK+ H3080 23180RK+ H3180			417 417 421	15 15 15	195 182 339	A3080 A3080 A3180	ANL80 ANL80 AN80
	272 328 328	520 520 520	62 62 62	82 82 82	400 400 400	23180RHAK+ H3180 23280RK+ H3280 23280RHAK+ H3280	 		421 427 427	15 15 15	321 539 512	A3180 A3280 A3280	AN80 AN80 AN80
400	212 212	490 490	52 52	66 66	420 420	23084RK+ H3084 23084RHAK+ H3084	_	_	437 437	16 16	205 191	A3084 A3084	ANL84 ANL84

 d_1 (400) ~ 470 mm

Bo	ounda	ry dim (mm)	ensio	ns	Brg. bore	Designations Bearing + adapter	Мо		dimens m)	ions	Mass Brg.+adapter	(Rei	fer.)
d_1	B_1	d_2	B_2	B_3	d (mm)	ass'y	A min.	K min.	$d_{ m e}$ min.	b min.	ass'y (kg)	Adapter sleeve No.	Locknut No.
400	304	540	70	90	420	23184RK+ H3184	_	_	443	16	441	A3184	AN84
	304	540	70	90	420	23184RHA+ H3184	—	—	443	16	417	A3184	AN84
	352	540	70	90	420	23284RK+ H3284	—		448	16	639	A3284	AN84
	352	540	70	90	420	23284RHAK+ H3284	_		448	16	607	A3284	AN84
410	228	520	60	77	440	23088RK+ H3088	_		458	17	252	A3088	ANL88
	228	520	60	77	440	23088RHAK+ H3088	_		458	17	236	A3088	ANL88
	307	560	70	90	440	23188RK+ H3188	—	—	464	17	474	A3188	AN88
	307	560	70	90	440	23188RHAK+ H3188	_		464	17	449	A3188	AN88
	361	560	70	90	440	23288RK+ H3288	—	_	469	17	718	A3288	AN88
	361	560	70	90	440	23288RHAK+ H3288	—		469	17	685	A3288	AN88
430	234	540	60	77	460	23092RK+ H3092	_	_	478	17	283	A3092	ANL92
	234	540	60	77	460	23092RHAK+ H3092	_		478	17	265	A3092	ANL92
	326	580	75	95	460	23192RK+ H3192	—	_	485	17	559	A3192	AN92
	326	580	75	95	460	23192RHAK+ H3192	_	_	485	17	529	A3192	AN92
	382	580	75	95	460	23292RK+ H3292	—	_	491	17	838	A3292	AN92
	382	580	75	95	460	23292RHAK+ H3292	—	—	491	17	797	A3292	AN92
450	237	560	60	77	480	23096RK+ H3096	_	_	499	18	295	A3096	ANL96
	237	560	60	77	480	23096RHAK+ H3096	_		499	18	276	A3096	ANL96
	335	620	75	95	480	23196RK+ H3196	—		505	18	628	A3196	AN96
	335	620	75	95	480	23196RHAK+ H3196	_		505	18	595	A3196	AN96
	397	620	75	95	480	23296RK+ H3296	—	_	512	18	966	A3296	AN96
	397	620	75	95	480	23296RHAK+ H3296	_	_	512	18	920	A3296	AN96
470	247	580	68	85	500	230/500RK+ H30/500	_	_	519	18	315	A30/500	ANL100
	356	630	80	100	500	231/500RK+ H31/500			527	18	727	A31/500	AN100
	428	630	80	100	500	232/500RK+ H32/500	_	_	534	18	1 167	A32/500	AN100

Withdrawal sleeves for spherical roller bearings

 d_1 35 ~ (75) mm

 d_1 (75) ~ (115) mm

	Bound	dary dim	ensions		Brg.	Designations	Mass	(Refer.)
		(mm)	$G^{(1)}$		bore	Bearing + withdrawal	Brg.+withdrawal sleeve	Applicable
d_1	B_1	B_2	Screw size	G_1	d (mm)	sleeve	(kg)	locknut No
35	29	32	M45×1.5	6	40	22208RHRK+ AH308	0.681	AN09
	29	32	M45×1.5	6	40	21308RHK+ AH308	0.860	AN09
	40	43	M45×1.5	7	40	22308RHRK+ AH2308	1.19	AN09
40	31	34	M50×1.5	6	45	22209RHRK+ AH309	0.699	AN10
	31	34	M50×1.5	6	45	21309RHK+ AH309	1.14	AN10
	44	47	M50×1.5	7	45	22309RHRK+ AH2309	1.55	AN10
45	35	38	M55×2	7	50	22210RHRK+ AHX310	0.771	AN11
	35	38	M55×2	7	50	21310RHK+ AHX310	1.49	AN11
	50	53	M55×2	9	50	22310RHRK+ AHX2310	2.09	AN11
50	37	40	M60×2	7	55	22211RHRK+ AHX311	1.01	AN12
	37	40	M60×2	7	55	21311RHK+ AHX311	1.83	AN12
	54	57	M60×2	10	55	22311RHRK+ AHX2311	2.60	AN12
55	40	43	M65×2	8	60	22212RHRK+ AHX312	1.35	AN13
	40	43	M65×2	8	60	21312RHK+ AHX312	2.27	AN13
	58	61	M65×2	11	60	22312RHRK+ AHX2312	3.29	AN13
60	42	45	M75×2	8	65	22213RHRK+ AH313	1.77	AN15
	42	45	M75×2	8	65	21313RHK+ AH313	2.84	AN15
	61	64	M75×2	12	65	22313RHRK+ AH2313	3.98	AN15
65	43	47	M80×2	8	70	22214RHRK+ AH314	1.89	AN16
	43	47	M80×2	8	70	21314RHK+ AH314	3.43	AN16
	64	68	M80×2	12	70	22314RHRK+ AHX2314	4.82	AN16
70	45	49	M85×2	8	75	22215RHRK+ AH315	2.01	AN17
	45	49	M85×2	8	75	21315RHK+ AH315	4.07	AN17
	68	72	M85×2	12	75	22315RHRK+ AHX2315	5.87	AN17
75	48	52	M90×2	8	80	22216RHRK+ AH316	2.49	AN18
	48	52	M90×2	8	80	21316RHK+ AH316	4.83	AN18

[Note] 1) Basic profile and dimensions of screw thread identified by prefix M are in accordance with JIS B 0205. Basic profile and dimensions of screw thread identified by prefix Tr are in accordance with JIS B 0216.

	Bound	dary dim	ensions		Brg.	Designations	Mass Brg.+withdrawal	(Refer.)
d_1	B_1	(mm) B ₂	$G^{1)}$ Screw size	G_1	bore d (mm)	Bearing + withdrawal sleeve	sleeve (kg)	Applicable locknut No
75	71	75	M90×2	12	80	22316RHRK+ AHX2316	6.90	AN18
80	52	56	M95×2	9	85	22217RHRK+ AHX317	3.12	AN19
	52	56	M95×2	9	85	21317RHK+ AHX317	5.68	AN19
	74	78	M95×2	13	85	22317RHRK+ AHX2317	7.98	AN19
85	53	57	M100×2	9	90	22218RHRK+ AHX318	3.89	AN20
	63	67	M100×2	10	90	23218RHK+ AHX3218	5.08	AN20
	53	57	M100×2	9	90	21318RHK+ AHX318	6.58	AN20
	79	83	M100×2	14	90	22318RHRK+ AHX2318	9.41	AN20
90	57	61	M105×2	10	95	22219RHRK+ AHX319	4.68	AN21
	57	61	M105×2	10	95	21319RHK+ AHX319	7.59	AN21
	85	89	M105×2	16	95	22319RHRK+ AHX2319	10.9	AN21
95	59	63	M110×2	10	100	22220RHRK+ AHX320	5.58	AN22
	73	77	M110×2	11	100	23220RHK+ AHX3220	7.43	AN22
	59	63	M110×2	10	100	21320RHK+ AHX320	9.26	AN22
	90	94	M110×2	16	100	22320RHRK+ AHX2320	13.9	AN22
105	68	72	M120×2	11	110	23122RHK+ AHX3122	6.30	AN24
	82	91	M115×2	13	110	24122RHK30+ AH24122	7.60	AN23
	68	72	M120×2	11	110	22222RHRK+ AHX3122	7.97	AN24
	82	86	M125×2	11	110	23222RHK+ AHX3222	10.5	AN25
	63	67	M120×2	12	110	21322RHK+ AHX322	12.3	AN24
	98	102	M125×2	16	110	22322RHRK+ AHX2322	19.1	AN25
115	60	64	M130×2	13	120	23024RHK+ AHX3024	4.82	AN26
	73	82	M125×2	13	120	24024RHK30+ AH24024	5.99	AN25
	75	79	M130×2	12	120	23124RHK+ AHX3124	8.69	AN26
	93	102	M130×2	13	120	24124RHK30+ AH24124	11.0	AN26
	75	79	M130×2	12	120	22224RHRK+ AHX3124	10.1	AN26

Withdrawal sleeves for spherical roller bearings

 d_1 (115) ~ (150) mm

 d_1 (150) ~ 170 mm

	Bound	dary dim	ensions		Brg.	Designations	Mass	(Refer.)
d_1	B_1	(mm) <i>B</i> ₂	G ¹⁾ Screw size	G_1	bore d (mm)	Bearing + withdrawal sleeve	Brg.+withdrawal sleeve (kg)	Applicable locknut No
				40				41107
115	90 105	94 109	M135×2 M135×2	13 17	120 120	23224RHK+ AHX3224 22324RHRK+ AHX2324	13.1 23.9	AN27 AN27
	105	103	INI I JJAZ	17	120		23.5	ANZI
125	67	71	M140×2	14	130	23026RHK+ AHX3026	6.90	AN28
	83	93	M135×2	14	130	24026RHK30+ AH24026	8.74	AN27
	78	82	M140×2	12	130	23126RHK+ AHX3126	9.52	AN28
	94	104	M140×2	14	130	24126RHK30+ AH24126	11.7	AN28
	78	82	M140×2	12	130	22226RHRK+ AHX3126	12.4	AN28
	98	102	M145×2	15	130	23226RHK+ AHX3226	15.6	AN29
	115	119	M145×2	19	130	22326RHRK+ AHX2326	29.9	AN29
135	68	73	M150×2	14	140	23028RHK+ AHX3028	7.43	AN30
	83	93	M145×2	14	140	24028RHK30+ AH24028	9.26	AN29
	83	88	M150×2	14	140	23128RHK+ AHX3128	11.5	AN30
	99	109	M150×2	14	140	24128RHK30+ AH24128	14.1	AN30
	83	88	M150×2	14	140	22228RHRK+ AHX3128	15.4	AN30
	104	109	M155×3	15	140	23228RHK+ AHX3228	20.3	AN31
	125	130	M155×3	20	140	22328RHK+ AHX2328	35.0	AN31
145	72	77	M160×3	15	150	23030RHK+ AHX3030	8.92	AN32
	90	101	M155×3	15	150	24030RHK30+ AH24030	11.4	AN31
	96	101	M165×3	15	150	23130RHK+ AHX3130	17.7	AN33
	115	126	M160×3	15	150	24130RHK30+ AH24130	21.2	AN32
	96	101	M165×3	15	150	22230RHRK+ AHX3130	20.3	AN33
	114	119	M165×3	17	150	23230RHK+ AHX3230	26.0	AN33
	135	140	M165×3	24	150	22330RK+ AHX2330	45.5	AN33
	135	140	M165×3	24	150	22330RHAK+ AHX2330	42.2	AN33
150	77	82	M170×3	16	160	23032RHK+ AH3032	11.5	AN34
	95	106	M170×3	15	160	24032RHK30+ AH24032	15.0	AN34
	103	108	M180×3	16	160	23132RHK+ AH3132	23.4	AN36

[Note] 1) Basic profile and dimensions of screw thread identified by prefix M are in accordance with JIS B 0205. Basic profile and dimensions of screw thread identified by prefix Tr are in accordance with JIS B 0216.

	Bound	dary dim	ensions		Brg.	Designations	Mass Brg.+withdrawal	(Refer.)
d_1	B_1	(IIIII) B ₂	$G^{1)}$ Screw size	G_1	bore d (mm)	Bearing + withdrawal sleeve	sleeve (kg)	Applicable locknut No.
150	103	108	M180×3	16	160	22232RK+ AH3132	26.1	AN36
	103	108	M180×3	16	160	22232RHAK+ AH3132	24.6	AN36
	124	130	M180×3	20	160	23232RK+ AH3232	35.1	AN36
	124	130	M180×3	20	160	23232RHAK+ AH3232	32.6	AN36
	140	146	M180×3	24	160	22332RK+ AH2332	55.7	AN36
	140	146	M180×3	24	160	22332RHAK+ AH2332	51.8	AN36
160	85	90	M180×3	17	170	23034RHK+ AH3034	15.2	AN36
	106	117	M180×3	16	170	24034RHK30+ AH24034	20.0	AN36
	104	109	M190×3	16	170	23134RHK+ AH3134	24.6	AN38
	125	136	M180×3	16	170	24134RRK30+ AH24134	30.0	AN36
	104	109	M190×3	16	170	22234RK+ AH3134	31.8	AN38
	104	109	M190×3	16	170	22234RHAK+ AH3134	29.9	AN38
	134	140	M190×3	24	170	23234RK+ AH3234	42.3	AN38
	134	140	M190×3	24	170	23234RHAK+ AH3234	39.4	AN38
	146	152	M190×3	24	170	22334RK+ AH2334	66.1	AN38
	146	152	M190×3	24	170	22334RHAK+ AH2334	61.4	AN38
170	92	98	M190×3	17	180	23036RHK+ AH3036	19.7	AN38
	116	127	M190×3	16	180	24036RRK30+ AH24036	26.1	AN38
	116	122	M200×3	19	180	23136RK+ AH3136	31.7	AN40
	116	122	M200×3	19	180	23136RHAK+ AH3136	29.8	AN40
	134 134 105 105 140	145 145 110 110 146	M190×3 M190×3 M200×3 M200×3 M200×3	16 16 17 17 24	180 180 180 180 180 180	24136RRK30+ AH24136 24136RHAK30+ AH24136 22236RK+ AH2236 22236RHAK+ AH2236 23236RK+ AH3236	37.6 34.9 33.5 31.5 45.1	AN38 AN38 AN40 AN40 AN40
	140	146	M200×3	24	180	23236RHAK+ AH3236	41.8	AN40
	154	160	M200×3	24	180	22336RK+ AH2336	75.7	AN40
	154	160	M200×3	24	180	22336RHAK+ AH2336	70.3	AN40

Withdrawal sleeves for spherical roller bearings

 d_1 **180** ~ **190** mm

 d_1 **200** ~ **220** mm

d ₁ 180	<i>B</i> ₁ 96 96 118 118 125	(mm) <i>B</i> ₂ 102 102 131 131	<i>G</i> ¹⁾ Screw size Tr205×4 Tr205×4 M200×3	G ₁ 18 18	Brg. bore d (mm) 190	Bearing + withdrawal sleeve	Brg.+withdrawal sleeve (kg) 21.5	(Refer.) Applicable locknut No.
180	96 118 118 125	102 131 131	Tr205×4 Tr205×4	18	190	0000001/ 4112020		
180	96 118 118 125	102 131 131	Tr205×4	18		0000001/ 4110000	015	
	118 118 125	131 131				23038RK+ AH3038	-	HNL41
	118 125	131	M200×3		190	23038RHAK+ AH3038	19.9	HNL41
	125			18	190	24038RRK30+ AH24038	27.6	AN40
			M200×3	18	190	24038RHAK30+ AH24O38	25.5	AN40
	105	131	Tr210×4	20	190	23138RK+ AH3138	39.3	HN42
	125	131	Tr210×4	20	190	23138RHAK+ AH3138	37.0	HN42
	146	159	M200×3	18	190	24138RRK30+AH24138	46.7	AN40
	146	159	M200×3	18	190	24138RHAK30+AH24138	43.8	AN40
	112	117	Tr210×4	18	190	22238RK+ AH2238	40.9	HN42
	112	117	Tr210×4	18	190	22238RHAK+ AH2238	38.4	HN42
	145	152	Tr210×4	25	190	23238RK+ AH3238	53.3	HN42
	145	152	Tr210×4	25	190	23238RHAK+ AH3238	49.4	HN42
	160	167	Tr210×4	26	190	22338RK+ AH2338	89.0	HN42
	160	167	Tr210×4	26	190	22338RHAK+ AH2338	82.6	HN42
190	102	108	Tr215×4	19	200	23040RK+ AH3040	27.2	HNL43
	102	108	Tr215×4	19	200	23040RHAK+ AH3040	25.1	HNL43
	127	140	Tr210×4	18	200	24040RRK30+ AH24040	34.6	HN42
	127	140	Tr210×4	18	200	24040RHAK30+ AH24040	31.9	HN42
	134	140	Tr220×4	21	200	23140RK+ AH3140	47.9	HN44
	134	140	Tr220×4	21	200	23140RHAK+ AH3140	45.0	HN44
	158	171	Tr210×4	18	200	24140RRK30+ AH24140	57.6	HN42
	158	171	Tr210×4	18	200	24140RHAK30+AH24140	53.8	HN42
	118	123	Tr220×4	19	200	22240RK+ AH2240	48.7	HN44
	118	123	Tr220×4	19	200	22240RHAK+ AH2240	45.7	HN44
	153	160	Tr220×4	25	200	23240RK+ AH3240	64.7	HN44
	153	160	Tr220×4	25	200	23240RHAK+ AH3240	60.1	HN44
	170	177	Tr220×4	26	200	22340RK+ AH2340	101	HN44
	170	177	Tr220×4	26	200	22340RHAK+ AH2340	93.4	HN44

[Note] 1) Basic profile and dimensions of screw thread identified by prefix M are in accordance with JIS B 0205. Basic profile and dimensions of screw thread identified by prefix Tr are in accordance with JIS B 0216.

	Bound	dary dim	ensions		Brg. bore	Designations	Mass Brg.+withdrawal	(Refer.)
d_1	B_1	B_2	$G^{1)}$ Screw size	G_1	d (mm)	Bearing + withdrawal sleeve	sleeve (kg)	Applicable locknut No.
200	111	117	Tr235×4	20	220	23044RK+ AH3044	38.0	HNL47
	111	117	Tr235×4	20	220	23044RHAK+ AH3044	35.3	HNL47
	138	152	Tr230×4	20	220	24044RRK30+ AH24044	48.1	—
	138	152	Tr230×4	20	220	24044RHAK30+ AH24044	44.7	—
	145	151	Tr240×4	23	220	23144RK+ AH3144	63.6	HN48
	145	151	Tr240×4	23	220	23144RHAK+ AH3144	60.0	HN48
	170 170 130	184 184 136	Tr230×4 Tr230×4 Tr240×4	20 20 20	220 220 220	24144RRK30+ AH24144 24144RHAK30+ AH24144 22244RK+ AH2244	76.4 71.2 70.8	 HN48
	130	136	Tr240×4	20	220	22244RHAK+ AH2244	66.6	HN48
	181	189	Tr240×4	30	220	23244RK+ AH2344	95.1	HN48
	181	189	Tr240×4	30	220	23244RHAK+ AH2344	88.5	HN48
	181	189	Tr240×4	30	220	22344RK+ AH2344	136	HN48
	181	189	Tr240×4	30	220	22344RHAK+ AH2344	127	HN48
220	116	123	Tr260×4	21	240	23048RK+ AH3048	42.6	HNL52
	116	123	Tr260×4	21	240	23048RHAK+ AH3048	39.7	HNL52
	138	153	Tr250×4	20	240	24048RRK30+ AH24048	51.9	—
	138	153	Tr250×4	20	240	24048RHAK30+ AH24O48	48.0	
	154	161	Tr260×4	25	240	23148RK+ AH3148	77.6	HN52
	154	161	Tr260×4	25	240	23148RHAK+ AH3148	73.1	HN52
	180	195	Tr260×4	20	240	24148RRK30+ AH24148	94.0	HN52
	180	195	Tr260×4	20	240	24148RHAK30+ AH24148	87.9	HN52
	144	150	Tr260×4	21	240	22248RK+ AH2248	94.3	HN52
	144	150	Tr260×4	21	240	22248RHAK+ AH2248	88.7	HN52
	189	197	Tr260×4	30	240	23248RK+ AH2348	126	HN52
	189	197	Tr260×4	30	240	23248RHAK+ AH2348	117	HN52
	189	197	Tr260×4	30	240	22348RK+ AH2348	170	HN52
	189	197	Tr260×4	30	240	22348RHAK+ AH2348	158	HN52
Withdrawal sleeves for spherical roller bearings

 d_1 **240** ~ **260** mm

 d_1 **280** ~ (**320**) mm

	Bound	dary dim (mm)	ensions		Brg. bore	Designations Bearing + withdrawal	Mass Brg.+withdrawal	(Refer.) Applicable
d_1	B_1	B_2	$G^{1)}$ Screw size	G_1	d (mm)	sleeve	sleeve (kg)	locknut No.
240	128	135	Tr280×4	23	260	23052RK+ AH3052	60.0	HNL56
	128	135	Tr280×4	23	260	23052RHAK+ AH3052	55.6	HNL56
	162	178	Tr270×4	22	260	24052RRK30+ AH24052	77.0	—
	162	178	Tr270×4	22	260	24052RHAK30+ AH24052	71.2	—
	172	179	Tr290×4	26	260	23152RK+ AH3152	107	HN58
	172	179	Tr290×4	26	260	23152RHAK+ AH3152	101	HN58
	202	218	Tr280×4	22	260	24152RRK30+ AH24152	128	_
	202	218	Tr280×4	22	260	24152RHAK30+AH24152	120	
	155	161	Tr290×4	23	260	22252RK+ AH2252	122	HN58
	155	161	Tr290×4	23	260	22252RHAK+ AH2252	115	HN58
	205	213	Tr290×4	30	260	23252RK+ AH2352	164	HN58
	205	213	Tr290×4	30	260	23252RHAK+ AH2352	153	HN58
	205	213	Tr290×4	30	260	22352RK+ AH2352	212	HN58
	205	213	Tr290×4	30	260	22352RHAK+ AH2352	197	HN58
260	131	139	Tr300×4	24	280	23056RK+ AH3056	64.9	HNL60
	131	139	Tr300×4	24	280	23056RHAK+ AH3056	60.2	HNL60
	162	179	Tr290×4	22	280	24056RRK30+ AH24056	81.9	HN58
	162	179	Tr290×4	22	280	24056RHAK30+ AH24056	75.7	HN58
	175	183	Tr310×5	28	280	23156RK+ AH3156	114	HN62
	175	183	Tr310×5	28	280	23156RHAK+ AH3156	108	HN62
	202	219	Tr300×4	22	280	24156RRK30+ AH24156	136	_
	202	219	Tr300×4	22	280	24156RHAK30+AH24156	128	
	155	163	Tr310×5	24	280	22256RK+ AH2256	127	HN62
	155	163	Tr310×5	24	280	22256RHAK+ AH2256	119	HN62
	212	220	Tr310×5	30	280	23256RK+ AH2356	175	HN62
	212	220	Tr310×5	30	280	23256RHAK+ AH2356	163	HN62
	212	220	Tr310×5	30	280	22356RK+ AH2356	247	HN62
	212	220	Tr310×5	30	280	22356RHAK+ AH2356	230	HN62

[Note] 1) Basic profile and dimensions of screw thread identified by prefix M are in accordance with JIS B 0205. Basic profile and dimensions of screw thread identified by prefix Tr are in accordance with JIS B 0216.

	Bound	dary dim	ensions		Brg. bore	Designations	Mass Brg.+withdrawal	(Refer.)
d_1	B_1	B_2	$G^{1)}$ Screw size	G_1	d (mm)	Bearing + withdrawal sleeve	sleeve (kg)	Applicable locknut No.
280	145	153	Tr320×5	26	300	23060RK+ AH3060	88.1	HNL64
	145	153	Tr320×5	26	300	23060RHAK+ AH3060	81.2	HNL64
	184	202	Tr310×5	24	300	24060RRK30+ AH24060	112	HN62
	184	202	Tr310×5	24	300	24060RHAK30+ AH24060	105	HN62
	192	200	Tr330×5	30	300	23160RK+ AH3160	149	HN66
	192	200	Tr330×5	30	300	23160RHAK+ AH3160	140	HN66
	224 224 170	242 242 178	Tr320×5 Tr320×5 Tr330×5	24 24 26	300 300 300	24160RRK30+ AH24160 24160RHAK30+ AH24160 22260RK+ AH2260	180 168 160	 HN66
	170	178	Tr330×5	26	300	22260RHAK+ AH2260	150	HN66
	228	236	Tr330×5	34	300	23260RK+ AH3260	223	HN66
	228	236	Tr330×5	34	300	23260RHAK+ AH3260	208	HN66
300	149	157	Tr345×5	27	320	23064RK+ AH3064	94.8	HNL69
	149	157	Tr345×5	27	320	23064RHAK+ AH3064	88.1	HNL69
	184	202	Tr330×5	24	320	24064RRK30+ AH24064	120	HN66
	184	202	Tr330×5	24	320	24064RHAK30+ AH24064	108	HN66
	209	217	Tr350×5	31	320	23164RK+ AH3164	191	HN70
	209	217	Tr350×5	31	320	23164RHAK+ AH3164	180	HN70
	242 242 180	260 260 190	Tr340×5 Tr340×5 Tr350×5	24 24 27	320 320 320	24164RRK30+ AH24164 24164RHAK30+ AH24164 22264RK+ AH2264	226 217 191	 HN70
	246	254	Tr350×5	36	320	23264RK+ AH3264	280	HN70
	246	254	Tr350×5	36	320	23264RHAK+ AH3264	260	HN70
320	162	171	Tr365×5	28	340	23068RK+ AH3068	125	HNL73
	162	171	Tr365×5	28	340	23068RHAK+ AH3068	115	HNL73
	225	234	Tr370×5	33	340	23168RK+ AH3168	239	HN74
	225 269	234 288	Tr370×5 Tr360×5	33 26	340 340	23168RHAK+ AH3168 24168RRK30+ AH24168	225 293	HN74

Withdrawal sleeves for spherical roller bearings

 d_1 (320) ~ 380 mm

*d*₁ **400** ~ **480** mm

	Bound	dary dim	ensions		Brg.	Designations	Mass	(Refer.)
		(mm)	$G^{(1)}$	~	bore d	Bearing + withdrawal	Brg.+withdrawal sleeve	Applicable locknut No.
d_1	B_1	B_2	Screw size	G_1	(mm)	sleeve	(kg)	IOCKIIULINO.
320	269	288	Tr360×5	26	340	24168RHAK30+ AH24168	282	_
	264	273	Tr370×5	38	340	23268RK+ AH3268	342	HN74
	264	273	Tr370×5	38	340	23268RHAK+ AH3268	317	HN74
340	167	176	Tr385×5	30	360	23072RK+ AH3072	132	HNL77
	167	176	Tr385×5	30	360	23072RHAK+ AH3072	122	HNL77
	229	238	Tr400×5	35	360	23172RK+ AH3172	254	HN80
	232	238	Tr400×5	35	360	23172RHAK+ AH3172	239	HN80
	269	289	Tr380×5	26	360	24172RK30+ AH24172	313	—
	269	289	Tr380×5	26	360	24172RHAK30+ AH24172	300	—
	274	283	Tr400×5	40	360	23272RK+ AH3272	388	HN80
	274	283	Tr400×5	40	360	23272RHAK+ AH3272	360	HN80
360	170	180	Tr410×5	31	380	23076RK+ AH3076	141	HNL82
	170	180	Tr410×5	31	380	23076RHAK+ AH3076	131	HNL82
	232	242	Tr420×5	36	380	23176RK+ AH3176	269	HN84
	240	242	Tr420×5	36	380	23176RHAK+ AH3176	253	HN84
	271	291	Tr400×5	28	380	24176RK30+ AH24176	328	HN80
	271	291	Tr400×5	28	380	24176RHAK30+ AH24176	314	HN80
	284	294	Tr420×5	42	380	23276RK+ AH3276	432	HN84
	284	294	Tr420×5	42	380	23276RHAK+ AH3276	400	HN84
380	183	193	Tr430×5	33	400	23080RK+ AH3080	178	HNL86
	183	193	Tr430×5	33	400	23080RHAK+ AH3080	165	HNL86
	240	250	Tr440×5	38	400	23180RK+ AH3180	305	HN88
	266	250	Tr440×5	38	400	23180RHAK+ AH3180	287	HN88
	278	298	Tr420×5	28	400	24180RK30+AH24180	368	HN84
	278	298	Tr420×5	28	400	24180RHAK30+ AH24180	352	HN84
	302	312	Tr440×5	44	400	23280RK+ AH3280	521	HN88
	302	312	Tr440×5	44	400	23280RHAK+ AH3280	480	HN88

[Note] 1) Basic profile and dimensions of screw thread identified by prefix M are in accordance with JIS B 0205. Basic profile and dimensions of screw thread identified by prefix Tr are in accordance with JIS B 0216.

	Bound	dary dim	ensions		Brg. bore	Designations	Mass Brg.+withdrawal	(Refer.)
d_1	B_1	B_2	$G^{1)}$ Screw size	G_1	d (mm)	Bearing + withdrawal sleeve	sleeve (kg)	Applicable locknut No
400	186	196	Tr450×5	34	420	23084RK+ AH3084	188	HNL90
	186	196	Tr450×5	34	420	23084RHAK+ AH3084	174	HNL90
	266	276	Tr460×5	40	420	23184RK+ AH3184	399	HN92
	270	276	Tr460×5	40	420	23184RHAK+ AH3184	375	HN92
	321	331	Tr460×5	46	420	23284RK+ AH3284	673	HN92
	321	331	Tr460×5	46	420	23284RHAK+ AH3284	568	HN92
420	194	205	Tr470×5	35	440	23088RK+ AHX3088	215	HNL94
	194	205	Tr470×5	35	440	23088RHAK+ AHX3088	199	HNL94
	270	281	Tr480×5	42	440	23188RK+ AHX3188	416	HN96
	285	281	Tr480×5	42	440	23188RHAK+ AHX3188	391	HN96
	330	341	Tr480×5	48	440	23288RK+ AHX3288	678	HN96
	330	341	Tr480×5	48	440	23288RHAK+ AHX3288	627	HN96
440	202	213	Tr490×5	37	460	23092RK+ AHX3092	244	HNL98
	202	213	Tr490×5	37	460	23092RHAK+ AHX3092	226	HNL98
	285	296	Tr510×6	43	460	23192RK+ AHX3192	494	HN102
	295	296	Tr510×6	43	460	23192RHAK+ AHX3192	464	HN102
	349	360	Tr510×6	50	460	23292RK+ AHX3292	795	HN102
	349	360	Tr510×6	50	460	23292RHAK+ AHX3292	733	HN102
460	205	217	Tr520×6	38	480	23096RK+ AHX3096	257	HNL10
	205	217	Tr520×6	38	480	23096RHAK+ AHX3096	238	HNL10
	295	307	Tr530×6	45	480	23196RK+ AHX3196	551	HN106
	313	307	Tr530×6	45	480	23196RHAK+ AHX3196	518	HN106
	364	376	Tr530×6	52	480	23296RK+ AHX3296	914	HN106
	364	376	Tr530×6	52	480	23296RHAK+ AHX3296	844	HN106
480	209	221	Tr540×6	40	500	230/500RK+ AHX30/500	271	HNL10
	313	325	Tr550×6	47	500	231/500RK+AHX31/500	648	HN110
	393	405	Tr550×6	54	500	232/500RK+AHX32/500	1 015	HN110

Thrust ball bearings

Single direction thrust ball bearings

Thrust ball bearings are divided into single and double direction types. The former is able to accommodate axial load in one direction, while the latter is able to accommodate it in both directions.

Neither is suitable for applications that involve radial load or high-speed rotation.

Bearings whose housing race back face is spherical (with a spherical back face or aligning seat race) are designed with a self-aligning capability and can accommodate the effects of inaccurate mounting.

			Bore	diameter 10 – 190
Boundary dimensions	As specified in JIS	B 1512.		
Tolerances	As specified in JIS (refer to Table 7-9			
Recommended fits	Refer to Table 9-8	on p. A 92.		
Standard cages	 Pressed steel ca (supplem) 	ge nentary code : //)		
	 Copper alloy or c cage (supplem 	carbon steel machine entary code : FY or	ed FC)	
	 Polyamide resin (supplem) 	molded cage nentary code : MG)		
		Application of	f standard cages	
	Bearing series	Molded cage	Pressed cage	Machined cage
	511	51100 - 51107	51108 – 51132	51134 - 51172
	512	51200 - 51207	51208 - 51224	51226 - 51272
	532	53200 - 53207	53208 - 53224	53226 - 53272
	532 U	53200U - 53207U	53208U - 53224U	53226U - 53272U
	513	-	51305 - 51313	51314 - 51340
	533	_	53305 - 53313	53314 - 53340
	533 U	_	53305U - 53313U	53314U - 53340U
	514	-	51405 - 51416	51417 - 51436
	534	_	53405 - 53416	53417 - 53420
	534 U	_	53405U - 53416U	53417U - 53420U
	522	_	52202 - 52224	52226 - 52244
	542	_	54202 - 54224	54226 - 54244
	542 U	_	54205U - 54224U	54226U - 54244U
	523	_	52305 - 52313	52314 - 52340
	543	_	54305 - 54313	54314 - 54324
	543 U	_	54305U - 54313U	54314U - 54324U
	524	_	52405 - 52411	52412 - 52444
	544	_	54405 - 54411	54412 - 54420
	544 U	-	54405U - 54411U	54412U - 54420U
Required minimum axial load		i load is necessary ir to operate satisfactor		
Allowable misalignment	Misalignment not a (for flat back face t			
Equivalent axial load	Dynamic equivalen Static equivalent a	t axial load $P_a = F$ kial load $P_{0a} = F$		

Bore diameter 10 – 190 mm

d **10** ~ (**40**) mm

With spherical back face

A

With aligning seat race

	Bou	Indary o		ons			id ratings N)	Limiting (min		Beari	ng No.					nensio (mm)	ns				ng dimer (mm)	isions	(Ret	er.) Mass (1	(g)
d	D	T	T_1	T_2	r min.	C_{a}	$C_{0\mathrm{a}}$	Grease lub.	Oil lub.	With flat back faces	With spherical back face	With aligning seat race	d_1 max.	D_1 min.	D_2	D_3	A	R	С	$d_{ m a}$ min.	D_{a} max.	$r_{ m a}$ max.	With flat back faces	With spherical back face	With aligning seat race
10	24 26	9 11	 11.6	13	0.3 0.6	10.0 12.7	14.0 17.1	6 500 5 700	10 000 8 800	51100 51200	53200	 53200U	24 26	11 12	 18	 28	8.5	22	3.5	18 20	16 16	0.3 0.6	0.020 0.030	 0.029	 0.037
12	26 28	9 11	 11.4	13	0.3 0.6	9.65 13.2	14.0 19.0	6 500 5 400	10 000 8 300	51101 51201	53201		26 28	13 14	20	 30	 11.5		3.5	20 22	18 18	0.3 0.6	0.022 0.034	 0.031	0.043
15	28 32	9 12	 13.3	 15	0.3 0.6	9.95 16.6	15.4 24.8	6 100 4 900	9 400 7 500	51102 51202	53202	 53202U	28 32	16 17	24	 35	 12	28	4	23 25	20 22	0.3 0.6	0.024 0.046	 0.048	0.062
17	30 35	9 12	 13.2	15	0.3 0.6	10.8 17.2	18.2 27.3	6 100 4 900	9 400 7 500	51103 51203	 53203	 53203U	30 35	18 19	26	 38	 16	 32	4	25 28	22 24	0.3 0.6	0.028 0.053	 0.055	 0.070
20	35 40	10 14	 14.7	17	0.3 0.6	14.2 22.3	24.7 37.7	5 100 3 900	7 900 6 000	51104 51204	53204	 53204U	35 40	21 22	 30	42	 18	 36	5	29 32	26 28	0.3 0.6	0.040 0.082	 0.080	 0.100
25	42 47 52 60	11 15 18 24	 16.7 19.8 26.4	 19 22 29	0.6 0.6 1 1	19.5 27.8 35.7 55.6	37.2 50.4 61.4 89.4	4 400 3 600 3 100 2 600	6 800 5 500 4 800 4 000	51105 51205 51305 51405	 53205 53305 53405	 53205U 53305U 53405U	42 47 52 60	26 27 27 27	36 38 42	 50 55 62	 19 21 19	40 45 50	 5.5 6 8	35 38 41 46	32 34 36 39	0.6 0.6 1 1	0.059 0.120 0.180 0.340	 0.120 0.180 0.350	 0.152 0.224 0.442
30	47 52 60 70	11 16 21 28	 17.8 22.6 30.1	 20 25 33	0.6 0.6 1	20.4 29.4 42.8 72.8	42.2 58.2 78.7 126	4 300 3 400 2 700 2 200	6 600 5 200 4 200 3 400	51106 51206 51306 51406	 53206 53306 53406	53206U 53306U 53406U	47 52 60 70	32 32 32 32	42 45 50	55 62 75	 22 22 20	45 50 56	 5.5 7 9	40 43 48 54	37 39 42 46	0.6 0.6 1	0.068 0.150 0.270 0.530	 0.160 0.270 0.530	0.193 0.326 0.660
35	52 62 68 80	12 18 24 32	 19.9 25.6 34	22 28 37	0.6 1 1 1.1	21.2 39.2 55.5 87.1	47.2 78.2 105 155	3 900 2 900 2 400 1 900	6 000 4 500 3 700 2 900	51107 51207 51307 51407	53207 53307 53307	53207U 53307U 53407U	52 62 68 80	37 37 37 37	48 52 58	65 72 85	 24 23	 50 56 64	 7 7.5 10	45 51 55 62	42 46 48 53	0.6 1 1 1	0.090 0.220 0.390 0.790	 0.220 0.400 0.790	 0.277 0.484 0.960
40	60 68 78	13 19 26	20.3 28.5	 23 31	0.6 1 1	26.9 47.0 69.3	62.8 98.3 135	3 400 2 700 2 100	5 300 4 200 3 300	51108 51208 51308	53208 53308	53208U 53308U	60 68 78	42 42 42	 55 60	 72 82	 28.5 28	56 64	 7 8.5	52 57 63	48 51 55	0.6 1 1	0.120 0.270 0.550	 0.270 0.570	 0.340 0.690

d (**40**) ~ **70 mm**

With aligning seat race

	Во	oundary (n	dimensi 1m)	ions			oad ratings (kN)	Limiting (min		Beari	ng No.					nensio (mm)	ons			Mounti	ng dimer (mm)	isions	(Re	fer.) Mass (kg)
d	D	Т	T_1	T_2	<i>r</i> min.	C_{a}	$C_{0\mathrm{a}}$	Grease lub.	Oil lub.	With flat back faces	With spherical back face	With aligning seat race	d ₁ max.	D_1 min.	D_2	D_3	A	R	С	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	With flat back faces	With spherical back face	With aligning seat race
40	90	36	38.2	42	1.1	113	205	1 700	2 600	51408	53408	53408U	90	42	65	95	26	72	12	70	60	1	1.14	1.12	1.37
45	65 73 85 100	14 20 28 39	 21.3 30.1 42.4	24 33 46	0.6 1 1 1.1	27.8 47.7 80.0 130	69.1 105 163 242	3 200 2 600 1 900 1 500	5 000 4 000 3 000 2 300	51109 51209 51309 51409	53209 53309 53409	53209U 53309U 53409U	65 73 85 100	47 47 47 47	60 65 72	 90 105	 26 25 29	56 64 80	 7.5 10 12.5	57 62 69 78	53 56 61 67	0.6 1 1	0.150 0.320 0.690 1.47	 0.310 0.680 1.50	 0.397 0.850 1.82
50	70 78 95 110	22 31	23.5 34.3 45.6	26 37 50	0.6 1 1.1 1.5	48.5 96.6	75.4 111 202 283	3 100 2 300 1 800 1 400	4 800 3 600 2 700 2 100	51110 51210 51310 51410	53210 53310 53410	53210U 53310U 53310U	70 78 95 110	52 52 52 52	62 72 80	 82 100 115	 32.5 28 35	 64 72 90	 7.5 11 14	62 67 77 86	58 61 68 74	0.6 1 1 1.5	0.160 0.390 1.00 1.99	 0.380 1.01 1.97	 0.480 1.24 2.38
55	78 90 105 120	16 25 35 48	 27.3 39.3 50.5	30 42 55	0.6 1 1.1 1.5	69.4 119	93.1 159 246 359	2 800 2 100 1 600 1 200	4 300 3 200 2 400 1 900	51111 51211 51311 51411	53211 53311 53411	53211U 53311U 53411U	78 90 105 120	57 57 57 57	72 80 88	95 110 125	35 30 28	72 80 90	9 11.5 15.5	69 76 85 94	64 69 75 81	0.6 1 1 1.5	0.240 0.610 1.34 2.64	0.620 1.41 2.57	 0.770 1.69 3.10
60	85 95 110 130	17 26 35 51	28 38.3 54	31 42 58	1 1 1.1 1.5	41.4 73.6 124 214	113 179 267 437	2 600 1 900 1 500 1 100	4 000 3 000 2 300 1 700	51112 51212 51312 51412	53212 53312 53412	53212U 53312U 53412U	85 95 110 130	62 62 62 62	 78 85 95	 100 115 135	 32.5 41 34	 72 90 100	9 11.5 16	75 81 90 102	70 74 80 88	1 1 1 1.5	0.290 0.690 1.43 3.51	 0.690 1.47 3.44	 0.850 1.78 4.13
65	90 100 115 140	18 27 36 56	 28.7 39.4 60.2	32 43 65	1 1 1.1 2	41.7 74.9 128 232	117 189 287 493	2 400 1 900 1 400 1 000	3 700 2 900 2 200 1 600	51113 51213 51313 51413	53213 53313 53413	53213U 53313U 53413U	90 100 115 140	67 67 67 68	82 90	— 105 120 145	40 38.5 40	 80 90 112	9 12.5 17.5	80 86 95 110	75 79 85 95	1 1 1 2	0.340 0.770 1.57 4.47	 0.750 1.61 4.47	 0.930 1.95 5.28
70	95 105 125 150	18 27 40 60	 28.8 44.2 63.6	32 48 69	1 1 1.1 2	43.1 76.1 134 250	127 199 291 553	2 300 1 800 1 300 940	3 600 2 800 2 000 1 450	51114 51214 51314 51414	53214 53314 53414	53214U 53314U 53414U	95 105 125 150	72 72 72 73	 88 98 110	— 110 130 155		80 100 112	9 13 19.5	85 91 103 118	80 84 92 102	1 1 1 2	0.360 0.810 2.06 5.48	 0.800 2.15 5.38	 0.990 2.56 6.37

d **75** ~ (**120**) mm

A

	Bou	ndary d		ons			ad ratings	Limiting (mir		Beari	ng No.					nensio (mm)				Mount	ing dimei (mm)	nsions	(Rei	fer.) Mass (1	kg)
d	D	Т	T_1	T_2	r min.	C_{a}	C_{0a}	Grease lub.	Oil lub.	With flat back faces	With spherical back face	With aligning seat race	d_1 max.	D_1 min.	D_2	D_3	A	R	С	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	With flat back faces	With spherical back face	With aligning seat race
75	100	19	_	_	1	44.4	136	2 200	3 400	51115	_	_	100	77	_	_		_	_	90	85	1	0.420	_	_
	110	27	28.3	32	1	77.4	209	1 800	2 700	51215	53215	532150	110	77	92	115	49	90	9.5	96	89	1	0.860	0.850	1.06
	135	44	48.1	52	1.5	154	339	1 200	1 900	51315	53315	533150	135	77	105	140	37	100	15	111	99	1.5	2.68	2.72	3.27
	160	65	69	75	2	252	560	880	1 350	51415	53415	53415U	160	78	115	165	42	125	21	125	110	2	6.75	6.64	7.87
80	105	19	_	_	1	44.7	141	2 100	3 300	51116		_	105	82				_	_	95	90	1	0.430	_	_
	115	28	29.5	33	1	78.5	218	1 700	2 600	51216	53216	53216U	115	82	98	120	46	90	10	101	94	1	0.950	0.930	1.15
	140	44	47.6	52	1.5	160	368	1 200	1 800	51316	53316	53316U	140	82	110	145	50	112	15	116	104	1.5	2.82	2.86	3.43
	170	68	72.2	78	2.1	270	621	810	1 250	51416	53416	53416U	170	83	125	175	36	125	22	133	117	2	7.97	7.84	9.22
85	110	19	_	_	1	45.9	150	2 100	3 200	51117	_	_	110	87		_				100	95	1	0.460	_	_
	125	31	33.1	37	1	95.4	264	1 500	2 300	51217	53217	53217U	125	88	105	130	52	100	11	109	101	1	1.29	1.28	1.57
	150	49	53.1	58	1.5	186	419	1 100	1 700	51317	53317	53317U	150	88	115	155	43	112	17.5	124	111	1.5	3.66	3.63	4.44
	180	72	77	83	2.1	307	753	780	1 200	51417	53417	53417U	177	88	130	185	47	140	23	141	124	2	9.29	9.20	10.8
90	120	22	_		1	59.7	190	1 900	2 900	51118		_	120	92						108	102	1	0.680	_	_
	135	35	38.5	42	1.1	117	326	1 400	2 100	51218	53218	53218U	135	93	110	140	45	100	13.5	117	108	1	1.77	1.77	2.19
	155	50	54.6	59	1.5	193	454	1 000	1 600	51318	53318	53318U	155	93	120	160	40	112	18	129	116	1.5	3.88	3.87	4.71
	190	77	81.2	88	2.1	327	826	710	1 100	51418	53418	53418U	187	93	140	195	40	140	25.5	149	131	2	11.0	10.7	12.6
100	135	25		_	1	85.0	268	1 600	2 500	51120			135	102		_	_			121	114	1	0.990		
	150	38	40.9	45	1.1	146	410	1 200	1 900	51220	53220	53220U	150	103	125	155	52	112	14	130	120	1	2.36	2.34	2.84
	170	55	59.2	64	1.5	236	595	940	1 450	51320	53320	53320U	170	103	135	175	46	125	18	142	128	1.5	5.11	5.10	6.05
	210	85	90	98	3	368	983	620	950	51420	53420	53420U	205	103	155	220	50	160	27	165	145	2.5	14.6	14.5	17.4
110	145	25		_	1	87.0	288	1 600	2 400	51122			145	112	_	_	_		_	131	124	1	1.08		
	160	38	40.2	45	1.1	152	450	1 200	1 800	51222	53222	53222U	160	113	135	165	65	125	14	140	130	1	2.57	2.50	3.06
	190	63	67.2	72	2	267	704	810	1 250	51322	53322	53322U	187	113	150	195	51	140	20.5	158	142	2	7.72	7.63	8.90
	230	95	_	_	3	379	1 070	550	850	51422	—	_	225	113	_	_	_	_	_	181	159	2.5	19.8	_	_
120	155	25	_	_	1	89.0	305	1 500	2 300	51124	_	_	155	122	_		_		_	141	134	1	1.16	_	

d (120) ~ (180) mm

With aligning seat race

	Βοι	undary o		ons		Basic	c load ratings	Limiting (mir		Beari	ing No.					nensio (mm)	ns			Mount	ing dimer (mm)	isions	(Re	fer.) Mass (kg)
d	D	Т	T_1	T_2	r min.	C_{a}		Grease lub.	Oil lub.	With flat back faces	With spherical back face	With aligning seat race	d_1 max.	D_1 min.	D_2	D_3	A	R	С	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	With flat back faces	With spherical back face	With aligning seat race
120	170 210 250	39 70 102	40.8 74.1 —	46 80	1.1 2.1 4	154 311 480	869	1 100 710 520	1 700 1 100 800	51224 51324 51424	53224 53324 —	53224U 53324U —	170 205 245	123 123 123	145 165 —	175 220 —	61 63 —	125 160 —	15 22 —	150 173 196	140 157 174	1 2 3	2.86 10.6 25.0	2.81 10.4 	3.46 12.4
130	170 190 225 270	30 45 75 110	47.9 80.3	53 86	1 1.5 2.1 4	104 203 330 498	620 958	1 300 970 650 490	2 000 1 500 1 000 750	51126 51226 51326 51426	53226 53326 —	 53226U 53326U 	170 187 220 265	132 133 134 134	 160 177	 195 235 	67 53	 140 160	 17 26	154 166 186 212	146 154 169 188	1 1.5 2 3	1.87 4.09 13.0 31.4	3.98 12.7	4.88 15.2
140	180 200 240 280	31 46 80 112	 48.6 84.9	55 92	1 1.5 2.1 4	107 205 365 520	650 650 1 130	1 200 940 620 450	1 900 1 450 950 700	51128 51228 51328 51428	53228 53328	53228U 53328U	178 197 235 275	142 143 144 144	 170 190	 210 250	87 68	 160 180	 17 26	164 176 199 222	156 164 181 198	1 1.5 2 3	2.02 4.46 15.5 33.9	4.35 15.1	5.89 18.0
150	190 215 250 300	31 50 80 120	 53.3 83.7	60 92	1 1.5 2.1 4	109 213 361 568	652 1 130	1 200 840 580 420	1 900 1 300 900 650	51130 51230 51330 51430	 53230 53330 	53230U 53330U —	188 212 245 295	152 153 154 154	 180 200	 225 260	 79 89.5	 160 200	 20.5 26	174 189 209 238	166 176 191 212	1 1.5 2 3	2.15 5.64 16.3 41.6	 5.45 15.7	7.14 18.8
160	200 225 270 320	31 51 87 130	54.7 91.7	61 100	1 1.5 3 5	112 223 410 681	8 718 0 1 340	1 200 810 550 390	1 800 1 250 850 600	51132 51232 51332 51432	53232 53332	53232U 53332U —	198 222 265 315	162 163 164 164	 190 215	 235 280	 74 77	 160 200	 21 29	184 199 225 254	176 186 205 226	1 1.5 2.5 4	2.28 6.53 21.0 51.2	6.09 21.0	7.90 23.4
170	215 240 280 340	34 55 87 135	 58.7 91.3	65 100	1.1 1.5 3 5	134 261 463 755	834 1 570	1 100 750 520 360	1 700 1 150 800 550	51134 51234 51334 51434	 53234 53334 	 53234U 53334U 	213 237 275 335	172 173 174 174	 200 220	 250 290	91 105	 180 225	 21.5 29	197 212 235 270	188 198 215 240	1 1.5 2.5 4	3.25 8.12 22.0 60.0	7.69 22.0	9.83 24.5
180	225 250 300	34 56 95	 58.2 99.3		1.1 1.5 3	135 265 463	874	1 000 710 490	1 600 1 100 750	51136 51236 51336	53236 53336	 53236U 53336U	222 247 295	183 183 184	 210 240	 260 310	 112 91	 200 225	 21.5 32	207 222 251	198 208 229	1 1.5 2.5	3.39 8.68 28.1	8.08 26.9	 10.4 29.9

d (180) ~ 360 mm

With aligning seat race

	Βοι	undary ((m		ons			oad ratings (kN)	Limiting (mir			ng No.					nensio (mm)	ons				ng dimer (mm)	nsions		fer.) Mass (]	0.
d	D	Т	T_1	T_2	r min.	Ca	$C_{0\mathrm{a}}$	Grease lub.	Oil lub.	With flat back faces	With spherical back face	With aligning seat race	d ₁ max.	D_1 min.	D_2	D_3	A	R	С	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	With flat back faces	With spherical back face	With aligning seat race
180	360	140	—	—	5	742	2 730	320	500	51436	—	—	355	184	—	—	—	—	—	286	254	4	69.5	—	—
190	240 270 320	37 62 105	 65.7 111	 73 121	1.1 2 4	170 308 543	655 1 060 1 950	970 650 440	1 500 1 000 680	51138 51238 51338	 53238 53338	 53238U 53338U	237 267 315	193 194 195	 230 255	 280 330	98 104	 200 250	 23 33	220 238 266	210 222 244	1 2 3	3.95 11.7 36.0	 11.2 36.3	13.9 39.7
200	250 280 340	37 62 110	 65.3 118.4	 74 130	1.1 2 4	172 314 596	675 1 110 2 220	940 620 420	1 450 950 650	51140 51240 51340	 53240 53340	 53240U 53340U	247 277 335	203 204 205	 240 270	 290 350	125 92	 225 250	 23 38	230 248 282	220 232 258	1 2 3	4.13 12.2 42.9	 11.6 42.7	14.8 46.7
220	270 300	37 63	 65.6	75	1.1 2	177 342	740 1 310	880 580	1 350 900	51144 51244	53244	 53244U	267 297	223 224	 260	 310	 118	 225	25	250 268	240 252	1 2	4.50 13.5	 12.6	 15.9
240	300 340	45 78	 81.6	92	1.5 2.1	241 442	1 020 1 800	750 520	1 150 800	51148 51248	53248	 53248U	297 335	243 244	 290	 350	122	 250	30	276 299	264 281	1.5 2	7.38 23.1	20.9	25.6
260	320 360	45 79	 82.8	93	1.5 2.1	231 445	990 1 880	710 490	1 100 750	51152 51252	53252	 53252U	317 355	263 264	 305	 370	 152	 280	30	296 319	284 301	1.5 2	7.93 25.0	 22.6	28.5
280	350	53	_	_	1.5	329	1 430	640	900	51156	—	—	347	283	_	_	_	_	—	322	308	1.5	12.0	—	
300	380 420	62 95	 100.5	 112	2 3	363 570	1 610 2 600	540 400	810 600	51160 51260	 53260	 53260U	376 415	304 304	 360	 430	164	 320	34	348 371	332 349	2 2.5	17.5 42.5	 39.5	48.0
320	400 440	63 95	 100.5	 112	2 3	379 577	1 760 2 710	540 400	810 600	51164 51264	 53264	 53264U	396 435	324 325	 380	 450	157	 320	36	368 391	352 369	2 2.5	19.0 45.0	42.0	 52.0
340	420 460	64 96	 100.3	113	2 3	387 584	1 860 2 830	500 380	770 570	51168 51268	53268	 53268U	416 455	344 345	 400	 470	199	 360	36	388 411	372 389	2 2.5	20.5 48.0	45.0	55.0
360	440 500	65 110	 116.7	130	2 4	394 701	1 960 3 500	500 340	720 500	51172 51272	53272	 53272U	436 495	364 365	 430	 510	172	 360	43	408 443	392 417	2 3	21.5 70.0	65.0	82.0

Double direction thrust ball bearings

 d_2 **10** ~ (**50**) mm

With spherical back face

 ϕd_3

 T_6

Koyo

	P	unda	ry dim	oncio	n c		Pacia las	d ratinga	Limiting	speeds		Bearing No						Din	nensio	ne					Mour	ting d	imensi	one	(Defex)	lass (kg)
	Ы		(mm)	ensio	115		Dasic iud (k	N)	(mi	n^{-1}		Dearing No							(mm)	115					woul	(m		5115	(Refer.) IV	idəə (kg)
d_2	D	T_1		T_5	r min.	r_1 min.	Ca	C_{0a}	Grease lub.	Oil lub.	With flat back faces	With spherica back faces	al With aligning seat races	d ₃ max.	D_1 min.	D_2	D_3	T_2	T_4	T_6	Α	R	В	С			r _a max.	~	With flat back faces	With aligning seat races
10	32	22	24.6	28	0.6	0.3	16.6	24.8	4 900	7 500	52202	54202	54202U	32	17	24	35	13.5	14.8	16.5	10.5	28	5	4	15	24	0.6	0.3	0.085	0.118
15	40 60	26 45	27.4 49.8		0.6 1	0.3 0.6	22.3 55.6	37.7 89.4	3 900 2 600	6 000 4 000	52204 52405	54204 54405	54204U 54405U	40 60	22 27	30 42	42 62	16 28	16.7 30.4	19 33	16 15	36 50	6 11	5 8	20 25	30 42		0.3 0.6	0.150 0.630	0.190 0.804
20	47 52 70	28 34 52	31.4 37.6 56.2	42	0.6 1 1	0.3 0.3 0.6	27.7 35.7 72.8	50.4 61.4 126	3 600 3 100 2 200	5 500 4 800 3 400	52205 52305 52406	54205 54305 54406	54205U 54305U 54406U	47 52 70	27 27 32	36 38 50	50 55 75	17.5 21 32	19.2 22.8 34.1	21.5 25 37	16.5 18 16	40 45 56	7 8 12	5.5 6 9	25 25 30	36 38 50	1	0.3 0.3 0.6	0.230 0.330 1.00	0.304 0.428 1.25
25	52 60 80	29 38 59	32.6 41.2 63		0.6 1 1.1	0.3 0.3 0.6	28.1 42.8 87.1	54.3 78.7 155	3 400 2 700 1 900	5 200 4 200 2 900	52206 52306 52407	54206 54306 54407	54206U 54306U 54407U	52 60 80	32 32 37	42 45 58	55 62 85	18 23.5 36.5		22 27.5 41.5	20 19.5 18.5	45 50 64	7 9 14	5.5 7 10	30 30 35	42 45 58	0.6 1 1	0.3 0.3 0.6	0.270 0.490 1.44	0.346 0.602 1.79
30	62 68 68 78	34 36 44 49	38.6 47.2 54	44 52 59	1 1 1	0.3 0.6 0.3 0.6	40.7 46.9 55.5 69.3	83.8 98.3 105 135	2 900 2 700 2 400 2 100	4 500 4 200 3 700 3 300	52207 52208 52307 52308	54207 54208 54307 54308	54207U 54208U 54307U 54308U	62 68 68 78	37 42 37 42	48 55 52 60	65 72 72 82	21 22.5 27 30.5	22.9 23.8 28.6 33	26.5 31 35.5	21 25 21 23.5	50 56 56 64	8 9 10 12	7 7 7.5 8.5	35 40 35 40	48 55 52 60	1 1 1	0.3 0.6 0.3 0.6	0.420 0.540 0.710 1.06	0.544 0.680 0.898 1.34
	90	65	69.4	77	1.1	0.6	113	205	1 700	2 600	52408	54408	54408U	 90	42	65	95	40	42.2	46	22	72	15	12	40	65	1	0.6	2.03	2.55
35	73 85 100	37 52 72	39.6 56.2 78.8	62	1 1 1.1	0.6 0.6 0.6	47.7 80.0 130	105 163 242	2 600 1 900 1 500	4 000 3 000 2 300	52209 52309 52409	54209 54309 54409	54209U 54309U 54409U	73 85 100	47 47 47	60 65 72	78 90 105	23 32 44.5	24.3 34.1 47.9	27 37 51.5	23 21 23.5	56 64 80	9 12 17	7.5 10 12.5	45 45 45	60 65 72	1 1 1	0.6 0.6 0.6	0.620 1.29 2.91	0.784 1.62 3.42
40	78 95 110	39 58 78	42 64.6 83.2		1 1.1 1.5	0.6 0.6 0.6	48.5 91.6 148	111 186 283	2 300 1 800 1 400	3 600 2 700 2 100	52210 52310 52410	54210 54310 54410	54210U 54310U 54410U	78 95 110	52 52 52	62 72 80	82 100 115	24 36 48	25.5 39.3 50.6	42	30.5 23 30	64 72 90	9 14 18	7.5 11 14	50 50 50	62 72 80		0.6 0.6 0.6	0.710 1.86 3.56	0.890 2.35 4.39
45	90 105 120	45 64 87	49.6 72.6 92		1 1.1 1.5	0.6 0.6 0.6	69.4 119 178	159 246 359	2 100 1 600 1 200	3 200 2 400 1 900	52211 52311 52411	54211 54311 54411	54211U 54311U 54411U	90 105 120	57 57 57	72 80 88	95 110 125	27.5 39.5 53.5	43.8		32.5 25.5 22.5	80	10 15 20	9 11.5 15.5	55 55 55	72 80 88	1 1 1.5	0.6 0.6 0.6	1.12 2.51 4.70	1.44 3.21 5.62
50	95 110 130	46 64 93		56 78 107	1 1.1 1.5	0.6 0.6 0.6	73.6 124 201	179 267 397	1 900 1 500 1 100	3 000 2 300 1 700	52212 52312 52412	54212 54312 54412	54212U 54312U 54412U	95 110 130	62 62 62	78 85 95	100 115 135	28 39.5 57	30 42.8 60	33 46.5 64	30.5 36.5 28		10 15 21	9 11.5 16	60 60 60	78 85 95	1 1 1.5	0.6 0.6 0.6	1.25 2.68 6.33	1.57 3.37 7.60

Double direction thrust ball bearings

 d_2 (50) ~ 95 mm

 ϕd_3

With spherical back face

Koyo

	Bo	undar	y dimensi	ions			Basic Io	ad ratings	Limiting	sneeds		Bearing No	1					Dir	nensio	ns					Мош	nting (limens	ions	(Refer)	lass (kg)
	50		(mm)	0115		1		N)	(mi	n^{-1}		Ŭ							(mm)	115					mou	(m		10113	, ,	. 0.
d_2	D	T_1	T_3 T_5	m	<i>r r</i> iin. mi	1 n.	C_{a}	C_{0a}	Grease	Oil lub.	With flat back faces	With spherica back faces	al With aligning seat races	d_3 max.	D_1 min.	D_2	D_3	T_2	T_4	T_6	Α	R	В	С			r _a max.		With flat back faces	With aligning seat races
50	140	101	109.4 119	2	2 1		232	493	1 000	1 600	52413	54413	54413U	140	68	100	145	62	66.2	71	34	112	23	17.5	65	100	2	1	8.03	9.72
55	100 105 115	47 47 65	50.4 57 50.6 57 71.8 79	1	0 1 1.1 0		74.8 73.6 128	189 189 287	1 900 1 800 1 400	2 900 2 800 2 200	52213 52214 52313	54213 54214 54313	54213U 54214U 54313U	100 105 115	67 72 67	82 88 90	105 110 120	28.5 28.5 40	43.4	33.5 47	38.5 36.5 34.5	80	10 10 15	9 9 12.5	65 70 65	82 88 90	1 1 1	0.6 1 0.6	1.36 1.48 2.90	1.70 1.84 3.66
	125 150	72 107	80.4 88 114.2 125		1.1 1 2 1		148 250	339 553	1 300 940	2 000 1 450	52314 52414	54314 54414	54314U 54414U	125 150	72 73	98 110	130 155	44 65.5		52 74.5	39 28.5	100 112	16 24	13 19.5	70 70	98 110	1 2	1 1	3.90 9.71	4.78 11.6
60	110 135 160		49.6 57 87.2 95 123 135		.5 1		77.4 171 252	209 396 560	1 800 1 200 880	2 700 1 900 1 350	52215 52315 52415	54215 54315 54415	54215U 54315U 54415U	110 135 160	77 77 78	92 105 115	115 140 165		52.6	33.5 56.5 80.5		100	10 18 26	9.5 15 21		92 105 115	1 1.5 2	1 1 1	1.57 4.83 11.8	1.96 6.08 14.3
65			51 58 86.2 95 128.4 140 138 150	1 2	1 1 1.5 1 2.1 1 2.1 1		78.5 176 270 307	218 424 621 753	1 700 1 200 810 780		52216 52316 52416 52417	54216 54316 54416 54417	54216U 54316U 54416U 54417U	115 140 170 179.5	82 82 83 88	98 110 125 130	120 145 175 185		77.7	56.5	45 45.5 30.5 40.5	125	10 18 27 29	10 15 22 23	80		1.5 2	1 1 1	1.69 5.06 14.0 17.5	2.09 6.36 16.6 19.7
70	150	55 87 135	59.2 67 95.2 105 143.4 157		1 1.5 1 2.1 1		92.3 206 327	251 489 826	1 500 1 100 710	2 300 1 700 1 100	52217 52317 52418	54217 54317 54418	54217U 54317U 54418U	125 150 189.5	88 88 93	105 115 140	130 155 195	33.5 53 82.5	57.1	39.5 62 93.5		112	12 19 30	11 17.5 25.5	85	105 115 140	1 1.5 2	1 1 1	2.34 6.43 19.6	2.90 8.03 22.8
75	135 155	62 88	69 76 97.2 106		1.1 1 1.5 1		117 213	326 524	1 400 1 000	2 100 1 600	52218 52318	54218 54318	54218U 54318U	135 155	93 93	110 120	140 160	38 53.5	41.5 58.1	45 62.5		100 112	14 19	13.5 18		110 120	1 1.5	1 1	3.22 6.60	4.07 8.44
80	210	150	160 176	3	3 1	.1	368	983	620	950	52420	54420	54420U	209.5	103	155	220	91.5	96.5	104.5	43.5	160	33	27	100	155	2.5	1	26.6	32.0
	150 170		72.8 81 105.4 115		.1 1 .5 1		147 236	410 596	1 200 940	1 900 1 450	52220 52320	54220 54320	54220U 54320U	150 170	103 103	125 135	155 175	41 59	43.9 63.2			112 125	15 21	14 18	100 100		1 1.5	1 1	4.29 8.90	5.25 10.8
90	230	166		3	3 1	.1	379	1 070	550	850	52422	—	—	 229	113	_		101.5	—	_	_	—	37	—	110	170	2.5	1	34.9	_
95		110	71.4 81 118.4 128 — —	2			148 280 480	431 754 1 460	1 200 810 520	1 800 1 250 800	52222 52322 52424	54222 54322 —	54222U 54322U —	160 189.5 249	113	135 150	165 195	41 67 108.5	43.2 71.2 —		62 47	125 140	15 24 40	14 20.5 —	110 110 120	150	1 2 3	1 1 1.5	4.68 13.8 44.2	5.66 16.3

Double direction thrust ball bearings

 d_2 **100** ~ **190** mm

 ϕd_3

With spherical back face

Koyo

	Bo	ounda	ry dim	ensio	ns		Basic le	oad ratings	Limiting	speeds		Bearing No						Din	nensio	ns					Mour	ting d	imens	ions	(Refer.)	lass (kg)
d_2	D		(mm) <i>T</i> ₃				(kN)	(mir Grease lub.	n ⁻¹)	With flat back faces	-	l With aligning seat races	d_3 max.	D_1 min.	D_2	D_3	T_2	(mm) <i>T</i> ₄	T_6	A	R	В	С	d_{a}	(mı D _a		$r_{ m b}$	With flat back faces	With aligning seat races
100	170 210 270	68 123 192	131.2	143	1.1 2.1 4	1.1 1.1 2	154 325 498	472 931 1 540	1 100 710 490	1 700 1 100 750	52224 52324 52426	54224 54324 —	54224U 54324U —		123 123 134	145 165	175 220	41.5 75 117	43.3 79.1	48.5 85 —		125 160	15 27 42	15 22	120 120 130	165	1 2 3	1 1 2	5.24 17.2 56.5	6.44 22.9
110	190 225 280	80 130 196	85.8 		1.5 2.1 4	1.1 1.1 2	203 346 520	622 1 030 1 680	970 650 450	1 500 1 000 700	52226 52326 52428	54226 	54226U 	189.5 224 279	133 134 144	160	195 	49 80 120	51.9 	57 	63	140	18 30 44	17	130		2	1 1 2	7.72 22.1 60.6	9.29
120		81 140 209	86.2 	—	1.5 2.1 4	1.1 1.1 2	215 367 568	669 1 130 1 910	940 620 420	1 450 950 650	52228 52328 52430	54228 	54228U 	199.5 239 299	143 144 154	170 	210	49.5 85.5 127.5	52.1 	58.5 	83.5 	160 	18 31 46	17 	140	170 190 225	2	1 1 2	8.31 27.8 73.9	10.5
130	215 250 320	89 140 226	95.6 	—	1.5 2.1 5	1.1 1.1 2	244 377 681	768 1 200 2 410	840 580 390	1 300 900 600	52230 52330 52432	54230 	54230U 	214.5 249 319	153 154 164	180 	225 	54.5 85.5 138	57.8 	64.5 	74.5 	160 	20 31 50	20.5 	150		2	1 1 2	10.6 29.2 90.3	13.6
135	340	236	—	—	5	2.1	755	2 730	360	550	52434	—	_	339	174	—	_	143	—	_	—	_	50	_	170	255	4	2	108	_
140		90 153 245	_	110 	1.5 3 5	1.1 1.1 3	247 470 742	803 1 570 2 730	810 550 320	1 250 850 500	52232 52332 52436	54232 	54232U 	224.5 269 359	163 164 184	190 	235	55 93 148.5	58.7 	65 	70 	160 	20 33 52	21 	160 160 180		1.5 2.5 4	1 1 2.5	12.2 37.7 126	14.6
150	250 280	98 153	104.4 102.4	118	1.5 1.5 3	1.1 2 1.1	269 294 463	874 986 1 570	750 710 520	1 150 1 100 800	52234 52236 52334	54234 54236 —	54234U 54236U —	249 279	173 183 174	200 210	250 260	59 59.5 93	62.7 61.7 —	69 69.5 —		180 200	21 21 33	21.5 —	170	210 220	1.5 1.5 2.5	1	15.2 15.9 39.6	17.8 19.6
		165			3	2	463	1 580	490	750	52336			299	184	_	_	101	_	_	_	_	37		180	240	2.5	2	50.9	
160			116.4 —		2 4	2 2		1 010 1 950	650 440	1 000 680	52238 52338	54238 	54238U —	269 319	194 195	220	280	66.5 111.5	70.2 —	77.5 —	93.5 —	200	24 40	23	190 190	230 255	2 3	2 2	21.6 64.9	25.2
170			115.6		2 4	2 2	-	1 110 2 220	620 420	950 650	52240 52340	54240 —	54240U 	279 339	204 205	240	290	66.5 117	69.8 —	78.5 	120.5	225	24 42	23	200 200	240 270		2 2	22.7 77.8	27.3
190	300	110	115.2	134	2	2	342	1 310	580	900	52244	54244	54244U	 299	224	260	310	67	69.6	79	114	225	24	25	220	260	2	2	23.9	29.5

Spherical thrust roller bearings

Spherical thrust roller bearings are designed to carry high axial loads. They can also support radial load if magnitude is no more than 55 % of the axial load being carried.

These bearings are not suitable for high-speed rotation. Having a spherical housing race raceway surface, these bearings are self-alignings, adjusting to axial inclination. They are usually used with oil lubrication.

_
3

Bore diameter 60 - 500 mm

Spherical thrust roller bearings

Boundary dimensions	As specified in JIS B 1512.
Tolerances	As specified in JIS B 1514-2, class 0. (refer to table 7-10 on p. A 69.)
Recommended fits	Refer to Table 9-8 on p. A 92.
Required minimum axial load	A certain degree of load is necessary in order for bearings to operate satisfactorily. (refer to p. A 110.)
Standard cage	Copper alloy machined cage (supplementary code : FY)
Allowable aligning angle	0.035 – 0.052 rad (2° – 3°) in general, depending on bearing series.
Equivalent axial load	Dynamic equivalent axial load $P_a = 1.2F_r + F_a$ $P_{0a} \doteq 2.7F_r + F_a$ (Note : $F_r/F_a \le 0.55$)

Spherical thrust roller bearings -

d 60 ~ 160 mm

	Boundary d			Basic loa							nsions m)			Moun	ting dime (mm)	ensions	(Refer.) Mass
d	D	Т	r min.	C_{a}	$C_{0\mathrm{a}}$	Oil lub.	Bearing No.	d_1	D_1	В	B_1	С	A	d_{a} min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
60	130	42	1.5	319	884	2 700	29412R	123	89	15	39.5	20	38	90	108	1.5	2.75
65	140	45	2	360	1 020	2 500	29413R	133	96	16	42.5	21	42	100	115	2	3.41
70	150	48	2	387	1 100	2 300	29414R	142	103	17	45.5	23	44	105	125	2	4.16
75	160	51	2	468	1 360	2 100	29415R	152	109	18	48	24	47	115	132	2	4.98
80	170	54	2.1	505	1 480	2 000	29416R	162	117	19	51	26	50	120	140	2	5.95
85	150 180	39 58	1.5 2.1	321 572	1 000 1 700	2 600 1 900	29317R 29417R	143.5 170	114 125	13 21	37 55	19 28	50 54	115 130	135 150	1.5 2	2.87 7.19
90	155 190	39 60	1.5 2.1	330 658	1 050 2 010	2 500 1 800	29318R 29418R	148.5 180	117 132	13 22	37 57	19 29	52 56	120 135	140 157	1.5 2	3.06 8.28
100	170 210	42 67	1.5 3	385 730	1 270 2 220	2 300 1 650	29320R 29420R	163 200	129 146	14 24	40 64	20.8 32	58 62	130 150	150 175	1.5 2.5	3.91 11.2
110	190 230	48 73	2 3	502 896	1 690 2 810	2 000 1 500	29322R 29422R	182 220	143 162	16 26	45.5 69	23 35	64 69	145 165	165 190	2 2.5	5.67 14.7
120	210 250	54 78	2.1 4	565 1 040	2 030 3 270	1 800 1 350	29324R 29424R	200 236	159 174	18 29	51 74	26 37	70 74	160 180	180 205	2 3	7.90 18.5
130	225 270	58 85	2.1 4	715 1 200	2 440 3 870	1 700 1 250	29326R 29426R	215 255	171 189	19 31	55 81	28 41	76 81	170 195	195 225	2 3	9.45 23.5
140	240 280	60 85	2.1 4	707 1 260	2 490 4 080	1 600 1 250	29328 29428R	230 268	183 199	20 31	57 81	29 41	82 86	185 205	205 235	2 3	11.1 24.6
150	250 300	60 90	2.1 4	767 1 380	2 740 4 620	1 550 1 100	29330R 29430R	240 285	194 214	20 32	57 86	29 44	87 92	195 220	215 250	2 3	11.7 29.6
160	270 320	67 95	3 5	862 1 590	3 070 5 370	1 400 1 050	29332 29432R	 260 306	208 229	23 34	64 91	32 45	92 99	210 230	235 265	2.5 4	15.4 35.9

Spherical thrust roller bearings -

d **170** ~ **320 mm**

 $C = \begin{array}{c|c} & \phi & d_1 & & \\ & \phi & B_1 & & \\ & \phi & D_1 & & \\ &$

	Boundary ((m	dimensions m)		Basic loa	d ratings N)						ensions nm)			Mour	nting dime (mm)	ensions	(Refer.) Mass
d	D	T	r min.	C_{a}	C_{0a}	Oil lub.	Bearing No.	d_1	D_1	В	B_1	C	Α	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
170	280 340	67 103	3 5	922 1 740	3 180 5 880	1 350 950	29334A 29434R	270 324	216 243	23 37	64 99	32 50	96 104	220 245	245 285	2.5 4	15.4 44.0
180	300 360	73 109	3 5	896 1 960	3 170 6 590	1 250 900	29336 29436R	290 342	232 255	25 39	69 105	35 52	103 110	235 260	260 300	2.5 4	20.7 52.2
190	320 380	78 115	4 5	1 170 2 230	4 230 7 690	1 150 850	29338 29438R	308 360	246 271	27 41	74 111	38 55	110 117	250 275	275 320	3 4	25.1 61.4
200	280 340 400	48 85 122	2 4 5	513 1 360 2 460	2 170 5 040 8 470	1 600 1 050 800	29240 29340 29440R	271 325 380	236 261 286	15 29 43	45 81 117	24 41 59	108 116 122	235 265 290	255 295 335	2 3 4	8.90 31.2 73.0
220	300 360 420	48 85 122	2 4 6	536 1 380 2 540	2 340 5 240 8 990	1 550 1 000 750	29244 29344 29444R	292 345 400	254 280 308	15 29 43	45 81 117	24 41 58	117 125 132	260 285 310	275 315 355	2 3 5	10.0 33.3 74.2
240	340 380 440	60 85 122	2.1 4 6	822 1 430 2 610	3 670 5 330 9 510	1 250 950 700	29248 29348A 29448R	330 365 420	283 300 326	19 29 43	57 81 117	30 41 59	130 135 142	285 300 330	305 330 375	2 3 5	16.7 35.5 83.0
260	360 420 480	60 95 132	2.1 5 6	838 1 540 3 100	3 720 6 040 11 100	1 200 850 650	29252 29352 29452R	350 405 460	302 329 357	19 32 48	57 91 127	30 45 64	139 148 154	305 330 360	325 365 405	2 4 5	18.5 51.5 110
280	380 440 520	60 95 145	2.1 5 6	826 1 760 3 650	3 730 6 870 13 600	1 150 800 550	29256 29356 29456R	370 423 495	323 348 387	19 32 52	57 91 140	30 46 68	150 158 166	325 350 390	345 390 440	2 4 5	19.5 53.2 137
300	420 480 540	73 109 145	3 5 6	1 060 1 970 3 880	4 880 7 780 14 900	950 700 550	29260 29360 29460R	405 460 515	353 379 402	21 37 52	69 105 140	38 50 70	162 168 175	355 380 410	380 420 460	2.5 4 5	30.5 74.9 146
320	440 500 580	73 109 155	3 5 7.5	1 430 2 310 4 160	6 480 9 380 16 100	900 650 500	29264R 29364 29464R	430 482 555	372 399 435	21 37 55	69 105 149	38 53 75	172 180 191	375 400 435	400 440 495	2.5 4 6	32.7 78.0 179

Spherical thrust roller bearings -

d **340** ~ **500 mm**

	Boundary o (m			Basic loa (k	d ratings N)	$\begin{array}{c} \text{Limiting speed} \\ (min^{-1}) \end{array}$	Bearing No.				nsions nm)			Moun	ting dime (mm)	ensions	(Refer.) Mass
d	D	T	r min.	C_{a}	$C_{0\mathrm{a}}$	Oil lub.	bearing No.	d_1	D_1	В	B_1	С	A	d _a min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
340	460 540 620	73 122 170	3 5 7.5	1 390 3 050 4 960	6 420 12 700 19 400	900 600 450	29268R 29368R 29468R	445 520 590	395 428 462	21 41 61	69 117 164	37 59 82	183 192 201	395 430 465	420 470 530	2.5 4 6	34.7 106 224
360	500 560 640	85 122 170	4 5 7.5	1 310 3 120 5 150	6 080 13 200 20 600	750 550 450	29272 29372R 29472R	485 540 610	423 448 480	25 41 61	81 117 164	44 59 82	194 202 210	420 450 485	455 495 550	3 4 6	51.8 110 231
380	520 600 670	85 132 175	4 6 7.5	1 380 3 540 5 420	6 610 15 000 22 000	700 500 410	29276 29376R 29476R	505 580 640	441 477 504	27 44 63	81 127 168	42 63 85	202 216 230	440 480 510	475 525 575	3 5 6	52.8 141 263
400	540 620 710	85 132 185	4 6 7.5	1 580 3 700 6 200	7 610 16 100 25 300	700 500 380	29280 29380R 29480R	526 596 680	460 494 534	27 44 67	81 127 178	42 64 89	212 225 236	460 500 540	490 550 610	3 5 6	55.3 144 315
420	580 650 730	95 140 185	5 6 7.5	1 850 4 060 6 380	8 750 17 700 26 500	600 450 370	29284 29384R 29484R	564 626 700	489 520 556	30 48 67	91 135 178	46 68 89	225 235 244	490 525 560	525 575 630	4 5 6	75.4 169 330
440	600 680 780	95 145 206	5 6 9.5	1 870 4 290 7 290	8 970 18 800 30 000	600 420 320	29288 29388R 29488R	585 655 745	508 548 588	30 49 74	91 140 199	49 70 100	235 245 260	510 550 595	545 600 670	4 5 8	77.9 190 423
460	620 710 800	95 150 206	5 6 9.5	1 950 3 680 7 520	9 620 15 800 31 600	550 400 300	29292 29392 29492R	605 685 765	530 567 608	30 51 74	91 144 199	46 72 100	245 257 272	530 575 615	570 630 690	4 5 8	81.0 216 438
480	650 730 850	103 150 224	5 6 9.5	2 300 3 650 8 690	11 600 15 800 36 300	500 390 270	29296 29396 29496R	635 705 810	556 590 638	33 51 81	99 144 216	55 72 108	259 270 280	555 595 645	595 650 730	4 5 8	89.0 218 548
500	870	224	9.5	8 650	36 400	270	294/500R	830	661	81	216	107	290	670	750	8	562

Needle roller bearings

Needle roller bearings are small in sectional height, therefore useful in making machinery smaller and lighter. This type of bearing is used in a wide range of machinery, such as automobiles, motor cycles, electric machines, machine tools, aerospace and office equipment.

- Compact, highly rigid and superior in load carrying performance, compared with other types of bearings.
- Excellent for carrying oscillating loads; contains many small diameter rollers.
- Widely employed in stud type and yoke type track rollers used as guide rollers in cam mechanisms or linear motion units.

Also used in miniature one-way clutches in the clutch mechanisms of office equipment, such as copying machines.

The catalog also covers bearings employing rollers other than those prescribed in JIS B 1506 "rollers for roller bearings".

[Remark] *-marked item indicates the thrust washer or washer specified in JIS.

Kovo

[Tolerances of needle roller bearings]

			e rollers (JIS B 1506)		ic series drawn ecting gauge spe	-	att staring
							Unit : m
	+			Nominal bore diameter	D	Plug	gauge
	ϕD_v	v -{	··	of rolling element complement $F_{ m w}$	Ring gauge	Go end	No-go en
	4			4	7.996	4.023	4.048
			Unit : µm	5	8.996	5.023	5.048
	1			6	9.996	6.028	6.053
	Single 1			7	10.995	7.031	7.056
	plane diamete	from r circular	diameter variation	8	11.995 14.995	8.031	8.056
Class	variation		variation	9	12.995	9.031	0.056
	V_{Dwp}	Δ_{Rw}	V_{DwL}		15.995	9.031	9.056
	max.	max.	max.	10	13.995 16.995	10.031	10.056
2	1	1	2		15.995		
3	1.5	1.5	3	12	17.995	12.031	12.056
5	2	2.5	5		18.993		
5	2	2.5	5	13	18.993	13.034	13.059
	0)			14	18.993 19.993	14.034	14.059
	Actual 2)	B		14	21.993	14.004	14.000
Class	length deviation	Recom	mended gauge		19.993		
	Δ_{Lws}		S	15	20.993	15.034	15.059
	∠Lws	0/ 0 1/	0 0/ 1		21.993 21.993		
2		0/-2, -1/-	-3, -2/-4,	16	23.993	16.034	16.059
2		-6/-8, -7/-			21.972		
	h 13	-		17	22.972 23.972	17.013	17.038
3			5/- 4.5, - 3/- 6, - 6/- 9,- 7/- 10		23.972		
		- 4.5/- 7.5, -	- 0/- 9,- 7/- 10	18	24.972	18.013	18.038
5		0/-5, -3/-	- 8, – 5/– 10	19	26.972	19.013	19.038
				20	25.972	20.013	20.038
			iddle of roller length.	-	26.972 27.972		
			rs according to $L_{ m w}$	22	28.972	22.013	22.038
amarki	division.		of the roller, all the		29.972		
emaikj			eters should not	01	29.972	04.010	04.000
			num diameter at the	24	30.967 34.967	24.013	24.038
			th of the roller by the	05	31.967	05.010	05.000
		hown below.		25	32.967	25.013	25.038
) Class 3 : 0.8 μm	26	33.967	26.013	26.038
	c) Class !	ο.ιμm		28	33.967 34.967	28.013	28.038
			-	20	36.967	20.013	20.030
Table	3 Toleran	ce of needle r	oller cage width B		36.967		
				30	37.967	30.013	30.038
					39.967 37.967		
	1			32	39.967	32.013	32.038
					41.967		
		В			41.007	05.040	
		$-\frac{B}{b}$		35	41.967	35.013	35.038
		4	1	35	44.967	35.013	35.038
		4			44.967 41.967		
	Bearing *	<i>b</i>	B deviation (mm)	35	44.967	36.013	35.038 36.038
	Bearing ty	<i>b</i>	B deviation (mm)		44.967 41.967 43.967 47.967 42.967	36.013	36.038
R. RS		/pe	upper lower	36 37	44.967 41.967 43.967 47.967 42.967 46.967	36.013 37.013	36.038 37.038
	Bearing ty RP (Welded WR, WRS,	/pe		36 37 38	44.967 41.967 43.967 47.967 42.967 46.967 47.967	36.013 37.013 38.013	36.038 37.038 38.038
V, VS,	RP (Welded WR, WRS,	/pe	upper lower - 0.2 - 0.55	36 37	44.967 41.967 43.967 47.967 42.967 46.967	36.013 37.013	36.038 37.038
	RP (Welded WR, WRS,	/pe	upper lower	36 37 38 40	44.967 41.967 43.967 47.967 42.967 46.967 46.967 46.967 49.967 51.961	36.013 37.013 38.013 40.013	36.038 37.038 38.038 40.043
V, VS, VP, VF	RP (Welded WR, WRS, PS	/pe d type), RV, WRP, WV	upper lower - 0.2 - 0.55	36 37 38	44.967 41.967 43.967 42.967 42.967 46.967 47.967 46.967 49.967 51.961 54.961	36.013 37.013 38.013	36.038 37.038 38.038
V, VS, VP, VF Remark]	RP (Welded WR, WRS, PS Values in standards	/pe d type), RV, WRP, WV Italics are pres	upper lower - 0.2 - 0.55 - 0.2 - 0.7	36 37 38 40	44.967 41.967 43.967 47.967 42.967 46.967 46.967 46.967 49.967 51.961	36.013 37.013 38.013 40.013	36.038 37.038 38.038 40.043

		Unit : mm	
	Plug	gauge	
auge	Go end	No-go end	
96	4.023	4.048	Nomir
96	5.023	5.048	diame rolling
96 95	6.028 7.031	6.053 7.056	comp
95	8.031	8.056	
95	0.031	8.050	
95 95	9.031	9.056	
95 95	10.031	10.056	
95 95 93	12.031	12.056	
93	13.034	13.059	
93 93 93	14.034	14.059	
93 93 93	15.034	15.059	
93 93	16.034	16.059	
72 72 72	17.013	17.038	
72 72	18.013	18.038	
72	19.013	19.038	
72 72	20.013	20.038	
72 72 72 72	22.013	22.038	
72 67 67	24.013	24.038	
67 67	25.013	25.038	
67	26.013	26.038	
67 67 67	28.013	28.038	
67 67 67	30.013	30.038	
67 67 67	32.013	32.038	
67 67	35.013	35.038	
67 67 67	36.013	36.038	
67 67	37.013	37.038	
67	38.013	38.038	
67 67	40.013	40.043	[Rem
61 61	45.013	45.043	
61 61	50.013	50.043	
61	55.013	55.051	

Unit : mm

Table 5	Ring gauge set bore dia (for bearing to ISO stand	ameter to gs design	olerance		Table (v d c
				Unit : mm		(1
Nominal bore diameter of rolling element complement F _w	Nominal outside diameter D	Ring gauge	Nominal bore rolling elemen Fw toleranc	nt complement	Nominal of rolling	
4	8	7.984	4.010	4.028	complem	
5	9	8.984	5.010	5.028	over	
6	10	9.984	6.010	6.028	000	
7	11	10.980	7.013	7.031	6	
8	12 14	11.980 13.980	8.013	8.031	10	
9	13 15	12.980 14.980	9.013	9.031	18 30	
10	14 16	13.980 15.980	10.013	10.031	50	
12	16 18	15.980 17.980	12.016	12.034	80	
14	20 22	19.976 21.976	14.016	14.034	120	
15	21 23	20.976 22.976	15.016	15.034	180	
16	22 24	21.976 23.976	16.016	16.034	[Notes]	1) T
17	23 25	22.976 24.976	17.016	17.034		e c
18	24 26	23.976 25.976	18.016	18.034		d d
20	26 28	25.976 27.976	20.020	20.041		2) A
22	28 30	27.976 29.976	22.020	22.041		h c
25	32 35	31.972 34.972	25.020	25.041		ri
28	35 38	34.972 37.972	28.020	28.041		
30	37 40	36.972 39.972	30.020	30.041		
32	39 42	38.972 41.972	32.025	32.050		
35	42 45	41.972 44.972	35.025	35.050		
38	45 48	44.972 47.972	38.025	38.050		
40	47 50	46.972 49.972	40.025	47.050		
42	49 52	48.972 51.967	42.025	42.050		
45	52 55	51.967 54.967	45.025	45.050		
50	58	57.967	32.025	32.050		
55	63	62.967	55.030	55.060		
60	68	67.967	60.030	60.060		
65	73	72.967	65.030	65.060		
70 [Remark] T	78 The suppleme	77.967 ntary cod	70.030 e "J" is ado	70.060 ded as a		
	uffix to the he		nhoro that			

suffix to the bearing numbers that are designed according to ISO standards.

Machined ring needle roller bearings variation of smallest single bore diameter of rolling element complement $F_{ws min}^{(1)}$ (for interchangeable bearings²⁾ and bearings without inner ring)

Kovo

			Unit : µm
of rolling ele	re diameter ement t $F_{ m w}$ (mm)	$F_{ m wsmin}$ to (F	
over	up to	upper	lower
6	10	+ 22	+ 13
10	18	+ 27	+ 16
18	30	+ 33	+ 20
30	50	+ 41	+ 25
50	80	+ 49	+ 30
80	120	+ 58	+ 36
120	180	+ 68	+ 43
180	250	+ 79	+ 50

The smallest single bore diameter of rolling element complement is the diameter of a cylinder whose radial internal clearance disappears completely, at least in one radial direction.

> A group of bearings with inner rings that have the same bearing number. Outer ring, cage and needle roller assemblies and inner rings are interchangeable among them.

Unit : µm

Koyo

Table 7 Radial bearing tolerances = JIS B 1536 =

(1) Inner ring

diame	l	Sir	ngle pla	ne me	ean bo ⊿ ₀		ameter	dev	viation		Single diamet Diar	er var		P		an bor meter Va		tion	Radial bearin		ring	embled		S _d		Singl	e inr	ner ring ⊿		th devi	iation		Inne	r ring	width $V_{B\mathrm{s}}$	varia	ition
(m	m)	cla	ass 0	clas	ss 6	cla	ass 5	C	class 4	C	class 0 c	lass 6	class 5	class 4	class 0	class 6	class 5	i class 4	class 0	class 6	class 5	class 4	class 5	class 4	cla	ass O	cla	ass 6	cla	ass 5	clas	s 4	class 0	class 6	class 5	class 4	class 2
over	up to	upper	r lower	upper	lower	upper	r lower	upp	oer low	er		ma	х.			m	ax.			ma	ax.		m	ax.	upper	lower	upper	lower	upper	lower	upper lo	ower			max.		
2.5	10	0	- 8	0	- 7	0	- 5	0) _	4	10	9	5	4	6	5	3	2	10	6	4	2.5	7	3	0	-120	0	-120	0	- 40	0 -	40	15	15	5	2.5	1.5
10	18	0	- 8	0	- 7	0	- 5	0) _	4	10	9	5	4	6	5	3	2	10	7	4	2.5	7	3	0	-120	0	-120	0	- 80	0 _	80	20	20	5	2.5	1.5
18	30	0	-10	0	- 8	0	- 6	0) _	5	13	10	6	5	8	6	3	2.5	13	8	4	3	8	4	0	-120	0	-120	0	-120	0 _	120	20	20	5	2.5	1.5
30	50	0	-12	0	-10	0	- 8	0) _	6	15	13	8	6	9	8	4	3	15	10	5	4	8	4	0	-120	0	-120	0	-120	0 -	120	20	20	5	3	1.5
50	80	0	-15	0	-12	0	- 9	0) _	7	19	15	9	7	11	9	5	3.5	20	10	5	4	8	5	0	-150	0	-150	0	-150	0 _	150	25	25	6	4	1.5
80	120	0	-20	0	-15	0	-10	0) _	8	25	19	10	8	15	11	5	4	25	13	6	5	9	5	0	-200	0	-200	0	-200	0 -	-200	25	25	7	4	2.5
120	150	0	-25	0	-18	0	-13	0) –1	0	31	23	13	10	19	14	7	5	30	18	8	6	10	6	0	-250	0	-250	0	-250	0 -	-250	30	30	8	5	2.5
150	180	0	-25	0	-18	0	-13	0) –1	0	31	23	13	10	19	14	7	5	30	18	8	6	10	6	0	-250	0	-250	0	-250	0 _	-250	30	30	8	5	4
180	250	0	-30	0	-22	0	-15	0) –1	2	38	28	15	12	23	17	8	6	40	20	10	8	11	7	0	-300	0	-300	0	-300	0 -	-300	30	30	10	6	5

[Remark] Values in Italics are prescribed in JTEKT standards.

 $S_{\rm d}$: Perpendicularity of inner ring face with respect to the bore

(2) Outer ring

Unit : µm

Nomin diamet	al outside er	Sing	le plar	ie me	an out	side d	liamete	er dev	iation		le plane eter va				an out meter		ion		runout g outer		embled				Ring widt		ation
,	D				Δ_{I}	Omp				Di	amete	r serie	s 9	1	V_L	mp			K	ea		S	D	$\Delta C_{\rm S}$	V	$C_{\rm S}$	
(r	nm)	cla	ss 0	cla	ss 6	cla	ss 5	cla	ss 4	class 0 ¹⁾	class $6^{1)}$	class 5	class 4	class $0^{1)}$	${\rm class}6^{1)}$	class 5	class 4	class 0	class 6	class 5	class 4	class 5	class 4	class 0, 6, 5, 4	class 0 class 6	class 5	class 4
over	up to	upper	lower	upper	lower	upper	lower	upper	lower		m	ax.			ma	ax.			ma	ax.		ma	ax.	upper lower	ma	ax.	
6	18	0	- 8	0	- 7	0	- 5	0	- 4	10	9	5	4	6	5	3	2	15	8	5	3	8	4			5	2.5
18	30	0	- 9	0	- 8	0	- 6	0	- 5	12	10	6	5	7	6	3	2.5	15	9	6	4	8	4	Shall	Shall	5	2.5
30	50	0	-11	0	- 9	0	- 7	0	- 6	14	11	7	6	8	7	4	3	20	10	7	5	8	4	conform	conform	5	2.5
50	80	0	-13	0	-11	0	- 9	0	- 7	16	14	9	7	10	8	5	3.5	25	13	8	5	8	4	to the	to the	6	3
80	120	0	-15	0	-13	0	-10	0	- 8	19	16	10	8	11	10	5	4	35	18	10	6	9	5	tolerance Δ_{Bs} on d	tolerance V_{Bs} on d	8	4
120	150	0	-18	0	-15	0	-11	0	- 9	23	19	11	9	14	11	6	5	40	20	11	7	10	5	of the	of the	8	5
150	180	0	-25	0	-18	0	-13	0	-10	31	23	13	10	19	14	7	5	45	23	13	8	10	5	same	same	8	5
180	250	0	-30	0	-20	0	-15	0	-11	38	25	15	11	23	15	8	6	50	25	15	10	11	7	bearing	bearing	10	7
250	315	0	-35	0	-25	0	-18	0	-13	44	31	18	13	26	19	9	7	60	30	18	11	13	8			11	7

[Note] 1) Shall be applied when locating snap ring is not fitted.

[Remark] Values in Italics are prescribed in JTEKT standards.

 S_{D} : Perpendicularity of outer ring outside surface with respect to the face

 Δ_{Cs} : Deviation of a single outer ring width

Unit : µm

Single plane outside

diameter variation

 V_{Dsp}

max.

250

300

350

.

Table 8 Tolerances for needle roller and cage thrust assemblies (type code : TV, TP) = JIS B 1536 =

		(1)	Bore dia	meter	Unit : µm		utsi	
Cage bore diameter $d_{\rm c} ({\rm mm})$		Smallest s bore (d_{cs} n diameter t		Single plane bore diameter variation $V_{d c s p}$	dia	Cage outside diameter $D_{\rm c}({\rm mm})$		
	over	up to	upper	lower	max.	ove	r up to	up
	6	10	+115	+25	90	18	30	-
	10	18	+142	+32	110	30	40	-
	18	30	+170	+40	130	40	50	-
	30	50	+210	+50	160	50	65	-
	50	80	+250	+60	190	65	80	-
	80	120	+292	+72	220	80	100	-
	[Niete] 1)	The telero	noon india	statha limi	to of diffor	100	120	_

[Note] 1) The tolerances indicate the limits of differences between $d_{cs\,min}$ and d_c .

[Remark] The tolerances of thickness conform to JIS B 1506 in a similar manner to roller diameter $(D_{\rm w})$ (refer to page B 378).

	Unit : µm			
diame	outside ter mm)	Largest si outside (L diameter t		Single plane outside diameter variation $V_{D c s p}$
over	up to	upper	lower	max.
18	30	-110	-320	210
30	30 40		-370	250
40	50	-130	-380	250
50	65	-140	-440	300
65	80	-150	-450	300
80	100	-170	-520	350
100	120	-180	-530	350
120	140	-200	-600	400

[Note] 1) The tolerances indicate the limits of differences between $D_{\rm cs\ max}$ and $D_{\rm c}$. [Remark] The tolerances of thickness conform to JIS B 1506 in a similar manner to roller diameter $(D_{\rm w})$ (refer to page B 378).

Largest single

upper

-40

-50

-60

outside $(D_{s max})$

diameter tolerance1

lower

-250

-300

-360

Single plane outside

 V_{Dsp}

max.

330

390

460

diameter variation

Table 9 Tolerances for races = JIS B 1536 = (Indicates the thrust washer specified in JIS)

(1) Bore diameter (type code : W) Unit : µm (2) Outside diameter (type code : W) Unit : µm

	Race diame d (n	eter	Smallest s bore ($d_{\rm sm}$ diameter t		diameter variation diam			outside ter mm)
	over	up to	upper	lower	max.	0	ver	up to
	6	10	+175	+25	120		18	30
	10	18	+212	+32	180		30	50
	18	30	+250	+40	210		50	80
	30	50	+300	+50	250		80	120
	50	80	+360	+60	300	1	20	180
	80	120	+422	+72	350	Note	-l 1)	The tole

[Note] 1) The tolerances indicate the limits of differences between $d_{s\min}$ and d. [Remark] Tolerances of thickness (S) shall be equivalent to tolerance class is 12 of JIS B 0401-2.

120 -72 -422 540 ŝ 180 -85 -485 630 [Note] 1) The tolerances indicate the limits of differences between $D_{s \max}$ and D_{s} [Remarks] 1. Tolerances of thickness (S) shall be equivalent to tolerance class js12 of JIS B 0401-2. 2 Values in Italics are prescribed in ITEKT

Table 10	Tolerances for races	(Indicates the v	washer specified in JIS)
----------	-----------------------------	------------------	--------------------------

```
(1) Bore diameter (type code : WS) Unit : µm (2) Outside diameter (type code : WS) Unit : µm
```

()					
Race diam d (r		Smallest s bore ($d_{\rm sm}$ diameter t		Single plane bore diameter variation V_{dsp}	l
over	up to	upper	lower	max.	C
6	10	+175	+25	120	
10	18	+212	+32	180	
18	30	+250	+40	210	
30	50	+300	+50	250	
50	80	+360	+60	300	1
80	120	+422	+72	350	[Not

[Note] 1) The tolerances indicate the limits of differences between $d_{s\min}$ and d.

standards.

[Remarks] 1. Tolerances of thickness (S) shall be equivalent to tolerance class js12 of JIS B 0401-2. 2. Values in Italics are prescribed in JTEKT

B 382

Race of diamet		Largest si outside (<i>L</i> diameter t	Single plane outside diameter variation $V_{D{ m sp}}$	
over	up to	upper	lower	max.
18	30	-40	-250	330
30	50	-50	-300	390
50	80	-60	-360	460
80	120	-72	-422	540
120	180	-85	-485	630
Note] 1)	The tolera	nces indica	ate the limi	ts of differ-

ences between $D_{\rm s\,max}$ and D.

[Remarks] 1. Tolerances of thickness (S) shall be equivalent to tolerance class is 12 of JIS B 0401-2.

2. Values in Italics are prescribed in JTEKT standards.

Table 11 Tolerances for non-separable needle roller thrust bearings (type code : TVK, TPK)

Race outside

D (mm)

up to

50

80

120

diameter

over

30

50

80

(1) Bore diameter Unit : µm Race bore Smallest single Single plane bore diameter bore ($d_{s \min}$) diameter variation diameter tolerance1 d (mm) V_{dsp} over up to upper lower max. 210 18 30 +250+4030 50 +300+5025050 80 +360+60300

[Note] 1) The tolerances indicate the limits of differences between $d_{s\min}$ and d.

[Remark] Values in Italics are prescribed in JTEKT standards.

[Note] 1) The tolerances indicate the limits of differences between $D_{s \max}$ and D. [Remark] Values in Italics are prescribed in JTEKT standards.

upper

-50

-60

-72

(2) Outside diameter

Largest single

outside ($D_{\rm s max}$)

diameter tolerance¹

lower

-300

-360

-422

Table 12 Outer ring tolerance of stud type track rollers (cam followers) = JIS B 1536 = (1) Maturia and a

					Unit : µm					
	de diameter D		mean outside							
(mm)		Cylindrical ou	utside surface	Crowning ou	tside surface	deviation 2	Cs	bearing outer ring $K_{ m ea}$		
over	up to	upper	lower	upper	lower	upper	lower	max.		
10	18	0	- 8	0	-50	0	-120	15		
18	30	0	- 9	0	-50	0	-120	15		
30	50	0	-11	0	-50	0	-120	20		
50	80	0	-13	0	-50	0	-120	25		
80	120	0	-15	0	-50	0	-120	35		

[Remark] Values in Italics are prescribed in JTEKT standards.

0

Table 13	Tolerance	es of shank	diameter	Tabl	e 14	Folerances of sl	nank length
	(1) Metr	ic series	Unit : μm				Unit : μm
	Shank diameter $d_1 ({ m mm})$		of a single neter \varDelta_{d1s}	Shank length B_2 (mm)			
over	up to	upper	lower	D_2 (1)	upper	lower
3	6	0	-12	Total dim	nensions	+0.8	-0.8
6	6 10 0 -15		[Remark]	[Remark] Values in Italics are prescribed in JTEKT standards.			
10							

-21

50

80

	Tabl	e 15	Toler	ances	s of yo	k	e type	e tracl	s rolle	ers (m	etric	series	s) = J	ISB1	536 =
(1) Inner ring Unit : µm										(2	2) Out	er rir	g		Unit : µn
Nominal bore diameter			neter				Nominal outside	diameter	Single plane mean outside diameter deviation ΔD_{mp}				Single outer ring width		Radial runout of assembled bearing
	d m)	deviation ⊿ ₀	lmp	devia ⊿	tion Bs			D im)	Cylindr outside	ical surface	Crowni outside	ng surface	deviation Δ_{Cs}		outer ring $K_{ m ea}$
over	up to	upper	lower	upper	lower		over	up to	upper	lower	upper	lower	upper	lower	max.
2.5	10	0	- 8	0	-180		10	18	0	- 8	0	-50	0	-120	15
10	18	0	- 8	0	-210		18	30	0	- 9	0	-50	0	-120	15
18	30	0	-10	0	-210		30	50	0	-11	0	-50	0	-120	20

80

120

0

0

-13

-15

0 [Remark] Values in Italics are prescribed in JTEKT standards.

-12

0

-250

50

30

30

18

0 [Remark] Values in Italics are prescribed in JTEKT standards.

0

-50

-50

0

0

-120

-120

25

35

Koyo

[Recommended fit and internal clearance]

Table 16 Recommended fit for needle roller and cage assemblies								
Conditions		Tolerance class						
	F _w ≦50mm	<i>F</i> _w >50mm	Housing bore	D				
High accuracy, impact load, oscillating motion	js 5	h 5		Inner				
General	h 5	g 5	G 6	Outer				
High temperature, large shaft deflection, large misalignment	f	6		[Rema				

Table 17 Recommended fit for drawn cup needle roller bearings									
	Tolerance class								
		Hou	sing bore						
Distinction	Shaft	Steel or cast iron	lass ing bore Light alloy, or steel or cast iron of 6 mm or less in thickness R 7 or S 7 iillatory er should be						
Inner ring rotation	h 6	N 7	DZarQZ						
Outer ring rotation	f 6	R 7	R/015/						
[Remarks] 1. When the shaft makes oscillatory motions, the shaft diameter should be 0.013 mm larger than the recommended									

tolerance. 2. When the bearing is provided with an inner ring, the shaft tolerance class j 6 should be selected.

]	Table 18 Recommended fit for m	achined rin	ıg needle r	oller bearings						
	(1) Recommended fits of inner ring and shaft									
	Operating condition	Shaft diameter (mm)	Class of shaft tolerance range	Applications (for reference)						
	Inner ring needs to move smoothly on shaft.		g 6							
Stationary inner ring load	Inner ring does not need to move smoothly on shaft.	All shaft diameters	h 6	Stationary shaft wheels, tension pulleys, rope sheaves etc.						
initer ning load	High accuracy or noiseless rotation is required.		h 5							
	Light load	40 mm or less	js 6	Electric appliances, machine tools, pumps, blowers, carriers etc.						
		40 mm or less	k 5							
Rotating inner ring load	Normal load	over 40 100 mm or less	m 5	Electric motors, turbines, internal combustion engines, wood-working machines etc.						
Ū		over 100 mm	m 6							
	Heavy load or impact load	140 mm or less	n 6	Railway rolling stock axle journals,						
	neavy load of impact load	over 140 mm	p 6	traction motors						

(2) Recommended fits of the outer ring and housing

	Operating condition	Class of housing bore tolerance range	Applications (for reference)	
	Heavy load with shock	P 7	Fly wheels	
Rotating outer ring load	Normal load	N 7	Loose wheels, crank shaft, gears	
	Light fluctuating load	M 7	Rope pulley, jockey puller	
	Extreme impact load		Eccentric pump wheel	
Indeterminate direction load	Normal load	K 7	Compressor	
difection load	Light load	J 7	Compressor, crank shaft	
Stationary outer	Split housing, normal load	H7	General use	
ring load	High accuracy and rigidity are required	K 6	Machine tool spindle	

[Notes] 1) This table is applicable to cast iron or steel housing. For light alloy housings, somewhat more interference fits than shown are recommended.

2) Interference fits larger than J 7 should not be used in split housings.

Table 19	class a ma	tion be of a sh chined ing (wi	naft pro ring n	ovided eedle r	with oller
	and	radial i	interna	l cleara	

complement bore diameter (mm)	C 2	CN	C 3	C 4
Over 3 up to 180	k 5	h 5	f 6	e 6

Table 20 Recommended fit for needle roller thrust bearings							
Distinction	Turpa goda	Guide	Toleran	Tolerance class			
Distinction	Type code	Guide	Shaft	Housing bore			
Needle roller and cage thrust assembly	ти	Inside	h 8	-			
	TP	Outside	-	H 8			
Race ^{1) 2)}	w	Inside	h 8	_			
nace	WS	Outside	-	H 8			
Neg opposite begins	TVK (TPK)JL TVK (TPK)J	Inside	h 8	-			
Non-separable bearing	TVK (TPK)L	Outside	-	H 8			

[Notes] 1) Type code W indicates the thrust washer specified in JIS.

2) Type code WS indicates the washer specified in JIS.

[Remark] This tolerance class is applicable when the tolerances of bore and outside diameters of bearings are standard.

Table 21 Tolerances for stud fitting bore						
Bearing type	Tolerance class					
CM, KM	Η 7					

Table 22 Recommended fit for yoke type track rollers (roller followers)						
Degree of loading	Shaft tolerance class					
Light or medium load	g 6 or h 6					
Heavy load	k 6					

[Remark] Because yoke type track rollers (roller followers) are generally used with the outer ring rotation, they should be attached to the shaft by transition fitting or clearance fitting. If the application involves heavy loading, the shaft should be hardened and the track roller should be attached by interference fitting.

[Shaft and housing specifications]

r	Table 23 Specifications of needle roller bearing shafts and housings								
Item	Sh	aft	Housin	ig bore					
nem	Raceway surface	Fitting surface	Raceway surface	Fitting surface					
Roundness	Best if less than one half diameter tolerance	or one third of the shaft	Best if less than one half or one third of the bore diameter tolerance						
Cylindricity	$5 \ \mu m$ or less per 25 mm the shaft diameter toleration of the		$5 \ \mu m$ or less per 25 mm the bore diameter toleration						
Roughness (Ra)	0.4 a or less 0.8 a or less		0.6 a or less	1.6 a or less					
Hardness	58 HRC or harder ¹⁾ (60 to 64 HRC are best.)	_	58 HRC or harder ¹⁾ (60 to 64 HRC are best.)	-					

 $\label{eq:started} \begin{array}{l} \mbox{[Note]} & \mbox{1) Case hardened steel which is carburized or induction-hardened should not only meet the surface hardness requirement specified above but also have a case depth of 52.3 HRC (550 HV) to a depth in the range (0.08 to 0.1) <math display="inline">\times D_w \mbox{ mm. } (D_w : \mbox{roller diameter}) \end{tabular}$ In general, 30 thru 45 HRC is best for the center hardness.

Table 24	Needle roller thrust bearing mounting surface specifications
Squareness	$25 \mu m$ or less per 25 mm
Squareness	12.5 μm or less per 25 mm
Roughness (Ra)	0.4 a or less
Hardness	58 HRC or harder (60 thru 64 HRC is best.) (refer to the note for Table 23 above regarding depth.)

Table 25Track capacity of stud type and yok	e type track rollers (cam	and roller followers)
• Track capacity is the maximum load receivable without deformation or indentation of track surfaces contacted by the outer rings of track	Hardness (HRC)	Track capacity coefficient
rollers to allow the track to be used continu-	26	0.48
ously. The values in the specification table are	32	0.64
track capacities obtained using track rollers with	36	0.79
cylindrical outside surfaces made of HRC 40 steel.	40	1
	44	1.31
 Track capacity of the type track rollers with spherical outside surface is 80% of the values 	47	1.59
listed in the specification table.	50	1.99
To obtain track capacity for hardness out of	53	2.43
standard, multiply the track capacities by track	56	2.90
capacity coefficient listed in the table at right.	58	3.23

 $F_{\rm W}$ 9 ~ (15) mm

B

 $\phi F_{
m w}$

Bound	l ary dim (mm)	ensions		d ratings N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer. Mass
$F_{\rm w}$	$E_{\rm w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)
9	12	10	3.8	4.0	43 000	RS091210	_	2.9
	14	18	9.1	9.0	41 000	RF091418	Polyamide	5.3
10	13	13	5.8	7.0	41 000	R10/13	_	4.0
	13	20	5.0	5.8	41 000	RF101320	Polyamide	2.4
	14	8	4.5	4.3	40 000	R\$10/8-1	—	3.5
	14	10	5.1	5.0	40 000	R\$10/10	—	4.3
	14	13	7.0	7.4	40 000	RS10/13	—	5.5
	15	18	10.5	10.9	37 000	RP101518	Welded	7.8
12	15	13	6.3	8.2	36 000	R12/13	_	4.
	16	20	9.5	11.5	35 000	12R1620A		10
	17	11.5	8.2	8.3	34 000	RV121712A-2	—	6.
13	17	10	5.9	6.4	33 000	RS131710-2	_	5.
	17	12	7.3	8.4	33 000	RS131712		6.
	18	15	10.2	11.2	32 000	13R1815	—	10
14	18	10	5.8	6.5	31 000	RS141810Q2	_	6.
	18	15	9.6	12.3	31 000	RS141815		8.
	18	17	10.1	13.2	31 000	R14/17A	—	10
	19	9	7.0	7.1	30 000	RV141909P1		5.
	19	18	12.3	14.6	30 000	RS141918	—	13
15	19	7.8	4.7	5.0	29 000	RS151908A	_	5.
	19	10	6.3	7.2	29 000	R15/10-1		6.
	19	13	8.7	10.9	29 000	R15/13	—	7.9
	19	17	10.5	14.0	29 000	R15/17		10
	19	20	12.6	17.7	29 000	R15/20	-	12
	20	13	10.4	11.9	29 000	VS15/13	—	8.
	20	18	13.8	17.2	29 000	RS15/18A	—	14
	20	20	16.2	21.2	29 000	VS15/20	—	12

[Note] 1) For further information, consult with JTEKT. [Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $\phi E_{
m w}$: Roller set outside diameter $\phi F_{\rm w}$: Roller set bore diameter

Bound	ary dime (mm)	ensions		id ratings N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer.) Mass
$F_{ m w}$	$E_{ m w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.		(Cage)	(g)
15	21	9	7.4	6.9	28 000	RV152109-4	_	7.8
	21	17	13.4	14.8	28 000	RS152117		16
16	20	13	9.4	12.5	28 000	R16/13	Width tolerance special ¹⁾	8.
	21	26	19.9	28.0	27 000	16VP2126	Width tolerance special ¹⁾	16
	22	12	9.6	9.6	26 000	16VS2212-2	—	11
	22	24	20.4	25.6	26 000	RS16/24	Width tolerance special ¹⁾	23
	22	28.4	21.7	27.9	26 000	VPS16/28A	—	24
17	20	6	3.1	3.6	27 000	RF172006	With single split polyamide	1.
	20	8	3.8	4.7	27 000	RF172008A-2	With single split polyamide	1.
	21	10	6.8	8.3	26 000	R17/10	—	6
	21	13	9.4	12.6	26 000	R17/13	_	8
	21	15	10.7	15.0	26 000	R17/15	—	10
	21	17	11.3	16.1	26 000	R\$172117	—	11
	22	20	15.2	20.2	26 000	17R2220		17
	23	13	11.4	12.4	25 000	RS17/13	—	14
18	22	13	9.5	13.1	25 000	R18/13	_	9.
	22	16	11.1	16.0	25 000	R18/16-8		11
	22	17	11.9	17.4	25 000	R18/17	—	12
	24	17	15.1	17.9	24 000	RS182417	Width tolerance special 1)	19
	25	17	17.8	20.1	23 000	RP182517	Welded	19
	26	21.9	19.1	20.3	23 000	RF182622A-1	Polyamide	19
	26	21.9	22.7	25.5	23 000	RV182622A-2	—	31
19	24	22	16.6	23.3	23 000	R\$192422		21
20	24	10	7.2	9.4	23 000	R20/10		7.
	24	13	9.8	14.0	23 000	R20/13P	—	10
	25	25	18.8	27.9	22 000	RF202525	Polyamide	14

 $F_{\rm W}$ (20) ~ (22) mm

B

 $\phi F_{
m w}$

Bound	ary dime	ensions			Limiting speeds		Special series	(Refer.)
F_{w}	(mm) E_{w}	В	(k Cr	C_{0r}	(min ⁻¹) Oil lub.	Bearing No.	(Cage)	Mass (g)
20	26 26 26	11.6 12 14	10.7 12.8 14.1	11.9 15.1 17.0	22 000 22 000 22 000	20VS2612 RV202612-4 VS20/14A	Width tolerance special ¹⁾ 	12 14 15
	26 26 26	17 18.8 20	15.8 17.4 18.9	19.6 22.3 24.7	22 000 22 000 22 000	RS20/17 RP202619A VP20/20-1	— — Width tolerance special ¹⁾	21 17 19
	26 27 27	30 15 29	26.8 16.2 25.4	38.9 18.3 32.6	22 000 21 000 21 000	RS202630 20V2715 20V2729	Welded 	39 19 37
	28 28 30	20 25 15	24.1 28.8 18.2	28.2 35.4 17.1	21 000 21 000 20 000	RP202820 20V2825B RV203015		28 37 30
21	29	22.5	23.7	27.6	20 000	RF212923A	Polyamide	24
22	26 26 26	12 13 17	9.6 10.4 13.0	14.1 15.6 20.7	21 000 21 000 21 000	RS222612 R22/13-1 R22/17		10 11 14
	27 28 28	20 11 14	17.0 9.5 13.2	25.2 10.5 15.9	20 000 20 000 20 000	RS222720 RS222811 22VS2814E		21 15 16
	28 28 28	17 22.5 23	16.1 21.3 24.2	20.7 29.6 35.1	20 000 20 000 20 000	RS22/17 RP222823A VS22/23B	Welded, Width tolerance special ¹⁾ Width tolerance special ¹⁾	22 25 25
	29 30 30	17 15 18	17.0 16.7 21.8	20.0 17.9 25.2	20 000 19 000 19 000	RV222917 RV223015 RV223018		23 25 30
	30 32 32	20 15 16	24.1 21.1 21.1	28.8 21.3 21.3	19 000 19 000 19 000	RV223020-1 RV223215 RV223216	 	31 32 35

 $F_{\rm W}$ (22) ~ (25) mm

 $\phi E_{\rm w}$: Roller set outside diameter ϕF_{w} : Roller set bore diameter

Boundary dimensions Basic load ratings Limiting speeds (Refer.) **Special series** (mm) (kN) (\min^{-1}) Bearing No. Mass (Cage) $F_{\rm w}$ $E_{\rm w}$ В C_{r} C_{0r} Oil lub. (g) 22 32 30 RV223230 62 40.4 48.9 19 000 _ 23 29 30 26.0 39.0 19 000 23V2930 Width tolerance special 1) 35 30 15 RV233015 17.4 21.0 19 000 21 33 20 27.0 29.4 18 000 23V3320-1 Width tolerance special ¹⁾ 44 24 28 13 RS242813 12 11.1 17.4 19 000 28 17 13.7 22.8 19 000 R24/17A 16 ____ 28 23 18.2 32.9 19 000 RS242823 21 32 15 20.0 23.2 18 000 RV243215-4 27 ____ 25 29 9.9 9.8 R25/10A Width tolerance special 1) 10 7.1 19 000 29 13 11.5 18.4 19 000 R25/13-1 13 30 25R3010A Width tolerance special 1) 13 9.9 9.3 12.0 18 000 30 12 25R3012 15 10.5 14.1 18 000 30 17 23.6 18 000 25V3017 18 15.7 30 20 25R3020-1 19.0 30.1 18 000 24 ____ 30 20 16.6 25.3 18 000 25VPU3020B Double split 16 31 17.5 17.4 23.8 18 000 VPS25/18 18 ____ 31 18 17.4 23.8 18 000 RS25/18 27 ____ 31 20 21.0 30.5 18 000 VS25/20 Width tolerance special ¹⁾ 26 35 31 24 24.9 37.8 18 000 25R3124 32 16 23.8 25V3216 25 18.9 18 000 _____ 32 RS253224 43 24 26.4 36.7 18 000 32 32 37.8 58.4 18 000 RPU253232F-1 Double split 51 RV253232 32 32 39.6 62.0 18 000 49 _ 33 20 RV253320 24.1 29.8 17 000 35 33 23.8 48 40.0 17 000 25R3324B-1 Width tolerance special 1) 30.2 33 30 38.6 54.8 17 000 RF253330 41 Polyamide 35 25R3525 25 32.5 38.0 17 000 65 ____

Koyo

[Note] 1) For further information, consult with JTEKT.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (25) ~ 29 mm

Bound	ary dime (mm)	ensions		ad ratings	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer. Mass
$F_{\rm w}$	$E_{ m w}$	В	C_{r}	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)
25	35	30	39.6	49.0	17 000	25V3530A		69
	37	24	34.1	36.2	16 000	25V3724	_	69
	37	25	38.3	42.2	16 000	25V3725A	—	77
	37	33	47.5	55.7	16 000	RV253733	_	96
26	30	20	16.9	30.6	18 000	RS263020	_	20
	30	21.9	16.9	30.4	18 000	RS263022A		22
	31	16	15.7	23.8	18 000	RS263116	—	20
	31	19	18.5	29.5	18 000	RS263119	_	24
	33	34	30.4	44.0	17 000	RPU263334F	Double split	42
	34	17	23.9	30.0	17 000	RV263417	—	32
27	32	27 26.2 46.6 17 000 RFN27/27 Polyamide, V		Polyamide, Width tolerance special ¹⁾	20			
	33	28.6	30.0	49.2	17 000	VPSU27/29AF	Double split	33
28	32	26	17.1	31.5	17 000	28R3226	_	27
	32	29	17.1	31.5	17 000	28R3229		32
	33	17	17.9	29.0	16 000	28R3317	_	22
	33	23	22.8	39.6	16 000	R28/23A	_	31
	33	27	25.0	44.5	16 000	R28/27		36
	36	20	23.2	29.3	16 000	28R3620	_	45
	38	24	31.2	37.1	15 000	RS283824	_	70
	40	28	49.1	59.5	15 000	RV284028		90
	41	25	40.2	43.6	14 000	RV284125	—	86
	42	50.5	88.9	116.5	14 000	RF284251A	Polyamide	182
29	34	22	17.3	27.6	16 000	R29/22A	_	30
	34	24.4	19.7	32.8	16 000	RFU293424A	With double split polyamide	
	34	27	25.7	46.7	16 000	29R3427A-1	_	37
	43 43 73.7 92.2				14 000	RV294343	_	177

[Note] 1) For further information, consult with JTEKT. [Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ **30** ~ (**32**) mm

 $\phi E_{
m w}$: Roller set outside diameter $\phi F_{\rm w}$: Roller set bore diameter

Bound	ary dime (mm)	ensions		d ratings N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer.) Mass	
$F_{ m w}$	$E_{ m w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)	
30	34	14	7.7	11.4	16 000	30R3414A		16	
	34 34	14 29	7.7 18.1	11.5 34.8	16 000 16 000	RFN303414 30R3429	Polyamide —	6.1 34	
	34	29	20.4	40.8	16 000	RSU303429	Double split	33	
	35 35	17 21.1	17.7 22.2	29.2 39.0	15 000 15 000	R30/17-1 RS303521A		24 30	
	35	24	24.9	45.1	15 000	RS303524	_	34	
	37	16	21.8	30.3	15 000	RV303716	_	29	
		37 20 25.2 36.6 15 000 37 26 34.7 55.3 15 000			RS30/20A	—	41		
	37 38	26 22.1	34.7 27.7	55.3 37.5	15 000 15 000	RV303726 RP303822A		47 45	
	38	28.3	33.5	47.8	15 000	RPU303828AF	Double split	43	
	39	27	34.2	45.6	14 000	RP303927	_	51	
	39	30	38.3	52.8	14 000	30VP3930A	Width tolerance special ¹⁾	58	
	39	32	42.6	60.5	14 000	RP303932	Welded, Width tolerance special ¹⁾	63	
	40 40	15.5 20	26.7 32.0	31.1 39.1	14 000 14 000	RV304016A-4 30V4020	_	46 55	
	42	15	27.0	28.0	14 000	RF304215	Polyamide	36	
	42	25	44.0	52.3	14 000	RV304225	_	84	
	42	32	52.7	66.0	14 000	30V4232	Width tolerance special ¹⁾	108	
	45	30	54.4	60.2	13 000	30V4530	—	135	
31	36	20.3	19.9	34.2	15 000	RFU313620A-1	With double split polyamide	17	
32	36	15	10.8	18.3	15 000	32R3615A	_	19	
	37	17	19.0	32.6	14 000	R32/17-1	_	26	
	37	20	22.3	39.9	14 000	R32/20	—	30	
	37	23.8	22.6	40.5	14 000	RF323724A-1	With single split polyamide	20	
	37 37	26 29.5	26.2 31.1	49.0 61.2	14 000 14 000	RF323726	Polyamide, Width tolerance special ¹⁾	24 32	
	31	29.0	31.1	01.2	14 000	000 VP32/30A —			

 $F_{\rm W}$ (32) ~ (35) mm

Bound	dary dim (mm)	ensions		d ratings N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer Mas
F_{w}	${E}_{ m w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)
32	38	20	24.9	40.6	14 000	32VP3820A	Welded	27
	38	26	27.3	45.6	14 000	RP323826	Width tolerance special ¹⁾	34
	38	27	29.6	50.7	14 000	32VP3827	Width tolerance special ¹⁾	38
	39	16	21.2	29.8	14 000	RS323916		35
	42	16	27.5	32.9	14 000	RV324216	_	49
	42	20.5	33.5	42.2	14 000	RV324221-1	_	64
	45	28	47.9	56.5	13 000	32V4528	_	112
	46	18	37.0	38.8	13 000	RF324618	Polyamide	57
	46	18	30.3	29.8	13 000	RV324618-1	_	71
33	37	22	18.5	8.5 37.2 14 000 RSU333722F Double split		27		
34	39	20.3	19.6	34.4	14 000	RFU343920A	With double split polyamide	18
	42	38	49.2	81.9	13 000	34R4238	Width tolerance special ¹⁾	98
	44	40	64.1	99.1	13 000	34VP4440-1	—	101
35	39	25	22.0	47.4	14 000	RF353925	With single split polyamide	24
	40	13	14.2	23.0	13 000	RS354013	_	22
	40	17	18.4	32.0	13 000	RS354017		29
	40	22	23.6	44.4	13 000	RS354022	_	37
	40	24	25.9	49.9	13 000	RS354024		39
	40	24.8	23.7	44.4	13 000	RSU354025AF	Double split	39
	40	25	27.0	52.7	13 000	RS354025-1	_	41
	40	26	28.7	56.9	13 000	RS354026		41
	40	28	28.7	56.9	13 000	RF354028	Polyamide	27
	40	29	30.6	61.7	13 000	RP354029-1	Width tolerance special ¹⁾	33
	40	30	30.6	61.7	13 000	VP35/30		34
	40	31	30.6	61.6	13 000	RP354031	Welded, Width tolerance special ¹⁾	37
	40	33	31.1	63.2	13 000	RP354033-1	_	39
	40	35	31.8	64.9	13 000	RF354035	Polyamide	32

[Note] 1) For further information, consult with JTEKT. [Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (35) ~ 37 mm

 $\phi F_{
m w}$

 $\phi E_{
m w}$: Roller set outside diameter $\phi F_{\rm w}$: Roller set bore diameter

Bound	lary dime (mm)	ensions		d ratings N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series (Cage)	(Refer.) Mass
F_{w}	$E_{ m w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.		(cage)	(g)
35	41 41 42	35 40 20	40.4 42.4 27.2	78.0 82.6 42.0	13 000 13 000 13 000	35VP4135A 35VP4140A VS35/20		51 59 42
	42 48 49	30 17.5 25	39.9 37.8 53.4	68.8 42.7 63.4	13 000 12 000 12 000	VS35/30 RV354818A-4 RV354925-1	Width tolerance special ¹⁾ — —	59 81 120
36	40 41 41	10 20 25	9.6 21.7 29.9	16.5 40.3 60.6	13 000 13 000 13 000	36R4010 RS364120 36RFN4125A	Polyamide	14 34 27
	41 42 42	30.5 17 19	33.1 20.5 23.2	69.2 32.8 38.6	13 000 13 000 13 000	R36/31 RS364217-K RS364219-K		51 35 39
	42 42 48	21 25 25	25.9 33.1 54.0	44.4 60.9 71.7	13 000 13 000 12 000	RS364221-K RF364225-1 RF364825-1	–– Polyamide Polyamide	44 34 80
	52	30	73.9	89.9	11 000	RF365230	Polyamide	139
37	42 42 42	11.6 12.8 17.3	11.3 14.0 21.3	17.5 23.2 39.7	13 000 13 000 13 000	RS374212A VP37/13A VP37/17	Width tolerance special ¹⁾ Width tolerance special ¹⁾	23 14 21
	42 42 42	22 23 27	24.0 23.8 30.8	46.3 45.5 63.6	13 000 13 000 13 000	37R4222 RF374223-1 RS374227	— With single split polyamide —	38 22 46
	42 42 42	27 29 31	30.0 31.9 33.9	61.5 66.5 72.1	13 000 13 000 13 000	RSU374227 VP37/29 RS374231	Double split Welded	45 35 52
	42 43 43	32 32 36.8	31.2 39.1 40.0	64.3 75.8 77.9	13 000 13 000 13 000	VP37/32 37R4332 RPU374337F	 Double split	37 66 60

*F*_W **38** ~ **41** mm

Bound	lary dim (mm)	ensions		ad ratings (N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer Mas
$F_{\rm w}$	$E_{ m w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)
38	42	10	8.9	15.2	13 000	RF384210	Polyamide	6.0
	44	23.4	25.1	43.1	12 000	RF384423A	Polyamide	26
	44	24.5	27.5	48.4	12 000	RSU384425AF	Double split	51
	44	26	28.7	51.1	12 000	RF384426	Polyamide	29
	44	33	37.9	73.4	12 000	RP384433		64
	44	36.2	39.9	78.1	12 000	RP384436A	—	57
	44	39.8	43.7	88.1	12 000	RP384440A	_	65
	52	39	74.8	99.2	11 000	RP385239	_	155
39	46	32.8	42.4	76.9	12 000	39R4633	_	82
	55	20.5	55.0	62.6	11 000	RF395521A	Polyamide	98
	59	23	63.8	66.3	10 000	RV395923-1	—	196
40	45	13	17.1	30.8	12 000	RV404513		22
	45	17	19.9	37.4	12 000	R40/17-1		32
	45	21.2	23.6	46.6	12 000	RS404521A	_	40
	45	27	29.9	63.0	12 000	RS404527	_	49
	45	30	30.5	64.4	12 000	R40/30	_	55
	45	32	14.3	23.3	12 000	R40/32A	_	53
	46	14.5	21.2	35.5	12 000	RP404615A	Welded	31
	46	29	36.4	70.6	12 000	RS404629		65
	47	20	27.6	44.8	11 000	RS40/20	_	54
	47	28.5	38.0	67.6	11 000	RS40/29A	_	77
	48	34	50.4	88.3	11 000	40V4834	_	87
	55	27.5	68.0	85.6	11 000	RF405528A-1	Polyamide	124
	56	20	50.8	56.7	10 000	RV405620-4	_	122
	57	31.5	83.4	103	10 000	RF405732A	Polyamide	168
	60	31.5	94.1	110	10 000	RF406032A	Polyamide	214
41	46	24	11.0	16.8	11 000	41R4624A	_	44

[Note] 1) For further information, consult with JTEKT. [Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

$F_{\rm W}$ **42** ~ (**45**) mm

 $\phi E_{
m w}$: Roller set outside diameter $\phi F_{\rm w}$: Roller set bore diameter

Bound	ary dim (mm)	ensions		ad ratings (N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer. Mass
$F_{\rm w}$	$E_{ m w}$	В	C_{r}	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)
42	47	10	13.9	23.8	11 000	RS424710-1	Welded	21
	47 47	25 27	29.5 32.3	63.1 70.8	11 000 11 000	RS424725 RS424727		52 51
	47	30	31.9	69.8	11 000	RSU424730	Double split	58
	47	30	36.3	82.4	11 000	VP42/30	_	44
	49	22	29.3	49.0	11 000	RF424922	Polyamide	35
43	48	18	21.9	43.2	11 000	RS434818	_	36
	48	18.5	22.1	43.7	11 000	RS434819A-2	—	38
	48	21.2	25.0	51.5	11 000	RS434821A	_	46
	48	23.3	29.4	63.2	11 000	RS434823A	—	46
	48 48	24.4 30	28.2 34.1	59.9 76.5	11 000 11 000	RS434824A RS434830	Welded	49
		31		82.5			Welded	
	49 52	31 39.9	40.1 65.2	82.5 116	11 000 11 000	43VP4931E 43VP5240	_	55
	-			-				
44	50	27.5	36.0	72.2	11 000	44RFN5028	Polyamide	39
	50	39	46.4	100	11 000	RP445039		71
45	50	13	16.0	29.4	11 000	R45/13	_	28
	50	17	22.7	46.1	11 000	RS455017	—	35
	50	19	24.1	49.7	11 000	R45/19	—	39
	50	20.2	24.1	49.6	11 000	RS455020A	—	46
	50 50	24 26	29.3 31.8	63.9 70.9	11 000 11 000	RS455024 R45/26	_	50 54
	50	33	37.3	87.0	11 000	R\$455033-1		69
	50 51	33 28.6	37.3	87.0 67.7	10 000	45RFN5129	Polvamide	40
	51	28.9	37.5	76.9	10 000	RP455129A	Welded	65
	51	28.9	37.5	76.9	10 000	RPU455129AF	Double split	67
	52	22	35.4	63.9	10 000	RS455222	_	66

 $F_{\rm W}$ (45) ~ (50) mm

Bounda	(mm)	ensions		ad ratings N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series	(Refer
$F_{\rm w}$	${E}_{ m w}$	В	C_{r}	$C_{0\mathrm{r}}$	Oil lub.	-	(Cage)	(g)
45	53	25	41.4	71.1	10 000	RV455325P	_	73
	53	26	41.4	71.1	10 000	45V5326P		77
	53	28	42.3	73.2	10 000	45VP5328	Width tolerance special ¹⁾	66
	64	23	64.0	70.4	9 200	RV456423-7	_	191
46	52	20	25.9	48.2	10 000	46VP5220	_	34
	52	37	45.8	100	10 000	46VP5237B	—	67
47	52	30	36.4	85.4	10 000	R47/30H		62
	52	30	35.1	81.7	10 000	RSU475230F-1	Double split	62
	53	28.8			10 000	RP475329A	—	55
	53	30	42.6			Welded	74	
	53			10 000	RP475336	_	68	
48	53	13	16.1	30.1	9 900	RS485313	_	30
	53	28	34.1	79.2	9 900	48R5328		60
	54	20	29.3	57.3	9 800	48R5420-1	—	54
	54	27	38.1	80.4	9 800	48R5427	_	72
	54	28	37.8	79.3	9 800	RS485428	Welded	72
	54	29	39.5	84.3	9 800	48R5429	_	78
	54	30.2	43.8	96.2	9 800	RP485430A-1	Welded	72
	54	39	47.9	108	9 800	48R5439		106
	55	21	32.4	58.1	9 700	RP485521	Welded	60
49	56	44.6	61.2	133	9 500	RP495645A	Welded	120
	56	44.6	61.2	133	9 500	RS495645A		146
50	55	17.5	22.3	46.5	9 500	RS505518A	Welded	39
	55	20	25.1	54.3	9 500	RS505520-1	—	47
	55	27	11.5	18.9	9 500	R50/27A	-	56
	56	13	16.7	28.2	9 400	RF505613	Polyamide	18

 $F_{\rm W}$ (50) ~ (58) mm

 $\phi E_{
m w}$: Roller set outside diameter $\phi F_{\rm w}$: Roller set bore diameter

 $\phi F_{
m w}$

Bound	ary dim (mm)	ensions		ad ratings (N)	$\underset{(min^{-1})}{\text{Limiting speeds}}$	Bearing No.	Special series (Cage)	(Refer.
$F_{\rm w}$	$E_{ m w}$	В	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.		(cage)	(g)
50	56	28	39.5	85.5	9 400	RP505628	Welded	69
	56	30	41.0	89.6	9 400	RF505630	Polyamide	50
	57	33.5	47.8	97.1	9 300	RP505734A	—	79
	57	38.9	58.3	126	9 300	RS505739A	—	133
	57	40.8	60.9	133	9 300	RS505741A		127
	58	25	38.5	66.9	9 300	RF505825	Polyamide	53
	70	36	114	147	8 300	RF507036	Polyamide	277
51	56	28	34.8	83.0	9 300	VP51/28	_	45
52	72	32	108	138	8 100	RF527232	Polyamide	259
53	58	25	32.2	76.0	9 000	RF535825	Polyamide	35
54	60	31.1	45.3	104	8 800	RP546031A	Welded	83
	60	36	45.5	105	8 800	RP546036	Welded, Width tolerance special 1)	82
	61	34.7	60.2	135	8 700	RPU546135AF	Double split	116
	61	41.3	63.3	143	8 700	RS546141A	_	145
55	59	13	10.8	21.9	8 800	55RFN5913A	Polyamide	11
	60	20	26.7	60.6	8 700	R55/20	_	52
	60	28	35.8	88.4	8 700	RS556028	—	69
56	60	20	24.0	62.4	8 600	RF566020	Polyamide	23
	61	11	13.6	25.6	8 500	RF566111	Polyamide	14
	61	30	39.7	102	8 500	RS566130	Welded	75
	61	33.5	42.5	111	8 500	R56/34	_	
58	65	26	42.1	87.1	8 100	58R6526	Width tolerance special ¹⁾	99
	65	36.6	55.7	125	8 100	58RFN6537A	Polyamide	80
	65	36.6	56.4	127	8 100	RS586537A-2		145

Koyo

[Note] 1) For further information, consult with JTEKT. [Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (58) ~ 78 mm

Bound	ary dime	ensions			Limiting speeds		Special series	(Refer.	
$F_{ m w}$	(mm) E _w	В		N) C _{0r}	(min ⁻¹) Oil lub.	Bearing No.	(Cage)	Mass (g)	
58	65 80	37.5 72	57.7 233	131 359	8 100 7 200	RP586538A RV588072	Welded, Width tolerance special ¹⁾	108 889	
60	65	30	40.0	105	8 000	R60/30		81	
	66 67	19 23	31.5 40.1	67.8 82.8	7 900 7 900	RS606619 60V6723		63 77	
	82	30	118	152	7 000	RF608230	Polyamide	316	
63	68	30	40.9	110	7 600	R63/30	_	83	
64	70 70	24.5 35	39.4 55.7	92.4 144	7 500 7 500	64R7025A 64R7035		86 122	
65	70 70	20 24	12.1 12.5	22.3 22.9	7 400 7 400	R65/20A R65/24A		57 67	
70	76 76 78	20 32 30	34.7 55.1 59.4	80.8 147 132	6 800 6 800 6 800	70R7620 RP707632 70R7830	Welded	77 116 154	
71	79 79	30.15 39.5	61.3 75.3	138 179	6 700 6 700	71V7930B RS717940AZ		135 203	
72	79	21	39.6	86.6	6 600	72V7921	_	84	
73	79	20	36.3	86.8	6 600	R73/20	_	84	
78	85	33.75	62.3	159	6 100	78R8534A	_		

[Note] 1) For further information, consult with JTEKT. [Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $\phi E_{
m w}$: Roller set outside diameter $\phi F_{\rm w}$: Roller set bore diameter

$F_{\rm W}$ **4** ~ (**12**) mm

B	oundary (n	dimensio	ons	Basic loa		Limiting speeds (min ⁻¹)	Bea	ring No. ²⁾			Rec	ommende (m	ed dimens	ions	(Refer.)	Mass (g)
$F_{ m w}$	D	C	b min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	Ca With open end	ged type s With closed end	Full compl With open ends	ement type With closed end	Shaft d min.	lia. (h6) max.		ore dia. (N7) max.	With open ends	With closed end
4	8	8	_	1.60	1.25	47 000	4BFNM88	—	—	_	3.992	4.000	7.981	7.996	1.3	_
5	9	9	_	2.40	2.15	44 000	5BFNM99	_	_	_	4.992	5.000	8.981	8.996	1.8	_
6	10	9	6	2.40	2.40	42 000	6BTM109	_	_	_	5.992	6.000	9.981	9.996	2.5	_
7	11	9	_	2.55	2.70	39 000	7BTM119	_	_	_	6.991	7.000	10.977	10.995	2.9	_
8	12 12 12 15	10 10 10 10	8.4 7.8 — 8.4	3.25 4.95 5.25 4.00 7.45	3.85 7.50 8.60 3.30 6.50	37 000 13 000 13 000 34 000 34 000	8BTM1210 	8MKM1210 — — MHKM810	BM081210 YM081210 —	8MM1210 	7.991 7.991 7.991 7.991 7.991	8.000 8.000 8.000 8.000 8.000	11.977 11.977 11.977 14.977	11.995 11.995 11.995 14.995	3.6 3.7 4.0 6.5	4.1 4.2 — 7.3
	15 15	15 20	17.3	9.25	6.50 9.70	34 000	BHTM815 BHTM820	 МНКМ820	_	_	7.991 7.991	8.000	14.977 14.977	14.995 14.995	9.4 13	14
9	13 13 13 16 16	10 10 12 12 12	7.8 8.4 10.4 10.4 13.3	4.90 3.35 4.20 5.35 7.55	8.05 4.10 5.50 5.05 7.90	12 000 35 000 35 000 32 000 32 000	9BTM1310A 9BTM1312 BHTM912-1 BHTM916	9MKM1310 9MKM1312 MHKM912 MHKM916	9BM1310 	9MM1310 	8.991 8.991 8.991 8.991 8.991	9.000 9.000 9.000 9.000 9.000	12.977 12.977 12.977 15.977 15.977	12.995 12.995 12.995 15.995 15.995	4.0 3.8 4.6 8.8 12	4.6 4.3 5.2 9.9 13
10	14 14 14 14	10 10 12	7.8 8.4 10.4	5.70 3.55 4.40	9.35 4.55 6.00	11 000 33 000 33 000	10BTM1410 10BTM1412	10MKM1410 10MKM1412	10BM1410 	10MM1410 	9.991 9.991 9.991 9.991	10.000 10.000 10.000	13.977 13.977 13.977	13.995 13.995 13.995	4.2 4.2 5.0	4.8 4.8 5.7
	14 17 17	15 10 12	11.8 8.4 10.4	5.65 4.65 6.00	8.25 4.25 5.90	33 000 30 000 30 000	BTM101415 BHTM1010 BHTM1012-1	 МНКМ1010 МНКМ1012			9.991 9.991 9.991	10.000 10.000 10.000	13.977 16.977 16.977	13.995 16.995 16.995	6.4 7.8 9.4	8.9 11
	17 17	15 20	 17.3	7.85 10.7	8.45 12.5	30 000 30 000	BHTM1015 BHTM1020	 МНКМ1020		_	9.991 9.991	10.000 10.000	16.977 16.977	16.995 16.995	12 16	18
12	16	10	8.4	4.00	5.60	29 000	12BTM1610	12MKM1610	_	_	11.989	12.000	15.977	15.995	5.0	5.6

 The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 FN in bearing number indicates a bearing comprising polyamide molded cage.
 The recommended dimensional tolerances of shaft shown above are applicable except h6. [Notes]

4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (12) ~ 14.50 mm

Во	undary d	limension	15		d ratings	Limiting speeds (min ⁻¹)	Bearing	g No. ²⁾			Reco	ommende (mi		ons	(Refer.)	Mass (g)
$F_{ m w}$	D	C	<i>b</i> min.	$C_{\rm r}$	C_{0r}	Oil lub.	Caged With open ends	l type With closed end	Full comple With open ends	ement type With closed end	Shaft di _{min.}		Housing bor min.	e dia. (N7) max.	With open ends	With closed end
12	18 18 18	10 12 12	8.4 9.6 9.3	4.60 8.40 5.95	4.80 12.6 6.70	27 000 9 400 27 000	12BTM1810 	12MKM1810 	 12BM1812 	 12MM1812 	11.989 11.989 11.989	12.000 12.000 12.000	17.977 17.977 17.977	17.995 17.995 17.995	7.2 9.7 7.6	8.2 11 8.5
	18 18 19	15 16 12	 9.3	6.10 5.65 6.70	7.32 6.25 6.95	27 000 16 000 ¹⁾ 26 000	12BTM1815A 12BKM1816UU BHTM1212-1	 			11.989 11.989 11.989	12.000 12.000 12.000	17.991 ⁴⁾ 17.977 18.972	18.012 ⁴⁾ 17.995 18.993	12 11 10	 12
	19 19 19	15 20 25	 17.3 	8.85 12.1 15.0	9.95 14.9 19.6	26 000 26 000 26 000	BHTM1215-1 BHTM1220 BHTM1225	MKM121915 MHKM1220 —			11.989 11.989 11.989	12.000 12.000 12.000	18.972 18.972 18.972	18.993 18.993 18.993	13 17 21	19
13	17 19 19	15 12 12	 9.3	5.10 8.55 5.85	7.85 13.4 6.70	27 000 9 100 26 000	BKM131715J 	 13MKM1912	 13BM1912 	 	12.989 12.989 12.989	12.000 13.000 13.000	16.977 18.972 18.972	16.995 18.993 18.993	7.1 10 9.5	— — 11
	19 20 21	14 12 14		7.65 7.50 9.75	9.60 8.40 10.5	26 000 25 000 25 000	BKM131914J 13BTM2012J BKM132114BJ			 	12.989 12.989 12.989	13.000 13.000 13.000	18.972 19.972 20.972	18.993 19.993 20.993	11 11 15	
13.50	19	12	_	6.25	7.95	25 000	BTM141912A	_	_	_	13.447 ³⁾	13.460 ³⁾	19.000 ⁴⁾	19.021 ⁴⁾	9.5	_
14	19 19 20	16 16 12	13.7 13.3 9.6	11.7 7.85 9.15	23.3 11.7 14.6	8 800 25 000 8 600		14MKM1916 	14BM1916 14BM2012	14MM1916 14MM2012	13.989 13.983 ³⁾ 13.989	14.000 13.994 ³⁾ 14.000	18.972 18.972 19.972	18.993 18.993 19.993	12 11 11	14 12 12
	20 20 20	12 16 16	9.3 13.7 13.3	6.10 12.7 8.75	7.20 22.4 11.4	25 000 8 600 25 000	14BTM2012 14BTM2016	14MKM2012 	 14BM2016 	 14MM2016 	13.989 13.989 13.989	14.000 14.000 14.000	19.972 19.972 19.972	19.993 19.993 19.993	9.8 15 13	11 17 15
	20 22 22	25 16 20	 13.3 17.3	12.2 11.1 14.4	15.5 12.6 17.5	14 000 ¹⁾ 23 000 23 000	14BKM2025JUU BHTM1416 BHTM1420	 MHKM1416 MHKM1420			13.989 13.989 13.989	14.000 14.000 14.000	19.972 21.972 21.972	19.993 21.993 21.993	20 19 23	21 26
14.50	19.50	13.50	_	7.55	10.9	25 000	BTM152014A	_	_	_	14.489	14.500	19.472	19.493	9.5	_

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

$F_{\rm W}$ **15** ~ (**17**) mm

Boundary dimensions (mm)			ns	Basic load ratings L		Limiting speeds						ommende (m	ed dimension	ons	(Refer.) Mass (g)		
$F_{ m w}$	D	C	b min.	$C_{\rm r}$	C_{0r}	Oil lub.	Cageo With open ends	type With closed end	Full comple With open ends		Shaft d min.	lia. (h6) max.	Housing bor min.	e dia. (N7) max.	With open ends	With closed end	
15	20 21 21	16 10 10		8.15 7.70 5.25	12.6 11.8 6.25	24 000 8 100 23 000	15BTM2016C-2 		15BM2110		14.989 14.989 14.989	15.000 15.000 15.000	19.991 ⁴⁾ 20.972 20.991 ⁴⁾	20.012 ⁴⁾ 20.993 21.012 ⁴⁾	12 9.4 9.5		
	21 21 21	12 12 16	9.6 9.3 13.7	9.70 7.00 13.4	15.9 8.80 24.2	8 100 23 000 8 100	 15BTM2112-1 	15MKM2112	15BM2112 	15MM2112 15MM2116	14.989 14.989 14.989	15.000 15.000 15.000	20.972 20.972 20.972	20.993 20.993 20.993	12 11 16	13 12 18	
	21 21 22	16 22 10	13.3 — 8.4	9.80 13.0 6.15	13.6 19.5 6.45	23 000 23 000 23 000	15BTM2116 15BTM2122 BHTM1510	15MKM2116 			14.989 14.989 14.989	15.000 15.000 15.000	20.972 20.991 ⁴⁾ 21.972	20.993 21.012 ⁴⁾ 21.993	14 20 9.9	16 — 11	
	22 22 22	12 15 20	9.3 — 17.3	6.90 10.9 14.2	7.95 13.3 18.8	23 000 23 000 23 000	BHTM1512A BHTM1515-1 BHTM1520	MHKM1512 MHKM1520		 	14.989 14.989 14.989	15.000 15.000 15.000	21.972 21.972	22.012 ⁴⁾ 21.993 21.993	12 10 20	14 23	
16	22 22 22 22	25 12 12 16	9.6 9.3 13.7	17.7 10.2 7.60 14.1	25.0 17.1 9.80 25.9	23 000 7 700 22 000 7 700	BHTM1525 	 16MKM2212 			14.989 15.989 15.989 15.989	15.000 16.000 16.000 16.000	21.972 21.972 21.991 ⁴⁾ 21.972	21.993 21.993 22.012 ⁴⁾ 21.993	26 12 11 17	14 12 19	
	22 22 24	16 22 12	13.3 —	10.7 16.2 8.00	15.1 22.9 8.45	22 000 22 000 21 000	16BTM2216 16BTM2222B BHTM1612	16MKM2216 	 	 	15.989 15.989 15.989	16.000 16.000 16.000	21.972 21.991 ⁴⁾ 23.972	21.993 22.012 ⁴⁾ 23.993	15 20 15	17	
	24 24.15	16 14	13.3 12.6	12.2 8.45	14.9 9.05	21 000 12 000 ¹⁾	BHTM1616A —	MHKM1616 MKM162414U		_	15.989 15.989	16.000 16.000	23.991 ⁴⁾ 24.122	24.012 ⁴⁾ 24.143	20	23 19	
17	21.50 22 22	15 10 13	10.6 	6.15 5.05 10.6	9.60 6.90 21.6	22 000 21 000 7 500	17BTM2215 BTM1710		 	 	16.989 16.989 16.989	17.000 17.000 17.000	21.472 21.972 21.972	21.493 21.993 21.993	10 8.2 12		
	23 23 23	12 12 20	9.6 	10.3 7.65 18.0	17.9 10.2 36.7	7 300 21 000 7 300	BTM172312		17BM2312 17BM2320	17MM2312 	16.989 16.989 16.989	17.000 17.000 17.000	22.972 22.972 22.972	22.993 22.993 22.993	13 12 23	15 	

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (17) ~ 19 mm

Boundary dimensions (mm)			ıs	Basic load ratings Limiting speeds (kN)		Bearing No. 2)				Reco	ommende (mi	d dimensi	ons	(Refer.) Mass (g)		
$F_{ m w}$	D	С	b min.	$C_{\rm r}$	C_{0r}	Oil lub.	Caged With open ends	type With closed end	Full comple With open ends	ment type With closed end	Shaft di _{min.}		Housing bor min.	e dia. (N7) max.	With open ends	With closed end
17	24 24 24	12 15 17		12.8 11.2 16.0	21.0 14.8 27.9	7 200 20 000 7 200	 BHTM1715-1 		YM172412-1 BM172417-1		16.983 ³⁾ 16.989 16.989	16.994 ³⁾ 17.000 17.000	23.985 ⁴⁾ 23.972 23.991 ⁴⁾	24.006 ⁴⁾ 23.993 24.012 ⁴⁾	17 17 23	
	24 24 24	20 20 20	 17.3	12.9 19.0 15.1	17.6 21.9 21.6	11 000 ¹⁾ 7 200 20 000	BHKM1720JBU BHTM1720-1		 BHM1720A 	 	16.989 16.983 ³⁾ 16.989	17.000 16.994 ³⁾ 17.000	23.972 23.985 ⁴⁾ 23.972	23.993 24.006 ⁴⁾ 23.993	22 27 24	 27
	24 24 24	25 25 26		23.8 19.0 16.0	46.6 29.0 23.3	7 200 20 000 11 000 ¹⁾	 BTM172425 BHKM1726JUU		BHM1725 		16.989 16.983 ³⁾ 16.999	17.000 16.994 ³⁾ 17.000	23.991 ⁴⁾ 23.972 23.972	24.012 ⁴⁾ 23.993 23.993	35 22 29	 _
	24 25 25	30 14 15		20.1 7.30 10.9	31.3 7.90 13.1	11 000 ¹⁾ 11 000 ¹⁾ 20 000	BHKM1730JU BKM172514UH-1 BKM172515			 	16.989 16.989 16.989	17.000 17.000 17.000	23.972 24.991 ⁴⁾ 24.991 ⁴⁾	23.993 25.012 ⁴⁾ 25.012 ⁴⁾	35 18 20	
	25 25 25	16.70 18 20		7.30 10.9 12.9	7.90 13.1 16.3	11 000 ¹⁾ 11 000 ¹⁾ 11 000 ¹⁾	17BKM2517JBUUH BKM172518UH BKM172520UH-1				16.989 16.989 16.989	17.000 17.000 17.000	24.972 24.991 ⁴⁾ 24.991 ⁴⁾	24.993 25.012 ⁴⁾ 25.012 ⁴⁾	20 24 27	
18	24 24 24	12 12 16	9.6 13.7	10.8 7.90 16.5	19.2 10.9 29.1	6 900 20 000 6 900	 18BTM2412 		18BM2412 18BM2416	18MM2412 18MM2416	17.989 17.989 17.989	18.000 18.000 18.000	23.972 23.991 ⁴⁾ 23.972	23.993 24.012 ⁴⁾ 23.993	17 12 18	20 21
	24 24 25	16 16 13		17.2 11.1 9.40	30.7 16.8 11.8	6 900 20 000 19 000	 BTM182416 BTM1813		18YM2416 		17.989 17.989 17.989	18.000 18.000 18.000	23.972 23.972 24.972	23.993 23.993 24.993	19 17 15	
	25 25 25	15 17 19		10.4 12.2 14.4	9.25 17.7 20.5	19 000 19 000 19 000	BTM1815 BTM1817A BTM1819	 			17.989 17.989 17.989	18.000 18.000 18.000	24.972 24.991 ⁴⁾ 24.972	24.993 25.012 ⁴⁾ 24.993	18 20 22	
	25 25	20 25	17.3 —	15.2 18.9	22.1 29.2	19 000 19 000	BTM182520 BTM1825A	MKM1820 —		_	17.989 17.989	18.000 18.000	24.972 24.972	24.993 24.993	24 29	27
19	27	20	—	17.0	23.4	18 000	BHTM1920	_	_	—	18.987	19.000	26.972	26.993	30	

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ 19.50 ~ (22) mm

Boundary dimensions (mm)			Basic load ratings Limiting speeds (kN) (min ⁻¹)			Bearin	Rec	commende (m	(Refer.) Mass (g)							
$F_{ m w}$	D	С	b min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	Cage With open ends	d type With closed end	Full compl With open ends	ement type With closed end	Shaft o min.	dia. (h6) _{max.}	Housing boi min.	e dia. (N7) max.	With open ends	With closed end
19.50	29	20	_	18.8	23.6	17 000	20BTM2920	_	_	_	19.487	19.500	28.972	28.993	36	_
20	26 26 26	12 12 14	9.6 9.3	10.6 8.50 15.1	20.4 12.6 31.4	6 300 18 000 6 300	20BTM2612	 20MKM2612 	20BM2612 YM202614	20MM2612 	19.987 19.987 19.987	20.000 20.000 20.000	25.972 25.972 25.972	25.993 25.993 25.993	15 14 19	17 16
	26 26 26	16 16 20	13.7 13.3 17.2	14.8 12.4 18.8	31.4 20.3 42.5	6 300 18 000 6 300	 BTM202616 	20MKM2616	20BM2616 20BM2620	20MM2616 20MM2620	19.987 19.987 19.987	20.000 20.000 20.000	25.972 25.972 25.972	25.993 25.993 25.993	21 19 26	23 21 30
	26 27 27	20 13 15	 10.6 	15.2 13.1 15.6	26.4 22.2 27.7	18 000 6 200 6 200	20BTM2620A 		BM2013 BM2015	 MM2013 	19.987 19.987 19.987	20.000 20.000 20.000	25.972 26.972 26.972	25.993 26.993 26.993	24 18 22	
	27 27 27	15 20 23.50	 17.3 	13.1 17.7 18.4	18.7 27.6 28.8	18 000 18 000 10 000 ¹⁾	BTM2015 BTM202720-1 BKM2024JAU	 MKM2020 			19.870 19.987 19.987	20.000 20.000 20.000	26.972 26.972 26.972	26.993 26.993 26.993	20 25 32	28
	27 27 27	25 26 26		22.1 18.4 27.6	36.6 28.8 58.0	18 000 10 000 ¹⁾ 6 200	BTM202725 BKM2026JUU —		 BM2026		19.987 19.987 19.987	20.000 20.000 20.000	26.972 26.972 26.972	26.993 26.993 26.993	33 33 40	
	27 27 27	30 30 35	 27.3 	21.8 25.4 28.7	36.0 43.8 45.4	10 000 ¹⁾ 18 000 10 000 ¹⁾	BKM2030JUU BTM202730 BKM2035JUU	 MKM2030 			19.987 19.987 19.987	20.000 20.000 20.000	26.972 26.972 26.972	26.993 26.993 26.993	38 40 45	45
	28	20		17.4	22.3	17 000	20BTM2820A	_	_	—	19.987	20.000	27.991 ⁴⁾	28.012 ⁴⁾	31	
21	27	20	_	20.5	47.6	6 100	—	—	21YM2720J	—	20.987	21.000	26.972	26.993	29	—
22	28 28 28	12 12 16	9.6 9.3 13.7	11.6 9.10 16.1	22.9 13.5 35.0	5 800 16 000 5 800	 22BTM2812	 22MKM2812	22BM2812 22BM2816	22MM2812 22MM2816	21.987 21.987 21.987	22.000 22.000 22.000	27.972 27.972 27.972	27.993 27.993 27.993	16 14 22	18 16 25
	28 28 28	16 16 20	13.7 13.3 17.2	10.1 12.7 20.3	35.0 20.8 47.2	16 000 5 800	 22BTM2816A 	 22MKM2816 	 22BM2820	22IMM2816 22MM2820	21.987 21.987 21.987	22.000 22.000 22.000	27.972 27.972 27.972	27.993 27.993 27.993	19 29	25 22 32

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (22) ~ (25) mm

Boundary dimensions (mm)			Ũ		Limiting speeds (min ⁻¹)	Bearin	g No. ²⁾			Rec		ed dimensi m)	ons	(Refer.) Mass (g)		
$F_{ m w}$	D	C	Ь min.	$C_{\rm r}$	C_{0r}	Oil lub.	Cage With open ends	d type With closed end	Full comple With open ends		Shaft o	dia. (h6) max.	Housing bor min.	e dia. (N7) max.	With open ends	With closed end
22	28	20	17.3	14.9	26.5	17 000	22BTM2820	22MKM2820			21.987	22.000	27.972	27.993	25	28
	28	20		21.0	49.5	5 800			YM222820		21.987	22.000	27.972	27.993	30	
	29	12	—	9.22	13.0	16 000	BTM2212	—	—	—	21.987	22.000	28.972	28.993	19	_
	29	15	_	12.0	18.3	16 000	BTM2215	_	_	_	21.987	22.000	28.972	28.993	22	_
	29	20	_	21.9	45.2	5 700	_	_	BM2220B	_	21.987	22.000	28.972	28.993	33	_
	29	20	17.3	16.2	26.7	16 000	BTM2220A	MKM2220	<u> </u>	—	21.987	22.000	28.972	28.993	30	33
	29	25	—	20.4	36.1	16 000	BTM2225	_	_	_	21.987	22.000	28.972	28.993	37	_
	30	18	—	16.7	24.5	16 000	22BTM3018	—	—	—	21.987	22.000	29.972	29.993	31	—
24	30	13	_	9.55	15.7	15 000	BTM243013J	_	_	_	23.987	24.000	29.991 ⁴⁾	30.012 ⁴⁾	47	_
	31	20	17.3	17.7	29.4	15 000	BTM2420	MKM2420		_	23.987	24.000	30.967	30.992	31	35
	31	25	—	31.6	65.4	5 200	—	—	BM2425A	—	23.987	24.000	30.989 ⁴⁾	31.014 ⁴⁾	45	—
	31	28	—	23.9	43.0	15 000	BTM2428	_	—	_	23.987	24.000	30.967	30.992	44	_
	35	20	18.0	21.0	25.8	14 000		24MKM3520	—	—	23.987	24.000	34.967	34.992		52
25	31	19	_	16.3	30.1	15 000	25BTM3119A	—	_	—	24.987	25.000	30.967	30.992	26	_
	32	12	9.3	9.05	12.4	14 000	BTM2512	MKM2512	—	—	24.987	25.000	31.967	31.992	19	21
	32	16	—	18.7	37.9	5 100	—	—	BM2516	—	24.987	25.000	31.967	31.992	28	—
	32	16	13.3	15.3	24.6	14 000	BTM2516	MKM2516	_	_	24.987	25.000	31.967	31.992	26	30
	32	20	17.2	23.8	51.7	5 100		—	BM2520	MM2520	24.987	25.000	31.967	31.992	36	41
	32	20	—	19.1	32.5	14 000	BTM2520A	MTM2520M	—	_	24.987	25.000	31.967	31.992	33	_
	32	26	_	30.9	72.4	5 100	_	_	BM2526	_	24.987	25.000	31.967	31.992	48	_
	32	26	23.3	23.7	43.1	14 000	BTM2526	MKM2526	—	—	24.987	25.000	31.967	31.992	42	48
	33	10	—	8.50	10.3	14 000	BHTM2510A	—	—	—	24.987	25.000	32.989 ⁴⁾	33.014 ⁴⁾	18	—
	33	15	—	19.5	32.0	5 000	—	—	BHM2515	—	24.987	25.000	32.989 ⁴⁾	33.014 ⁴⁾	30	_
	33	15	—	13.9	19.7	14 000	BHTM2515-1	—	_	—	24.987	25.000	32.967	32.992	27	—
	33	20	17.3	19.2	29.7	14 000	BHTM2520-1	MHKM2520	—	—	24.987	25.000	32.967	32.992	37	41
	33	25	—	31.3	66.3	5 000	—	—	BHM2525	—	24.987	25.000	32.967	32.992	53	—
	33	25	—	24.5	40.6	14 000	BHTM2525	—	—	—	24.987	25.000	32.967	32.992	46	—

 The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 FN in bearing number indicates a bearing comprising polyamide molded cage.
 The recommended dimensional tolerances of shaft shown above are applicable except h6.
 The recommended dimensional tolerances of housing bore shown above are applicable except N7. [Notes]

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

 $F_{\rm W}$ (25) ~ (30) mm

Boundary dimensions			15		ad ratings	Limiting speeds (min ⁻¹)	Bearing		Rec	ommende (mi		ons	(Refer.) Mass (g)			
$F_{ m w}$	D	C	b min.	C _r	C_{0r}	Oil lub.	Cageo With open ends	type With closed end	Full compl With open ends	ement type With closed end	Shaft d _{min} .		Housing bor min.	re dia. (N7) max.	With open ends	With closed end
25	33 33 33	30 30 35	 27.3	37.4 27.7 29.8	83.3 47.4 52.3	5 000 14 000 8 000 ¹⁾	BHTM2530-1 BHKM2535JU	 MHKM2530 	BHM2530 	 	24.987 24.987 24.987	25.000 25.000 25.000	32.989 ⁴⁾ 32.967 32.967	33.014 ⁴⁾ 32.992 32.992	65 54 62	61 —
25.80	33	16	—	14.2	22.4	14 000	BTM263316A	—	—	—	25.787	25.800	32.967	32.992	28	—
26	31.40 34 34	12 16 20	 13.3 17.3	8.60 15.3 20.0	14.5 22.5 31.6	14 000 14 000 14 000	BKM263112A BHTM2616 BHTM2620A	 МНКМ2616 МНКМ2620			25.987 25.987 25.987	26.000 26.000 26.000	31.389 ⁴⁾ 33.967 33.967	31.414 ⁴⁾ 33.992 33.992	14 30 38	34 43
28	34 34 34	17 24 25		16.8 29.0 34.8	49.7 76.7 85.9	4 600 4 600 4 600			BM2817 BM2824 YM2825B		27.987 27.987 27.991 ³⁾	28.000 28.000 28.000 ³⁾	33.967 33.967 33.975 ⁴⁾	33.992 33.992 34.000 ⁴⁾	29 42 45	
	35 35 35	16 16 20	13.7 13.3 17.2	20.2 15.9 25.7	42.9 26.2 58.3	4 600 13 000 4 600	 28BTM3516 	 28MKM3516 	28BM3516 28BM3520	28MM3516 28MM3520	27.987 27.987 27.987	28.000 28.000 28.000	34.967 34.967 34.967	34.992 34.992 34.992	95 28 118	107 31 133
	35 36 36	20 20.75 23	17.3 	19.0 22.8 22.8	33.1 39.3 39.3	13 000 13 000 13 000	28BTM3520 BTM283621JA BTM283623J	28MKM3520 			27.987 27.987 27.987	28.000 28.000 28.000	34.967 35.967 35.967	34.992 35.992 35.992	35 43 49	39
	37 37 37	20 30 30	17.3 — 27.3	21.6 43.7 32.8	33.0 94.7 56.5	13 000 4 400 13 000	BTM283720 BHTM2830	MHKM2820 MHKM2830	 28BHM3730 		27.987 27.980 ³⁾ 27.987	28.000 27.993 ³⁾ 28.000	36.967 36.989 ⁴⁾ 36.967	36.992 37.014 ⁴⁾ 36.992	46 80 70	52 — 79
	39	30	_	44.5	85.9	4 300	_	_	BM283930A	_	27.980 ³⁾	27.993 ³⁾	38.989 ⁴⁾	39.014 ⁴⁾	100	_
30	37 37 37	12 16 16	9.3 13.3	12.1 21.1 17.1	18.8 28.2 29.3	12 000 4 300 12 000	BTM303712 30BTM3716BM	30MKM3712 	 30BM3716 		29.987 29.987 29.987	30.000 30.000 30.000	36.967 36.967 36.967	36.992 36.992 36.992	22 33 30	25 33
T NL 4 - 2	37 37 37	20 20 20	17.2 17.3 —	26.8 20.7 32.2	62.5 40.4 70.1	4 300 12 000 4 300	30BTM3720	 30MKM3720 	30BM3720 	30MM3720 	29.987 29.987 29.987	30.000 30.000 30.000	36.967 36.967 36.967	36.992 36.992 36.992	42 40 45	48 45

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

B 414

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.
$F_{\rm W}$ (30) ~ (35) mm

Во	undary o (m	dimensio m)	ıs		ad ratings	Limiting speeds (min ⁻¹)	Bearin	g No. ²⁾			Rec	ommende (mi	d dimensi	ons	(Refer.)	Mass (g)
$F_{ m w}$	D	С	b min.	$C_{\rm r}$	C_{0r}	Oil lub.	Cage With open ends	d type With closed end	Full complen With open ends	nent type With closed end	Shaft d min.		Housing bor min.	e dia. (N7) max.	With open ends	With closed end
30	37	26		34.8	87.3	4 300			30BM3726		29.987	30.000	36.967	36.992	56	
	37	26	23.3	26.7	52.0	12 000	30BTM3726	30MKM3726	_	_	29.987	30.000	36.967	36.992	48	55
	37	26	—	37.1	94.9	4 300	—	—	30YM3726	—	29.987	30.000	36.967	36.992	60	_
	38	21	_	23.4	40.4	12 000	BTM3021A	—	—	—	29.987	30.000	37.967	37.992	45	_
	38	25	—	38.0	79.8	4 200		—	BM3025	—	29.987	30.000	37.989 ⁴⁾	38.014 ⁴⁾	62	_
	40	15	—	16.6	22.3	12 000	BHTM3015	—	—	—	29.987	30.000	39.967	39.992	41	_
	40	20	17.3	23.1	34.0	12 000	BHTM3020	MHKM3020		—	29.987	30.000	39.967	39.992	55	62
	40 40	25 25	_	37.3 29.4	75.4 46.5	4 100 12 000	 BHTM3025-1	_	BHM3025	_	29.987 29.987	30.000 30.000	39.987 ⁴⁾ 39.967	40.013 ⁴⁾ 39.992	80 69	_
									_	_						
	40 40	30 30	27.3	35.3 30.8	58.8 49.3	12 000 6 600 ¹⁾	BHTM3030-1A BKM304030JU	MHKM3030	_	_	29.987 29.987	30.000 30.000	39.967 39.967	39.992 39.992	83 77	94
	40	00		00.0	45.0	0.000	5111100-100030				20.007	00.000	00.007	00.002		
31	39	17.80	—	20.6	34.6	12 000	31BTM3918A	—	—	—	30.984	31.000	38.967	38.992	39	—
32	38	11	_	4.90	6.75	12 000	32BTM3811A	_	_	_	31.975 ³⁾	31.991 ³⁾	38.000 ⁴⁾	38.025 ⁴⁾	15	_
	40	20	—	31.9	73.3	4 000	—	—	32YM4020P	—	31.984	32.000	39.989 ⁴⁾	40.014 4)	56	_
	40	25	—	27.6	50.8	11 000	32BTM4025PL	—	—	—	31.984	32.000	39.989 ⁴⁾	40.014 ⁴⁾	57	—
	42	20	17.3	23.4	34.8	11 000	BHTM3220A	MHKM3220	—	—	31.984	32.000	41.989 ⁴⁾	42.014 ⁴⁾	57	64
	42	20		37.4	69.1	3 900			YM3220	—	31.995 ³⁾			42.014 ⁴⁾	71	
	42	30	27.3	36.6	61.9	11 000	BHTM3230	MHKM3230	_	—	31.984	32.000	41.967	41.992	86	98
	42	30	—	55.0	113	3 900	_	—	YM3230	_	31.995 ³⁾	32.011 ³⁾	41.989 ⁴⁾	42.014 ⁴⁾	109	_
33.50	40	17	—	16.8	33.5	11 000	BTM344017A	—	—	—	33.484	33.500	39.967	39.992	34	_
34	40	12		7.30	11.7	11 000	34BTM4012A			_	33.984	34.000	39.967	39.992	20	
	42	25	—	37.2	94.1	3 800	—	—	34YM4225	—	33.959 ³⁾	33.975 ³⁾	41.967	41.992	74	—
35	40.50	26	_	22.7	56.0	11 000	BSM354126AJ	_	_	_	34.984	35.000	40.467	40.492	44	_
	42	12	—	13.3	22.8	11 000	BTM3512	_	—	—	34.984	35.000	41.967	41.992	26	—
	42	16	—	22.2	52.9	3 700	—	—	BM3516	_	34.984	35.000	41.967	41.992	38	_

 The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 FN in bearing number indicates a bearing comprising polyamide molded cage.
 The recommended dimensional tolerances of shaft shown above are applicable except h6.
 The recommended dimensional tolerances of housing bore shown above are applicable except N7. [Notes]

 $F_{\rm W}$ (35) ~ (40) mm

Fw II 35 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42	2 20 2 20 2 20 2 21 2 26 2 26 2 26 2 28 2 46	b min. 13.3 — 17.2 17.3 — 23.3 — —	30.1 31.3	Cor 34.7 22.8 72.2 47.0 79.2 101 65.2 68.6	(min ⁻¹) Oil lub. 11 000 5 700 ¹⁾ 3 700 11 000 3 700 3 700 11 000	Caged With open ends BTM3516 BKM354220-1UU — BTM3520 —	type With closed end MKM3516 — — MKM3520 —	Full comple With open ends — BM3520 —		Shaft di min. 34.984 34.984 34.984 34.984	(mi ia. (h6) max. 35.000 35.000 35.000 35.000	Housing bor min. 41.967 41.967 41.967 41.967 41.989 ⁴⁾	e dia. (N7) max. 41.992 41.992 41.992 42.014 ⁴⁾	With open ends 35 38 49 43	end 39 — 56
42 42 42 42 42 42 42 42 42 42	2 20 2 20 2 20 2 21 2 26 2 26 2 26 2 28 2 46	 17.2 17.3 23.3 	13.3 28.2 23.4 28.8 36.7 30.1 31.3	22.8 72.2 47.0 79.2 101 65.2	5 700 ¹⁾ 3 700 11 000 3 700 3 700 3 700	BKM354220-1UU	_	 BM3520 		34.984 34.984	35.000 35.000	41.967 41.967	41.992 41.992	38 49	56
42 42	2 21 2 26 2 26 2 28 2 46	 23.3 	28.8 36.7 30.1 31.3	79.2 101 65.2	3 700 3 700	BTM3520	MKM3520 —			21 001	35.000	41.989 ⁴⁾	42 014 ⁴⁾	10	
42	2 28 2 46	—	31.3		11 000		—	YM3521A BM3526		34.984 34.984 34.984	35.000 35.000	41.989 ⁴⁾ 41.967	42.014 ⁴⁾ 41.992	43 55 66	49
	5 15		26.2	57.5	11 000 5 700 ¹⁾	BTM3526 BTM3528 BKM354246UUH	MKM3526 			34.984 34.984 34.984	35.000 35.000 35.000	41.967 41.967 41.967	41.992 41.992 41.992	57 63 101	64
45 45 45	5 18	 17.3	18.4 20.5 26.0	26.6 33.4 41.7	10 000 3 600 10 000	BHTM3515 BHTM3520		 BHM3518 		34.984 34.984 34.984	35.000 35.000 35.000	44.967 44.967 44.967	44.992 44.992 44.992	47 62 64	 72
45 45		 27.3	32.8 39.4	56.2 71.0	10 000 10 000	BHTM3525 BHTM3530	 MHKM3530		—	34.984 34.984	35.000 35.000	44.967 44.967	44.992 44.992	80 96	109
36 42 44 48	4 25		19.6 42.0 33.2	55.9 99.2 48.7	3 700 3 600 9 800	 36BTM4824		36BM4216 36YM4425L —		35.984 35.975 ³⁾ 35.984	36.000 35.991 ³⁾ 36.000	41.967 43.967 47.967	41.992 43.992 47.992	35 78 95	
37 43 47 47	7 20	 17.3 27.3	8.00 25.1 38.2	13.6 39.9 68.4	10 000 9 800 9 800	37BTM4312A BTM3720 BTM3730	 MKM3720 MKM3730			36.984 36.984 36.984	37.000 37.000 37.000	42.967 46.967 46.967	42.992 46.992 46.992	23 64 96	72 109
38 45 48 48	8 20 8 20	 17.3 27.3	12.7 27.1 42.0 41.2	23.0 44.5 82.8 76.2	9 800 9 500 3 300 9 500	BTM384512A BTM3820A — BTM3830PL	MKM3820 	 YM3820P	 _	37.984 37.984 37.984 37.984	38.000 38.000 38.000 38.000	44.967 47.967 47.967 47.967	44.992 47.992 47.992 47.992	29 67 82 102	
48 48 40 47	8 45			121	9 500 9 500 9 400	BTM3830PL BTM3845-0H 40BTM4712A		_		37.984 37.984 39.984	38.000 38.000 40.000	47.967 47.967 46.967	47.992 47.992 46.992	151	

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

B 418

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

$F_{\rm W}$ (40) ~ 45 mm

Во	undary d		15		ad ratings	Limiting speeds	Bearin	g No. ²⁾			Rec	ommende	ed dimensi	ons	(Refer.)	Mass (g)
$F_{ m w}$	D	C	b min.	$C_{\rm r}$	C_{0r}	Oil lub.	Cage With open ends	d type With closed end	Full comple With open ends	ement type With closed end	Shaft o min.	lia. (h6) max.	Housing boi min.	re dia. (N7) max.	With open ends	With closed end
40	47 47 47	16 16 20	 13.3 17.2	23.8 18.7 30.3	60.5 37.1 82.6	3 300 9 400 3 300	40BTM4716	40MKM4716	40BM4716 40BM4720	 40MM4720	39.984 39.984 39.984	40.000 40.000 40.000	46.967 46.967 46.967	46.992 46.992 46.992	43 39 56	 44 63
	47 50 50	20 15 15	17.3 —	23.7 23.4 20.2	50.4 45.2 31.2	9 400 3 200 9 100	40BTM4720 BTM4015	40MKM4720 	BM4015-1	 	39.984 39.984 39.984	40.000 40.000 40.000	46.967 49.967 49.967	46.992 49.992 49.992	48 55 54	55
	50 50 50	20 25 30	17.3 27.3	28.5 36.2 43.0	48.5 66.2 82.5	9 100 9 100 9 100	BTM4020 BTM4025 BTM4030-1	MKM4020 MKM4030			39.984 39.984 39.984	40.000 40.000 40.000	49.967 49.967 49.967	49.992 49.992 49.992	73 91 109	82 123
	50 51 51	40 20 30		54.8 40.2 43.5	113 84.7 76.6	9 100 3 200 9 000	BTM4040-OH 40BTM5130J		YM405120J 		39.984 39.984 39.984	40.000 40.000 40.000	49.967 50.961 50.961	49.992 50.991 50.991	141 96 112	
41.50	53 46.50	20 8.50	_	46.7	87.3	3 100 9 200			YM405320JM		39.984 41.484	40.000	52.961 46.467	52.991 46.492	114 15	
41.50	53	30	_	45.7	83.9	8 600	BTM425330J				41.984	42.000	52.961	52.991	121	
43	49	12		8.35	15.1	8 800	43BTM4912A	_	_	_	42.984	43.000	48.989 ⁴⁾	49.014 ⁴⁾	25	
43.52	48.52	14	_	12.0	29.0	8 800	44BTM4914A			_	43.504	43.520	48.487	48.512	28	
45	52 52 52	12 16 16	 13.3	13.7 23.8 19.1	26.9 65.9 41.3	8 400 2 900 8 400	45BTM5212A 	 45MKM5216	45BM5216		44.984 44.984 44.984	45.000 45.000 45.000	51.961 51.961 51.961	51.991 51.991 51.991	34 49 45	 51
	52 52 52	20 20 30	17.2 17.3 27.3	30.4 23.3 45.3	90.1 33.4 91.7	2 900 8 200 8 200	45BTM5220A BTM4530		45BM5220 	45MM5220 — —	44.984 44.984 44.984	45.000 45.000 45.000	51.961 54.961 54.961	51.991 54.991 54.991	62 79 120	71 90 136
	55	20	—	30.0	53.9	8 200	BTM4520A	—	_	—	44.984	45.000	54.961	54.991	79	

[Notes] 1) The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 2) FN in bearing number indicates a bearing comprising polyamide molded cage.
 3) The recommended dimensional tolerances of shaft shown above are applicable except h6.
 4) The recommended dimensional tolerances of housing bore shown above are applicable except N7.

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

*F*_W **48** ~ **76.50** mm

Во	undary di (mn		S		ad ratings kN)		Bearing	; No. ²⁾			Rec	ommende (m	ed dimens	ions	(Refer.)	Mass (g)
$F_{ m w}$	D	C	b min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	Caged With open ends	type With closed end	Full compl With open ends	ement type With closed end	Shaft o	lia. (h6) max.	Housing bo min.	ore dia. (N7) max.	With open ends	With closed end
48	56	30	_	41.0	100	7 800	BTM485630J				47.984	48.000	55.961	55.991	102	
50	58 58 58	16 20 20	 17.3	21.9 35.8 28.4	43.8 98.0 61.0	7 500 2 600 7 500	BTM505816J 	 50MKM5820	50BM5820		49.984 49.984 49.984	50.000 50.000 50.000	57.961 57.961 57.961	57.991 57.991 57.991	54 78 68	 76
	58 58 62	25 25 15	 22.3 	45.2 35.9 24.3	133 82.5 36.4	2 600 7 500 7 300	 50BTM5825 BTM5015	 50MKM5825 	50BM5825 		49.984 49.984 49.984	50.000 50.000 50.000	57.961 57.961 61.961	57.991 57.991 61.991	98 86 73	97
	62 62 62	20 25 30	17.3 — 27.3	34.5 43.9 52.8	57.1 77.8 98.5	7 300 7 300 7 300	BTM5020 BTM5025 BTM5030	МКМ5020 МКМ5030			49.984 49.984 49.984	50.000 50.000 50.000	61.961 61.961 61.961	61.991 61.991 61.991	99 125 153	112 173
55	63 67	20 20	_	29.1 36.4	65.1 63.1	6 900 6 700	55BTM6320 55BTM6720A	_			54.981 54.981	55.000 55.000	62.961 66.961	62.991 62.991	73 110	_
64	73.178	21.10	_	36.1	83.8	5 900	64BTM7321A	—	—	_	63.981	64.000	73.139	73.129	110	_
66	72	16	_	21.9	61.1	5 900	BTM667216J	_	_	_	65.981	66.000	71.961	71.991	54	
71.60	78.60	15	_	22.9	61.9	5 400	BTM727915AJ	_	_	_	71.581	71.600	78.561	78.591	66	_
76.50	83.50	15	_	23.5	65.4	5 000	BTM778415AJ	_	_	_	76.481	76.500	83.455	83.490	70	_

 The limiting speeds shown above are applicable when oil seal is used and the bearing is lubricated with grease.
 FN in bearing number indicates a bearing comprising polyamide molded cage.
 The recommended dimensional tolerances of shaft shown above are applicable except h6.
 The recommended dimensional tolerances of housing bore shown above are applicable except N7. [Notes]

[Remark] Limiting speed of grease lubrication should be kept to under 60 % of that for oil lubrication.

*F*_W **12** ~ **17 mm**

 $\phi F_{\rm w}$

Koyo

	Во		dimensio m)	ons		Basic loa			Bearing No.		Mount	ing dime (mm)	ensions	(Refer.) M	ass (kg)	(Refer.) Applicable	- r _a
$F_{ m w}$	d	D	В	B_1	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.	
12	_	19 24	10 9.8	_	0.3 0.3	5.9 5.9	6.3 6.3	35 000 35 000	NQ12/10 12NQ2410A		_	17 22	0.3 0.3	0.010 0.023	_		$\phi D_{a} - \phi d_{a}$
14	10 10 10	22 22 22 22	13 13 13 16	14 	0.3 0.3 0.3 0.5	7.5 7.6 9.3 11.7	7.7 9.1 10.1 13.7	14 000 31 000 30 000 30 000		NA4900UU NA4900 NA4900R 	12 12 12 —	20 20 20 19	0.3 0.3 0.3 0.5	 0.017 0.016 0.021	0.025 0.025 0.023	IRM101414 IRM101413 IRM101413 	
15		23 24 25 26 28	12 10 12 16 15		0.3 0.3 0.6 0.3 1	8.8 8.5 10.5 13.4 7.9	9.7 8.2 10.8 14.8 9.8	29 000 28 000 28 000 28 000 28 000 28 000	NQ15/12 15NQ2410D NQ152512 NQS15/16 15NQ2815	 		21 22 21 24 23	0.3 0.3 0.6 0.3 1	0.017 0.016 0.022 0.034 0.043		 	-
16		23 23 23	16 16 22		0.5 0.5 0.5	13.1 15.2 17.1	16.4 17.4 23.0	27 000 28 000 27 000	16NQ2316 NQ15/16B 16NQ2322A			20 20 20	0.5 0.5 0.5	0.018 0.020 0.025			-
	12 12	24 24 24	12 13 13	14	0.3 0.3 0.3	7.7 8.3 8.6	9.6 9.2 11.1	28 000 12 000 28 000	NQ16/12 RNA4901	 NA4901UU NA4901	14 14 14	22 22 22	0.3 0.3 0.3	0.019 0.019	 0.028 0.028	 IRM121614 IRM121613	
	12 12	24 24 24	13 16 16	 16	0.3 0.3 0.3	10.2 10.9 10.9	11.8 15.2 15.2	27 000 28 000 28 000	RNA4901R NQ16/16D —	NA4901R NQI12/16D	14 14	22 22 22	0.3 0.3 0.3	0.018 0.025 —	0.027 0.036	IRM121613 	
	 12	24 24	20 22	_	0.3 0.3	13.1 16.3	19.1 21.7	28 000 27 000	NQ16/20 RNA6901	NA6901	 14	22 22	0.3 0.3	0.032 0.030	0.045	 IRM121622	
17		25 25 30	16 20 13		0.5 0.3 0.3	11.3 13.7 10.0	16.2 20.6 10.5	26 000 26 000 25 000	NQ17/16D 17NQ2520 17NQ3013D	 		22 23 28	0.5 0.3 0.3	0.026 0.033 0.041			-
	_	32	16		0.6	18.0	16.5	23 000	17NQ3216D	_	_	28	0.6	0.053	_		-

 $F_{\rm W}$ **18** ~ (**22**) mm

 $-\phi F_{w}$

RNA49, RNA59

Koyo

	Во	oundary (m	dimensio nm)	ons		Basic loa		$\begin{array}{c} \text{Limiting speeds} \ ^{1)} \\ (\text{min}^{-1}) \end{array}$	Bearing No.		Mount	ing dime (mm)	ensions	(Refer.) M	ass (kg)	(Refer.) Applicable	r _a
$F_{ m w}$	d	D	В	B_1	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.	
18	_	25	16	_	0.3	11.7	17.2	25 000	18NQ2516	_	_	23	0.3	0.023	_	_	
		26	13	—	0.3	11.0	13.6	24 000	RNA49/14R	—	—	24	0.3	0.020	—	—	$\phi D_a \longrightarrow \phi d_a$
	_	26	16	_	0.3	11.7	17.2	25 000	NQ18/16	—	_	24	0.3	0.027	_	_	
		26	20	—	0.3	14.1	21.7	25 000	NQ18/20	—	-	24	0.3	0.035	—	—	
	12	28 30	19 16	_	0.3 0.3	16.9 13.7	20.9 14.3	24 000 23 000	18NQ2819 NQS18/16	NOIS12/16	14	26 28	0.3 0.3	0.042 0.044	0.057	_	
	12	50	10		0.5	10.7	14.5	23 000	NQ310/10	110	14	20	0.5	0.044	0.037		_
19	15	27	16		0.3	12.1	18.2	24 000		NQI15/16	17	25	0.3	0.042	—	—	_
20	_	27	17	_	0.3	14.7	20.4	22 000	20NQ2717	_	_	25	0.3	0.024	_	_	
	15	28	13	14	0.3	9.2	11.1	10 000	—	NA4902UU	17	26	0.3	_	0.037	IRM152014	
	15	28	13	—	0.3	9.2	12.8	23 000	RNA4902	NA4902	17	26	0.3	0.023	0.036	IRM152013	
	15	28	13	—	0.3	11.3	14.6	22 000	RNA4902R	NA4902R	17	26	0.3	0.021	0.035	IRM152013	
	—	28	16		0.3	12.0	18.2	23 000	NQ20/16D	—	—	26	0.3	0.030	—	_	
	15	28	18	—	0.3	14.7	20.4	22 000	RNA5902	NA5902	17	26	0.3	0.029	0.048	IRM152018	
		28	20	—	0.3	14.4	23.0	23 000	NQ20/20	—	—	26	0.3	0.038	—	—	
	—	28	23		0.3	18.4	27.1	22 000	NQ202823	—	—	26	0.3	0.040	—	_	
	_	30	20	_	0.3	19.8	26.4	22 000	20NQ3020	—	-	28	0.3	0.048	_	—	
		32	12	—	0.3	11.9	11.3	21 000	20NQ3212	—	—	30	0.3	0.033	_	_	
	_	32	18	_	0.3	21.0	26.1	21 000	NQ203218	—	—	30	0.3	0.053	_	_	
		33	15	—	0.6	14.0	16.9	21 000	20NQ3315D	—	-	29	0.6	0.052	—	—	
		34	18		0.6	21.1	20.8	20 000	20NQ3418D	_	—	30	0.6	0.060	—	—	_
21	—	38	17	—	0.6	21.1	21.1	19 000	21NQ3817	—	_	34	0.6	0.082	—	_	
22	17	30	13	14	0.3	9.4	11.8	9 100		NA4903UU	19	28	0.3	_	0.040	IRM172214	_
	17	30	13	_	0.3	9.6	14.0	21 000	RNA4903D	NA4903	19	28	0.3	0.025	0.040	IRM172213	
	17	30	13	_	0.3	12.1	16.4	20 000	RNA4903R	NA4903R	19	28	0.3	0.023	0.038	IRM172213	
		30	16	_	0.3	12.7	20.2	21 000	NQ22/16	_	_	28	0.3	0.032		_	
	17	30	18	_	0.3	15.2	21.9	20 000	RNA5903	NA5903	19	28	0.3	0.031	0.052	IRM172218	
		30	20	_	0.3	15.3	25.6	21 000	NQ22/20	_	_	28	0.3	0.040	_	_	
[N]]]									a lubricated bearings								_

 $F_{\rm W}$ (22) ~ 28 mm

 $\phi F_{\rm w}$

Koyo

	Bo	oundary (m	dimensio m)	ons		Basic loa		$\begin{array}{c} \text{Limiting speeds} \ ^{1)} \\ (min^{-1}) \end{array}$	Bearing No.		Mount	ing dime (mm)	ensions	(Refer.) M	ass (kg)	(Refer.) Applicable	r _a
$F_{ m w}$	d	D	В	B_1	r min.	$C_{\rm r}$	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.	
22	17	30 32	23 25	_	0.3 0.3	18.9 22.4	29.0 31.7	20 000 20 000	RNA6903 22NQ3225	NA6903	19 —	28 30	0.3 0.3	0.040 0.063	0.067	IRM172223	ϕD_{a} ϕd_{a}
24	20 20	32 32	12 16		0.3	9.6 13.4	14.4 22.2	19 000 19 000	NQ24/12 NQ24/16	NQI20/12 NQI20/16	22 22	30 30	0.3	0.025	0.038 0.052		
	20	32 32	20 20	20	0.3 0.3	17.3 17.3	26.5 26.5	19 000 19 000	NQ24/20AD		22	30 30	0.3 0.3	0.040	0.062	 20IRM2420AD	
25	 20	33 33 37	16 20 14		0.3 0.3 0.3	14.1 18.9 17.1	20.6 30.0 19.1	18 000 18 000 17 000	NQ25/16 NQ25/20 —	 20NQI3714	 22	31 31 35	0.3 0.3 0.3	0.034 0.043 	0.066		-
	20 20	37 37 37	17 17 17	 18 	1 0.3 0.3	19.3 16.4 15.9	22.5 18.2 21.1	17 000 8 000 18 000	25NQ3717AD-1 RNA4904	 NA4904UU NA4904	 22 22	32 35 35	1 0.3 0.3	0.056 0.058	 0.078 0.081	 IRM202518 IRM202517	
	20 20	37 37 37	17 23 30		0.9 0.3 0.3	21.5 28.0 35.4	25.7 36.1 48.9	17 000 17 000 17 000	RNA4904ARD-1 RNA5904 RNA6904	NA5904 NA6904	 22 22	32 35 35	0.9 0.3 0.3	0.054 0.073 0.096	 0.104 0.137	 IRM202523 IRM202530	
26	22 	34 34 47 52	16 20 17 14		0.3 0.3 0.6 0.6	14.1 14.2 21.4 18.0	24.2 28.9 23.6 18.9	18 000 18 000 16 000 16 000	NQ26/16 26NQ3420 26NQ4717 26NQ5214	NQI22/16 	24 	32 32 43 48	0.3 0.3 0.6 0.6	0.037 0.042 0.113 0.136	0.056 	 	-
28	 22	37 37 39	20 30 17		0.3 0.3 0.3	20.6 29.1 17.8	34.7 54.1 25.4	16 000 16 000 16 000	NQ283720D NQ28/30 RNA49/22	 NA49/22	 24	35 35 37	0.3 0.3 0.3	0.056 0.083 0.056	0.086	 IRM222817	-
	 	39 39 40	17 30 17		0.3 0.3 0.3	21.8 36.8 15.1	29.8 53.1 27.4	16 000 16 000 16 000	RNA49/22R RNA69/22 28NQ4017	 NA69/22 	24 	37 37 38	0.3 0.3 0.3	0.055 0.100 0.068	0.154 	 IRM222830 	
	—	40	20	_	0.3	20.6	34.7	16 000	28NQ4020	_	—	38	0.3	0.087	_		

*F*_W **29** ~ **37** mm

Koyo

 $\phi d_{\rm a}$

	Во		dimensio m)	ons		Basic loa		$\begin{array}{c} \text{Limiting speeds} \ ^{1)} \\ (\text{min}^{-1}) \end{array}$	Bearing No.			ting dim (mm)	ensions		lass (kg)	(Refer.) Applicable	-		1
$F_{ m w}$	d	D	В	B_1	r min.	Cr	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.	_]		
29	25	38 38	15 20	_	0.6 0.6	14.6 20.4	22.6 34.8	16 000 16 000	NQ29/20	NQI25/15	29	34 34	0.6 0.6	0.056	0.061	_	ϕD_a	-	
	25	38	30	_	0.3	28.9	54.3	16 000	NQ29/30	NQI25/30	27	36	0.0	0.085	0.125	_	r Da		
30	_	40	20	_	0.3	23.7	37.5	15 000	NQ30/20	—	-	38	0.3	0.066	_	_	_		
	25	40 42	30 17	18	0.3 0.3	33.5 18.4	58.5 22.4	15 000 6 600	NQ30/30 —	 NA4905UU	27	38 40	0.3 0.3	0.099	0.092	IRM253018			
	25	42	17		0.3	18.6	27.4	15 000	RNA4905	NA4905	27	40	0.3	0.065	0.096	IRM253017			
	25 25	42 42	17 23	_	0.3 0.3	24.2 31.7	31.7 44.9	15 000 15 000	RNA4905R RNA5905	NA4905R NA5905	27 27	40 40	0.3 0.3	0.065 0.085	0.092 0.124	IRM253017 IRM253023			
		42 42	30 30	—	0.6 0.3	40.1 40.1	60.7 60.7	15 000 15 000	NQ304230 RNA6905	NA6905		38	0.6 0.3	0.116 0.112	 0.162	 IRM253030			
	25 25	42	30 25	25.5	0.3	36.0	48.8	14 000		25NQI4425A	27 27	40 42	0.3	0.112	0.162	IRIWI253030			
32	28	42	20		0.3	24.3	39.4	14 000	NQ32/20	NQI28/20	30	40	0.3	0.070	0.098	_	_		
	28 28	42 45	30 17	_	0.3 0.3	34.4 25.0	61.6 33.8	14 000 14 000	NQ32/30 RNA49/28R	NQI28/30 NA49/28R	30 30	40 43	0.3 0.3	0.104 0.075	0.141 0.099	IRM283217			
	25	47	22		0.3	31.2	41.4	14 000	NQS32/22	NQIS25/22	27	45	0.3	0.123	0.167	_	_		
35		45	14	—	0.6	16.9	29.0	13 000	NQ354514			41	0.6	0.055		_			
	30 30	45 47	20 17	18	0.3 0.3	24.7 19.5	41.4 25.3	13 000 5 700	—	NQI30/20 NA4906UU	32 32	43 45	0.3 0.3		0.108 0.105	IRM303518			
	30	47	17	17	0.3	20.0	31.6	13 000	RNA4906D	NA4906D	32	45	0.3	0.081	0.114	IRM303517D			
	30 30	47 47	17 23	_	0.3 0.3	26.4 33.8	34.4 51.0	13 000 13 000	RNA4906R RNA5906	NA4906R NA5906	32 32	45 45	0.3 0.3	0.070 0.096	0.103 0.141	IRM303517 IRM303523			
	—	47	30	—	0.3 0.3	42.7	69.0	13 000 13 000	RNA6906 35NO4824D	—	-	45	0.3	0.131		_			
		48	24			33.9	51.3				_	46	0.3	0.123			-		
37	32	47 47	20 20	_	0.3 0.3	26.0 26.0	45.1 45.1	13 000 13 000	NQ37/20 NQ37/20D	NQI32/20	34	45 45	0.3 0.3	0.079 0.079	0.114	_			

*F*_W 38 ~ 48 mm

Koyo

 ϕd_{a}

	Во	undary ((m		ons		Basic loa		$\begin{array}{c} \text{Limiting speeds} ^{1)} \\ (min^{-1}) \end{array}$	Bearing No.		Mount	ing dime (mm)	ensions		lass (kg)	(Refer.) Applicable	-		 r_a
$F_{ m w}$	d	D	В	B_1	r min.	Cr	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.	_		$r_{\rm a}$
38	_	47 52	20 35		0.3 1	23.6 49.3	45.8 84.7	12 000 12 000	38NQ4720 38NQ5235		_	45 47	0.3 1	0.073 0.203	_		ϕD_{a}	-	
40	 35	48 50 50	20 15 20		0.3 0.3 0.3	20.9 21.0 27.2	39.8 35.1 48.8	12 000 12 000 12 000	NQ404820 NQ40/15AD NQ40/20	 NQI35/20	— — 37	46 48 48	0.3 0.3 0.3	0.064 0.063 0.085	 0.129		_		 _
	35 	50 52 52	30 20 30		0.3 0.6 0.6	39.8 31.9 47.0	79.8 49.3 81.0	12 000 11 000 11 000	NQ40/30 RNA49/32R-1 40NQ5230	NQI35/30 	37 	48 48 48	0.3 0.6 0.6	0.120 0.098 0.148	0.192		_		
42	35 35	52 55 55	20 20 20	21 	0.6 0.6 0.6	28.6 29.0 26.9	53.3 40.9 49.0	11 000 4 700 11 000	NQ425220D RNA4907	 NA4907UU NA4907		48 51 51	0.6 0.6 0.6	0.087 0.122	 0.173 0.186	 IRM354221 IRM354220			
	35 35 35	55 55 55	20 27 36		0.6 0.6 0.6	35.1 42.9 51.4	52.2 67.6 85.1	11 000 11 000 11 000	RNA4907R RNA5907 RNA6907	NA4907R NA5907 NA6907	39 39 39	51 51 51	0.6 0.6 0.6	0.104 0.138 0.182	0.168 0.225 0.297	IRM354220 IRM354227 IRM354236	_		
43	38	53	30	30	0.6	41.3	85.9	10 000		NQI38/30	_	51	0.6	_	0.205		_		
45	 	55 55 58	20 30 20		0.6 0.6 0.6	27.9 40.9 36.0	52.7 86.1 55.0	10 000 10 000 10 000	NQ45/20 NQ45/30 RNA49/38R-1	NQ140/30 —	44 —	51 51 54	0.6 0.6 0.6	0.100 0.138 0.116	0.214 		_		
47	42 42	57 57	20 30		0.6 0.6	29.0 44.0	56.4 96.1	10 000 10 000	—	NQI42/20 NQI42/30	46 46	53 53	0.6 0.6		0.143 0.219	_			
48	40 40	62 62 62	22 22 22	23 	0.6 0.6 0.6	35.7 32.6 43.2	51.7 58.5 66.1	4 100 9 700 9 400	 RNA4908 RNA4908R-2	NA4908UU NA4908	44 44 —	58 58 58	0.6 0.6 0.6	0.157 0.142	0.235 0.249 	IRM404823 IRM404822 —	_		
	40 40	62 62	30 40	_	0.6 0.6	55.5 66.7	91.2 115.0	9 400 9 400	RNA5908 RNA6908	NA5908 NA6908	44 44	58 58	0.6 0.6	0.187 0.256	0.313 0.415	IRM404830 IRM404840	_		

 $F_{\rm W}$ 50 ~ 63 mm

RNA49, RNA59

 $\phi F_{\rm w}$

Koyo

 $\phi d_{\rm a}$

	Во	undary ((m	dimensio m)	ns		Basic load		$\begin{array}{c} \text{Limiting speeds }^{1)} \\ (min^{-1}) \end{array}$	Bearing No.			ing dime (mm)	ensions		lass (kg)	(Refer.) Applicable	
$F_{ m w}$	d	D	В	B_1	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.	
50	_	62	20	_	0.6	24.8	46.0	9 400	NQ50/20A	_	_	58	0.6	0.126	—		
	45	62	25		0.6	41.9	82.5	9 300	—	NQI45/25	49	58	0.6	_	0.223		φ D _a
	45	62	35		0.6	58.2	126.0	9 300	_	NQI45/35	49	58	0.6		0.316		
	_	65	25		0.6	48.3	77.8	9 100	NQ506525	_	—	61	0.6	0.190	—		
52	45	68	22	23	0.6	37.7	56.8	3 800	_	NA4909UU	49	64	0.6	_	0.285	IRM455223	
	45	68	22	—	0.6	33.2	61.9	9 000	RNA4909	NA4909	49	64	0.6	0.205	0.294	IRM455222	
	45	68	22	—	0.6	45.8	72.9	8 800	RNA4909R	NA4909R	49	64	0.6	0.185	0.274	IRM455222	
	45	68	30	_	0.6	58.9	101.0	8 800	RNA5909	NA5909	49	64	0.6	0.252	0.365	IRM455230	
	45	68	40		0.6	70.7	127.0	8 800	RNA6909	NA6909	49	64	0.6	0.334	0.496	IRM455240	_
53	—	68	24.5		0.6	47.1	81.7	8 700	NQ536825A	—	-	64	0.6	0.207	—		
55	_	67	20		0.6	24.1	46.2	8 600	55NQ6720A	_	_	63	0.6	0.136	_		
	50	68	25	—	0.6	47.4	90.4	8 500	—	NQI50/25	54	64	0.6	_	0.255		
	—	70	22	_	0.6	46.9	76.5	8 300	RNA49/48R	—	—	66	0.6	0.174	—		
	_	72	14	_	0.6	12.5	19.6	8 600	55NQ7214	_		68	0.6	0.149	_		
	45	72	22	—	0.6	44.6	71.6	8 300	NQS55/22	NQIS45/22	49	68	0.6	0.210	0.341		_
58	50	72	22		0.6	35.7	70.6	8 100	RNA4910	NA4910	54	68	0.6	0.191	0.298	IRM505822	
	50	72	22		0.6	48.0	80.0	7 900	RNA4910R	NA4910R	54	68	0.6	0.172	0.276	IRM505822	
	50	72	30	_	0.6	61.6	110.0	7 900	RNA5910	NA5910	54	68	0.6	0.221	0.375	IRM505830	
	50	72	40	—	0.6	74.0	140.0	7 900	RNA6910	NA6910	54	68	0.6	0.291	0.497	IRM505840	
60		72	25		0.6	45.4	97.3	7 900	NQ60/25	_	_	68	0.6	0.164			_
	_	75	22		0.6	49.1	83.4	7 700	RNA49/52R	_	—	71	0.6	0.188	—		_
63	55	80	25		1	44.4	87.2	7 500	RNA4911	NA4911	60	75	1	0.287	0.428	IRM556325	_
	55	80	25		1	58.4	99.0	7 300	RNA4911R	NA4911R	60	75	1	0.260	0.401	IRM556325	
	55	80	34	_	1	75.6	138.0	7 300	RNA5911	NA5911	60	75	1	0.354	0.546	IRM556334	
	55	80	45	_	1	86.7	165.0	7 300	RNA6911	NA6911	60	75	1	0.458	0.711	IRM556345	

 $F_{\rm W}$ 65 ~ 105 mm

Koyo

 $\phi d_{\rm a}$

	Bo	undary o (m	dimensio m)	ons		Basic loa		$\begin{array}{c} \text{Limiting speeds} \ ^{1)} \\ (min^{-1}) \end{array}$	Bearing No.			ting dime (mm)	ensions		ass (kg)	(Refer.) Applicable		 <i>r</i> a
$F_{ m w}$	d	D	В	B_1	r min.	Cr	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.		
65		82	25		1	59.9	103.0	7 100	RNA49/58R	_	_	77	1	0.277	_		 - \$\overline D_a	
68	60 60	85 85	25 34		1 1	45.8 79.2	93.3 150.0	6 900 6 800	RNA4912 RNA5912	NA4912 NA5912	65 65	80 80	1 1	0.310 0.380	0.459 0.587	IRM606825 IRM606834	γDa	
70	_	88	25	_	1	64.5	109.0	6 600	RNA49/62	_	_	83	1	0.298	_		_	
72	65 65 65	90 90 90	25 34 45		1 1 1	66.1 85.4 98.4	114.0 158.0 190.0	6 400 6 400 6 400	RNA4913 RNA5913 RNA6913	NA4913 NA5913 NA6913	70 70 70	85 85 85	1 1 1	0.307 0.419 0.541	0.450 0.613 0.798	IRM657225 IRM657234 IRM657245	-	
75	_	95	30		1	82.3	145.0	6 100	RNA49/68	_	_	90	1	0.437	_		-	
80	70 70 70	100 100 100	30 40 54		1 1 1	86.4 107.0 132.0	157.0 207.0 271.0	5 700 5 700 5 700	RNA4914 RNA5914 RNA6914	NA4914 NA5914 NA6914	75 75 75	95 95 95	1 1 1	0.483 0.615 0.895	0.733 0.973 1.37	IRM708030 IRM708040 IRM708054	-	
85	75 75 75	105 105 105	30 40 54		1 1 1	88.0 109.0 135.0	164.0 216.0 283.0	5 400 5 400 5 400	RNA4915 RNA5915 RNA6915	NA4915 NA5915 NA6915	80 80 80	100 100 100	1 1 1	0.507 0.644 0.866	0.773 1.03 1.44	IRM758530 IRM758540 IRM758554	-	
90	80 80 80	110 110 110	30 40 54		1 1 1	91.6 114.0 140.0	176.0 232.0 304.0	5 100 5 100 5 100	RNA4916 RNA5916 RNA6916	NA4916 NA5916 NA6916	85 85 85	105 105 105	1 1 1	0.540 0.681 0.916	0.819 1.09 1.46	IRM809030 IRM809040 IRM809054	-	
95	_	115	30	_	1.1	92.8	183.0	4 900	RNA49/82		_	108.5	1	0.537	_		-	
100	85 85 85	120 120 120	35 46 63		1.1 1.1 1.1	110.0 126.0 165.0	230.0 293.0 390.0	4 600 4 700 4 600	RNA4917 RNA5917 RNA6917	NA4917 NA5917 NA6917	91.5	113.5 113.5 113.5	1	0.669 0.952 1.17	1.25 1.65 2.29	IRM8510035 IRM8510046 IRM8510063	-	
105	90 90 90	125 125 125	35 46 63		1.1 1.1 1.1	111.0 137.0 167.0	238.0 311.0 403.0	4 400 4 400 4 400	RNA4918 RNA5918 RNA6918	NA4918 NA5918 NA6918	96.5	118.5 118.5 118.5	1	0.695 0.898 1.21	1.31 1.70 2.31	IRM9010535 IRM9010546 IRM9010563	-	

 $F_{\rm W}$ 110 ~ 160 mm

Koyo

 $\phi d_{\rm a}$

	Bo		dimensio m)	ns		Basic loa			Bearing No.		Mounti	ng dime (mm)	ensions	(Refer.) M	ass (kg)	(Refer.) Applicable		r
$F_{ m w}$	d	D	В	B_1	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Oil lub.	Without inner ring	With inner ring	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Without inner ring	With inner ring	inner ring No.		
110	95 95 95	130 130 130	35 46 63	 	1.1 1.1 1.1	115.0 141.0 173.0	253.0 331.0 428.0	4 200 4 200 4 200	RNA4919 RNA5919 RNA6919	NA4919 NA5919 NA6919	101.5 101.5 101.5	123.5 123.5 123.5	1 1 1	0.728 0.940 1.27	1.37 1.78 2.43	IRM9511035 IRM9511046 IRM9511063	$\phi D_{\rm a}$	
115	100 100	140 140	40 54		1.1 1.1	144.0 189.0	296.0 418.0	4 000 4 000	RNA4920 RNA5920	NA4920 NA5920	106.5 106.5	133.5 133.5	1 1	1.160 1.49	1.86 2.53	IRM10011540 IRM10011554	<u> </u>	
125	110 110	150 150	40 54		1.1 1.1	149.0 195.0	317.0 448.0	3 700 3 700	RNA4922 RNA5922	NA4922 NA5922	116.5 116.5	143.5 143.5	1 1	1.17 1.690	2.01 2.74	IRM11012540 IRM11012554		
135	120 120	165 165	45 60		1.1 1.1	192.0 244.0	398.0 564.0	3 400 3 400	RNA4924 RNA5924	NA4924 NA5924	126.5 126.5	158.5 158.5	1 1	1.75 2.43	2.78 3.80	IRM12013545 IRM12013560		
150	130 130	180 180	50 67		1.5 1.5	225.0 274.0	508.0 655.0	3 000 3 000	RNA4926 RNA5926	NA4926 NA5926	138 138	172 172	1.5 1.5	2.21 3.000	3.83 5.09	IRM13015050 IRM13015067		
160	140 140	190 190	50 67	_	1.5 1.5	232.0 283.0	540.0 696.0	2 800 2 800	RNA4928 RNA5928	NA4928 NA5928	148 148	182 182	1.5 1.5	2.350 3.02	4.08 5.42	IRM14016050 IRM14016067		

 $d~(d_1)$ 10 ~ 22.2 mm Separable type

TPW...F TPWS...FF TPWWS...FF

			Bound	ary dime	nsions				Basic load		Limiting speeds (min ⁻¹)		Bearin	g No.			ensions nm)		(Refer.) N	ass (g)	
d	d_1	D	D_1	b	$t_{ m w}$	$t_{ m J}$	$t_{ m ws}$	$t_{ m L}$	Ca	$C_{0\mathrm{a}}$	Oil lub.	Needle roller an Separable type	nd cage thrust ass'y Non-separable type	Thin plate race (pressed)	Thick plate race (machined)	Ε	F	$\left(\begin{array}{c} TP\\ TV\end{array}\right)$	(TPK TVK)	(W)	(WS)
10	10 	24 23	24	2 2	1.0	_	2	_	6.35 8	18.3 24	12 000 12 000	TP1024-1 TV1023	_	W1024F	WS1024F 	15.2 12.6	21.8 21.8	3.5 2.5	_	2.9	5.8
12	12 12	24 25.8 26	 26 26	2 2 2	 1.0 1.0		 2 2		3.75 6.55 8.6	9 19.79 27.5	12 000 11 000 11 000	TP1224 TP1226B TV1226		 W1226F W1226F		14.1 17.3 14.6	22.1 23.5 23.8	3.0 3.6 3.8	 	 3.3 3.3	6.6 6.6
14	14	27	27	2	1	_	2.75	—	6.55	19.8	11 000	TP1427	—	W1427F	WS1427F	24.5	16.5	3.6	—	3.2	9.0
15	15 15	32.3 28	32 28	2 2	1.0 1.0	_	2	_	11 9.85	42.1 34.3	10 000 11 000	TP1532-1 TV1528	_	W1532F W1528F	 WS1528F	22.3 17.6	30.3 26.8	6.1 4.1	_	4.6 3.4	6.8
16	16	29	29	2	1.5	_	2.75	—	9.15	31.4	11 000	TP1629	—	W1629AF	WS1629F	26.5	18.5	4.4	—	5.4	9.9
17	17 17 17	30 40 34	30 40 34	2 2.5 2.5	0.8		2.75 3 2.155		9.40 17.9 14.1	32.9 69.3 49.5	10 000 8 000 8 700	TP1730 TP1740 TV1734		W1730F 	WS1730F WS1740F WS1734-2F	27.5 36.5 21.1	19.5 22.7 32.5	4.4 11 8.2		3.0 	10 24 11
18	18	31	31	2	1.0	_	2		9.65	34.4	10 200	TP1831	_	W1831F	WS1831F	20.4	28.4	5.0		3.9	7.8
_	18.1	31.6	31	2	_	_	—	0.8	7.45	25.2	10 000	_	TPK1832L	_	_	22.8	29.4	_	8	_	
	18.75	_	39.7	1.984		0.8	_	0.8	9.8	37.4	9 000		TVK1940JL	_	_	25	34.2	_	17	_	
19.6	21		35.9	2	_	0.8	_	_	6	18.7	9 400		TPK2036J-1	_	_	21.8	28		10	_	
20	20	35	35	2	1	_	2.75		13.2	53.6	9 600	TP2035-1	_	W2035F	WS2035F	32.5	22.9	5.9	_	5.1	14
20.9	_	32	_	2	_	_	_	_	8.4	29.7	10 000	TP2132D	_	_	_	23.5	29.7	4.6	_	_	
21.9	_	34	_	2		_		_	8.05	28.6	9 700	TP2234	_		_	25	31.2	5.1	_	_	
22	22 22	37 41	37 41	2 2	1	_	2.75	0.8	12.6 13.2	51.7 56.8	9 300 8 800	 TP2237-1		W2237F	WS2237F	34.5 28	22.9 38	6.4	15	5.4	15
22.2		36.1	_	1.984	_			_	9.95	38.2	9 500	 TP2236A-1		_	_	25.3	33.3	6.1	_		

$d(d_1)$ **22.7** ~ **32.9 mm** Separable type

Non-separable type

			Bound	ary dime	neione				Basic los	d ratings	Limiting speeds		Bearin	αNo		Dimo	nsions				
			Doning	(mm)	11510115					N)	(min ⁻¹)			-			nm)		(Refer.) N	ass (g)	
d	d_1	D	D_1	b	$t_{ m w}$	$t_{ m J}$	$t_{ m ws}$	$t_{ m L}$	Ca	$C_{0\mathrm{a}}$	Oil lub.	Needle roller an Separable type	d cage thrust ass'y Non-separable type	Thin plate race (pressed)	Thick plate race (machined)	E	F	$\left(\begin{array}{c} TP\\ TV\end{array}\right)$	$\left(\begin{smallmatrix}TPK\\TVK\end{smallmatrix}\right)$	(W)	(WS)
22.7	22	—	35.1	2	—	0.8	—	—	8.3	29.7	9 500	—	TPK2235J	—	—	25	31.2	—	9.1	—	—
22.8	22	_	37.95	1.984	_	0.8	_	_	10.6	40.9	9 200	_	TVK2238J	—	—	24	33.2	_	11	_	_
25	25 25	42	42 39.5	2 2.5	1.0	0.8	3	_	14.8 14	66.2 51.5	8 700 8 100	TP2542		W2542F	WS2542KF 	28.6 26.2	39.2 35.4	8.6	 12.4	7	21
25.8	26	_	42	1.984	_	0.8	_	_	12.8	54.4	8 800		TVK2642J	—	—	27	37	_	13	_	_
26	26	38.66 	43.4	2 1.984	_	0.8	_	0.8	10.4 11.5	41.2 49	9 100 8 600	TV2639-1	TPK2643JL	_	_	28.2 30.6	37.4 38.6	5.5	 19	_	_
28	28 28	41 45	45 42.6	2 2 2	0.8	 0.8	 3		9.4 15.1 9.4	37.4 70.3 37.4	8 800 8 400 8 700	TP2841C TP2845 —	 TPK2843AJ	 W2845F 	 WS2845F 	31.5 42.5 31.5	37.7 31.9 37.7	6.7 9.0 —	 13	 6.1	 19
28.5	28.5	46.15	46.15	2	0.8	_	_	—	12.1	52.4	8 300	TP2946A		W2946AF	—	32.4	40.4	9.3	—	6.5	_
28.9	_	42	_	1.984	_		_	_	11.7	50.4	8 800	TP2942A-1	—	—	—	31.6	39.6	7.2	_	_	_
_	29 29	47.21 48.4	47 49	2 3	_			1 0.8	15.9 21.8	76 87.4	8 300 6 600	_	TVK2947L TVK2949L	_	_	34 35	45 47		18 22	_	
30	30	47	47	2	1.0	_	2	_	16.2	78.6	8 300	TP3047-1	_	W3047F	WS3047F	34	44.6	10	_	8.1	16.2
_	30.1 30.1	45.5	45.5 47.3	1.984 1.984	_	0.8		0.8 0.8	12.4 12.4	55.9 55.9	8 400 8 300	_	TPK3046L TPK3047JL-1	_	_	35 35	42.6 42.6		14 21	_	
_	30.7 30.7	_	46.02 46.43	1.984 1.984	_	0.8 1	_	0.8 0.8	12.5 12.5	56.2 56.2	8 400 8 300	_	TPK3146JL-4 TPK3146JL-5	_	_	34.5 34.5	42.3 42.3		19 21	_	
_	31.85	45.1	45.2	1.984	_	_		0.8	12.1	54.7	8 400		TVK3245L	_	_	36.2	44.2	_	12	_	_
32	32	49	49	2	1		3		17.3	86.2	8 100	TP3249	_	W3249F	WS3249F	46.5	35.9	10	_	8.5	25
_	32.9	53.1	53.1	1.984	_	_	_	0.8	18.4	97.2	7 800	_	TVK3353L	—	—	39.8	51.8	_	20	_	_

 $d(d_1)$ 33.5 ~ 45 mm

Non-separable type

			Bound	ary dime	nsions					ad ratings	Limiting speeds (min ⁻¹)		Bearin	g No.			nsions nm)		(Refer.) N	lass (g)	
d	d_1	D	D_1	b	$t_{ m w}$	$t_{ m J}$	$t_{ m ws}$	$t_{\rm L}$		C_{0a}	Oil lub.	Needle roller an Separable type	d cage thrust ass'y Non-separable type	Thin plate race (pressed)	Thick plate race (machined)	E	F	$\left(\begin{array}{c} TP \\ TV \end{array} \right)$	(TPK)	(W)	(WS)
33.5	_	45		2			_		8.5	34.3	8 400	TP3445A	_		_	37	42.6	6.8			_
33.7	33.8	_	48.2	1.984	_	0.8	_	_	13.6	63	8 200	—	TVK3448J-1	_	—	35	44.2	_	14	_	_
_	34		51.4	2		0.8	_	0.8	12.6	58.1	7 900		TPK3451JL			38.6	46.6	_	23	_	
34.65	35 34.6 34.6	52 58.4 58.4	52 58.2 58.2	2 2 2	1.0 0.8 0.8		3		17.1 20.5 22.4	86.9 114 128	7 800 7 400 7 400	TP3552B TP3558 TP3558-1	 	W3552F W3558F W3558F	WS3552AF 	38.4 44 42	49 56 56	11 16 16		9.1 11 11	27
_	37.4	57.3	57.3	1.984	_	_		0.8	19.3	106	7 500	_	TVK3757L	_	_	44	56	_	23	_	
_	38 38	_	53 58	2 3	_	0.8 0.8	_	0.8 1	11.6 24.9	53.8 91.5	7 800 6 100		TPK3853JL TPK3858JL	_		42.4 43.2	49 53.2	_	22 41	_	_
38.07	38		52	2		0.8			12	55.2	7 800	_	TVK3852J-1			39.8	47.8	_	15	_	
38.15	38.15	55.29	55.29	1.984	0.8	_	3.0	_	19.9	108	7 600	TP3855A	_	W3855F	WS3855F	40.59	52.59	13	_	13	49
39.6	_	58.1	_	3	_	_	_	_	25.8	115	6 100	TP4058-1	_			43.3	55.3	22	_	_	_
40	40	60	60	3	1.0	_	2	_	23.5	103	6 000	TP4060	_	W4060F	WS4060F	44.4	56	23	_	12	24
41	_	68		9					75.8	222	3 200	TP4168	_		_	45.4	63.8	104		_	
42	_	62	_	3	_	_	_	_	17.5	71.4	5 900	TP4262	_			47.8	56.4	23	_	_	_
_	42.5	_	61.2	1.984	_	0.8	_	0.8	15.5	81.7	7 300		TVK4361JL-2			47.6	56.8	_	29	_	_
	43.45 43.45	_	61.2 61.74	1.984 1.984	_	0.8 1.1	_	0.8 0.8	14.6 14.6	74.9 74.9	7 300 7 200	_	TVK4361JL TVK4362JL		_	47.6 47.6	56.8 56.8	_	29 32	_	_
45	45.24 45 45	62.19 56 65	62.2 56 65	1.984 2 3	0.8 1.0 1.5		2 2 2		20.3 9 25.2	115 39.6 116	7 200 7 600 5 700	TV4562 TP4556 TP4565A	 	W4562F W4556F W4565AF	WS4562AF WS4556F WS4565F	46.2 47.5 49.4	58.6 53.7 61	14 8.4 26		8.8 6.8 20	22 13.6 27

$d (d_1)$ **46.4** ~ **70.03 mm** Separable type

Non-separable type

			Bound	ary dime (mm)	nsions					ad ratings	$\underset{(min^{-1})}{\text{Limiting speeds}}$		Bearing	g No.			nsions nm)		(Refer.)	lass (g)	
d	d_1	D	D_1	Ь	$t_{ m w}$	$t_{ m J}$	$t_{ m ws}$	$t_{ m L}$	C_{a}	C_{0a}	Oil lub.	Needle roller ar Separable type	nd cage thrust ass'y Non-separable type	Thin plate race (pressed)	Thick plate race (machined)	Ε	F	$\left(\begin{array}{c} TP\\ TV\end{array}\right)$	(TPK)	(W)	(WS)
46.4	_	68	_	3.5	_	_	_	_	38.4	182	5 200	TP4668-2	—	—	_	49.4	65	35	_	_	_
_	48.25	_	72	3	_	0.8		0.8	30.9	129	5 400	_	TVK4872JL	_		54	66	_	56	_	_
49	49.1	70.65	71	1.984	0.8	_	1.84	_	18	105	6 800	TV4971	_	W4971AF	WS4971F-1	58.4	68.4	17	_	13	30
50	50	70	70	3	1.0	_	2	_	26.7	129	5 500	TP5070	_	W5070F	WS5070F	54.4	66	28	_	15	30
52	_	72.6		1.984			_		26	169	6 700	TV5273	_	_	_	56	71.2	19			_
	53.6 53.6	_	69.6 70.18	1.984 1.984	_	0.8 1.1	_	0.8 0.8	15.9 15.9	89.3 89.3	6 800 6 800	_	TPK5470JL-3 TPK5470JL-4		_	57.4 57.4	65.2 65.2	_	32 36		_
55	55	78	78	3	1	_	4	_	32.4	171	5 200	TP5578	_	W5578F	WS5578F	60.4	74	33	_	19	75
55.48	56.8	_	69.6	1.984	_	0.8		_	15.9	89.3	6 800	_	TPK5570J	_		57.4	65.2	_	20	_	_
_	55.9 55.9	_	76 76.6	1.984 1.984	_	0.8 1.1	_	0.8 0.8	16.2 16.2	91.9 91.9	6 500 6 500	_	TVK5676JL TVK5677JL	_		60.6 60.6	69.8 69.8		40 41	_	
	57	70.8	71	1.984			_	0.8	14.6	80.7	6 700	_	TVK5771L	_	_	61.8	69.8	_	20		_
60	60	85	85	3	1		5	_	38.3	218	5 000	TP6085	_	W6085F	WS6085F	81	65.4	40		22	112
	60.4		78	2		0.8		0.8	17.9	107	6 400	_	TPK6078JL	_	_	65.6	73.6	_	38	_	
62	_	80.25		2	_	_			23.3	151	6 300	TP6280A	_	_	_	65.2	76.8	20	_	_	
	63	77.73	78	2	_	_		0.8	13.6	75.5	6 400	_	TVK6378L	_	_	68	76	_	23	_	_
65	65	90	90	3	1	_	5	_	40.1	236	4 900	TP6590	_	W6590F	WS6590F	86	70.4	43	_	24	119
70	70	95	95	4	1	_	3		52.1	275	4 100	TP7095	_	W7095F	WS7095F	74.2	90.2	70	_	25	75
70.03	_	92.37		3.175	_		_	_	33.4	181	4 700	TV7092A	_	_		75	87.4	34	_		

$d (d_1)$ 71.9 ~ 100 mm Separable type

Non-separable type

			Bound	ary dime (mm)	nsions					d ratings	$\underset{(min^{-1})}{\text{Limiting speeds}}$		Bearing	g No.		Dime (m			(Refer.)	lass (g)	
d	d_1	D	D_1	b	$t_{ m w}$	$t_{\rm J}$	$t_{\rm ws}$	$t_{ m L}$	C_{a}	$C_{0\mathrm{a}}$	Oil lub.	Needle roller an Separable type	d cage thrust ass'y Non-separable type	Thin plate race (pressed)	Thick plate race (machined)	Ε	F	$\left(\begin{array}{c} TP \\ TV \end{array} \right)$	(TPK)	(W)	(WS)
_	71.9	85.6	85.5	2	_	0.8	_	_	14.1	82.4	6 100	_	TPK7286L	_		76.5	83.1	_	27	_	_
	73.6	_	89.6	2	_	0.8	_	0.8	10	52.6	6 000	—	TPK7490JL	—	—	78	84.6	_	41	—	_
75	75	100	100	4	2	—	5		46.7	243	4 000	TP75100	—	W75100F	W\$75100F	95	79.4	63	—	54	135
80	80	105	105	4	1	—	6		47.8	255	3 900	TP80105	—	W80105F	W\$80105F	100	84.4	67	—	29	171
82.68	_	114.3		9.525	_	_	_	_	117	453	2 400	TP83114	—	—		88.6	109	218	_	_	_
	83.1	_	104	2	_	2	_	0.8	14.7	90	5 500	—	TVK83104JL	—		88.8	96.8	_	77	_	_
85	85	110	110	4	1	_	6	_	48.9	266	3 800	TP85110	—	W85110F	W\$85110F	105	89.4	70	_	30	180
90	90	120	120	4	1	_	6	_	60.9	362	3 600	TP90120	_	W90120F	WS90120F	115	95.4	92		39	234
100	100	135	135	4	1	_	6	_	76.3	503	3 400	TP100135	_	W100135F	WS100135F	130	106.4	122	_	51	304

Stud type track rollers (cam followers) CM (full complement type)

Without seals

 B_2

 ϕH S

CM...M

CM...RM

Kovo

CM...UUM

With seals

CM...UURM

		B	ounda	ary dir	nensi	ons (mm)					Beari	ng No.			Clamping	Track	roller	J	S	Track	Limiting	speeds 5)	Tightening	(Refer.)
Outer ring			Stud			Thread	I	Lub	ricatior	n hole	Withou	it seals	With	seals	dia.	load ra	tings ²⁾	Basic load	ratings 3)	capacity 4)		n ⁻¹)	torque 6)	
$D C r \\ min.$	d	L	B_1	B_2	Ε	G	S	B_3	Η	р	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	Crowned outer ring	F (mm)	$C_{\rm t}$ (kN)	P _{max} (kN)	$C_{\rm r}$ (kN)	C _{0r} (kN)	(kN)	Grease lub.	Oil lub.	(N·m) max.	(CMM type) (kg)
16 11 0.3	6	28	12	16	12	M6×1	9	_	_	4 1)	СМ6М	CM6RM	CM6UUM	CM6UURM	10.5	5.85	2.25	7.00	8.25	3.55	9 200	13 000	3.0	0.019
19 11 0.3	8	32	12	20	15	M8×1.25	11	_	_	4 ¹⁾	CM8M	CM8RM	CM8UUM	CM8UURM	12.5	6.70	5.20	8.05	10.4	4.25	8 200	12 000	7.3	0.029
22 12 0.5	10	36	13	23	17	M10×1.25	13	_	_	4	CM10M	CM10RM	CM10UUM	CM10UURM	15	7.80	9.30	9.35	12.3	5.20	7 200	10 000	15	0.044
26 12 0.5	10	36	13	23	17	M10×1.25	13	_	_	4	CM10-1M	CM10-1RM	CM10-1UUM	CM10-1UURM	15	7.80	9.30	9.35	12.3	6.15	7 200	10 000	15	0.056
30 14 1	12	40	15	25	22	M12×1.5	14	6	3	6	CM12M	CM12RM	CM12UUM	CM12UURM	19	11.0	13.9	13.2	18.0	7.75	5 900	8 300	26	0.089
32 14 1	12	40	15	25	22	M12×1.5	14	6	3	6	CM12-1M	CM12-1RM	CM12-1UUM	CM12-1UURM	19	11.0	13.9	13.2	18.0	8.25	5 900	8 300	26	0.099
35 18 1	16	52	19.5	32.5	27	M16×1.5	18	8	3	6	CM16M	CM16RM	CM16UUM	CM16UURM	24	16.8	25.7	20.2	33.9	12.0	4 600	6 400	64	0.171
40 20 1.5	18	58	21.5	36.5	32	M18×1.5	20	8	3	6	CM18M	CM18RM	CM18UUM	CM18UURM	27	19.2	31.9	23.1	38.2	14.6	4 000	5 700	92	0.248
47 24 1.5	20	66	25.5	40.5	36	M20×1.5	22	9	4	8	CM20M	CM20RM	CM20UUM	CM20UURM	30.5	25.6	39.1	30.7	57.2	21.2	3 600	5 000	130	0.393
52 24 1.5	20	66	25.5	40.5	36	M20×1.5	22	9	4	8	CM20-1M	CM20-1RM	CM20-1UUM	CM20-1UURM	30.5	25.6	39.1	30.7	57.2	23.5	3 600	5 000	130	0.455
62 29 1.5	24	80	30.5	49.5	44	M24×1.5	25	11	4	8	CM24M	CM24RM	CM24UUM	CM24UURM	37.5	38.8	55.7	46.5	92.0	34.6	2 900	4 100	220	0.810
72 29 2	24	80	30.5	49.5	44	M24×1.5	25	11	4	8	CM24-1M	CM24-1RM	CM24-1UUM	CM24-1UURM	37.5	38.8	55.7	46.5	92.0	38.7	2 900	4 100	220	1.05
80 35 2	30	100	37	63	58	M30×1.5	32	15	4	8	СМЗОМ	CM30RM	CM30UUM	CM30UURM	51	64.0	95.2	76.8	159	53.3	2 100	3 000	440	1.64
85 35 2	30	100	37	63	58	M30×1.5	32	15	4	8	CM30-1M	CM30-1RM	CM30-1UUM	CM30-1UURM	51	64.0	95.2	76.8	159	56.6	2 100	3 000	440	1.81
90 35 2	30	100	37	63	58	M30×1.5	32	15	4	8	СМ30-2М	CM30-2RM	CM30-2UUM	CM30-2UURM	51	64.0	95.2	76.8	159	60.0	2 100	3 000	440	2.00

[Notes] 1) Stud type track rollers with no lubrication hole on the stud threaded end. 2) To calculate track roller rated service life, use these track roller load rating (C_t) .

Numerical values P_{max} refer to maximum load track roller can accommodate. If track roller is fixed in housing as with regular type bearings, JIS basic static load rating values (C_{0r}) may apply.
If track roller is fixed in housing, as with regular type bearings, rated service life can be calculated using JIS

basic dynamic load rating values (C_r).

Track capacity is described earlier in this section (p. B 386). The values listed in the table are the capacities of cylindrical track rollers.

5) Limiting speeds are applicable to without seals type.6) Tightening torque apply when threaded portion is dry; if thread is wet with oil or other fluid, torque is half these values.

Stud type track rollers (cam followers) KM (caged type)

Without seals

KM...M

S

KM...RM

Koyo

KM...UUM

With seals

KM...UURM

			ound	orv dir	nonci	ons (mm)					Poprie	ng No.			Clamping	Track	rollor		2	Track	Limiting sp	oode 5)	Tightening	(Refer.)
Outer ring		C	Stud	ary ui	IICIISI	Thread		Lubi	ricatior	hole		it seals	With	n seals	dia.	load ra		Basic load	•	capacity 4)	(min	⁻¹)	torque ⁶⁾	
$D C \frac{r}{\min}$	d	L	B_1	B_2	Ε	G	S	B_3	Η	р	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	Crowned outer ring	F (mm)	Ct (kN)	P _{max} (kN)	Cr (kN)	C _{0r} (kN)	(kN)	Grease lub.	Dil lub.	(N·m) max.	(KMM type) (kg)
13 9 0.3	5	23	10	13	10	M5×0.8	7.5	_		3 ¹⁾	KM5M	KM5RM	KM5UUM	KM5UURM	9.0	2.20	1.60	2.65	2.45	2.35	16 000 2	22 000	1.8	0.010
16 11 0.3	6	28	12	16	12	M6×1	9	_	_	4 ¹⁾	КМ6М	KM6RM	KM6UUM	KM6UURM	10.5	3.40	2.25	4.10	4.05	3.55	15 000 2	20 000	3.0	0.018
19 11 0.3	8	32	12	20	15	M8×1.25	11	_	_	4 ¹⁾	KM8M	KM8RM	KM8UUM	KM8UURM	12.5	3.80	4.10	4.55	4.90	4.25	13 000	18 000	7.3	0.028
22 12 0.5	10	36	13	23	17	M10×1.25	13	_	_	4	KM10M	KM10RM	KM10UUM	KM10UURM	15	5.20	6.05	6.25	7.25	5.20	11 000	16 000	15	0.043
26 12 0.5	10	36	13	23	17	M10×1.25	13	_	_	4	KM10-1M	KM10-1RM	KM10-1UUM	KM10-1UURM	15	5.20	6.05	6.25	7.25	6.15	11 000	16 000	15	0.055
30 14 1	12	40	15	25	22	M12×1.5	14	6	3	6	KM12M	KM12RM	KM12UUM	KM12UURM	19	6.80	8.00	8.20	9.60	7.75	9 500 1	13 000	26	0.087
32 14 1	12	40	15	25	22	M12×1.5	14	6	3	6	KM12-1M	KM12-1RM	KM12-1UUM	KM12-1UURM	19	6.80	8.00	8.20	9.60	8.25	9 500 1	13 000	26	0.096
35 18 1	16	52	19.5	32.5	27	M16×1.5	18	8	3	6	KM16M	KM16RM	KM16UUM	KM16UURM	24	10.8	15.8	13.0	18.9	12.0	7 400 1	10 000	64	0.166
40 20 1.5	18	58	21.5	36.5	32	M18×1.5	20	8	3	6	KM18M	KM18RM	KM18UUM	KM18UURM	27	13.3	19.6	15.9	23.5	14.6	6 500	8 900	92	0.245
47 24 1.5	20	66	25.5	40.5	36	M20×1.5	22	9	4	8	KM20M	KM20RM	KM20UUM	KM20UURM	30.5	17.7	29.5	21.3	35.4	21.2	5 700	7 900	130	0.387
52 24 1.5	20	66	25.5	40.5	36	M20×1.5	22	9	4	8	KM20-1M	KM20-1RM	KM20-1UUM	KM20-1UURM	30.5	17.7	29.5	21.3	35.4	23.5	5 700	7 900	130	0.453
62 29 1.5	24	80	30.5	49.5	44	M24×1.5	25	11	4	8	KM24M	KM24RM	KM24UUM	KM24UURM	37.5	26.3	46.1	31.6	55.3	34.6	4 600	6 400	220	0.801
72 29 2	24	80	30.5	49.5	44	M24×1.5	25	11	4	8	KM24-1M	KM24-1RM	KM24-1UUM	KM24-1UURM	37.5	26.3	46.1	31.6	55.3	38.7	4 600	6 400	220	1.04
80 35 2	30	100	37	63	58	M30×1.5	32	15	4	8	КМЗОМ	KM30RM	КМЗОՍИМ	KM30UURM	51	46.5	86.9	55.8	104	53.3	3 400	4 700	440	1.62
								-		-														
85 35 2	30	100	37	63	58	M30×1.5	32	15	4	8	KM30-1M	KM30-1RM	KM30-1UUM	KM30-1UURM	51	46.5	86.9	55.8	104	56.6	3 400	4 700	440	1.79
90 35 2	30	100	37	63	58	M30×1.5	32	15	4	8	KM30-2M	KM30-2RM	KM30-2UUM	KM30-2UURM	51	46.5	86.9	55.8	104	60.0	3 400	4 700	440	1.98

[Notes] 1) Stud type track rollers with no lubrication hole on the stud threaded end.

2) To calculate track roller rated service life, use these track roller load rating (C_t) .

Numerical values P_{max} refer to maximum load track roller can accommodate. If track roller is fixed in housing as with regular type bearings, JIS basic static load rating values ($C_{0,j}$ may apply. 3) If track roller is fixed in housing, as with regular type bearings, rated service life can be calculated using JIS

basic dynamic load rating values (C_r).

Track capacity is described earlier in this section (p. B 386). The values listed in the table are the capacities of cylindrical track rollers.

5) Limiting speeds are applicable to without seals type.

6) Tightening torque apply when threaded portion is dry; if thread is wet with oil or other fluid, torque is half these values.

Yoke type track rollers (roller followers) CYM (full complement type)

CYM...M

CYM...RM

R500 mm

With seals

R500 mm

Koyo

CYM...UUM

CYM...UURM

		В	ounda	ry dim (mm)	ension	S			Bear It seals		n seals		roller tings ²⁾	J Basic load	IS d ratings ³⁾	Track capacity ⁴⁾	(mi	speeds $5^{(5)}$ n ⁻¹)	(Refer.) Mass
	ł	D	В	С	r min.	Ε	$H^{1)}$	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	Crowned outer ring	$C_{\rm t}$ (kN)	P _{max} (kN)	Cr (kN)	C_{0r} (kN)	(kN)	Grease lub.	Oil lub.	(CYMM type) (kg)
	5	16	12	11	0.3	12	2	СҮМ5М	CYM5RM	CYM5UUM	CYM5UURM	5.85	6.85	7.00	8.25	3.55	9 200	13 000	0.014
	6	19	12	11	0.3	15	2	СҮМ6М	CYM6RM	CYM6UUM	CYM6UURM	6.70	8.70	8.05	10.4	4.25	8 200	12 000	0.021
	8	24	15	14	0.5	18	2	CYM8M	CYM8RM	CYM8UUM	CYM8UURM	9.55	12.6	11.5	15.1	6.70	6 800	9 500	0.043
1	10	30	15	14	1	22	2	CYM10M	CYM10RM	CYM10UUM	CYM10UURM	11.1	15.1	13.3	18.1	7.75	5 900	8 300	0.062
1	12	32	15	14	1	24	2	CYM12M	CYM12RM	CYM12UUM	CYM12UURM	11.9	17.3	14.3	20.7	8.25	5 300	7 400	0.069
1	15	35	19	18	1	27	2	CYM15M	CYM15RM	CYM15UUM	CYM15UURM	16.8	28.2	20.2	33.9	12.0	4 600	6 400	0.105
1	17	40	21	20	1.5	32	2.4	CYM17M	CYM17RM	CYM17UUM	CYM17UURM	19.2	31.8	23.1	38.2	14.6	4 000	5 700	0.153
:	20	47	25	24	1.5	36	2.4	CYM20M	CYM20RM	CYM20UUM	CYM20UURM	25.6	47.7	30.7	57.3	21.2	3 600	5 000	0.255
:	25	52	25	24	1.5	41	2.4	CYM25M	CYM25RM	CYM25UUM	CYM25UURM	28.4	58.2	34.1	69.8	23.5	3 000	4 200	0.284
;	30	62	29	28	1.5	51	3.2	СҮМЗОМ	CYM30RM	CYM30UUM	CYM30UURM	41.5	88.8	49.8	107	33.3	2 400	3 400	0.476
;	35	72	29	28	2	58	3.2	СҮМ35М	CYM35RM	CYM35UUM	CYM35UURM	47.4	99.4	56.9	119	37.1	2 100	2 900	0.649
4	40	80	32	30	2	63	3.2	CYM40M	CYM40RM	CYM40UUM	CYM40UURM	58.3	122	70.0	147	44.7	1 900	2 600	0.845
4	45	85	32	30	2	69	3.2	CYM45M	CYM45RM	CYM45UUM	CYM45UURM	61.4	135	73.7	162	47.5	1 700	2 400	0.924
į	50	90	32	30	2	75	3.2	CYM50M	CYM50RM	CYM50UUM	CYM50UURM	64.2	148	77.0	177	50.3	1 600	2 200	0.984

[Notes] 1) Lubrication hole is provided on inner ring internal surface.
 2) To calculate track roller rated service life, use these track roller load rating values (C_t). Numerical values P_{max} refer to maximum load track roller can accommodate. If track roller is fixed in housing as with regular type bearings, JIS basic static load rating values (C_{0r}) may apply.
 3) If track roller is fixed in housing, as with regular type bearings, rated service life can be calculated using JIS basic dynamic load rating values (C_r).

4) Track capacity is described earlier in this section (p. B 386). The values listed in the above table are the capacities of cylindrical track rollers. The track capacities of crowned track rollers are 80 % of these values. 5) Limiting speeds are as measured with no seals.

Yoke type track rollers (roller followers) CXM (caged type)

CXM...M

CXM...RM

CXM...UURM

R500 mm

Koyo

	E	Bounda	ry dim	ension	S		Withou	Bear ut seals	ing No.	n seals		roller	-	IS	Track		speeds $5^{(5)}$ (n^{-1})	(Refer.) Mass
d	D	В	C (IIIII)	r min.	Ε	$H^{1)}$	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	Crowned outer ring		P _{max} (kN)	Basic load Cr (kN)	${c_{0r} \over ({ m kN})}$	(kN)	Grease lub.	Oil lub.	(CXMM type) (kg)
5	16	12	11	0.3	12	2	CXM5M	CXM5RM	CXM5UUM	CXM5UURM	3.40	3.40	4.10	4.05	3.55	15 000	20 000	0.011
6	19	12	11	0.3	15	2	СХМ6М	CXM6RM	CXM6UUM	CXM6UURM	3.80	4.10	4.55	4.90	4.25	13 000	18 000	0.018
8	24	15	14	0.5	18	2	CXM8M	CXM8RM	CXM8UUM	CXM8UURM	5.70	6.40	6.85	7.65	6.70	11 000	15 000	0.040
10	30	15	14	1	22	2	CXM10M	CXM10RM	CXM10UUM	CXM10UURM	6.80	8.00	8.20	9.60	7.75	9 500	13 000	0.060
12	32	15	14	1	24	2	CXM12M	CXM12RM	CXM12UUM	CXM12UURM	7.25	9.05	8.70	10.8	8.25	8 400	12 000	0.067
15	35	19	18	1	27	2	CXM15M	CXM15RM	CXM15UUM	CXM15UURM	10.8	15.8	13.0	18.9	12.0	7 400	10 000	0.102
17	40	21	20	1.5	32	2.4	CXM17M	CXM17RM	CXM17UUM	CXM17UURM	13.3	19.6	15.9	23.5	14.6	6 500	8 900	0.150
20	47	25	24	1.5	36	2.4	CXM20M	CXM20RM	CXM20UUM	CXM20UURM	17.7	29.5	21.3	35.4	21.2	5 700	7 900	0.252
25	52	25	24	1.5	41	2.4	CXM25M	CXM25RM	CXM25UUM	CXM25UURM	19.2	34.6	23.0	41.5	23.5	4 800	6 600	0.278
30	62	29	28	1.5	51	3.2	СХМЗОМ	CXM30RM	CXM30UUM	CXM30UURM	28.4	53.9	34.0	64.7	33.3	3 900	5 300	0.465
35	72	29	28	2	58	3.2	CXM35M	CXM35RM	CXM35UUM	CXM35UURM	32.4	60.3	38.9	72.4	37.1	3 300	4 600	0.636
40	80	32	30	2	63	3.2	CXM40M	CXM40RM	CXM40UUM	CXM40UURM	41.4	78.1	49.7	93.7	44.7	3 000	4 100	0.825
45	85	32	30	2	69	3.2	CXM45M	CXM45RM	CXM45UUM	CXM45UURM	42.7	83.6	51.2	100	47.5	2 700	3 700	0.901
50	90	32	30	2	75	3.2	CXM50M	CXM50RM	CXM50UUM	CXM50UURM	45.5	93.9	54.6	113	50.3	2 500	3 400	0.960

[Notes] 1) Lubrication hole is provided on inner ring internal surface.
 2) To calculate track roller rated service life, use these track roller load rating values (C_t). Numerical values P_{max} refer to maximum load track roller can accommodate. If track roller is fixed in housing as with regular type bearings, JIS basic static load rating values (C_{0r}) may apply.
 3) If track roller is fixed in housing, as with regular type bearings, rated service life can be calculated using JIS basic dynamic load rating values (C_r).

4) Track capacity is described earlier in this section (p. B 386).

The values listed in the above table are the capacities of cylindrical track rollers. The track capacities of crowned track rollers are 80 % of these values. 5) Limiting speeds are as measured with no seals.

B 456

Miniature one-way clutches

Miniature one-way clutches consist of a case carburizing steel drawn cup, metal or synthetic resin spring, synthetic resin cage and needle rollers.

They are used in clutch mechanisms of various machines. Use in office automation equipment such as copying and facsimile machines is especially common.

- Useful for making equipment smaller and lighter, due to a drawn cup made of thin sheet steel.
- Locking protrusions are provided around the drawn cup, so that creeping can be prevented without having to hold the surface dimensional accuracy precisely.
- Pre-lubricated with optimum grease, so that no lubrication is necessary under normal operating conditions.
- Unit products with a synthetic resin housing are also available.

They are compatible with components of various types, such as gears, timing pulleys, cams and rubber rollers. Consult with JTEKT for further information. Refer to JTEKT catalog "miniature one-way clutch".

1WC series

EWC series

Structure and principles

Various housings and unit products

[When the clutch system works] When the shaft rotates clockwise as in cross section A-A', rollers are locked while engaged with the drawn cup cam surfaces by the effect of springs (wedging of the shaft by the cam surfaces). The drawn cup is driven as a consequence.

[Clutch idle running]

When the shaft rotates counter-clockwise as in cross section A-A', rollers move away from the drawn cup cam surfaces and rotate freely.

Miniature one-way clutch types and characteristics

	1WC series (with metal springs)	EWC (with synthetic	series resin springs)
	Heavy load type	Heavy load type	Light load type
	1WC	EWCC	EWCA
Torque capacity	Heavy load	Heavy load	Light load
Operating temperature range	− 10 to + 90°C	– 10 to	+ 70°C
Locking life	Locking system can funct Note : this estimation is valid as lo exceed the torque capacity	ong as torque magnitu	ide does not
Insert molding	Possible	Impos	ssible
Delivery of clutch only	Pos	sible	
Unit delivery	Pos	sible	

Shaft tolerance

	Heavy load type (1WC, EWCC)	Light load type (EWCA)
Shaft tolerance class	h	8
Surface hardness	50 HRC or harder	30 HRC or harder
Roughness (Ra)	0.3 a or less	0.8 a or less
Roundness and cylindricity	0.005 m	m or less

[Remarks] In some operating conditions, shafts need not

- be as accurate as shown here.
- For example :
- When clutch engaging accuracy is considered unimportant, or when a radial load or moment is not generated, the shaft diameter tolerance can be :
- { shaft diameter 6 mm or less, and EWC0809 (C, A) : 0 to - 0.040 mm shaft diameter 8 mm or more : h 10
- When the loaded torque is smaller than the torque capacity, shaft surface hardness can be determined as follows :
 - The diagram on the right shows approximate shaft surface hardness relative to torque ratio A.

 $\frac{\text{Torque}}{\text{ratio}}(A) = \frac{\text{Loaded torque}}{\text{Heavy load type torque capacity}}$

Shaft surface hardness (HRC)

Miniature one-way clutches

d **4** ~ **12 mm**

1WC series

EWC series

Koyo

Details of section F

Shaft dia. **Boundary dimensions** Designations **Recommended housing dimensions** (Refer.) Mass (g) Torque capacity No. of ¹⁾ (mm) (mm)(mm) outer ring 1WC series **EWC** series $F_{\rm w}$ protrusion H_{D} $\mathcal{A}_{\mathrm{D}}^{2)}$ 1WC EWC d D_1 $D_{\rm a}$ D_2 В A $(N \cdot m)$ а b r(With metal springs) (With resin spring) 2.6 0.08 EWC0406A 12 0.50 2 8 1.0 4 4 8 8.4 6 2.65 0.06 ____ 4 2 4 8 8.4 6 2.6 0.15 ____ EWC0406C 4 12 2.65 0.50 8 0.06 ____ 1.0 6 10 10.4 2.8 0.25 ____ EWC0608A 14 2.8 0.57 2 10 0.08 ____ 1.7 6 8 6 6 10 10.4 8 2.8 0.44 ____ EWC0608C 6 14 2.8 0.57 2 10 0.08 _ 1.7 2 6 10 10.4 8 2.8 0.44 1WC0608 6 14 2.8 0.57 10 0.08 2.0 ____ 1WC0612 6 0.88 6 14 0.57 2 10 _ 10 10.4 12 2.8 — 2.8 0.08 3.0 8 8 12 12.4 9 2.6 0.49 EWC0809A 6 16 2.6 0.48 2 12 0.10 2.4 ____ _ EWC0809C 2 8 12 12.4 9 2.6 0.88 6 16 2.6 0.48 12 0.10 _ 2.4 EWC0812A 2.3 8 14.2 15 12 3.6 1.18 ____ 6 18.5 3.6 0.87 14.2 0.11 ____ 5.8 8 15 12 1.96 EWC0812C 6 18.5 0.87 2.3 14.2 ____ 5.8 14.2 3.6 3.6 0.11 1WC0812 8 14.2 15 12 3.6 1.96 6 18.5 3.6 0.87 2.3 14.2 0.11 7.0 ____ 8 1WC0815 6 ____ 14.2 15 14.5 3.6 2.65 ____ 18.5 3.6 0.87 2.3 14.2 0.11 8.0 10 10 16 17 10 5 1.18 ____ EWC1010A 6 21 5.0 1.20 3.2 16 0.13 ____ 6.0 10 EWC1010C 10 16 17 5 1.96 6 21 5.0 1.20 3.2 16 0.13 ____ 6.0 ____ 10 16 17 12 5 1.37 EWC1012A 6 21 5.0 1.20 3.2 16 ____ 0.13 _ 6.8 10 17 12 2.35 EWC1012C 21 6.8 16 5 ____ 6 5.0 1.20 3.2 16 0.13 ____ 1WC1012 10 17 12 2.35 6 21 1.20 16 _ 16 5 5.0 3.2 0.13 8.0 12 12 18 19 16 5.1 6.28 1WC1216 ____ 8 23 5.1 1.20 3.3 18 0.14 12 _

[Notes] 1) Provided at equal intervals.

2) Recommended interference when polyacetal resin housing is used.

Flanged type

Bore diameter 12 - 140 mm

Ball bearing units

Ball bearing units consist of pre-lubricated sealed ball bearings and a housing which varies in shape.

They are capable of aligning themselves efficiently using the spherical fitting surface between the bearing and housing, effectively preventing overloads due to misalignment.

Koyo ball bearing units are highly accurate and feature excellent load resistance. They are completely sealed, and provided with a relubrication feature.

Ball bearing units without a relubrication feature are also available.

For details, refer to JTEKT separate catalog "Ball bearing units" (CAT. NO. B2007E).

!) Light duty unit	s (cast i	ron)
Pillow block type	Rho	mbic-flanged type
NONG LINE	Q	
BLP 2	■ BLF	2
3) "Compact" series (ınits (spe	cial light alloy)
Pillow block type	Rho	mbic-flanged type
	C	
UP 0	• UFL	0
1) Stainless-series		
Pillow block type	Rho	mbic-flanged type
	Q	0
UCSP 2H1S6	• UCS	FL 2H1S6
0	0	0
USP 0S6	• USF	L 0S6
i) Pressed steel u	nits	
	0	Ó
SBPP2 • SBI	PFL2	• SBPF2
) Take-up units v	vith frai	ne
	j.	

• UCTH 2	• UCTL 2
(● SBNPTH 2)	• UCTU 2
• SBPTH 2	• UCTU 3

(7) Ball bearings for units

[Note] This catalog includes the specifications of major units and bearings which are boxed in the table. For further details, refer to a separate catalog.

Marks •, A and indicate, respectively, that the unit or bearing is fixed with a set screw, adapter, or eccentric locking collar.

Tolerances	Ball bearingsas specified in JIS B 1558 (Tables 1 and 2). (refer to Table 7-11, class 0 on p. A 70 for the tapered bore tolerance.) Housingsas specified in JIS B 1559. (the internal spherical diameter tolerance is given in Table 3. For other tolerances, refer to a separate catalog.)						
Bearing radial internal clearance	As specified in JIS B 1520 (Table 10-2 on p. A 96). JTEKT provides cylindrical bore bearings with standard radial internal clearance. Tapered bore bearings are provided with a C 3 radial internal clearance in consideration of possible inner ring expansion caused by tightening of an adapter.						
Recommended fits of inner ring and shaft (indicated by the tolerance class)	 Cylindrical bore bearingsh 6, h 7, h 8, j 6 (k 6, k 7 and m 6 when heavy or impact load is to be supported.) Tapered bore bearingsh 8, h 9 High-speed blower bearings (S5)h 5, j 5 						
Rotational speed limits	See Table 4.						
Allowable aligning angle	 0.052 rad (3°) For units with a cover, it is best if the misalignment is 0.017 rad (1°) or less to prevent the rubber seal lip on the cover and the shaft contact from distorting the seal lip. 						

	Table 1	Cylin	ylindrical bore bearings for units : inner ring tolerance Unit : μm									
Nomin	Nominal bore		NA, SU, SE	3, RB and ER types	Bea	arings for	r blower (S5)	Single	inner	Radial runout of		
diamet	er	mean diame deviat	ter	Single plane bore diameter variation V_{dsp}	Single mean diame deviat ⊿ d	ter ion	Single plane bore diameter variation V_{dsp}	(outer) ring width deviation $\Delta_{Bs} (\Delta_{Cs})$		assembled bearing inner ring K_{ia}		
over	up to	upper	lower	max.	upper	lower	max.	upper	lower	max.		
10 more	18	+ 15	0	10	+ 13	0	6	0	- 120	15		
18	31.75	+ 18	0	12	+ 13	0	6	0	- 120	18		
31.75	50.8	+ 21	0	14	+ 13	0	10	0	- 120	20		
50.8	80	+ 24	0	16	+ 15	0	10	0	- 150	25		
80	120	+ 28	0	19	+ 18	0	14	0	-200	30		
120	180	+ 33	0	22	+ 23	0	14	0	-250	35		

Table	Table 2 Ball bearings for units : outer ring tolerance Unit : µm										
diamete	ll outside er D m)	Mean outside di	Radial runout of assembled bearing outer ring $K_{\rm ea}$								
over	up to	upper	lower	max.							
30	50	0	- 11	20							
50	80	0	- 13	25							
80	120	0	- 15	35							
120	150	0	- 18	40							
150	180	0	- 25	45							
180	250	0	- 30	50							
250	315	0	- 35	60							

[Note] The lower value of mean outside diameter deviation does not apply to the sides of outer rings up to the extent of a quarter of the outer ring width from the side faces.

Table	Table 3 Housing bore internal spherical diameter tolerance Unit : µm										
Nominal	ophorical	Toleranc	e class H	Toleranc	e class J	Toleranc	e class K				
Nominal spherical bore diameter $D_{\rm a}$ (mm)		Deviation spherical seat dia. ⊿⊥		Deviation spherical seat dia. ⊿⊥		Deviation of spherical bearing seat dia. ΔD_{Dam}					
over	up to	upper	lower	upper	lower	upper	lower				
30	50	+ 25	0	+ 14	- 11	+ 7	- 18				
50	80	+ 30	0	+ 18	- 12	+ 9	-21				
80	120	+ 35	0	+ 22	- 13	+ 10	- 25				
120	180	+ 40	0	+ 26	- 14	+ 12	- 28				
180	250	+ 46	0	+ 30	- 16	+ 13	- 33				
250	315	+ 52	0	+ 36	- 16	+ 16	- 36				

[Remark] JTEKT generally applies class J to housing designs. Class H and class K can also be applied depending on the application.

			Table 4	l Limi	Limiting speed of ball bearing units Unit : min ⁻¹						
Bore diameter		Standard		Triple	-lip seale	ed (L3)	-	h speed K3 and S		Heat resistant type (D1K2)	
No.	Dia	meter se	ries	Diameter series			Dia	meter se	Diameter series		
	2	Х	3	2	Х	3	2	Х	3	2, X, 3	
01	5 800			2 300			8 700			3 800	
02	5 800			2 300			8 700			3 800	
03	5 800			2 300			8 700			3 800	
04	5 800	_	_	2 300	_		8 700	_	_	3 800	
05	5 100	4 300	4 600	2 100	960		7 700	6 400	6 700	3 000	
06	4 300	3 700	3 900	960	830	-	6 400	5 500	5 800	2 500	
07	3 700	3 300	3 400	830	750	770	5 500	5 000	5 100	2 100	
08	3 300	3 100	3 100	750	690	690	5 000	4 600	4 600	1 900	
09	3 100	2 800	2 700	690	640	620	4 600	4 300	4 100	1 700	
10	2 800	2 500	2 400	640	570	550	4 300	3 800	3 700	1 500	
11	2 500	2 300	2 300	570	520	510	3 800	3 500	3 400	1 400	
12	2 300	2 200	2 100	520	490	470	3 500	3 200	3 100	1 300	
13	2 200	2 100	1 900	490	460	440	3 200	3 100	2 900	1 200	
14	2 100	2 000	1 800	460	440	410	3 100	2 900	2 700	1 100	
15	2 000	1 800	1 700	440	410	380	2 900	2 700	2 600	1 000	
16	1 800	1 700	1 600	410	380	360	2 700	2 600	2 400	940	
17	1 700	1 600	1 500	380	360	340	2 600	2 400	2 300	880	
18	1 600	1 500	1 400	360	340	320	2 400	2 300	2 100	830	
19		_	1 400		_	310		_	2 000	790	
20		1 300	1 300		300	280		2 000	1 900	750	
21		-	1 200		-	270		-	1 800	710	
22			1 100			250			1 700	680	
24			1 100			240			1 600	630	
26			1 000			220			1 500	580	
28			910			200			1 400	540	

[Remarks] 1. The rotational speed limits of units with a cover are 80 % of the values given in the table above.

2. When bearings are fit loosely, rotational speed limits should be compensated for by the fitting coefficient given below.

		Fitting coefficient								
Bearing type	Shaft tolerance class									
	h5, j5	j6	h6	h7	h8	h9				
Standard	-	1.0	1.0	0.8	0.5	0.2				
Triple-lip sealed (L3)	-	-	-	1.0	1.0	0.9				
For high speed rotation (K3)	-	1.0	0.8	0.6	-	-				
For blower (S5)	1.0	-	0.8	0.6	-	-				
Heat-resistant type B (D1K2)	-	-	-	1.0	1.0	0.7				

[Recommended shaft design]

Table 5Shaft fits for cylindrical bore bearing
-Clearance fit or transition fit-

Unit : µm

Shaft d	iameter		Tolerance of shaft								
(m	m)	j	6	h6		h	7	h8			
over	up to	upper	lower	upper	lower	upper	lower	upper	lower		
10	18	+ 8	- 3	0	- 11	0	- 18	0	- 27		
18	30	+ 9	- 4	0	- 13	0	-21	0	- 33		
30	50	+ 11	- 5	0	- 16	0	- 25	0	- 39		
50	80	+ 12	- 7	0	- 19	0	- 30	0	- 46		
80	120	+ 13	- 9	0	- 22	0	- 35	0	- 54		
120	180	+ 14	- 11	0	- 25	0	- 40	0	- 63		
Operatin	ig speed	120 00	0 over	100 000 over		er 60 000 over		60 000 up to			
dn	ı ¹⁾			120 00	0 up to	100 00	0 up to				

[Note] 1) dn = d (Bearing bore, mm) $\times n$ (Rotating speed, min⁻¹)

Tab	Table 6 Shaft fits for cylindrical bore bearing -Transition fit or Interference fit-						0		Table	8 Sha	ft fits for	r tapered	d bore b	earing		
	Unit : µı												I	Jnit : µm		
Shaft d	Shaft diameter Tolerance of shaft								Shaft d	iameter		Toleranc	e of shaf	t		
(m	m)	k	6	k	7	n	16		(mm)		(mm)		h8		h9	
over	up to	upper	lower	upper	lower	upper	lower		over	up to	upper	lower	upper	lower		
10	18	+ 12	+ 1	+ 19	+ 1	+ 18	+ 7		10	18	0	- 27	0	- 43		
18	30	+ 15	+2	+ 23	+ 2	+ 21	+ 8		18	30	0	- 33	0	- 52		
30	50	+ 18	+2	+ 27	+2	+ 25	+ 9		30	50	0	- 39	0	- 62		
50	80	+ 21	+2	+ 32	+2	+ 30	+ 11		50	80	0	- 46	0	- 74		
80	120	+ 25	+ 3	+ 38	+ 3	+ 35	+ 13		80	120	0	- 54	0	- 87		
120	180	+ 28	+ 3	+ 43	+ 3	+ 40	+ 15		120	180	0	- 63	0	- 100		

ommended t used for l		Table	ower	gs for blo	r bearing	ft fits for	7 Shat	Table
			Jnit : μm	ι				
Deviati	iameter	Shaft di	t	e of shaf	Toleranc		iameter	
cylindr	m)	(m	5	j	5	h	m)	(m
	up to	over	lower	upper	lower	upper	up to	over
	10		- 3	+ 5	- 8	0	18	10
	18	10	- 4	+ 5	- 9	0	30	18
	30	18	- 5	+ 6	- 11	0	50	30
	50	30	- 7	+ 6	- 13	0	80	50
	80	50	- 9	+ 6	– 15	0	120	80
	120	80	- 11	+ 7	- 18	0	180	120
	180	120						

Table 9 Recommended tolerances of shaft used for ball bearing unit								
		Unit : μm						
haft di (m	iameter m)	Deviation from circular and cylindrical forms						
over	up to	(max.)						
	10	6						
10	18	8						
18	30	9						
30	50	11						
50	80	13						
80	120	15						
120	180	18						

Table 10 Shaft shoulder dia. and fillet radious

Unit : µm

Bore	Nom- inal	UC20	00, UCX00	ι	JC300
No.	bore dia.	d_{a}	r _a (max.)	d_{a}	$r_{ m a}$ (max.)
01	12	17	0.6		
02	15	20	0.6		
03	17	22	0.6		
04	20	30	1	-	-
05	25	35	1	35	1
06	30	40	1	40	1
07	35	45	1	45	1.5
08	40	50	1	50	1.5
09	45	55	1	55	1.5
10	50	60	1	60	2
11	55	65	1.5	65	2
12	60	70	1.5	75	2
13	65	75	1.5	80	2
14	70	80	1.5	85	2
15	75	85	1.5	90	2
16	80	90	2	95	2
17	85	95	2	100	2.5
18	90	100	2	105	2.5
19	95	-	-	110	2.5
20	100	115	2	115	2.5
21	105	-	-	120	2.5
22	110			125	2.5
24	120			135	2.5
26	130			150	3
28	140			160	3

Ball bearing units pillow block type UCP (with set screws)

h	ousing N	0.
P203~	PX05~	P305~
P210	PX10	P310
P211~	PX11~	P311~
P218	PX18	P318
	PX20	P319~ P328

ice from mounting base to centre of spherical bearing seating.

P204JE3, P205JE3 (with cast iron covers) are shown below.

Shaft dia. (mm)					Di	mensio (mm)	ns					Bolt	Unit No.	Housing	Ap	plicable Basic load				Unit No. v	vith covers		Co dimer		(Ref Unit ma	fer.) ISS (kg)
d	Η	L	Α	J	N	N_1	H_1	H_2	L_1	В	S	size	Unit No.	No.	No.	$C_{\rm r}^{\rm (kl)}$	C_{0r}	f_0		steel covers Closed end		on covers Closed end	$(m A_s)$		Pressed steel covers	Cast iron covers
12	30.2	127	38	95	13	18	12	60	38	31	12.7	M10	UCP201	P203	UC201	12.8	6.65	13.2	UCP201C	UCP201CD	—	—	44	—	0.63	_
15	30.2	127	38	95	13	18	12	60	38	31	12.7	M10	UCP202	P203	UC202	12.8	6.65	13.2	UCP202C	UCP202CD	—	—	44		0.61	
17	30.2	127	38	95	13	18	12	60	38	31	12.7	M10	UCP203	P203	UC203	12.8	6.65	13.2	UCP203C	UCP203CD	—	—	44		0.60	
20	33.3	127	38	95	13	18	13	64	38	31	12.7	M10	UCP204	P204	UC204	12.8	6.65	13.2	UCP204C	UCP204CD	UCP204FC	UCP204FCD	44	62	0.66	0.96
25	44.4	140 159 175	38 51 45	105 119 132	13 17 17	18 25 20	13 16 16	71 86 85	43 47 55	34.1 38.1 38	14.3 15.9 15	M10 M14 M14	UCP205 UCPX05 UCP305	P205 PX05 P305	UC205 UCX05 UC305	14.0 19.5 21.2	7.85 11.3 10.9	13.9 13.9 12.6	UCP205C UCPX05C —	UCP205CD UCPX05CD —	UCP205FC UCP305C	UCP205FCD UCP305CD	48 52 —	66 76	0.80 1.5 1.7	1.2 2.3
30	47.6	165 175 180	48 57 50	121 127 140	17 17 17	21 25 20	15 17 17	84 93 95	53 55 53	38.1 42.9 43	15.9 17.5 17	M14 M14 M14	UCP206 UCPX06 UCP306	P206 PX06 P306	UC206 UCX06 UC306	19.5 25.7 26.7	11.3 15.4 15.0	13.9 13.9 13.3	UCP206C UCPX06C —	UCP206CD UCPX06CD —	UCP206FC UCP306C	UCP206FCD UCP306CD	52 59 —	70 82	1.3 2.1 2.2	1.8 2.8
35	47.6 54 56	167 203 210	48 57 56	127 144 160	17 17 17	21 30 25	16 19 19	93 105 107	51 64 65	42.9 49.2 48	17.5 19 19	M14 M14 M14	UCP207 UCPX07 UCP307	P207 PX07 P307	UC207 UCX07 UC307	25.7 29.1 33.4	15.4 17.8 19.3	13.9 14.0 13.2	UCP207C UCPX07C —	UCP207CD UCPX07CD —	UCP207FC UCP307C	UCP207FCD UCP307CD	59 68 —	78 88	1.6 2.7 3.0	2.3 — 3.8
40	49.2 58.7 60	184 222 220	54 67 60	137 156 170	17 20 17	21 32 27	17 21 19	98 114 118	57 71 65	49.2 49.2 52	19 19 19	M14 M16 M14	UCP208 UCPX08 UCP308	P208 PX08 P308	UC208 UCX08 UC308	29.1 32.7 40.7	17.8 20.3 24.0	14.0 14.0 13.2	UCP208C UCPX08C —	UCP208CD UCPX08CD —	UCP208FC UCP308C	UCP208FCD UCP308CD	68 68 —	86 96	2.0 3.5 3.8	2.8 — 4.8
45	54 58.7 67	190 222 245	54 67 67	146 156 190	17 20 20	21 33 30	17 21 21	106 116 132	60 71 75	49.2 51.6 57	19 19 22	M14 M16 M16	UCP209 UCPX09 UCP309	P209 PX09 P309	UC209 UCX09 UC309	32.7 35.1 48.9	20.3 23.3 29.5	14.0 14.4 13.3	UCP209C UCPX09C —	UCP209CD UCPX09CD —	UCP209FC UCP309C	UCP209FCD UCP309CD	68 73 —	88 102	2.2 3.7 4.9	3.0 6.2
50	57.2 63.5 75	206 241 275	60 73 75	159 171 212	20 20 20	22 36 35	19 22 24	113 126 148	63 76 88	51.6 55.6 61	19 22.2 22	M16 M16 M16	UCP210 UCPX10 UCP310	P210 PX10 P310	UC210 UCX10 UC310	35.1 43.4 62.0	23.3 29.4 38.3	14.4 14.4 13.2	UCP210C UCPX10C —	UCP210CD UCPX10CD —	UCP210FC UCP310C	UCP210FCD UCP310CD	73 75 —	97 110	2.9 4.6 6.6	3.9 — 8.2
55	63.5	219	60	171	20	22	19	125	70	55.6	22.2	M16	UCP211	P211	UC211	43.4	29.4	14.4	UCP211C	UCP211CD	UCP211FC	UCP211FCD	75	99	3.6	4.8

For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3.
 For more detailed information, refer to ball bearing for unit specification tables.

 $\Delta H_{\rm S}$ ±0.15 ±0.2 ±0.3

Ball bearing units pillow block type UCP (with set screws)

			unit : mm
h	ousing N	0.	$\Delta H_{\rm S}$
P203~ P210	PX05~ PX10	P305~ P310	±0.15
P211~ P218	PX11~ PX18	P311~ P318	±0.2
	PX20	P319~ P328	±0.3

Tolerance for housing

Kovo

 $\Delta H_{\rm S}$: deviation of distance from mounting base to centre of spherical bearing seating.

								-		1	5															
Shaft dia. (mm)					Di	mensio (mm)	ns					Bolt		Housing			le bearin ad ratings			Unit No. v	vith covers		Co ^r dimer			efer.) ass (kg)
d	Н	L	Α	J	Ν	N ₁	H_1	H_2	L_1	В	S	size	Unit No.	No.	No.		$(N) C_{0r}$	fo		steel covers Closed end		on covers Closed end	(m (m (m		Pressed steel covers	Cast iron
55	69.8 80	260 310	79 80	184 236	25 20	36 38	28 27	139 158	83 90	65.1 66	25.4 25	M20 M16	UCPX11 UCP311	PX11 P311	UCX11 UC311	52.4 71.6	36.2 45.0	14.4 13.2	UCPX11C	UCPX11CD	 UCP311C	UCP311CD	88 —	 114	6.5 7.9	 9.7
60	69.8 76.2 85	241 286 330	70 83 85	184 203 250	20 25 25	25 40 38	22 28 29	138 152 167	76 88 103	65.1 65.1 71	25.4 25.4 26	M16 M20 M20	UCP212 UCPX12 UCP312	P212 PX12 P312	UC212 UCX12 UC312	52.4 57.2 81.9	36.2 40.1 52.2	14.4 14.4 13.2	UCP212C UCPX12C —	UCP212CD UCPX12CD —	UCP212FC UCP312C	UCP212FCD UCP312CD	88 88 —	114 124	4.9 7.7 9.5	6.4 11.8
65	76.2 76.2 90	265 286 340	70 83 90	203 203 260	25 25 25	30 40 38	25 28 32	150 155 176	78 88 110	65.1 74.6 75	25.4 30.2 30	M20 M20 M20	UCP213 UCPX13 UCP313	P213 PX13 P313	UC213 UCX13 UC313	57.2 62.2 92.7	40.1 44.1 59.9	14.4 14.5 13.2	UCP213C UCPX13C —	UCP213CD UCPX13CD —	UCP213FC UCP313C	UCP213FCD UCP313CD	88 98 —	114 122	5.9 8.1 10.7	7.6 12.8
70	79.4 88.9 95	266 330 360	72 89 90	210 229 280	25 27 27	30 50 40	28 32 35	156 171 186	78 98 110	74.6 77.8 78	30.2 33.3 33	M20 M22 M22	UCP214 UCPX14 UCP314	P214 PX14 P314	UC214 UCX14 UC314	62.2 67.4 104	44.1 48.3 68.2	14.5 14.5 13.2	UCP214C UCPX14C —	UCP214CD UCPX14CD —	UCP214FC UCP314C	UCP214FCD UCP314CD	98 98 	124 124	6.8 10.2 12.4	8.7 14.7
75	82.6 88.9 100	275 330 380	74 89 100	217 229 290	25 27 27	30 50 40	28 32 35	162 175 198	80 99 107	77.8 82.6 82	33.3 33.3 32	M20 M22 M22	UCP215 UCPX15 UCP315	P215 PX15 P315	UC215 UCX15 UC315	67.4 72.7 113	48.3 53.0 77.2	14.5 14.6 13.2	UCP215C UCPX15C —	UCP215CD UCPX15CD —	UCP215FC UCP315C	UCP215FCD UCP315CD	98 108 —	124 134	7.4 10.8 14.8	9.3 17.3
80	88.9 101.6 106	292 381 400	78 102 110	232 283 300	25 27 27	35 58 40	32 34 35	174 195 209	86 116 120	82.6 85.7 86	33.3 34.1 34	M20 M22 M22	UCP216 UCPX16 UCP316	P216 PX16 P316	UC216 UCX16 UC316	72.7 84.0 123	53.0 61.9 86.7	14.6 14.5 13.3	UCP216C UCPX16C —	UCP216CD UCPX16CD —	UCP216FC UCP316C	UCP216FCD UCP316CD	108 112 —	138 — 138	9.0 15.3 18.5	11.4 21.4
85	95.2 101.6 112	310 381 420	83 102 110	247 283 320	25 27 33	40 60 45	32 34 40	185 200 220	90 116 120	85.7 96 96	34.1 39.7 40	M20 M22 M27	UCP217 UCPX17 UCP317	P217 PX17 P317	UC217 UCX17 UC317	84.0 96.1 133	61.9 71.5 96.8	14.5 14.5 13.3	UCP217C UCPX17C —	UCP217CD UCPX17CD —	UCP217FC UCP317C	UCP217FCD UCP317CD	112 122 —	142 146	10.8 16.1 20.3	13.5 23.6
90	101.6 101.6 118	327 381 430	88 111 110	262 283 330	27 27 33	45 60 45	34 38 40	198 204 234	104 116 120	96 104 96	39.7 42.9 40	M22 M22 M27	UCP218 UCPX18 UCP318	P218 PX18 P318	UC218 UCX18 UC318	96.1 109 143	71.5 81.9 107	14.5 14.4 13.3	UCP218C 	UCP218CD 	UCP218FC UCPX18C UCP318C	UCP218FCD UCPX18CD UCP318CD	122 — —	152 158 150	13.9 19.1 22.8	17.0 22.5 26.6
95 [Remarks]	125	470	120	360	36	50	46	248	125	103	41	M30	UCP319	P319	UC319	153	119	13.3	_	_	UCP319C	UCP319CD		162	29.0	33.3

[Remarks] 1) Applicable sizes of grease nipples are shown below. A-1/4-28UNF...... 201~210, X05~X09, 305~308 A-PT 1/8...... 211~218, X10~X20, 309~328

2) For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3.3) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units pillow block type UCP (with set screws) $d 100 \sim 140 \text{ mm}$

			unit : mr
h	ousing N	0.	$\Delta H_{\rm S}$
P203~ P210	PX05~ PX10	P305~ P310	±0.15
P211~ P218	PX11~ PX18	P311~ P318	±0.2
	PX20	P319~ P328	±0.3

 $\Delta H_{\rm S}$: deviation of distance from mounting base to centre of spherical bearing seating.

										1																
Shaft di (mm)	a.				Di	mensio (mm)	ons					Bolt	Unit No.	Housing	.		le bearin bad ratings			Unit No. v	ith covers		Co dimei		-	fer.) ass (kg)
d	H	L	Α	J	N	N_1	H_1	H_2	L_1	В	S	size	Unit NO.	No.	No.	$C_{\rm r}$	$(KN) C_{0r}$	f ₀	Pressed s Open ends	teel covers Closed end		on covers Closed end	$(m A_s)$		Pressed steel covers	Cast iron covers
100	127 140	432 490	121 120	337 380	33 36	65 50	45 46	245 273	126 140	117.5 108	49.2 42	M27 M30	UCPX20 UCP320	PX20 P320	UCX20 UC320	133 173	105 141	14.4 13.2	—		UCPX20C UCP320C	UCPX20CD UCP320CD	_	186 174	30.4 35.1	34.9 40.7
105	140	490	120	380	36	50	46	278	140	112	44	M30	UCP321	P321	UC321	184	153	13.2	_	_	UCP321C	UCP321CD		178	37.6	43.6
110	150	520	140	400	40	55	50	296	150	117	46	M33	UCP322	P322	UC322	205	180	13.2		_	UCP322C	UCP322CD		188	44.0	50.8
120	160	570	140	450	40	55	50	316	160	126	51	M33	UCP324	P324	UC324	207	185	13.5		_	UCP324C	UCP324CD	—	196	55.4	64.9
130	180	600	140	480	40	55	50	355	195	135	54	M33	UCP326	P326	UC326	229	214	13.6		_	UCP326C	UCP326CD	—	214	72.1	84.2
140	200	620	140	500	40	55	60	393	185	145	59	M33	UCP328	P328	UC328	253	246	13.6	_	_	UCP328C	UCP328CD	—	222	92.5	108

[Remarks] 1) Applicable sizes of grease nipples are shown below. A-1/4-28UNF...... 201~210, X05~X09, 305~308 A-PT 1/8...... 211~218, X10~X20, 309~328

2) For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3.
3) For more detailed information, refer to ball bearing for unit specification tables.

Cast iron covers

Ball bearing units pillow block type UKP (with adapter) d_1 **20** ~ **55 mm**

Cast iron covers B_1

			unit : mr
h	ousing N	0.	$\Delta H_{\rm S}$
P205~ P210	PX05~ PX10	P305~ P310	±0.15
P211~ P218	PX11~ PX18	P311~ P318	±0.2
	PX20	P319~ P328	±0.3
4			

Tolerance for housing

Kovo

 \varDelta_{Hs} : deviation of distance from mounting base to centre of spherical bearing seating.

P205JE3 (with cast iron covers) are shown below.

P205JE3	$H_{ m 2c}$ = 77 mm

Shaft dia. (mm)					Dimer (m						Bolt		Housing		plicable Basic load			Applicable 1)		Unit No.	with cover	s	Cov		(Ref	
d_1	Н	L	A	J	N	N_1	H_1	H_2	L_1	$B_1{}^{1)}$	size	Unit No.	No.	No.	$C_{\rm r}^{\rm (kl)}$	$\stackrel{0}{K}_{0r}$	f0	adapter No.		steel covers Closed end		on covers Closed end	(m A _s	m)	Pressed steel covers	Cast iron covers
20	36.5 44.4 45	140 159 175	51	105 119 132	13 17 17	18 25 20	13 16 16	71 86 85	43 47 55	29(35) 35 35	M10 M14 M14	UKP205 UKPX05 UKP305	P205 PX05 P305	UK205 UKX05 UK305	14.0 19.5 21.2	7.85 11.3 10.9	13.9 13.9 12.6	H305X(H2305X) H2305X H2305X	UKP205C UKPX05C —	UKP205CD UKPX05CD —	UKP205FC UKP305C	UKP205FCD — UKP305CD	48 52 —	66 76	0.84 1.5 1.7	1.3 — 2.3
25	42.9 47.6 50	165 175 180		121 127 140	17 17 17	21 25 20	15 17 17	84 93 95	53 55 53	31(38) 38 38	M14 M14 M14	UKP206 UKPX06 UKP306	P206 PX06 P306	UK206 UKX06 UK306	19.5 25.7 26.7	11.3 15.4 15.0	13.9 13.9 13.3	H306X(H2306X) H2306X H2306X	UKP206C UKPX06C —	UKP206CD UKPX06CD —	UKP206FC UKP306C	UKP206FCD UKP306CD	52 59 —	70 82	1.4 2.1 2.3	1.9 2.9
30	47.6 54 56	167 203 210	57	127 144 160	17 17 17	21 30 25	16 19 19	93 105 107	51 64 65	35(43) 43 43	M14 M14 M14	UKP207 UKPX07 UKP307	P207 PX07 P307	UK207 UKX07 UK307	25.7 29.1 33.4	15.4 17.8 19.3	13.9 14.0 13.2	H307X(H2307X) H2307X H2307X	UKP207C UKPX07C —	UKP207CD UKPX07CD —	UKP207FC UKP307C	UKP207FCD UKP307CD	59 68 —	78 88	1.7 2.7 3.0	2.5 3.9
35	49.2 58.7 60	184 222 220		137 156 170	17 20 17	21 32 27	17 21 19	98 114 118	57 71 65	36(46) 46 46	M14 M16 M14	UKP208 UKPX08 UKP308	P208 PX08 P308	UK208 UKX08 UK308	29.1 32.7 40.7	17.8 20.3 24.0	14.0 14.0 13.2	H308X(H2308X) H2308X H2308X	UKP208C UKPX08C 	UKP208CD UKPX08CD —	UKP208FC UKP308C	UKP208FCD — UKP308CD	68 68 —	86 96	2.0 3.5 3.8	2.9 5.2
40	54 58.7 67	190 222 245	67	146 156 190	17 20 20	21 33 30	17 21 21	106 116 132	60 71 75	39(50) 50 50	M14 M16 M16	UKP209 UKPX09 UKP309	P209 PX09 P309	UK209 UKX09 UK309	32.7 35.1 48.9	20.3 23.3 29.5	14.0 14.4 13.3	H309X(H2309X) H2309X H2309X	UKP209C UKPX09C 	UKP209CD UKPX09CD —	UKP209FC UKP309C	UKP209FCD UKP309CD	68 73 —	88 102	2.3 3.7 5.0	3.2 — 6.3
45	57.2 63.5 75	206 241 275	73	159 171 212	20 20 20	22 36 35	19 22 24	113 126 148	63 76 88	42(55) 55 55	M16 M16 M16	UKP210 UKPX10 UKP310	P210 PX10 P310	UK210 UKX10 UK310	35.1 43.4 62.0	23.3 29.4 38.3	14.4 14.4 13.2	H310X(H2310X) H2310X H2310X	UKP210C UKPX10C 	UKP210CD UKPX10CD —	UKP210FC — UKP310C	UKP210FCD — UKP310CD	73 75 —	97 110	3.0 4.6 6.7	4.1 — 8.4
50	63.5 69.8 80	219 260 310	60 79 80	184	20 25 20	22 36 38	19 28 27	125 139 158	70 83 90	45(59) 59 59	M16 M20 M16	UKP211 UKPX11 UKP311	P211 PX11 P311	UK211 UKX11 UK311	43.4 52.4 71.6	29.4 36.2 45.0	14.4 14.4 13.2	H311X(H2311X) H2311X H2311X		UKP211CD UKPX11CD —	UKP211FC — UKP311C	UKP211FCD — UKP311CD	75 88 —	99 114	3.7 6.2 8.1	5.0 10.0
55	69.8 76.2 85	241 286 330		184 203 250	20 25 25	25 40 38	22 28 29	138 152 167	76 88 103	47(62) 62 62	M16 M20 M20	UKP212 UKPX12 UKP312	P212 PX12 P312	UK212 UKX12 UK312	52.4 57.2 81.9	36.2 40.1 52.2	14.4 14.4 13.2	H312X(H2312X) H2312X H2312X H2312X	UKP212C UKPX12C —	UKP212CD UKPX12CD —	UKP212FC UKP312C	UKP212FCD UKP312CD	88 88 —	114 124	4.8 7.5 9.4	6.3 11.8

2) Unit No. means housing and bearing assembly, whole complete unit No. is given follows. (UKP206+H306X,UK206+H306X)
 3) For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UKP206JL3+H2306X, UK206L3+H2306X)
 4) For more detailed information, refer to ball bearing for unit specification tables. Not applied to UKX series.

Ball bearing units pillow block type UKP (with adapter) d_1 60 ~ 125 mm

Pressed steel covers

			unit : mr
h	ousing N	0.	$\Delta H_{\rm S}$
P205~ P210	PX05~ PX10	P305~ P310	±0.15
P211~ P218	PX11~ PX18	P311~ P318	±0.2
	PX20	P319~ P328	±0.3

Tolerance for housing

Kovo

 $\Delta H_{\rm S}$: deviation of distance from mounting base to centre of spherical bearing seating.

						ŀ	-		L																
Shaft dia. (mm)				Dimer (m						Dala		Housing	Ар		e bearii Id ratings		Applicable 1)		Unit No.	with cover	S	Cove dimens		(Ref Unit ma	
d_1	H	L	A = J	N	N_1	H_1	H_2	L_1	$B_1^{(1)}$	Bolt size	Unit No.	Housing No.	No.	(k	0	Tactor	adapter No.	Pressed s	steel covers	Cast ir	on covers	(mn		Pressed	Cast iron
<i>u</i> ₁	11		A 9	11	111	111	112	L_1	<i>D</i> ₁					$C_{ m r}$	$C_{0\mathrm{r}}$	f ₀		Open ends	Closed end	Open ends	Closed end	$A_{\rm s}$	$A_{\rm c}$	steel covers	covers
60	76.2 76.2	265	70 203	25	30	25	150	78	50(65)	M20	UKP213 UKPX13	P213 PX13	UK213	57.2 62.2	40.1	14.4	H313X(H2313X)		UKP213CD UKPX13CD	UKP213FC	UKP213FCD		114	5.8	7.5
	90	286 340	83 203 90 260	25 25	40 38	28 32	155 176	88 110	65 65	M20 M20	UKP313 UKP313	PX13 P313	UKX13 UK313	62.2 92.7	44.1 59.9	14.5 13.2	H2313X H2313X	UKPX13C	UKPX136D —	 UKP313C	UKP313CD	98	122	7.8 10.8	13.2
65	82.6	275	74 217	25	30	28	162	80	55(73)	M20	UKP215	P215	UK215	67.4	48.3	14.5	H315X(H2315X)	UKP215C		UKP215FC	UKP215FCD	98	124	7.5	9.5
	88.9 100	330 380	89 229 100 290	27 27	50 40	32 35	175 198	99 107	73 73	M22 M22	UKPX15 UKP315	PX15 P315	UKX15 UK315	72.7 113	53.0 77.2	14.6 13.2	H2315X H2315X	UKPX15C	UKPX15CD	 UKP315C	 UKP315CD	108	— 134	10.5 14.9	 17.7
				21	40	55																	134	14.5	
70	88.9 101.6	292 381	78 232 102 283	25 27	35 58	32 34	174 195	86 116	59(78) 78	M20 M22	UKP216 UKPX16	P216 PX16	UK216 UKX16	72.7 84.0	53.0 61.9	14.6 14.5	H316X(H2316X) H2316X	UKP216C UKPX16C		UKP216FC	UKP216FCD		138	9.2 15.4	11.7
	101.0	400	110 300	27	40	35	209	120	78	M22	UKP316	P316	UK316	123	86.7	13.3	H2316X			UKP316C	UKP316CD		138	18.6	21.7
75	95.2	310	83 247	25	40	32	185	90	63(82)	M20	UKP217	P217	UK217	84.0	61.9	14.5	H317X(H2317X)	UKP217C	UKP217CD	UKP217FC	UKP217FCD	112	142	11.0	13.8
	101.6	381	102 283	27	60	34	200	116	82	M22	UKPX17	PX17	UKX17	96.1	71.5	14.5	H2317X	UKPX17C	UKPX17CD			122	_	15.8	
	112	420	110 320	33	45	40	220	120	82	M27	UKP317	P317	UK317	133	96.8	13.3	H2317X			UKP317C	UKP317CD	_	146	20.2	23.7
80	101.6	327	88 262	27	45	34	198	104	65(86)	M22	UKP218	P218	UK218	96.1	71.5	14.5	H318X(H2318X)	UKP218C	UKP218CD	UKP218FC	UKP218FCD		152	13.8	18.8
	101.6 118	381 430	111 283 110 330	27 33	60 45	38 40	204 234	116 120	86 86	M22 M27	UKPX18 UKP318	PX18 P318	UKX18 UK318	109 143	81.9 107	14.4 13.3	H2318X H2318X		_	UKPX18C UKP318C	UKPX18CD UKP318CD		158 150	18.6 22.8	22.4 27.0
85	125	470	120 360	36	50	46	248	125	90	M30	UKP319	P319	UK319	153	119	13.3	H2319X			UKP319C	UKP319CD		162	29.3	34.0
	120	110	120 300		50		240	120	50	WIGO			01013	100	115					01010100			102	20.0	
90	127 140	432 490	121 337 120 380	33 36	65 50	45 46	245 273	126 140	97 97	M27 M30	UKPX20 UKP320	PX20 P320	UKX20 UK320		105 141	14.4	H2320X H2320X	_	_	UKPX20C UKP320C	UKPX20CD UKP320CD		186 174	29.3 34.8	34.3 41.0
							-		-				 												
100	150	520	140 400	40	55	50	296	150	105	M33	UKP322	P322	UK322	205	180	13.2	H2322X			UKP322C	UKP322CD	_	188	43.9	50.8
110	160	570	140 450	40	55	50	316	160	112	M33	UKP324	P324	UK324	207	185	13.5	H2324	_	—	UKP324C	UKP324CD	_	196	55.7	66.0
115	180	600	140 480	40	55	50	355	195	121	M33	UKP326	P326	UK326	229	214	13.6	H2326	—	_	UKP326C	UKP326CD	_	214	71.9	85.2
125	200	620	140 500	40	55	60	393	185	131	M33	UKP328	P328	UK328	253	246	13.6	H2328	_	_	UKP328C	UKP328CD	_	222	92.5	109

 [Note]
 1) () Shown for use triple lipseal bearing and applicable adapter No.(H2300X series).

 [Remarks]
 1) Applicable sizes of grease nipples are shown below.

 A-1/4-28UNF
 205~210, X05~X09, 305~308

 A-PT 1/8
 211~218, X10~X20, 309~328

Unit No. means housing and bearing assembly, whole complete unit No. is given follows. (UKP206+H306X,UK206+H306X)
 For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UKP206LJ3+H2306X, UK206L3+H2306X)
 For more detailed information, refer to ball bearing for unit specification tables. Not applied to UKX series.

Ball bearing units thick section pillow block type UCIP (with set screws)

d **40** ~ **140** mm

Cast iron covers

			unit : mn
housir	ng No.	$\Delta H_{\rm S}$	X
IP208~ IP210		±0.15	1
IP211~ IP213	IP313~ IP318	±0.2	14
	IP319~ IP328	±0.3	1.4

Tolerances for housing

Kovo

 $\Delta H_{\rm S}$: deviation of distance from mounting base to centre of spherical bearing seating. X : positional tolerance of bolt hole.

							-			L															
Shaft dia.				Di	mensio	ons								UC208 29.1 17.8 14 UC209 32.7 20.3 14 UC210 35.1 23.3 14 UC211 43.4 29.4 14 UC212 52.4 36.2 14 UC213 57.2 40.1 14 UC313 92.7 59.9 15 UC314 104 68.2 15 UC315 113 77.2 15 UC314 104 68.2 15 UC315 113 77.2 15 UC316 123 86.7 15 UC318 143 107 15 UC319 153 119 15 UC320 173 141 15					Unit No.	with covers		Co			efer.) ass (kg)
(mm)					(mm)					Bolt size	Unit No.	Housing No.		No.	1	0	Factor	Pressed	steel covers	Cast ir	on covers	dimer (m		Pressed	Cast iron
d	H	L	A	J	N	H_1	H_2	В	S	3120		110.			· ·	.,	f_0		Closed end		Closed end		$A_{\rm c}$	steel covers	
40	60	200	60	150	19	25	115	49.2	19	M16	UCIP208	IP208		UC208	29.1	17.8	14.0	UCIP208C	UCIP208CD	UCIP208FC	UCIP208FCD	68	86	3.4	4.2
45	70	210	60	160	19	25	128	49.2	19	M16	UCIP209	IP209		UC209	32.7	20.3	14.0	UCIP209C	UCIP209CD	UCIP209FC	UCIP209FCD	68	88	3.9	4.7
50	70	220	60	170	19	28	132	51.6	19	M16	UCIP210	IP210		UC210	35.1	23.3	14.4	UCIP210C	UCIP210CD	UCIP210FC	UCIP210FCD	73	97	4.8	5.8
55	80	230	60	180	19	28	148	55.6	22.2	M16	UCIP211	IP211		UC211	43.4	29.4	14.4	UCIP211C	UCIP211CD	UCIP211FC	UCIP211FCD	75	99	5.3	6.3
60	80	260	70	200	22	30	155	65.1	25.4	M20	UCIP212	IP212		UC212	52.4	36.2	14.4	UCIP212C	UCIP212CD	UCIP212FC	UCIP212FCD	88	114	7.2	8.7
65	90	280	70	220	22	30	172	65.1	25.4	M20	UCIP213	IP213						UCIP213C	UCIP213CD		UCIP213FCD	88	114	8.8	10.5
	110	310	70	250	22	30	208	75	30	M20	UCIP313	IP313		UC313	92.7	59.9	13.2	—		UCIP313C	UCIP313CD	—	122	13.4	15.5
70	110	330	75	270	25	35	215	78	33	M22	UCIP314	IP314		UC314	104	68.2	13.2			UCIP314C	UCIP314CD	_	124	15.3	17.6
75	120	340	75	280	25	35	230	82	32	M22	UCIP315	IP315		UC315	113	77.2	13.2		—	UCIP315C	UCIP315CD	_	134	17.6	20.1
80	120	350	85	290	25	40	235	86	34	M22	UCIP316	IP316		UC316	123	86.7	13.3		—	UCIP316C	UCIP316CD	_	138	20.3	23.2
85	130	370	85	310	25	40	255	96	40	M22	UCIP317	IP317		UC317	133	96.8	13.3		_	UCIP317C	UCIP317CD	_	146	25.9	29.2
90	130	400	85	330	29	45	260	96	40	M27	UCIP318	IP318		UC318	143	107	13.3		_	UCIP318C	UCIP318CD	_	150	28.6	32.4
95	150	410	85	340	29	45	285	103	41	M27	UCIP319	IP319		UC319	153	119	13.3		_	UCIP319C	UCIP319CD	_	162	31.7	36.0
100	150	430	85	360	29	45	295	108	42	M27	UCIP320	IP320		UC320	173	141	13.2		_	UCIP320C	UCIP320CD	_	174	36.9	42.5
110	170	490	100	410	32	50	335	117	46	M30	UCIP322	IP322		UC322	205	180	13.2	_		UCIP322C	UCIP322CD	_	188	52.4	59.2
120	170	510	100	430	32	50	345	126	51	M30	UCIP324	IP324		UC324	207	185	13.5	_	_	UCIP324C	UCIP324CD	_	196	58.7	68.2
130	200	550	110	470	32	50	390	135	54	M30	UCIP326	IP326		UC326	229	214	13.6		_	UCIP326C	UCIP326CD	_	214	76.2	88.3
140	200	590	110	500	35	55	400	145	59	M33	UCIP328	IP328		UC328	253	246	13.6		_	UCIP328C	UCIP328CD	_	222	87.0	102
																								1	

 [Remarks]
 1) Applicable sizes of grease nipples are shown below.

 A-1/4-28UNF
 208~210

 A-PT 1/8
 211~213, 313~328

Bearings with triple-lip seals are indicated by L3 after the bearing and unit number. (UCIP208JL3, UC208L3)
 For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units light duty pillow block type BLP (with set screws)

d $12 \sim 40 \text{ mm}$

Shaft dia. (mm)					D	imensio (mm)	ons					Bolt	Unit No.	Housing			nd ratings	Factor	(Refer.) Unit
d	H ±0.15	L	A	J	N	N_1	H_1	H_2	L_1	В	S	size	onic No.	No.	No.	(k C _r	N) C_{0r}	f ₀	(kg)
12	30.2	114	25	87	11	16	12	57	35	22	6	M10	BLP201	LP203	SB201	9.55	4.80	13.2	0.36
15	30.2	114	25	87	11	16	12	57	35	22	6	M10	BLP202	LP203	SB202	9.55	4.80	13.2	0.36
17	30.2	114	25	87	11	16	12	57	35	22	6	M10	BLP203	LP203	SB203	9.55	4.80	13.2	0.36
20	33.3	125	27	97	11	16	13	65	38	25	7	M10	BLP204	LP204	SB204	12.8	6.65	13.2	0.51
25	36.5	130	29	100	11	16	13	71	39	27	7.5	M10	BLP205	LP205	SB205	14.0	7.85	13.9	0.57
30	42.9	156	33	120	14	21	14	83	47	30	8	M12	BLP206	LP206	SB206	19.5	11.3	13.9	0.69
35	47.6	165	35	127	14	21	16	93	50	32	8.5	M12	BLP207	LP207	SB207	25.7	15.4	13.9	0.94
40	50.8	184	37	140	14	22	18	102	55	34	9	M12	BLP208	LP208	SB208	29.1	17.8	14.0	1.8

[Remarks] 1) The radial loading on housing shoud not exceed 50% of the basic load rating (C_r) . 2) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units -"compact" series pillow block type UP (with set screws)

	unit : mm
housing No.	X
P000~P006	0.6
X : positional tolera bolt hole.	ance of

Tolerance for housing

Kovo

Shaft dia.						nsions								<i> </i>	pplicable			Unit No. v	with covers	Cover	(Refer.)
(mm)						nm)					Bolt	Unit No.	Housing			d ratings	Factor			dimension	Unit
d	H ±0.15	L	A	J	N ±0.2	H_1	H_2	L_1	В	S	size	onic ruo.	No.	No.	(k) C _r	N) C _{0r}	f_0	Open ends	Closed end	(mm) A _s	(kg)
10	18	67	16	53	7	6	35	18	15	5	M6	UP000	P000	SU000	4.55	1.95	12.3	UP000C	UP000CD	29	0.070
12	19	71	16	56	7	6	38	19	15	5	M6	UP001	P001	SU001	5.10	2.40	13.2	UP001C	UP001CD	29	0.090
15	22	80	16	63	7	7	43	21	16.5	5.5	M6	UP002	P002	SU002	5.60	2.85	13.9	UP002C	UP002CD	31	0.11
17	24	85	18	67	7	7	47	21	17.5	6	M6	UP003	P003	SU003	6.00	3.25	14.4	UP003C	UP003CD	33	0.15
20	28	100	20	80	10	9	55	25	21	7	M8	UP004	P004	SU004	9.40	5.05	13.9	UP004C	UP004CD	38	0.23
25	32	112	20	90	10	10	62	28	22	7	M8	UP005	P005	SU005	10.1	5.85	14.5	UP005C	UP005CD	40	0.28
30	36	132	26	106	13	11	70	34	24.5	7.5	M10	UP006	P006	SU006	13.2	8.25	14.7	UP006C	UP006CD	44	0.42

[Remarks] 1) Housing is made from special light alloy. 2) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units stainless-series pillow block type UCSP-H1S6 (with set screws)

d **12** ~ **50** mm

Koyo

Shaft dia. (mm)						nensio (mm)	ons					Bolt	Unit No.	Housing			pplicable b Basic load		Factor	Unit No. w	vith covers	Cover dimension	(Refer.) Unit mass (kg)
d	Н ±0.15	L	A	J	N	N_1	H_1	H_2	L_1	В	S	size	Offic No.	No.		No.	$C_{\rm r}$ (kľ	C_{0r}	f_0	Open ends	Closed end	$\stackrel{(\rm mm)}{A_{\rm s}}$	Pressed steel covers
12	30.2	127	30	95	13	18	11	56	42	27.4	11.5	M10	UCSP201XH1S6	SP203H1	UC	C201XS6	8.15	3.85	13.2	—	—	_	0.42
15	30.2	127	30	95	13	18	11	56	42	27.4	11.5	M10	UCSP202XH1S6	SP203H1	UC	C202XS6	8.15	3.85	13.2	—	—	_	0.42
17	30.2	127	30	95	13	18	11	56	42	27.4	11.5	M10	UCSP203XH1S6	SP203H1	UC	C203XS6	8.15	3.85	13.2	—	—	_	0.42
20	33.3	127	30	95	13	18	11	63	42	31	12.7	M10	UCSP204H1S6	SP204H1	UC	C204S6	10.9	5.35	13.2	UCSP204H1CS6	UCSP204H1CDS6	45	0.54
25	36.5	140	30	105	13	19	12	69	46	34.1	14.3	M10	UCSP205H1S6	SP205H1	UC	C205S6	11.9	6.30	13.9	UCSP205H1CS6	UCSP205H1CDS6	49	0.70
30	42.9	165	36	121	17	21	13	81	54	38.1	15.9	M14	UCSP206H1S6	SP206H1	UC	C206S6	16.5	9.05	13.9	UCSP206H1CS6	UCSP206H1CDS6	53	1.0
35	47.6	167	38	127	17	21	14	91	51	42.9	17.5	M14	UCSP207H1S6	SP207H1	UC	C207S6	21.8	12.3	13.9	UCSP207H1CS6	UCSP207H1CDS6	60	1.4
40	49.2	184	40	137	17	21	14	97	60	49.2	19	M14	UCSP208H1S6	SP208H1	UC	C208S6	24.8	14.3	14.0	UCSP208H1CS6	UCSP208H1CDS6	69	1.7
45	54	190	40	146	17	21	15	104	61	49.2	19	M14	UCSP209H1S6	SP209H1	UC	C209S6	27.8	16.2	14.0	UCSP209H1CS6	UCSP209H1CDS6	69	1.8
50	57.2	206	45	159	20	22	16	111	65	51.6	19	M16	UCSP210H1S6	SP210H1	UC	C210S6	29.8	18.6	14.4	UCSP210H1CS6	UCSP210H1CDS6	74	2.3

[Remarks] 1) Applicable size of grease nipples is A-1/4-28UNF.

2) For more detailed information, refer to ball bearing for unit specification tables.
Ball bearing units pressed steel pillow block type SBPP

d **12** ~ **35 mm**

Shaft dia. (mm)				Di	mensio (mm)	ns				Bolt	Unit No.	Housing		Applicable Basic loa		Factor	(Refer.) Unit
d	Η	L	Α	<i>J</i> ±0.4	N ±0.5	H_1	H_2	В	S	size	Unit No.	No.	No.	(k) C _r	N) C _{0r}	f_0	(kg)
12	22.2	86	25	68	9.5	3.2	43.8	22	6	M8	SBPP201	PP203F	SB201	9.55	4.80	13.2	0.16
15	22.2	86	25	68	9.5	3.2	43.8	22	6	M8	SBPP202	PP203F	SB202	9.55	4.80	13.2	0.16
17	22.2	86	25	68	9.5	3.2	43.8	22	6	M8	SBPP203	PP203F	SB203	9.55	4.80	13.2	0.16
20	25.4	98	32	76	9.5	3.2	50.5	25	7	M8	SBPP204	PP204F	SB204	12.8	6.65	13.2	0.23
25	28.6	108	32	86	11.5	4	56.6	27	7.5	M10	SBPP205	PP205F	SB205	14.0	7.85	13.9	0.28
30	33.3	117	38	95	11.5	4	66.3	30	8	M10	SBPP206	PP206F	SB206	19.5	11.3	13.9	0.47
35	39.7	129	41	106	11.5	4.6	78	32	8.5	M10	SBPP207	PP207F	SB207	25.7	15.4	13.9	0.67

[Remark] 1) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units square-flanged type UCF (with set screws) d 12 ~ (55) mm

Cast iron cover

 \overline{A}_2 A

Tolerances for housing

				unit : mm
h	ousing N	0.	⊿A2s	X
F204~ F210	FX05~ FX10	F305~ F310	±0.5	0.7
F211~ F218	FX11~ FX20	±0.8	1	
fa se	ce to centerating.	distance tre of sph plerance c	erical bea	aring e.
h	ousing N	0.	$\Delta N_{\rm Ns}$	
F204~ F218	FX05~ FX18	F305~ F315	±0.2	
	FX20	F316~ F328	±0.3	

Kovo

			-	Ă												A					⊿ _{Ns} : dev	iation of bolt h	ole diamete	- er.
Shaft dia. (mm)				C	Dimension (mm)	ns				Bolt	Unit No.	Housing			Applicable Basic load	d ratings	g Factor		Unit No. w			Cover dimensions		fer.) I ss (kg)
d	L	A	J	N	A_1	A_2	A_0	В	S	size	onic ruo.	No.		No.	$C_{\rm r}$ (k)	C_{0r}	f_0		teel covers Closed end		n covers Closed end	(mm) $A_{\rm s}$ $A_{\rm c}$	Pressed steel covers	Cast iron covers
12	86	25.5	64	12	11	15	33.3	31	12.7	M10	UCF201	F204	l	UC201	12.8	6.65	13.2	UCF201C	UCF201D	—	—	37 —	0.64	—
15	86	25.5	64	12	11	15	33.3	31	12.7	M10	UCF202	F204	l	UC202	12.8	6.65	13.2	UCF202C	UCF202D		—	37 —	0.62	_
17	86	25.5	64	12	11	15	33.3	31	12.7	M10	UCF203	F204	l	UC203	12.8	6.65	13.2	UCF203C	UCF203D	_		37 —	0.61	_
20	86	25.5	64	12	11	15	33.3	31	12.7	M10	UCF204	F204	l	UC204	12.8	6.65	13.2	UCF204C	UCF204D	UCF204FC	UCF204FD	37 46	0.59	0.74
25	95	27	70	12	13	16	35.8	34.1	14.3	M10	UCF205 UCFX05	F205		UC205	14.0	7.85	13.9	UCF205C	UCF205D	UCF205FC	UCF205FD	40 49	0.83	1.0
	108 110	30 29	83 80	12 16	13 13	18 16	40.2 39	38.1 38	15.9 15	M10 M14	UCFX05 UCF305	FX05 F305		UCX05 UC305	19.5 21.2	11.3 10.9	13.9 12.6	UCFX05C	UCFX05D	 UCF305C	 UCF305D	44 — — 54	1.2 1.3	1.6
30	108	31	83	12	13	18	40.2	38.1	15.9	M10	UCF206	F206		UC206	19.5	11.3	13.9	UCF206C	UCF206D	UCF206FC	UCF206FD	44 53	1.1	1.4
	117 125	34 32	92 95	16 16	14 15	19 18	44.4 44	42.9 43	17.5 17	M14 M14	UCFX06 UCF306	FX06 F306		UCX06 UC306	25.7 26.7	15.4 15.0	13.9 13.3	UCFX06C	UCFX06D	UCF306C	 UCF306D	49 <u> </u> — 59	1.6 1.9	2.2
35	117	34	92	14	15	19	44.4	42.9	17.5	M12	UCF207	F207		UC207	25.7	15.4	13.9	UCF207C	UCF207D	UCF207FC	UCF207FD	49 58	1.5	1.9
	130 135	38 36	102 100	16 19	14 16	21 20	51.2 49	49.2 48	19 19	M14 M16	UCFX07 UCF307	FX07 F307		UCX07 UC307	29.1 33.4	17.8 19.3	14.0 13.2	UCFX07C	UCFX07D	 UCF307C	 UCF307D	55 — — 64	2.0 2.3	2.7
40	130	36	102	16	15	21	51.2	49.2	19	M14	UCF208	F208		UC208	29.1	17.8	14.0	UCF208C	UCF208D	UCF208FC	UCF208FD	55 64	1.9	2.3
	137 150	40 40	105 112	19 19	14 17	22 23	52.2 56	49.2 52	19 19	M16 M16	UCFX08 UCF308	FX08 F308		UCX08 UC308	32.7 40.7	20.3 24.0	14.0 13.2	UCFX08C	UCFX08D 	 UCF308C	 UCF308D	56 — — 71	2.4 3.1	3.6
45	137	38	105	16	16	22	52.2	49.2	19	M14	UCF209	F209		UC209	32.7	20.3	14.0	UCF209C	UCF209D	UCF209FC	UCF209FD	56 66	2.2	2.6
	143 160	40 44	111 125	19 19	14 18	23 25	55.6 60	51.6 57	19 22	M16 M16	UCFX09 UCF309	FX09 F309		UCX09 UC309	35.1 48.9	23.3 29.5	14.4 13.3	UCFX09C	UCFX09D	 UCF309C	 UCF309D	60 — — 76	2.7 4.0	4.6
50	143	40	111	16	16	22	54.6	51.6	19	M14	UCF210	F210		UC210	35.1	23.3	14.4	UCF210C	UCF210D	UCF210FC	UCF210FD	59 70.	2.5	3.0
	162 175	44 48	130 132	19 23	20 19	26 28	59.4 67	55.6 61	22.2 22	M16 M20	UCFX10 UCF310	FX10 F310		UCX10 UC310	43.4 62.0	29.4 38.3	14.4 13.2	UCFX10C	UCFX10D	 UCF310C	 UCF310D	64 — — 83	3.7 5.1	 5.9
55	162	43	130	19	18	25	58.4	55.6	22.2	M16	UCF211	F211		UC211	43.4	29.4	14.4	UCF211C	UCF211D	UCF211FC	UCF211FD	63 74.	3.4	4.0
[Demerke]																					officed by 1.2 a		_	

2) For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCF206JL3, UC206L3)
 3) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units square-flanged type UCF (with set screws) d (55) ~ 95 mm

 \overline{A}_2 A Tolerances for housing

				unit : mn
h	ousing N	0.	⊿A2s	X
F204~ F210	FX05~ FX10	F305~ F310	±0.5	0.7
F211~ F218	FX11~ FX20	±0.8	1	
SE	ce to centerating.	tre of sph plerance o	erical bea	aring e.
h	ousing N	0.	$\Delta N_{\rm S}$	
F204~ F218	FX05~ FX18	F305~ F315	±0.2	
	FX20	F316~ F328	±0.3	

Kovo

 $\Delta N_{\rm S}$: deviation of bolt hole diameter.

Shaft dia. (mm)				0	Dimensio (mm)	ns				Bolt		Housing		Applicabl		g Factor		Unit No. w	ith covers		Cov dimens	-	(Refe Unit mass	
d	L	A	J	N	A_1	A_2	A_0	В	S	size	Unit No.	No.	No.	(k) C _r	N) C _{0r}	fo	Pressed s Open ends	teel covers Closed end	Cast iro Open ends		(mr A _s	n) A _c	Pressed steel covers i	Cast iron covers
55	175 185	49 52	143 140	19 23	20 20	29 30	68.7 71	65.1 66	25.4 25	M16 M20	UCFX11 UCF311	FX11 F311	UCX11 UC311	52.4 71.6	36.2 45.0	14.4 13.2	UCFX11C	UCFX11D	 UCF311C	 UCF311D	73 —	 87	4.9 5.6	6.5
60	175 187 195	48 59 56	143 149 150	19 19 23	18 21 22	29 34 33	68.7 73.7 78	65.1 65.1 71	25.4 25.4 26	M16 M16 M20	UCF212 UCFX12 UCF312	F212 FX12 F312	UC212 UCX12 UC312	52.4 57.2 81.9	36.2 40.1 52.2	14.4 14.4 13.2	UCF212C UCFX12C —	UCF212D UCFX12D —	UCF212FC UCF312C	UCF212FD UCF312D	78	86 95	4.2 5.7 6.9	5.0 8.1
65	187 187 208	50 59 58	149 149 166	19 19 23	22 21 22	30 34 33	69.7 78.4 78	65.1 74.6 75	25.4 30.2 30	M16 M16 M20	UCF213 UCFX13 UCF313	F213 FX13 F313	UC213 UCX13 UC313	57.2 62.2 92.7	40.1 44.1 59.9	14.4 14.5 13.2	UCF213C UCFX13C —	UCF213D UCFX13D —	UCF213FC UCF313C	UCF213FD UCF313D	83	87 94	5.2 6.3 7.8	6.0 8.9
70	193 197 226	54 60 61	152 152 178	19 23 25	22 22 25	31 37 36	75.4 81.5 81	74.6 77.8 78	30.2 33.3 33	M16 M20 M22	UCF214 UCFX14 UCF314	F214 FX14 F314	UC214 UCX14 UC314	62.2 67.4 104	44.1 48.3 68.2	14.5 14.5 13.2	UCF214C UCFX14C —	UCF214D UCFX14D —	UCF214FC UCF314C	UCF214FD UCF314D	86	93 98	5.9 7.0 10.1	6.8 11.2
75	200 197 236	56 68 66	159 152 184	19 23 25	22 24 25	34 40 39	78.5 89.3 89	77.8 82.6 82	33.3 33.3 32	M16 M20 M22	UCF215 UCFX15 UCF315	F215 FX15 F315	UC215 UCX15 UC315	67.4 72.7 113	48.3 53.0 77.2	14.5 14.6 13.2	UCF215C UCFX15C —	UCF215D UCFX15D —	UCF215FC UCF315C	UCF215FD UCF315D	94	96 06	6.4 8.4 11.6	7.4 12.9
80	208 214 250	58 70 68	165 171 196	23 23 31	22 24 27	34 40 38	83.3 91.6 90	82.6 85.7 86	33.3 34.1 34	M20 M20 M27	UCF216 UCFX16 UCF316	F216 FX16 F316	UC216 UCX16 UC316	72.7 84.0 123	53.0 61.9 86.7	14.6 14.5 13.3	UCF216C UCFX16C —	UCF216D UCFX16D —	UCF216FC UCF316C	UCF216FD UCF316D	96	03 07	7.3 9.4 12.8	8.5 14.2
85	220 214 260	63 70 74	175 171 204	23 23 31	24 24 27	36 40 44	87.6 96.3 100	85.7 96 96	34.1 39.7 40	M20 M20 M27	UCF217 UCFX17 UCF317	F217 FX17 F317	UC217 UCX17 UC317	84.0 96.1 133	61.9 71.5 96.8	14.5 14.5 13.3	UCF217C UCFX17C —	UCF217D UCFX17D —	UCF217FC UCF317C	UCF217FD — UCF317D	92 1 101 — 1	—	10.8	10.3 — 16.9
90	235 214 280	68 76 76	187 171 216	23 23 35	25 24 30	40 45 44	96.3 106.1 100	96 104 96	39.7 42.9 40	M20 M20 M30	UCF218 UCFX18 UCF318	F218 FX18 F318	UC218 UCX18 UC318	96.1 109 143	71.5 81.9 107	14.5 14.4 13.3	UCF218C — —	UCF218D —	UCF218FC UCFX18C UCF318C	UCF218FD UCFX18D UCF318D	101 1 — 1 — 1	24	11.9	12.9 13.6 20.8
95	290	94	228	35	30	59	121	103	41	M30	UCF319	F319	UC319	153	119	13.3			UCF319C	UCF319D	<u> </u>	40	21.6	23.8

[Remarks] 1) Applicable sizes of grease nipples are shown below. A-1/4-28UNF...... 201~210, X05~X09, 305~308 A-PT 1/8 211~218, X10~X20, 309~328

For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCF206JL3, UC206L3)
 For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units square-flanged type UCF (with set screws)

-	Foleran	ces for	housin	g									
unit : mm													
housing No. $ extsf{A2s}$ X													
F204~ FX05~ F305~ ±0.5 0.7													
F211~ FX11~ F311~ F218 FX20 F328 ±0.8 1													
fa se	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
			unit : mm	1									

Koyo

h	ousing N	0.	$\Delta N_{\rm Ns}$								
F204~ F218	FX05~ FX18	F305~ F315	±0.2								
	FX20 F316~ F328										
$\Delta N_{\rm s}$: deviation of bolt hole diameter.											

Shaft dia. (mm)				[Dimension (mm)	ıs				Bolt	Unit No.	Housing			le bearin ad ratings	g Factor		Unit No. w	ith covers		Cover dimensions		efer.) ass (kg)
d	L	A	J	N	A_1	A_2	A_0	В	S	size	Unit NO.	No.	No.	$C_{\rm r}$ (k	$(N) = C_{0r}$	fo		teel covers Closed end	Cast iro Open ends			Pressed steel covers	Cast iron covers
100	268 310	97 94	211 242	31 38	28 32	59 59	127.3 125	117.5 108	49.2 42	M27 M33	UCFX20 UCF320	FX20 F320	UCX20 UC320	133 173	105 141	14.4 13.2			UCFX20C UCF320C	UCFX20D UCF320D	— 152 — 146	19.4 25.8	21.6 28.6
105	310	94	242	38	32	59	127	112	44	M33	UCF321	F321	UC321	184	153	13.2		_	UCF321C	UCF321D	— 148	30.2	33.2
110	340	96	266	41	35	60	131	117	46	M36	UCF322	F322	UC322	205	180	13.2		_	UCF322C	UCF322D	— 154	35.3	41.7
120	370	110	290	41	40	65	140	126	51	M36	UCF324	F324	UC324	207	185	13.5	—	—	UCF324C	UCF324D	— 163	47.3	52.1
130	410	115	320	41	45	65	146	135	54	M36	UCF326	F326	UC326	229	214	13.6		—	UCF326C	UCF326D	— 172	65.5	71.6
140	450	125	350	41	55	75	161	145	59	M36	UCF328	F328	UC328	253	246	13.6		_	UCF328C	UCF328D	— 186	93.4	101

[Remarks] 1) Applicable sizes of grease nipples are shown below. A-1/4-28UNF...... 201~210, X05~X09, 305~308 A-PT 1/8...... 211~218, X10~X20, 309~328

Por bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCF206JL3, UC206L3)
 For more detailed information, refer to ball bearing for unit specification tables.

Cast iron cover

 $\frac{A_1}{A_2}$

A

Ball bearing units square-flanged type with spigot joint UCFS (with set screws)

 $d = 25 \sim 105 \text{ mm}$

			Tolera	ances fo	or housing
				unit : mm	
housing No.	ΔH_{3s}	⊿A2s	X	Y	
FS305	0 -0.046				
FS306~ FS308	0 -0.054	±0.5	0.7	0.2	
FS309~ FS310	0				<i>∐H</i> 3s:devi
FS311~ FS313	-0.063			0.3	diam diam
FS314~ FS319	0 -0.072			~FS318 FS319~	face
FS320~ FS322	0 -0.081	±0.8		0.4	X : posi Y : circu
FS324~ FS328	0 -0.089			0.4	spig

5		
	1	unit : mm
	housing No.	$\Delta N_{\rm Ns}$
	FS305~315	±0.2
	FS316~328	±0.3
	⊿Ns : deviation of diameter.	bolt hole
diamete : deviatior	n of spigot joint out r. n of distance from n entre of spherical	mounting
: positiona : circumfe spigot jo	al tolerance of bolt rential runout tole int in respect to ax I bearing seating.	rance of

Koyo

															 	- <u>A</u>	c						
Shaft dia. (mm)					Dii	mensio (mm)	ons					Bolt		Housing	4	Applicabl	e bearing d ratings	g Factor	Unit No. v	ith covers	Cover dimensions		fer.)
d	L	H_3	J	N	A_1	$(\Pi\Pi)$ A_2	A_3	A_4	A_5	В	S	size	Unit No.	Housing No.	No.			f ₀	Open ends	Closed end	(mm) $A_{\rm c}$	No cover	iss (kg) Cast iron covers
25	110	80	80	16	13	9	7	22	32	38	15	M14	UCFS305	FS305	UC305	21.2	10.9	12.6	UCFS305C	UCFS305D	47	1.4	1.7
30	125	90	95	16	15	10	8	24	36	43	17	M14	UCFS306	FS306	UC306	26.7	15.0	13.3	UCFS306C	UCFS306D	51	1.9	2.2
35	135	100	100	19	16	11	9	27	40	48	19	M16	UCFS307	FS307	UC307	33.4	19.3	13.2	UCFS307C	UCFS307D	55	2.3	2.7
40	150	115	112	19	17	13	10	30	46	52	19	M16	UCFS308	FS308	UC308	40.7	24.0	13.2	UCFS308C	UCFS308D	61	3.4	3.9
45	160	125	125	19	18	14	11	33	49	57	22	M16	UCFS309	FS309	UC309	48.9	29.5	13.3	UCFS309C	UCFS309D	65	4.4	5.0
50	175	140	132	23	19	16	12	36	55	61	22	M20	UCFS310	FS310	UC310	62.0	38.3	13.2	UCFS310C	UCFS310D	71	5.3	6.1
55	185	150	140	23	20	17	13	39	58	66	25	M20	UCFS311	FS311	UC311	71.6	45.0	13.2	UCFS311C	UCFS311D	74	6.1	7.0
60	195	160	150	23	22	19	14	42	64	71	26	M20	UCFS312	FS312	UC312	81.9	52.2	13.2	UCFS312C	UCFS312D	81	7.4	8.6
65	208	175	166	23	22	15	18	40	60	75	30	M20	UCFS313	FS313	UC313	92.7	59.9	13.2	UCFS313C	UCFS313D	76	8.8	9.9
70	226	185	178	25	25	18	18	43	63	78	33	M22	UCFS314	FS314	UC314	104	68.2	13.2	UCFS314C	UCFS314D	80	11.2	12.3
75	236	200	184	25	25	21	18	48	71	82	32	M22	UCFS315	FS315	UC315	113	77.2	13.2	UCFS315C	UCFS315D	88	13.7	15.0
80	250	210	196	31	27	18	20	48	70	86	34	M27	UCFS316	FS316	UC316	123	86.7	13.3	UCFS316C	UCFS316D	87	15.1	16.5
85	260	220	204	31	27	24	20	54	80	96	40	M27	UCFS317	FS317	UC317	133	96.8	13.3	UCFS317C	UCFS317D	97	17.3	18.9
90	280	240	216	35	30	24	20	56	80	96	40	M30	UCFS318	FS318	UC318	143	107	13.3	UCFS318C	UCFS318D	99	21.3	23.2
95	290	250	228	35	30	39	20	74	101	103	41	M30	UCFS319	FS319	UC319	153	119	13.3	UCFS319C	UCFS319D	120	24.5	26.7
100	310	260	242	38	32	39	20	74	105	108	42	M33	UCFS320	FS320	UC320	173	141	13.2	UCFS320C	UCFS320D	126	29.5	32.3
105	310	260	242	38	32	39	20	74	107	112	44	M33	UCFS321	FS321	UC321	184	153	13.2	UCFS321C	UCFS321D	128	32.7	35.7

Bearings with triple-lip seals are indicated by L3 after the bearing and unit number. (UCFS307JL3, UC307L3)

3) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units square-flanged type with spigot joint UCFS (with set screws)

 $d 110 \sim 140 \text{ mm}$

				Tolera	ances fo	or housing
					unit : mm	
hous	sing No.	ΔH_{3s}	⊿A2s	X	Y	
FS	305	0 -0.046				
	306~ 308	0 -0.054	±0.5	0.7	0.2	
FS FS	309~ 310	0				<i>∆H</i> 3s:devia
FS	311~ 313	-0.063			0.3	diam ⊿A2s : devia
	314~ 319	0 -0.072	+0.8		~FS318 FS319~	face
	320~ 322	0 -0.081	±0.0		0.4	X : posit Y : circu
	324~ 328	0 -0.089			0.4	spige sphe

0		
	1	unit : mm
	housing No.	$\Delta N_{\rm S}$
	FS305~315	±0.2
	FS316~328	±0.3
	⊿Ns : deviation of diameter.	bolt hole
∠H3s : deviation diamete	n of spigot joint ou r.	tside
⊿A2s : deviation	n of distance from i	mounting
	entre of spherical	bearing
seating. X : positiona	al tolerance of bolt	hole.
spigot jo	rential runout tole int in respect to ax I bearing seating.	

Koyo

Shaft dia. (mm)					Dir	nensio (mm)						Bolt	Unit No.	Housing		Applicable beari Basic load ratings		Unit No. v	vith covers	Cover dimensions		fer.) ISS (kg)
d	L	H_3	J	N	A_1	A_2	A_3	A_4	A_5	В	\boldsymbol{S}	size	onic No.	No.	No.	$C_{\rm r} \overset{(\rm kN)}{C_{0\rm r}}$	f_0	Open ends	Closed end	(mm) A _c	No cover	Cast iron covers
110	340	300	266	41	35	35	25	71	106	117	46	M36	UCFS322	FS322	UC322	205 180	13.2	UCFS322C	UCFS322D	129	39.0	42.4
120	370	330	290	41	40	35	30	80	110	126	51	M36	UCFS324	FS324	UC324	207 185	13.5	UCFS324C	UCFS324D	133	50.6	55.4
130	410	360	320	41	45	35	30	85	116	135	54	M36	UCFS326	FS326	UC326	229 214	13.6	UCFS326C	UCFS326D	142	67.7	73.8
140	450	400	350	41	55	45	30	95	131	145	59	M36	UCFS328	FS328	UC328	253 246	13.6	UCFS328C	UCFS328D	156	94.0	102

Bearings with triple-lip seals are indicated by L3 after the bearing and unit number. (UCFS307JL3, UC307L3)
 For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units rhombic-flanged type UCFL (with set screws) *d* **12** ~ **55 mm**

Pressed steel cover

A A_2

	r	nousing No).
Ac	FL204~ FL218	FLX05~ FLX10	FL3 FL3
			FL3 FL3
<u>s</u>	$\Delta N_{\rm S}$: de	viation of	bolt
	FL204JE3 covers) ar		
			FL20 FL20

housing No.

FL204JE3 L_{c} = 65 mm FL205JE3 L_{c} = 73 mm

Cast iron cover

	unit : mm					unit : mr
	$\Delta N_{\rm S}$	h	ousing No).	⊿A2s	X
FL305~ FL311	±0.2	FL204~ FL210	FLX05~ FLX10	FL305~ FL310	±0.5	0.7
FL312~ FL328	±0.3	FL211~ FL218		FL311~ FL328	±0.8	1
olt hole (with cas	diameter.			f distance tre of spł		

Tolerances for housing

X: positional tolerance of bolt hole.

Koyo

unit : mm

Shaft dia. (mm)					Dime (m	nsions m)					Bolt		Housing			le bearin ad ratings	g Factor		Unit No. w	vith covers		Cov		(Refer Unit mass	
d	Η	L	A	J	N	A_1	A_2	A_0	В	S	size	Unit No.	No.	No.		$(KN) C_{0r}$	fo		teel covers Closed end	Cast iro Open ends	n covers Closed end	(mr A _s	n) A _c	Pressed steel covers ir	Cast
12	113	60	25.5	90	12	11	15	33.3	31	12.7	M10	UCFL201	FL204	UC201	12.8	6.65	13.2	UCFL201C	UCFL201D	—	—	37	_	0.50	_
15	113	60	25.5	90	12	11	15	33.3	31	12.7	M10	UCFL202	FL204	UC202	12.8	6.65	13.2	UCFL202C	UCFL202D			37	_	0.48	_
17	113	60	25.5	90	12	11	15	33.3	31	12.7	M10	UCFL203	FL204	UC203	12.8	6.65	13.2	UCFL203C	UCFL203D	_	_	37	_	0.47	_
20	113	60	25.5	90	12	11	15	33.3	31	12.7	M10	UCFL204	FL204	UC204	12.8	6.65	13.2	UCFL204C	UCFL204D	UCFL204FC	UCFL204FD	37	46	0.45	0.60
25	130 141 150	68 83 80	27 30 29	99 117 113	16 12 19	13 13 13	16 18 16	35.8 40.2 39	34.1 38.1 38	14.3 15.9 15	M14 M10 M16	UCFL205 UCFLX05 UCFL305	FL205 FLX05 FL305	UC205 UCX05 UC305	14.0 19.5 21.2	7.85 11.3 10.9	13.9 13.9 12.6	UCFL205C UCFLX05C —	UCFL205D UCFLX05D —	UCFL205FC UCFL305C	UCFL205FD UCFL305D	44	49 54	1.1	0.83 1.4
30	148 156 180	80 95 90	31 34 32	117 130 134	16 16 23	13 14 15	18 19 18	40.2 44.4 44	38.1 42.9 43	15.9 17.5 17	M14 M14 M20	UCFL206 UCFLX06 UCFL306	FL206 FLX06 FL306	UC206 UCX06 UC306	19.5 25.7 26.7	11.3 15.4 15.0	13.9 13.9 13.3	UCFL206C UCFLX06C —	UCFL206D UCFLX06D —	UCFL206FC UCFL306C	UCFL206FD UCFL306D	49	53 59	1.5	1.2 1.8
35	161 171 185	90 105 100	34 38 36	130 144 141	16 16 23	14 14 16	19 21 20	44.4 51.2 49	42.9 49.2 48	17.5 19 19	M14 M14 M20	UCFL207 UCFLX07 UCFL307	FL207 FLX07 FL307	UC207 UCX07 UC307	25.7 29.1 33.4	15.4 17.8 19.3	13.9 14.0 13.2	UCFL207C UCFLX07C —	UCFL207D UCFLX07D —	UCFL207FC UCFL307C	UCFL207FD UCFL307D	55	58 64	1.2 1.9 1.8	1.6 2.2
40	175 179 200	100 111 112	36 40 40	144 148 158	16 16 23	14 14 17	21 22 23	51.2 52.2 56	49.2 49.2 52	19 19 19	M14 M14 M20	UCFL208 UCFLX08 UCFL308	FL208 FLX08 FL308	UC208 UCX08 UC308	29.1 32.7 40.7	17.8 20.3 24.0	14.0 14.0 13.2	UCFL208C UCFLX08C —	UCFL208D UCFLX08D —	UCFL208FC UCFL308C	UCFL208FD UCFL308D	56	64 71	1.6 2.1 2.5	2.0 3.0
45	188 189 230	108 116 125	38 40 44	148 157 177	19 16 25	15 14 18	22 23 25	52.2 55.6 60	49.2 51.6 57	19 19 22	M16 M14 M22	UCFL209 UCFLX09 UCFL309	FL209 FLX09 FL309	UC209 UCX09 UC309	32.7 35.1 48.9	20.3 23.3 29.5	14.0 14.4 13.3	UCFL209C UCFLX09C —	UCFL209D UCFLX09D —	UCFL209FC UCFL309C	UCFL209FD UCFL309D	60	66 76	1.9 2.4 3.5	2.3 4.1
50	197 216 240	115 133 140	40 44 48	157 184 187	19 19 25	15 20 19	22 26 28	54.6 59.4 67	51.6 55.6 61	19 22.2 22	M16 M16 M22	UCFL210 UCFLX10 UCFL310	FL210 FLX10 FL310	UC210 UCX10 UC310	35.1 43.4 62.0	23.3 29.4 38.3	14.4 14.4 13.2	UCFL210C UCFLX10C —	UCFL210D UCFLX10D —	UCFL210FC UCFL310C	UCFL210FD UCFL310D	64	70.5 — 83	2.2 3.8 4.4	2.7 5.2
55	224 250	130 150	43 52	184 198	19 25	18 20	25 30	58.4 71	55.6 66	22.2 25	M16 M22	UCFL211 UCFL311	FL211 FL311	UC211 UC311	43.4 71.6	29.4 45.0	14.4 13.2	UCFL211C	UCFL211D	UCFL211FC UCFL311C	UCFL211FD UCFL311D		74.5 87	3.3 5.3	3.9 6.2

Bearings with triple-lip seals are indicated by L3 after the bearing and unit number. (UCFS307JL3, UC307L3)
 For more detailed information, refer to ball bearing for unit specification tables.

B 501

Ball bearing units rhombic-flanged type UCFL (with set screws) *d* **60** ~ **140 mm**

Tolerances	for	housing
------------	-----	---------

			unit : mm					unit : mm
ł	ousing No).	ΔNs	ł	nousing No).	⊿A2s	X
FL204~ FL218	FLX05~ FLX10	FL305~ FL311	±0.2	FL204~ FL210	FLX05~ FLX10	FL305~ FL310	±0.5	0.7
		FL312~ FL328	±0.3	FL211~ FL218		FL311~ FL328	±0.8	1
⊿ _{Ns} : de	viation of	bolt hole	diameter.		eviation o	f distance	e from mo	ounting

face to centre of spherical bearing seating. X: positional tolerance of bolt hole.

Koyo

Shaft dia.					Dimer	nsions									Applicat	le bearin	g		Unit No. w	ith covers		Cover	(Refer.)
(mm)					(m	m)					Bolt size	Unit No.	Housing No.	No.		ad ratings (N)	Factor	Proceedie	teel covers	Castira	n covers	dimensions (mm)	Unit mass (kg)
d	Н	L	Α	J	Ν	A_1	A_2	A_0	В	S	size		INO.	NO.	$C_{\rm r}$	C_{0r}	fo		Closed end		Closed end	$A_{\rm s} A_{\rm c}$	Pressed Cast steel covers iron covers
60	250	140	48	202	23	18	29	68.7	65.1	25.4	M20	UCFL212	FL212	UC212	52.4	36.2	14.4	UCFL212C	UCFL212D	UCFL212FC	UCFL212FD	73 86	4.2 5.0
	270	160	56	212	31	22	33	78	71	26	M27	UCFL312	FL312	UC312	81.9	52.2	13.2			UCFL312C	UCFL312D	— 95	6.5 7.7
65	258 295	155 175	50 58	210 240	23 31	20 25	30 33	69.7 78	65.1 75	25.4 30	M20 M27	UCFL213 UCFL313	FL213 FL313	UC213 UC313	57.2 92.7	40.1 59.9	14.4 13.2	UCFL213C	UCFL213D	UCFL213FC UCFL313C	UCFL213FD UCFL313D	74 87 — 94	5.1 5.9 8.5 9.6
		-			-										-								
70	265 315	160 185	54 61	216 250	23 35	20 28	31 36	75.4 81	74.6 78	30.2 33	M20 M30	UCFL214 UCFL314	FL214 FL314	UC214 UC314	62.2 104	44.1 68.2	14.5 13.2	UCFL214C	UCFL214D	UCFL214FC UCFL314C	UCFL214FD UCFL314D	80 93 — 98	5.7 6.6 9.7 10.8
75	275	165	56	225	23	20	34	78.5	77.8	33.3	M20	UCFL215	FL215	UC215	67.4	48.3	14.5	UCFL215C	UCFL215D	UCFL215FC	UCFL215FD	83 96	6.4 7.4
75	320	195	66	260	35	30	39	89	82	32	M30	UCFL315	FL315	UC315	113	77.2	13.2			UCFL315C	UCFL315D	<u> </u>	11.3 12.6
80	290	180	58	233	25	20	34	83.3	82.6	33.3	M22	UCFL216	FL216	UC216	72.7	53.0	14.6	UCFL216C	UCFL216D	UCFL216FC	UCFL216FD	88 103	7.8 9.0
	355	210	68	285	38	32	38	90	86	34	M33	UCFL316	FL316	UC316	123	86.7	13.3	—	—	UCFL316C	UCFL316D	— 107	14.4 15.8
85	305	190	63	248	25	22	36	87.6	85.7	34.1	M22	UCFL217	FL217	UC217	84.0	61.9	14.5	UCFL217C	UCFL217D	UCFL217FC	UCFL217FD	92 107	9.8 11.2
	370	220	74	300	38	32	44	100	96	40	M33	UCFL317	FL317	UC317	133	96.8	13.3			UCFL317C	UCFL317D	117	16.0 17.6
90	320 385	205 235	68 76	265 315	25 38	23 36	40 44	96.3 100	96 96	39.7 40	M22 M33	UCFL218 UCFL318	FL218 FL318	UC218 UC318	96.1 143	71.5 107	14.5 13.3	UCFL218C	UCFL218D	UCFL218FC UCFL318C	UCFL218FD UCFL318D	101 116 — 119	12.3 13.8 19.0 20.9
			-												-	-							
95	405	250	94	330	41	40	59	121	103	41	M36	UCFL319	FL319	UC319	153	119	13.3			UCFL319C	UCFL319D	140	24.6 26.8
100	440	270	94	360	44	40	59	125	108	42	M39	UCFL320	FL320	UC320	173	141	13.2		_	UCFL320C	UCFL320D	— 146	29.4 32.2
105	440	270	94	360	44	40	59	127	112	44	M39	UCFL321	FL321	UC321	184	153	13.2	—	—	UCFL321C	UCFL321D	— 148	34.4 37.4
110	470	300	96	390	44	42	60	131	117	46	M39	UCFL322	FL322	UC322	205	180	13.2	_	_	UCFL322C	UCFL322D	— 154	36.2 39.6
120	520	330	110	430	47	48	65	140	126	51	M42	UCFL324	FL324	UC324	207	185	13.5			UCFL324C	UCFL324D	— 163	51.6 56.4
130	550	360	115	460	47	50	65	146	135	54	M42	UCFL326	FL326	UC326	229	214	13.6			UCFL326C	UCFL326D	— 172	61.6 67.7
140	600	400	125	500	51	60	75	161	145	59	M45	UCFL328	FL328	UC328	253	246	13.6	—	—	UCFL328C	UCFL328D	— 186	68.4 76.1

[Remarks] 1) Applicable sizes of grease nipples are shown below. A-1/4-28UNF...... 201~210, X05~X09, 305~308 A-PT 1/8 211~217, X10~X17, 309~328

Bearings with triple-lip seals are indicated by L3 after the bearing and unit number. (UCFS307JL3, UC307L3)
 For more detailed information, refer to ball bearing for unit specification tables.

B 502

Ball bearing units light duty rhombic-flanged type BLF (with set screws) d 12 ~ 35 mm

Shaft dia. (mm)						ensions nm)					Bolt	Helt Ne	Housing		Applicab Basic loa	le bearing d ratings	Factor	(Refer.) Unit
d	Η	L	A	<i>J</i> ±0.7	N ±0.2	A_1	$egin{array}{c} A_2\ \pm 0.5 \end{array}$	A_0	В	S	size	Unit No.	No.	No.	(k C _r	N) C _{0r}	f_0	mass (kg)
12	81	52	18	63.5	8	9.5	9.5	25.5	22	6	M6	BLF201	LF203	SB201	9.55	4.80	13.2	0.25
15	81	52	18	63.5	8	9.5	9.5	25.5	22	6	M6	BLF202	LF203	SB202	9.55	4.80	13.2	0.25
17	81	52	18	63.5	8	9.5	9.5	25.5	22	6	M6	BLF203	LF203	SB203	9.55	4.80	13.2	0.25
20	90	60	20	71.5	10	11	11	29	25	7	M8	BLF204	LF204	SB204	12.8	6.65	13.2	0.33
25	95	64	20	76	10	11	11	30.5	27	7.5	M8	BLF205	LF205	SB205	14.0	7.85	13.9	0.38
30	113	76	22.5	90.5	12	12	12	34	30	8	M10	BLF206	LF206	SB206	19.5	11.3	13.9	0.57
35	122	89	24	100	12	13	13	36.5	32	8.5	M10	BLF207	LF207	SB207	25.7	15.4	13.9	0.77

[Remarks] 1) The radial loading on housing shoud not exceed 50% of the basic load rating (C_r) . 2) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units -"compact" series rhombic-flanged type UFL (with set screws) $d = \mathbf{8} \sim \mathbf{30} \text{ mm}$

Ac

Tolerance for I	nousing
	unit : mm
housing No.	X
FL000~FL006	0.6

Kovo

X : positional tolerance of bolt hole.

Shaft dia.					Dimer (m:						Bolt		Housing		Applicabl Basic load	e bearing	Factor	Unit No. v	with covers	Cover dimension	(Refer.) Unit
d	Н	L	A	J	N ±0.2	A_1	$A_2_{\pm 0.5}$	A_0	В	S	size	Unit No.	No.	No.	(kl Cr	0	f ₀	Open ends	Closed end	(mm) A _s	mass (kg)
8	48	27	8.5	37	4.8	4	4	12.5	12	3.5	M4	UFL08	FL08	SU08	3.27	1.37	12.4		_	_	0.030
10	60	36	12	45	7	6	6	16	15	5	M6	UFL000	FL000	SU000	4.55	1.95	12.3	UFL000C	UFL000D	20.5	0.050
12	63	38	12	48	7	6	6	16	15	5	M6	UFL001	FL001	SU001	5.10	2.40	13.2	UFL001C	UFL001D	20.5	0.065
15	67	42	13	53	7	6.5	6.5	17.5	16.5	5.5	M6	UFL002	FL002	SU002	5.60	2.85	13.9	UFL002C	UFL002D	22	0.085
17	71	46	14	56	7	7	7	18.5	17.5	6	M6	UFL003	FL003	SU003	6.00	3.25	14.4	UFL003C	UFL003D	23.5	0.11
20	90	55	16	71	10	8	8	22	21	7	M8	UFL004	FL004	SU004	9.40	5.05	13.9	UFL004C	UFL004D	27	0.18
25	95	60	16	75	10	8	8	23	22	7	M8	UFL005	FL005	SU005	10.1	5.85	14.5	UFL005C	UFL005D	28	0.23
30	112	70	18	85	13	9	9	26	24.5	7.5	M10	UFL006	FL006	SU006	13.2	8.25	14.7	UFL006C	UFL006D	31	0.31

[Remarks] 1) Housing is made from special light alloy. 2) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units stainless-series rhombic-flanged type UCSFL-H1S6 (with set screws)

d 12 ~ 50 mm

Pressed stainless steel covers

 unit : mm

 housing No.
 X

 SFL203 H1-210 H1
 0.7

 X : positional tolerance of bolt hole.

Tolerance for housing

Kovo

Shaft dia. (mm)						nsions					Bolt		Housing		Applicab Basic loa	le bearing id ratings	Factor	Unit No. w	ith covers	Cover dimension	(Refer.) Unit mass (kg)
d	Н	L	A	J	N ±0.2	A_1	$A_2_{\pm 0.5}$	A_0	В	S	size	Unit No.	No.	No.	(k C _r	N) C _{0r}	f_0	Open ends	Closed end	$\stackrel{(\rm mm)}{A_{\rm s}}$	Pressed steel covers
12	98	54	24	76.5	12	10	14	29.9	27.4	11.5	M10	UCSFL201XH1S6	SFL203H1	UC201XS6	8.15	3.85	13.2	—	—		0.31
15	98	54	24	76.5	12	10	14	29.9	27.4	11.5	M10	UCSFL202XH1S6	SFL203H1	UC202XS6	8.15	3.85	13.2	—	—		0.31
17	98	54	24	76.5	12	10	14	29.9	27.4	11.5	M10	UCSFL203XH1S6	SFL203H1	UC203XS6	8.15	3.85	13.2	—	_		0.31
20	113	60	26	90	12	10	15	33.3	31	12.7	M10	UCSFL204H1S6	SFL204H1	UC204S6	10.9	5.35	13.2	UCSFL204H1CS6	UCSFL204H1DS6	38	0.43
25	130	68	27.5	99	16	10	16	35.8	34.1	14.3	M14	UCSFL205H1S6	SFL205H1	UC205S6	11.9	6.30	13.9	UCSFL205H1CS6	UCSFL205H1DS6	40	0.60
30	148	80	31	117	16	10	18	40.2	38.1	15.9	M14	UCSFL206H1S6	SFL206H1	UC206S6	16.5	9.05	13.9	UCSFL206H1CS6	UCSFL206H1DS6	45	0.86
35	161	90	34	130	16	11	19	44.4	42.9	17.5	M14	UCSFL207H1S6	SFL207H1	UC207S6	21.8	12.3	13.9	UCSFL207H1CS6	UCSFL207H1DS6	49	1.1
40	175	100	36	144	16	12	21	51.2	49.2	19	M14	UCSFL208H1S6	SFL208H1	UC208S6	24.8	14.3	14.0	UCSFL208H1CS6	UCSFL208H1DS6	56	1.5
45	188	108	38	148	19	13	22	52.2	49.2	19	M16	UCSFL209H1S6	SFL209H1	UC209S6	27.8	16.2	14.0	UCSFL209H1CS6	UCSFL209H1DS6	57	1.8
50	197	115	40	157	19	13	22	54.6	51.6	19	M16	UCSFL210H1S6	SFL210H1	UC210S6	29.8	18.6	14.4	UCSFL210H1CS6	UCSFL210H1DS6	59	2.1

[Remarks] 1) Applicable size of grease nipples is A-1/4-28UNF.

2) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units round-flanged type with spigot joint UCFC (with set screws)

 $d = 12 \sim 65 \text{ mm}$

 $4 - \phi N$

dH

dHald 1 Α

unit : mm Y housing No. ΔH_{3s} ⊿A2s Χ FC204~ FC206 0 -0.046 FCX05 ±0.5 0.7 0.2 FCX06~ FCX10 FC207~ FC210 0 -0.054 FC211~ FC217 FCX11~ FCX15 0 -0.063 0.3 FCX16~ FCX18 ±0.8 1 FC218 Λ -0.072 FCX20 0.4

Tolerances for housing

 $\varDelta_{\rm H3s}$: deviation of spigot joint outside diameter. $\varDelta_{\rm A2s}$: deviation of distance from mounting face to centre of spherical bearing seating. X: positional tolerance of bolt hole. Y: circumferential runout tolerance of spigot joint in respect to axial line of spherical bearing seating.

Shaft dia. (mm)					Dir	nensio (mm)	ons					Bolt	11 - N	Housing	A	pplicable Basic load		g Factor		Unit No. w	ith covers		Cove dimens	-	(Ref	
d	L	H_3	J	J_1	N ±0.2	A_1	A_2	A_3	A_4	В	S	size	Unit No.	No.	No.	$C_{ m r}^{ m (kl}$	C_{0r}	f_0		teel covers Closed end		n covers Closed end	$(mn A_s)$	n) A _c	Pressed steel covers	Cast iron covers
12	100	62	78	55.1	12	20.5	10	5	28.3	31	12.7	M10	UCFC201	FC204	UC201	12.8	6.65	13.2	UCFC201C	UCFC201D	—	—	32		0.78	_
15	100	62	78	55.1	12	20.5	10	5	28.3	31	12.7	M10	UCFC202	FC204	UC202	12.8	6.65	13.2	UCFC202C	UCFC202D	—	—	32	_	0.76	_
17	100	62	78	55.1	12	20.5	10	5	28.3	31	12.7	M10	UCFC203	FC204	UC203	12.8	6.65	13.2	UCFC203C	UCFC203D	—	—	32		0.75	_
20	100	62	78	55.1	12	20.5	10	5	28.3	31	12.7	M10	UCFC204	FC204	UC204	12.8	6.65	13.2	UCFC204C	UCFC204D	UCFC204FC	UCFC204FD	32	38.5	0.73	0.84
25	115 111	70 76	90 92	63.6 65	12 9.5	21 24	10 10	6 6			14.3 15.9	M10 M8	UCFC205 UCFCX05	FC205 FCX05	UC205 UCX05	14.0 19.5	7.85 11.3	13.9 13.9	UCFC205C UCFCX05C	UCFC205D UCFCX05D	UCFC205FC	UCFC205FD		42	0.95 1.2	1.1
30	125 127	80 85	100 105	70.7 74.2	12 12	23 22.5	10 8	8 9.5	32.2 33.4		15.9 17.5	M10 M10	UCFC206 UCFCX06	FC206 FCX06	UC206 UCX06	19.5 25.7	11.3 15.4	13.9 13.9	UCFC206C UCFCX06C	UCFC206D UCFCX06D	UCFC206FC	UCFC206FD		45	1.3 1.5	1.6
35	135 133	90 92	110 111			26 26	11 9	8 11	36.4 39.2		17.5 19	M12 M10	UCFC207 UCFCX07	FC207 FCX07	UC207 UCX07	25.7 29.1	15.4 17.8	13.9 14.0	UCFC207C UCFCX07C	UCFC207D UCFCX07D	UCFC207FC	UCFC207FD	40	50	1.7 1.9	2.1
40	145 133	100 92	120 111	84.8 78.5	14 12	26 26	11 9	10 11	41.2 39.2	49.2 49.2	-	M12 M10	UCFC208 UCFCX08	FC208 FCX08	UC208 UCX08	29.1 32.7	17.8 20.3	14.0 14.0	UCFC208C UCFCX08C	UCFC208D UCFCX08D	UCFC208FC	UCFC208FD		54	2.0 2.0	2.4
45	160 155	105 108	132 130	93.3 91.9	16 14	26 25	10 8	12 12		49.2 51.6		M14 M12	UCFC209 UCFCX09	FC209 FCX09	UC209 UCX09	32.7 35.1	20.3 23.3	14.0 14.4	UCFC209C UCFCX09C	UCFC209D UCFCX09D	UCFC209FC	UCFC209FD	45	54	2.6 2.6	3.0
50	165 162	110 118	138 136	97.6 96.2	16 14	28 25	10 7	12 16		51.6 55.6	19 22.2	M14 M12	UCFC210 UCFCX10	FC210 FCX10	UC210 UCX10	35.1 43.4	23.3 29.4	14.4 14.4	UCFC210C UCFCX10C	UCFC210D UCFCX10D	UCFC210FC	UCFC210FD		58.5	2.9 3.2	3.4
55	185 180	125 127		106.1 107.5	19 16	31 26	13 4	12 22	46.4 43.7		22.2 25.4	M16 M14	UCFC211 UCFCX11	FC211 FCX11	UC211 UCX11	43.4 52.4	29.4 36.2	14.4 14.4	UCFC211C UCFCX11C	UCFC211D UCFCX11D	UCFC211FC	UCFC211FD	1.0	62.5	4.2 4.3	4.8
60	195 194	135 140		113.1 116.7		36 33	17 11	12 20	56.7 50.7		25.4 25.4	M16 M14	UCFC212 UCFCX12	FC212 FCX12	UC212 UCX12	52.4 57.2	36.2 40.1	14.4 14.4	UCFC212C UCFCX12C	UCFC212D UCFCX12D	UCFC212FC	UCFC212FD		74	5.0 5.3	5.8
65		145 140	165	120.2 116.7		36 33	16 11	14 20			25.4 30.2	M16 M14	UCFC213 UCFCX13	FC213 FCX13	UC213 UCX13	57.2 62.2	40.1 44.1	14.4 14.5	UCFC213C UCFCX13C	UCFC213D UCFCX13D	UCFC213FC	UCFC213FD —	00	73	5.6 5.7	6.4

For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCFC206JL3, UC206L3)

3) For more detailed information, refer to ball bearing for unit specification tables.

B 511

Koyo

Ball bearing units round-flanged type with spigot joint UCFC (with set screws)

 $d ~70 \sim 100 \text{ mm}$

Tolerances for housing

Kovo

 $\varDelta_{\rm H3s}$: deviation of spigot joint outside diameter. $\varDelta_{\rm A2s}$: deviation of distance from mounting face to centre of spherical bearing seating. X: positional tolerance of bolt hole. Y: circumferential runout tolerance of spigot joint in respect to axial line of spherical bearing seating.

Shaft dia. (mm)					Di	mensi (mm)						Bolt	Here Ma	Housing	4		e bearin ad ratings	g Factor		Unit No. w	vith covers		Cove dimensi	ons U	(Refer.) nit Mass (kg)
d	L	H_3	J	J_1	N ±0.2	A_1	A_2	A_3	A_4	В	S	size	Unit No.	No.	No.	$C_{\rm r}$ (k	$^{ m N)}C_{0 m r}$	f_0	Pressed s Open ends	teel covers Closed end		n covers Closed end	(mm) $A_{\rm s}$		ressed Cast el covers iron covers
70	215 222	150 164	177 190	125.1 134.3	19 19	40 36	17 14	14 20	61.4 58.5		00.2	M16 M16	UCFC214 UCFCX14	FC214 FCX14	UC214 UCX14	62.2 67.4	44.1 48.3	14.5 14.5	UCFC214C UCFCX14C	UCFC214D UCFCX14D	UCFC214FC	UCFC214FD	00	-	6.8 7.7 7.3 —
75	220 222	160 164	184 190	130.1 134.3	19 19	40 35	18 12	16 22	62.5 61.3			M16 M16	UCFC215 UCFCX15	FC215 FCX15	UC215 UCX15	67.4 72.7	48.3 53.0	14.5 14.6	UCFC215C UCFCX15C	UCFC215D UCFCX15D	UCFC215FC	UCFC215FD	00	-	7.2 8.2 8.0 —
80	240 260	170 186	200 219	141.4 154.8	23 23	42 36	18 10	16 25	67.3 61.6		33.3 34.1	M20 M20	UCFC216 UCFCX16	FC216 FCX16	UC216 UCX16	72.7 84.0	53.0 61.9	14.6 14.5	UCFC216C UCFCX16C	UCFC216D UCFCX16D	UCFC216FC	UCFC216FD			8.7 9.9 1.3 —
85	250 260	180 186	208 219	147.1 154.8	23 23	45 36	18 10	18 25	69.6 66.3		34.1 39.7	M20 M20	UCFC217 UCFCX17	FC217 FCX17	UC217 UCX17	84.0 96.1	61.9 71.5	14.5 14.5	UCFC217C UCFCX17C	UCFC217D UCFCX17D	UCFC217FC	UCFC217FD	74	-	0.3 11.7 2.9 —
90	265 260	190 186	220 219	155.5 154.8	23 23	50 43	22 12	18 28	78.3 73.1		39.7 42.9	M20 M20	UCFC218 UCFCX18	FC218 FCX18	UC218 UCX18	96.1 109	71.5 81.9	14.5 14.4	UCFC218C —	UCFC218D —	UCFC218FC UCFCX18C	UCFC218FD UCFCX18D		-	3.3 14.8 3.5 15.4
100	276	206	238	168.3	23	66	22	28	90.3	117.5	49.2	M20	UCFCX20	FCX20	UCX20	133	105	14.4			UCFCX20C	UCFCX20D	— 1 [.]	6 18	8.2 20.7

For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCFC206JL3, UC206L3)

3) For more detailed information, refer to ball bearing for unit specification tables.

 $4 - \phi N$

Ball bearing units pressed steel round-flanged type SBPF (with set screws) d 12 ~ 35 mm

Shaft dia. (mm)					nsions m)				Bolt	Unit No.	Housing			le bearing id ratings	Factor	(Refer.) Unit
d	Н	Α	A_1	<i>J</i> ±0.4	N ±0.25	$H_2^{(1)}$	В	S	size	Offic No.	No.	No.	(k C _r	N) C _{0r}	f_0	(kg)
12	81	14	4	63.5	7.1	49	22	6	M6	SBPF201	PF203	SB201	9.55	4.80	13.2	0.27
15	81	14	4	63.5	7.1	49	22	6	M6	SBPF202	PF203	SB202	9.55	4.80	13.2	0.27
17	81	14	4	63.5	7.1	49	22	6	M6	SBPF203	PF203	SB203	9.55	4.80	13.2	0.27
20	90	16	4	71.5	9	55	25	7	M8	SBPF204	PF204	SB204	12.8	6.65	13.2	0.33
25	95	18	4	76	9	60	27	7.5	M8	SBPF205	PF205	SB205	14.0	7.85	13.9	0.38
30	113	19	5.2	90.5	11	71	30	8	M10	SBPF206	PF206	SB206	19.5	11.3	13.9	0.62
35	122	22	5.2	100	11	81	32	8.5	M10	SBPF207	PF207	SB207	25.7	15.4	13.9	0.82

[Note] 1) H_2 shows minimum dimension of mounting hole. [Remark] For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units pressed steel rhombic-flanged type SBPFL (with set screws) d 12 ~ 35 mm

Shaft dia. (mm)				D	imensio (mm) J	ns N				Bolt size	Unit No.	Housing No.	No.	Basic loa	le bearing ad ratings N)	Factor	(Refer.) Unit mass
d	H	L	Α	A_1	±0.4	±0.25	$H_2^{(1)}$	В	S	5120		140.	110.	$C_{\rm r}$	C_{0r}	f_0	(kg)
12	81	59	14	4	63.5	7.1	49	22	6	M6	SBPFL201	PFL203	SB201	9.55	4.80	13.2	0.19
15	81	59	14	4	63.5	7.1	49	22	6	M6	SBPFL202	PFL203	SB202	9.55	4.80	13.2	0.19
17	81	59	14	4	63.5	7.1	49	22	6	M6	SBPFL203	PFL203	SB203	9.55	4.80	13.2	0.19
20	90	67	16	4	71.5	9	55	25	7	M8	SBPFL204	PFL204	SB204	12.8	6.65	13.2	0.24
25	95	71	18	4	76	9	60	27	7.5	M8	SBPFL205	PFL205	SB205	14.0	7.85	13.9	0.28
30	113	84	19	5.2	90.5	11	71	30	8	M10	SBPFL206	PFL206	SB206	19.5	11.3	13.9	0.38
35	122	94	22	5.2	100	11	81	32	8.5	M10	SBPFL207	PFL207	SB207	25.7	15.4	13.9	0.66

[Note] 1) H_2 shows minimum dimension of mounting hole. [Remark] For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units take-up type UCT (with set screws)

d **12** ~ (55) mm

unit · mm housing No. ⊿A1s ΔH_{1s} X T204~ T210 TX05~ TX10 +0.2 T305~ T310 0 0.5 T211~ T217 TX11~ TX17 T311-T318 0.6 T319~ T322 +0.3 0 -0.8 0.7 T324~ T328 0.8 ZA1s : deviation of nominal raceway groove width

Tolerances for housing

Kovo

 ΔH_{1s} : deviation of distance between both groove bottoms

X: symmetricity tolerance of both groove-side face

Shaft dia. Dimensions Applicable bearing Unit No. with covers Cover (Refer.) (mm) Basic load ratings Factor (mm)Housing dimensions Unit mass (kg) Unit No. No. (kN) Cast iron covers No. Pressed steel covers (mm)Pressed Cast dA A_1 A_2 H H_1 H_2 L L_1 L_2 L_3 N N_1 N_2 B S C_r Closed end Open ends Closed end C_{0r} fo Open ends $A_{\rm s} = A_{\rm c}$ steel covers iron covers 12 **UCT201** T204 UC201 12.8 6.65 13.2 UCT201C UCT201CD 44 0.81 32 12 21 89 76 51 94 61 10 51 19 16 32 31 12.7 15 32 12 21 89 76 51 94 61 10 51 19 16 32 31 12.7 **UCT202** T204 UC202 12.8 6.65 13.2 UCT202C UCT202CD 44 0.79 17 32 10 19 16 32 **UCT203** T204 UC203 12.8 6.65 UCT203C UCT203CD 44 0.78 12 21 89 76 51 94 61 51 31 12.7 13.2 _ 20 32 12 21 89 76 51 94 61 10 51 19 16 32 31 12.7 **UCT204** T204 UC204 12.8 6.65 13.2 UCT204C UCT204CD UCT204FC UCT204FCD 44 62 0.76 1.1 25 32 **UCT205** T205 UC205 7.85 13.9 UCT205C UCT205FC UCT205FCD 66 32 12 24 89 76 51 97 62 10 51 19 16 34.1 14.3 14.0 UCT205CD 48 0.84 1.2 28 22 37 TX05 37 12 102 89 56 113 70 10 57 16 38.1 15.9 UCTX05 UCX05 19.5 11.3 13.9 UCTX05C UCTX05CD 52 1.4 ____ ____ 36 12 26 89 80 62 122 76 12 65 26 16 36 38 15 **UCT305** T305 UC305 21.2 10.9 12.6 UCT305C UCT305CD 76 1.4 2.0 **UCT206** UCT206CD 52 70 30 28 102 89 70 22 37 38.1 15.9 T206 UC206 19.5 11.3 13.9 UCT206C UCT206FC UCT206FCD 1.3 1.8 37 12 56 113 10 57 16 37 12 30 102 89 64 129 78 13 64 22 16 37 42.9 17.5 UCTX06 TX06 UCX06 25.7 15.4 13.9 UCTX06C UCTX06CD 59 1.7 70 137 28 **UCT306** T306 26.7 UCT306C 82 41 16 28 100 90 85 14 74 18 41 43 17 UC306 15.0 13.3 UCT306CD ____ 1.8 2.4 ____ 35 102 129 78 13 22 16 37 42.9 17.5 **UCT207** T207 UC207 25.7 15.4 13.9 UCT207C UCT207CD UCT207FC UCT207FCD 59 78 1.6 2.3 37 12 30 89 64 64 144 15 29 UCTX07 UCTX07CD 2.7 49 16 36 114 102 83 88 83 19 49 49.2 19 TX07 UCX07 29.1 17.8 14 0 UCTX07C 68 ____ ____ 45 16 32 111 100 75 150 94 15 80 30 20 45 48 19 **UCT307** T307 UC307 33.4 19.3 13.2 _ UCT307C UCT307CD ____ 88 2.3 3.1 ____ 40 49 49.2 19 **UCT208** T208 UC208 17.8 UCT208C UCT208CD UCT208FC UCT208FCD 86 49 16 33 114 102 83 144 88 16 83 29 19 29.1 14 0 68 2.5 3.3 49 16 36 117 102 83 144 87 15 83 29 19 49 49.2 19 UCTX08 TX08 UCX08 32.7 20.3 14.0 UCTX08C UCTX08CD 68 2.6 3.0 50 124 112 162 17 89 32 22 50 52 19 **UCT308** T308 UC308 40.7 24.0 13.2 UCT308C 96 4.0 18 34 83 100 UCT308CD ____ ____ 88 **UCT209** 20.3 UCT209CD 68 2.4 45 49 16 35 117 102 83 144 87 16 83 29 19 49 49.2 19 T209 UC209 32.7 14.0 UCT209C UCT209FC UCT209FCD 3.2 38 117 102 83 149 90 16 86 29 19 49 51.6 19 UCTX09 TX09 35.1 23.3 UCTX09C UCTX09CD 73 2.9 49 16 UCX09 14.4 ____ 55 18 38 138 125 90 178 110 18 97 34 24 55 57 22 UCT309 T309 UC309 48.9 29.5 13.3 UCT309C UCT309CD 102 4.1 5.4 ____ 50 **UCT210** T210 UC210 23.3 UCT210C UCT210CD UCT210FC UCT210FCD 73 97 2.6 3.6 49 16 37 117 102 83 149 90 16 86 29 19 49 51.6 19 35.1 14.4 64 22 42 146 130 102 171 106 19 95 35 25 64 55.6 22.2 UCTX10 TX10 UCX10 43.4 29.4 14.4 UCTX10C UCTX10CD 75 4.4 _____ ____ 40 151 140 98 191 117 20 106 37 27 **UCT310** T310 UC310 UCT310C 61 20 61 61 22 62.0 38.3 13.2 UCT310CD 110 6.5 _ ____ ____ 4.9 55 64 22 38 146 130 102 171 106 19 95 35 25 64 55.6 22.2 UCT211 T211 UC211 43.4 29.4 UCT211CD UCT211FC UCT211FCD 75 99 14.4 UCT211C 4.0 5.2

[Remarks] 1) Applicable sizes of grease nipples are shown below B-1/4-28UNF...... 201~210, X05~X09, 305~308

B-PT 1/8 211~217, X10~X17, 309~328

2) For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3.

(UCT206JL3, UC206L3)

3) For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units take-up type UCT (with set screws)

d (55) ~ 100 mm

					unit : mm
h	ousing N	o.	∐A1s	ΔH_{1s}	X
~	TX05~ TX10	T305~ T310	+0.2	0 -0.5	0.5
	TV11	T211			

Kovo

	ousing N	υ.	∠IA18	$\Box H1s$	А
T204~ T210	TX05~ TX10	T305~ T310	+0.2	0 -0.5	0.5
T211~ T217	TX11~ TX17	T311~ T318			0.6
		T319~ T322	+0.3	0 -0.8	0.7
		T324~ T328			0.8

Tolerances for housing

⊿A1s : deviation of nominal raceway groove width. ΔH_{1s} : deviation of distance between both groove bottoms. X: symmetricity tolerance of both groove-side

face.

							1-								
Shaft dia.	Dimensions						e bearing			Unit No. w	ith covers		Cover		Refer.)
(mm)	(mm)	Unit No.	Housing		No.	Basic load	<u> </u>	Factor	Duranada		O a at inc		dimensio		mass (kg)
d	$egin{array}{cccccccccccccccccccccccccccccccccccc$		No.		INO.	(k) C _r	C_{0r}	£.		teel covers Closed end		on covers	(mm) A_s A_s	Pressei steel.com	ed Cast ers iron covers
						Ur	Cor	<i>J</i> 0	Open enus	Closed ella	Open enus	Ciosed end	A _S A	e Steel covi	
55	64 22 44 146 130 102 194 119 19 102 35 32 64 65.1 25.1		TX11		CX11	52.4	36.2	14.4	UCTX11C	UCTX11CD	—	—	88 –	- 5.3	
	66 22 44 163 150 105 207 127 21 115 39 29 66 66 25	UCT311	T311	UC	C311	71.6	45.0	13.2	—	—	UCT311C	UCT311CD	— 1	4 6.1	7.9
60	64 22 42 146 130 102 194 119 19 102 35 32 64 65.1 25.	UCT212	T212		C212	52.4	36.2	14.4	UCT212C	UCT212CD	UCT212FC	UCT212FCD	88 1	4 4.9	6.4
00	70 26 48 167 151 111 224 137 21 121 41 32 70 65.1 25.		TX12		CX12	57.2	40.1	14.4	UCTX12C	UCTX12CD			88 -		
	71 22 46 178 160 113 220 135 23 123 41 31 71 71 26	UCT312	T312		C312	81.9	52.2	13.2			UCT312C	UCT312CD	— 1		
						0110									
65	70 26 44 167 151 111 224 137 21 121 41 32 70 65.1 25.	UCT213	T213	UC	C213	57.2	40.1	14.4	UCT213C	UCT213CD	UCT213FC	UCT213FCD	88 1	4 6.9	8.6
	70 26 48 167 151 111 224 137 21 121 41 32 70 74.6 30.		TX13		CX13	62.2	44.1	14.5	UCTX13C	UCTX13CD	—	—	98 –	- 7.6	i —
	80 26 50 190 170 116 238 146 25 134 43 32 70 75 30	UCT313	T313	UC	C313	92.7	59.9	13.2	—	—	UCT313C	UCT313CD	— 1	.2 9.3	3 11.4
70	70 26 46 167 151 111 224 137 21 121 41 32 70 74.6 30.	UCT214	T214	110	C214	62.2	44.1	14.5	UCT214C	UCT214CD	UCT214FC	UCT214FCD	98 1	4 7.0) 8.9
70	70 26 48 167 151 111 232 140 21 121 41 32 70 77.8 33.		TX14		CX14	67.4	48.3	14.5	UCTX14C	UCTX14CD			98 -		
	90 26 52 202 180 130 252 155 25 140 46 36 85 78 33	UCT314	T314		-	104	68.2	13.2			UCT314C	UCT314CD	— 1		
75	70 26 48 167 151 111 232 140 21 121 41 32 70 77.8 33.		T215	UC	C215	67.4	48.3	14.5	UCT215C	UCT215CD	UCT215FC	UCT215FCD	98 1	4 7.3	9.2
	70 28 48 184 165 111 235 140 21 121 41 32 70 82.6 33.		TX15		CX15	72.7	53.0	14.6	UCTX15C	UCTX15CD	—	—	108 –	- 8.7	_
	90 26 55 216 192 132 262 160 25 150 46 36 85 82 32	UCT315	T315	UC	C315	113	77.2	13.2	—	—	UCT315C	UCT315CD	— 1	13.0) 15.5
80	70 26 51 184 165 111 235 140 21 121 41 32 70 82.6 33	UCT216	T216	10	C216	72.7	53.0	14.6	UCT216C	UCT216CD	UCT216FC	UCT216FCD	108 1	8 8.2	2 10.6
	73 28 54 198 173 124 260 162 28 157 48 38 73 85.7 34	UCTX16	TX16		CX16	84.0	61.9	14.5	UCTX16C	UCTX16CD	_	_	112 -	- 11.7	/ <u> </u>
	102 30 60 230 204 150 282 174 28 160 53 42 98 86 34	UCT316	T316	UC	C316	123	86.7	13.3		_	UCT316C	UCT316CD	— 1	8 16.2	2 19.1
85	73 30 54 198 173 124 260 162 29 157 48 38 73 85.7 34	UCT217	T217		C217	84.0	61.9	14.5	UCT217C	UCT217CD	UCT217FC	UCT217FCD	112 1		
	73 28 54 198 173 124 260 162 28 157 48 38 73 96 39	UCTX17	TX17		CX17	96.1	71.5	14.5	UCTX17C	UCTX17CD	—	—	122 –		
	102 32 64 240 214 152 298 183 30 170 53 42 98 96 40	UCT317	T317	UC	C317	133	96.8	13.3	—		UCT317C	UCT317CD	— 1	6 19.0) 22.3
90	110 32 66 255 228 160 312 192 30 175 57 46 106 96 40	UCT318	T318	UC	C318	143	107	13.3	—	—	UCT318C	UCT318CD	— 1	0 21.6	6 25.4
95	110 35 72 270 240 165 322 197 31 180 57 46 106 103 41	UCT319	T319	UC	C319	153	119	13.3		_	UCT319C	UCT319CD	— 1	2 24.9	9 29.2
100		UCT320	T320	U	C320	173	141	13.2		_	UCT320C	UCT320CD	— 1	4 30.7	7 36.3
											20.0200	2 3 . 0 2 0 0 5			

[Remarks] 1) Applicable sizes of grease nipples are shown below. B-1/4-28UNF...... 201~210, X05~X09, 305~308 B-PT 1/8...... 211~217, X10~X17, 309~328

Por bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCT206JL3, UC206L3)
 For more detailed information, refer to ball bearing for unit specification tables.

Ball bearing units take-up type UCT (with set screws)

 $d 105 \sim 140 \text{ mm}$

					unit. min
h	ousing N	о.	⊿A1s	ΔH_{1s}	X
T204~ T210	TX05~ TX10	T305~ T310	+0.2	0 -0.5	0.5
T211~ T217	TX11~ TX17	T311~ T318			0.6
		T319~ T322	+0.3	0 -0.8	0.7
		T324~ T328			0.8

⊿A1s : deviation of nominal raceway groove width. ΔH_{1s} : deviation of distance between both groove bottoms. X: symmetricity tolerance of both groove-side

face.

Shaft dia. (mm)	Dimensions (mm)		Housing				e bearing d ratings	s Factor		Unit No. w	ith covers		Cover dimensions		efer.) ASS (kg)
d	$A \hspace{0.1in} A_1 \hspace{0.1in} A_2 \hspace{0.1in} H \hspace{0.1in} H_1 \hspace{0.1in} H_2 \hspace{0.1in} L \hspace{0.1in} L_1 \hspace{0.1in} L_2 \hspace{0.1in} L_3 \hspace{0.1in} N \hspace{0.1in} N_1 \hspace{0.1in} N_2 \hspace{0.1in} B \hspace{0.1in} S$	Unit No.	No.	No	o.	$C_{\rm r}$ (kl	C_{0r}	f_0	Pressed st Open ends			n covers Closed end	(mm)	Pressed	Cast iron covers
105	120 35 75 290 260 175 345 210 32 200 59 48 115 112 44	UCT321	T321	UC3	321 1	184	153	13.2	—	—	UCT321C	UCT321CD	— 178	36.7	42.7
110	130 38 80 320 285 185 385 235 38 215 65 52 125 117 46	UCT322	T322	UC3	322 2	205	180	13.2	—	_	UCT322C	UCT322CD	— 188	39.7	46.5
120	140 45 90 355 320 210 432 267 42 230 70 60 140 126 51	UCT324	T324	UC3	324 2	207	185	13.5	_	_	UCT324C	UCT324CD	— 196	54.4	63.9
130	150 50 100 385 350 220 465 285 45 240 75 65 150 135 54	UCT326	T326	UC3	326 2	229	214	13.6	_	_	UCT326C	UCT326CD	— 214	69.3	81.4
140	155 50 100 415 380 230 515 315 50 255 80 70 160 145 59	UCT328	T328	UC3	328 2	253	246	13.6	_	_	UCT328C	UCT328CD	— 222	85.1	101

[Remarks] 1) Applicable sizes of grease nipples are shown below. B-1/4-28UNF...... 201~210, X05~X09, 305~308 B-PT 1/8...... 211~217, X10~X17, 309~328

For bearings with double- or triple-lip seals, unit and bearing number are suffixed by L2 or L3. (UCT206JL3, UC206L3)
 For more detailed information, refer to ball bearing for unit specification tables.

Kovo Tolerances for housing

Ball bearing units cartridge type UCC (with set screws) *d* **12** ~ **50 mm**

0

Shaft dia. (mm)		Di	mensio (mm)	ons		Unit No.	Housing		Basic loa		Factor	(Refer.) Unit
d	Η	A	r	В	S	onic ruo.	No.	No.	C _r (k)	N) C _{0r}	f_0	(kg)
12	72	20	1.5	31	12.7	UCC201	C204	UC201	12.8	6.65	13.2	0.52
15	72	20	1.5	31	12.7	UCC202	C204	UC202	12.8	6.65	13.2	0.50
17	72	20	1.5	31	12.7	UCC203	C204	UC203	12.8	6.65	13.2	0.49
20	72	20	1.5	31	12.7	UCC204	C204	UC204	12.8	6.65	13.2	0.47
25	80 90 90	22 27 26	1.5 1.5 2	34.1 38.1 38	14.3 15.9 15	UCC205 UCCX05 UCC305	C205 CX05 C305	UC205 UCX05 UC305	14.0 19.5 21.2	7.85 11.3 10.9	13.9 13.9 12.6	0.64 1.0 1.5
30	85 100 100	27 30 28	1.5 2 2	38.1 42.9 43	15.9 17.5 17	UCC206 UCCX06 UCC306		UC206 UCX06 UC306	19.5 25.7 26.7	11.3 15.4 15.0	13.9 13.9 13.3	0.81 1.3 1.7
35	90 110 110	28 34 32	2 2 3	42.9 49.2 48	17.5 19 19	UCC207 UCCX07 UCC307	C207 CX07 C307	UC207 UCX07 UC307	25.7 29.1 33.4	15.4 17.8 19.3	13.9 14.0 13.2	0.93 1.7 2.2
40	100 120 120	30 38 34	2 2 3	49.2 49.2 52	19 19 19	UCC208 UCCX08 UCC308		UC208 UCX08 UC308	29.1 32.7 40.7	17.8 20.3 24.0	14.0 14.0 13.2	1.2 2.3 2.2
45	110 120 130	31 38 38	2 2 3	49.2 51.6 57	19 19 22	UCC209 UCCX09 UCC309	C209 CX09 C309	UC209 UCX09 UC309	32.7 35.1 48.9	20.3 23.3 29.5	14.0 14.4 13.3	1.5 2.3 2.8
50	120 130 140	33 40 40	2 2.5 3	51.6 55.6 61	19 22.2 22	UCC210 UCCX10 UCC310	C210 CX10 C310	UC210 UCX10 UC310	35.1 43.4 62.0	23.3 29.4 38.3	14.4 14.4 13.2	2.0 2.8 3.2

d 55 ~ 130 mm

Shaft dia. (mm)			mensie (mm)			Unit No.	Housing No.	No.	Basic loa	le bearing ad ratings	Factor	(Refer.) Unit mass
d	Η	Α	r	В	S		110.		$C_{\rm r}$	C_{0r}	f_0	(kg)
55	125	35	2.5	55.6	22.2	UCC211	C211	UC211	43.4	29.4	14.4	2.2
	150	42	2.5	65.1	25.4	UCCX11	CX11	UCX11	52.4	36.2	14.4	4.0
	150	44	3	66	25	UCC311	C311	UC311	71.6	45.0	13.2	3.9
60	130	38	2.5	65.1	25.4	UCC212	C212	UC212	52.4	36.2	14.4	2.6
	160	44	2.5	65.1	25.4	UCCX12	CX12	UCX12	57.2	40.1	14.4	4.6
	160	46	3	71	26	UCC312	C312	UC312	81.9	52.2	13.2	4.8
65	140	40	2.5	65.1	25.4	UCC213	C213	UC213	57.2	40.1	14.4	3.0
	170	50	3	75	30	UCC313	C313	UC313	92.7	59.9	13.2	5.7
70	180	52	3	78	33	UCC314	C314	UC314	104	68.2	13.2	6.7
75	190	55	4	82	32	UCC315	C315	UC315	113	77.2	13.2	7.8
80	200	60	4	86	34	UCC316	C316	UC316	123	86.7	13.3	9.2
85	215	64	4	96	40	UCC317	C317	UC317	133	96.8	13.3	11.7
90	225	66	4	96	40	UCC318	C318	UC318	143	107	13.3	13.1
95	240	72	4	103	41	UCC319	C319	UC319	153	119	13.3	15.8
100	260	75	4	108	42	UCC320	C320	UC320	173	141	13.2	19.6
105	260	75	4	112	44	UCC321	C321	UC321	184	153	13.2	27.0
110	300	80	5	117	46	UCC322	C322	UC322	205	180	13.2	29.2
120	320	90	5	126	51	UCC324	C324	UC324	207	185	13.5	35.9
130	340	100	6	135	54	UCC326	C326	UC326	229	214	13.6	43.0

Ball bearing units cartridge type UCC (with set screws)

Shaft dia. (mm)		Diı	nensi (mm			Unit No.	Housing	N	Basic lo	ble bearing ad ratings	Factor	(Refer.) Unit
d	Η	Α	r	В	S	•	No.	No.	$C_{\rm r}$	$^{ m kN)}$ C_{0r}	fo	(kg)
140	360	100	6	145	59	UCC328	C328	UC328	253	246	13.6	52.9

[Remarks] 1) Applicable sizes of grease nipples are shown below.

3) For more detailed information, refer to ball bearing for unit specification tables.

Tolerances for housing

Ball bearings for units cylindrical bore type (with set screws) $d = 8 \sim (35) \text{ mm}$

SB

SU

Koyo

				UC				UC-L3				SB		
Shaft dia. (mm)	Во	undary di (mn		ns		ad ratings	Factor	Bearing No. With With		Dimer (m:			Set screw size	(Refer.) Mass
d	D	В	С	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	standard triple-lip seals seals	C_{a}	S	S_1	S_2	G	(kg)
8	22	12	7	0.3	3.27	1.37	12.4	SU08 —		3.5	8.5	2.8	M3×0.35	0.012
10	26	15	8	0.3	4.55	1.95	12.3	SU000 —		5	10	3	M3×0.35	0.024
12	28 40 47	15 22 31	8 12 16	0.3 0.6 0.6	5.10 9.55 12.8	2.40 4.80 6.65	13.2 13.2 13.2	SU001 — SB201 — UC201 UC201L2	4	5 6 12.7	10 16 18.3	3 4 5	M3×0.35 M5×0.5 M6×0.75	0.026 0.10 0.21
15	32 40 47	16.5 22 31	9 12 16	0.3 0.6 0.6	5.60 9.55 12.8	2.85 4.80 6.65	13.9 13.2 13.2	SU002 — SB202 — UC202 UC202L2	 	5.5 6 12.7	11 16 18.3	3.3 4 5	M4×0.5 M5×0.5 M6×0.75	0.038 0.10 0.19
17	35 40 47	17.5 22 31	10 12 16	0.3 0.6 0.6	6.00 9.55 12.8	3.25 4.80 6.65	14.4 13.2 13.2	SU003 — SB203 — UC203 UC203L2	 4	6 6 12.7	11.5 16 18.3	3.3 4 5	M4×0.5 M5×0.5 M6×0.75	0.050 0.10 0.18
20	42 47 47	21 25 31	12 14 16	0.6 1 1	9.40 12.8 12.8	5.05 6.65 6.65	13.9 13.2 13.2	SU004 — SB204 — UC204 UC204L2	4	7 7 12.7	14 18 18.3	4 5 5	M5×0.5 M6×0.75 M6×0.75	0.080 0.15 0.16
25	47 52 52 62	22 27 34.1 38	12 15 17 22	0.6 1 1 1.1	10.1 14.0 14.0 21.2	5.85 7.85 7.85 10.9	14.5 13.9 13.9 13.2	SU005 — SB205 — UC205 UC205L2 UC305 —	5	7 7.5 14.3 15	15 19.5 19.8 23	4.5 5.5 5.5 6	M5×0.5 M6×0.75 M6×0.75 M6×0.75	0.10 0.18 0.20 0.45
30	62 55 62 62	38.1 24.5 30 38.1	19 13 16 19	1 1 1 1	19.5 13.2 19.5 19.5	11.3 8.25 11.3 11.3	13.9 14.7 13.9 13.9	UCX05 UCX05L3 SU006		15.9 7.5 8 15.9	22.2 17 22 22.2	6 5.5 6 6	M6×0.75 M5×0.5 M6×0.75 M6×0.75	0.39 0.15 0.27 0.32
	72 72	42.9 43	20 24	1 1.1	25.7 26.7	15.4 15.0	13.9 13.3	UCX06 UCX06L3 UC306 —		17.5 17	25.4 26	6.5 6	M8×1 M6×0.75	0.58 0.56
35	72	32	17	1.1	25.7	15.4	13.9	SB207 —	_	8.5	23.5	6	M6×0.75	0.42
[Remarks] 1)	SU type	bearings a	re ball b	earings fo	or compact	series units.							I	

[Remarks] 1) SU type bearings are ball bearings for compact series units. 2) UC201 to UC205 are with double-lip seals.

Ball bearings for units ______ cylindrical bore type (with set screws)

d (35) ~ (75) mm

SB

SU

				UC				UC-L3					SB		
Shaft dia. (mm)	Во	undary di (mn		ns		ad ratings kN)	Factor	With	ing No. With			nsions m)		Set screw size	(Refer.) Mass
d	D	В	С	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	fo	standard seals	triple-lip seals	Ca	S	S_1	S_2	G	(kg)
35	72	42.9	20	1.1	25.7	15.4	13.9	UC207	UC207L3	4.5	17.5	25.4	6.5	M8×1	0.48
	80	48	26	1.5	33.4	19.3	13.2	UC307	UC307L3	5.5	19	29	8	M8×1	0.71
	80	49.2	21	1.1	29.1	17.8	14.0	UCX07	UCX07L3	4.5	19	30.2	8	M8×1	0.75
40	80	34	18	1.1	29.1	17.8	14.0	SB208	—	_	9	25	8	M8×1	0.60
	80	49.2	21	1.1	29.1	17.8	14.0	UC208	UC208L3	4.5	19	30.2	8	M8×1	0.64
	85	49.2	22	1.1	32.7	20.3	14.0	UCX08	UCX08L3	5	19	30.2	8	M8×1	0.83
	90	52	28	1.5	40.7	24.0	13.2	UC308	UC308L3	6	19	33	10	M10×1.25	1.00
45	85	49.2	22	1.1	32.7	20.3	14.0	UC209	UC209L3	5	19	30.2	8	M8×1	0.68
	90	51.6	24	1.1	35.1	23.3	14.4	UCX09	UCX09L3	6	19	32.6	9	M10×1.25	0.95
	100	57	30	1.5	48.9	29.5	13.3	UC309	UC309L3	6.5	22	35	10	M10×1.25	1.33
50	90	51.6	24	1.1	35.1	23.3	14.4	UC210	UC210L3	6	19	32.6	9	M10×1.25	0.80
	100	55.6	25	1.1	43.4	29.4	14.4	UCX10	UCX10L3	5.5	22.2	33.4	9	M10×1.25	1.29
	110	61	32	2	62.0	38.3	13.2	UC310	UC310L3	7	22	39	12	M12×1.5	1.69
55	100	55.6	25	1.5	43.4	29.4	14.4	UC211	UC211L3	5.5	22.2	33.4	9	M10×1.25	1.11
	110	65.1	27	1.5	52.4	36.2	14.4	UCX11	UCX11L3	6	25.4	39.7	10.5	M10×1.25	1.80
	120	66	34	2	71.6	45.0	13.2	UC311	UC311L3	7	25	41	12	M12×1.5	1.90
60	110	65.1	27	1.5	52.4	36.2	14.4	UC212	UC212L3	6	25.4	39.7	10.5	M10×1.25	1.54
	120	65.1	28	1.5	57.2	40.1	14.4	UCX12	UCX12L3	6.5	25.4	39.7	12	M12×1.5	2.05
	130	71	36	2.1	81.9	52.2	13.2	UC312	UC312L3	6.5	26	45	12	M12×1.5	2.60
65	120	65.1	28	1.5	57.2	40.1	14.4	UC213	UC213L3	6.5	25.4	39.7	12	M12×1.5	1.86
	125	74.6	30	1.5	62.2	44.1	14.5	UCX13	UCX13L3	6	30.2	44.4	12	M12×1.5	2.52
	140	75	38	2.1	92.7	59.9	13.2	UC313	UC313L3	7	30	45	12	M12×1.5	3.16
70	125	74.6	30	1.5	62.2	44.1	14.5	UC214	UC214L3	6	30.2	44.4	12	M12×1.5	2.05
	130	77.8	32	1.5	67.4	48.3	14.5	UCX14	UCX14L3	7	33.3	44.5	12	M12×1.5	2.74
	150	78	40	2.1	104	68.2	13.2	UC314	UC314L3	7.5	33	45	12	M12×1.5	3.90
75	130	77.8	32	1.5	67.4	48.3	14.5	UC215	UC215L3	7	33.3	44.5	12	M12×1.5	2.21

Ball bearings for units cylindrical bore type (with set screws) d (75) ~ 140 mm

SB

SU

				00				UC-L3					5B		
Shaft dia. (mm)	Во	undary di (mn		ns		oad ratings (kN)	Factor	With	ing No. With		Dimer (m			Set screw size	(Refer.) Mass
d	D	В	C	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	standard seals	triple-lip seals	C_{a}	S	S_1	S_2	G	(kg)
75	140 160	82.6 82	33 42	1.5 2.1	72.7 113	53.0 77.2	14.6 13.2	UCX15 UC315	UCX15L3 UC315L3	7.5 6.5	33.3 32	49.3 50	14 14	M12×1.5 M14×1.5	3.41 4.70
80	140 150 170	82.6 85.7 86	33 35 44	2 2 2.1	72.7 84.0 123	53.0 61.9 86.7	14.6 14.5 13.3	UC216 UCX16 UC316	UC216L3 UCX16L3 UC316L3	7.5 7.5 7	33.3 34.1 34	49.3 51.6 52	14 14 14	M12×1.5 M12×1.5 M14×1.5	2.79 3.87 5.60
85	150 160 180	85.7 96 96	35 38 46	2 2 3	84.0 96.1 133	61.9 71.5 96.8	14.5 14.5 13.3	UC217 UCX17 UC317	UC217L3 UCX17L3 UC317L3	7.5 8 8	34.1 39.7 40	51.6 56.3 56	14 15 16	M12×1.5 M12×1.5 M16×1.5	3.45 5.05 6.90
90	160 170 190	96 104 96	38 40 48	2 2 3	96.1 109 143	71.5 81.9 107	14.5 14.4 13.3	UC218 UCX18 UC318	UC218L3 UC318L3	8 8.5 8.5	39.7 42.9 40	56.3 61.1 56	15 16 16	M12×1.5 M14×1.5 M16×1.5	4.35 6.00 7.87
95	200	103	50	3	153	119	13.3	UC319	UC319L3	8.5	41	62	18	M16×1.5	8.91
100	190 215	117.5 108	43 54	2.1 3	133 173	105 141	14.4 13.2	UCX20 UC320	UC320L3	8.5 9	49.2 42	68.3 66	18 20	M16×1.5 M18×1.5	8.56 11.2
105	225	112	56	3	184	153	13.2	UC321	_	9	44	68	20	M18×1.5	12.7
110	240	117	60	3	205	180	13.2	UC322	UC322L3	10	46	71	20	M18×1.5	15.1
120	260	126	64	3	207	185	13.5	UC324	UC324L3	11	51	75	20	M18×1.5	19.0
130	280	135	68	4	229	214	13.6	UC326	UC326L3	12	54	81	20	M20×1.5	23.6
140	300	145	72	4	253	246	13.6	UC328	UC328L3	13	59	86	20	M20×1.5	29.4

Ball bearings for units tapered bore type (with adapter)

 d_1 **20** ~ **55 mm**

(with triple-lip seals)

Koyo

Adapter assembly

Shaft dia. (mm)		Bour		dimens m)	sions		Basic loa		Factor	Bearing No. With With	(Refer.) M With	l ass (kg) With	Ар	plicable	adapter	assemb	ly (H3 serie	es ¹⁾)	Арр	olicable a	adapter	assemb	ly (H23 seri	es 1))
d_1	d	D	В	B_{L}	C	$C_{\rm a}$	$C_{ m r}$	C_{0r}	f_0	standard triple-lip seals seals	standard seals	triple-lip seals	No.	Dim B_1	ensions (1 B_2	$mm) \\ d_2$	Mass (kg)	Sleeve No.	No.	Dime B_1	ensions (B_2	$mm) \\ d_2$	Mass (kg)	Sleeve No.
20	25 25 25	52 62 62	21 23 27	24 	17 19 22	5 5 6	14.0 19.5 21.2	7.85 11.3 10.9	13.9 13.9 12.6	UK205 UK205L2 UKX05 — UK305 —	0.16 0.27 0.40	0.18 	H305X 	29 	8	38 	0.085	A305X	H2305X H2305X H2305X H2305X	35 35 35	8 8 8	38 38 38	0.097 0.097 0.097	A2305X A2305X A2305X
25	30 30 30	62 72 72	23 26 30	27 	19 20 24	5 5.5 6.5	19.5 25.7 26.7	11.3 15.4 15.0	13.9 13.9 13.3	UK206 UK206L3 UKX06 — UK306 —	0.25 0.43 0.47	0.29	H306X 	31 	8	45 	0.11 	A306X 	H2306X H2306X H2306X	38 38 38	8 8 8	45 45 45	0.13 0.13 0.13	A2306X A2306X A2306X
30	35 35 35	72 80 80	26 27 33	30 33	20 21 26	5.5 6 7.5	25.7 29.1 33.4	15.4 17.8 19.3	13.9 14.0 13.2	UK207 UK207L3 UKX07 — UK307 UK307L3	0.37 0.53 0.60	0.43 	H307X 	35 	9	52 	0.16	A307X	H2307X H2307X H2307X H2307X	43 43 43	9 9 9	52 52 52	0.19 0.19 0.19	A2307X A2307X A2307X A2307X
35	40 40 40	80 85 90	27 29 35	34 35	21 22 28	6 6 8	29.1 32.7 40.7	17.8 20.3 24.0	14.0 14.0 13.2	UK208 UK208L3 UKX08 — UK308 UK308L3	0.47 0.58 0.80	0.58 	H308X 	36 	10 	58 	0.20	A308X	H2308X H2308X H2308X H2308X	46 46 46	10 10 10	58 58 58	0.24 0.24 0.24	A2308X A2308X A2308X
40	45 45 45	85 90 100	29 29 38	36 38	22 24 30	6 6 8.5	32.7 35.1 48.9	20.3 23.3 29.5	14.0 14.4 13.3	UK209 UK209L3 UKX09 — UK309 UK309L3	0.52 0.67 1.08	0.65 	H309X 	39 	11 	65 	0.27	A309X	H2309X H2309X H2309X	50 50 50	11 11 11	65 65 65	0.31 0.31 0.31	A2309X A2309X A2309X
45	50 50 50	90 100 110	29 31 40	36 40	24 25 32	6 7 9	35.1 43.4 62.0	23.3 29.4 38.3	14.4 14.4 13.2	UK210 UK210L3 UKX10 — UK310 UK310L3	0.59 0.89 1.38	0.65 	H310X 	42	12 	70	0.32	A310X	H2310X H2310X H2310X H2310X	55 55 55	12 12 12	70 70 70	0.39 0.39 0.39	A2310X A2310X A2310X
50	55 55 55	100 110 120	31 33 43	40 43	25 27 34	7 7.5 10	43.4 52.4 71.6	29.4 36.2 45.0	14.4 14.4 13.2	UK211 UK211L3 UKX11 — UK311 UK311L3	0.80 1.15 1.78	1.09 	H311X 	45 	12	75 	0.37	A311X 	H2311X H2311X H2311X H2311X	59 59 59	12 12 12	75 75 75	0.45 0.45 0.45	A2311X A2311X A2311X A2311X
55	60 60 60	110 120 130	33 36 47	47 47	27 28 36	7.5 7.5 11.5	52.4 57.2 81.9	36.2 40.1 52.2	14.4 14.4 13.2	UK212 UK212L3 UKX12 — UK312 UK312L3	1.02 1.45 2.06	1.41 	H312X 	47 	13	80 	0.42	A312X	H2312X H2312X H2312X H2312X	62 62 62	13 13 13	80 80 80	0.51 0.51 0.51	A2312X A2312X A2312X A2312X

3) UK205 is with double-lip seals.4) Please consult with JTEKT when using adapter with inch series bore diameter.

Ball bearings for units tapered bore type (with adapter)

 d_1 60 ~ 125 mm

UK...L3 (with triple-lip seals)

Koyo

Adapter assembly

Shaft dia. (mm)		E	Bound	lary d	limens	ions			nd ratings N)	Factor	Bearing I With	No. With	(Refer.) M With	ass (kg) With	Ар	plicable	adapter	assemb	ly (H3 serie	es 1))	Ар	plicable	adapter	assemb	ly (H23 seri	es ¹⁾)
d_1	d		D	B	$B_{\rm L}$	С	$C_{\rm a}$	$C_{\rm r}$	C_{0r}	f ₀		triple-lip seals	standard seals	triple-lip seals	No.	Dime B_1	ensions (B ₂	mm) d_2	Mass (kg)	Sleeve No.	No.	Dim B_1	ensions (B ₂	$\substack{(\mathrm{mm})\ d_2}$	Mass (kg)	Sleeve No.
60	6: 6: 6:	5	120 125 140	36 40 49	47 49	28 30 38	7.5 9 12	57.2 62.2 92.7	40.1 44.1 59.9	14.4 14.5 13.2	UKX13	UK213L3 UK313L3	1.34 1.62 2.71	1.67 	H313X — —	50 	14 	85 	0.49	A313X 	H2313X H2313X H2313X	65 65 65	14 14 14	85 85 85	0.59 0.59 0.59	A2313X A2313X A2313X
65	7: 7: 7:	5	130 140 160	40 42 55	51 55	32 33 42	9 9 14.5	67.4 72.7 113	48.3 53.0 77.2	14.5 14.6 13.2	UKX15	UK215L3 UK315L3	1.50 2.10 3.80	1.99 —	H315X — —	55 	15 	98 	0.89	A315X 	H2315X H2315X H2315X	73 73 73	15 15 15	98 98 98	1.11 1.11 1.11	A2315X A2315X A2315X
70	8 8 8	0 .	140 150 170	42 44 55	55 55	33 35 44	9 10 15	72.7 84.0 123	53.0 61.9 86.7	14.6 14.5 13.3	UKX16	UK216L3 UK316L3	1.96 2.64 4.39	2.56 	H316X — —	59 	17 	105 	1.09 	A316X 	H2316X H2316X H2316X	78 78 78	17 17 17	105 105 105	1.34 1.34 1.34	A2316X A2316X A2316X
75	8 8 8	5	150 160 180	44 48 60	57 60	35 38 46	10 11 15	84.0 96.1 133	61.9 71.5 96.8	14.5 14.5 13.3	UKX17	UK217L3 UK317L3	2.42 3.25 5.30	3.10 	H317X — —	63 	18	110 	1.24	A317X	H2317X H2317X H2317X H2317X	82 82 82	18 18 18	110 110 110	1.52 1.52 1.52	A2317X A2317X A2317X
80	91 91 91	0 .	160 170 190	48 50 60	63 60	38 40 48	11 11.5 15.5	96.1 109 143	71.5 81.9 107	14.5 14.4 13.3	UKX18	UK218L3 UK318L3	2.90 3.80 6.20	3.77 	H318X —	65 	18 	120	1.45 	A318X 	H2318X H2318X H2318X	86 86 86	18 18 18	120 120 120	1.70 1.70 1.70	A2318X A2318X A2318X
85	9	5 1	200	66	66	50	16.5	153	119	13.3	UK319 l	UK319L3	7.31	_	_	_			_	_	H2319X	90	19	125	1.99	A2319X
90	10 10		190 215	54 68	 68	43 54	13 18	133 173	105 141	14.4 13.2	UKX20 UK320 l	 UK320L3	5.36 8.70	_			_				H2320X H2320X	97 97	20 20	130 130	2.28 2.28	A2320X A2320X
100	11	0 2	240	78	78	60	20	205	180	13.2	UK322 l	UK322L3	12.2	—	_	—	—	—	—	—	H2322X	105	21	145	2.87	A2322X
110	12	0	260	87	87	64	21	207	185	13.5	UK324 l	UK324L3	16.1	_	_	_				_	H2324X	112	22	155	3.32	A2324X
115	13	0 2	280	87	87	68	22	229	214	13.6	UK326 l	UK326L3	18.8	_	—	_	—	—	—	—	H2326	121	23	165	4.82	A2326
125	14	0 3	300	97	97	72	23	253	246	13.6	UK328 l	UK328L3	23.9	_	_					_	H2328	131	24	180	5.86	A2328

3) Please consult with JTEKT when using adapter with inch series bore diameter.

Ball bearings for units cylindrical bore type (with eccentric locking collar)

d 20 ~ 60 mm

NA

Shaft dia. (mm)		Bounda	ary dimen (mm)	sions		Basic loa	d ratings N)	Factor	Bearing No.		Dimer (m	nsions m)		Set screw size	(Refer.) Mass
d	D	В	B_1	C	r min.	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	bouning not	C_{a}	S	S_2	d_1	G	(kg)
20	47	34.2	43.7	16	1	12.8	6.65	13.2	NA204	4	17.1	4.8	33.3	M6×0.75	0.22
25	52	34.9	44.4	17	1	14.0	7.85	13.9	NA205	5	17.5	4.8	38.1	M6×0.75	0.25
30	62	36.5	48.4	19	1	19.5	11.3	13.9	NA206	5	18.3	6	44.5	M8×1	0.41
35	72	37.6	51.1	20	1.1	25.7	15.4	13.9	NA207	5.5	18.8	6.8	55.6	M8×1	0.61
40	80	42.8	56.3	21	1.1	29.1	17.8	14.0	NA208	6	21.4	6.8	60.3	M8×1	0.78
45	85	42.8	56.3	22	1.1	32.7	20.3	14.0	NA209	6	21.4	6.8	63.5	M8×1	0.85
50	90	49.2	62.7	24	1.1	35.1	23.3	14.4	NA210	6	24.6	6.8	69.9	M8×1	1.01
55	100	55.5	71.4	25	1.5	43.4	29.4	14.4	NA211	7	27.8	8	76.2	M10×1.25	1.39
60	110	61.9	77.8	27	1.5	52.4	36.2	14.4	NA212	7.5	31	8	84.2	M10×1.25	1.87

Plummer blocks

Plummer blocks consist of self-aligning ball bearings or spherical roller bearings, and a housing in which the bearings are installed. The housing varies in shape. Having a large load capacity and being easy to handle, plummer blocks are employed in a variety of industrial machines, such as carrying machines.

Bore diameter 20 – 170 mm

Split type : flat bottom

Split type : flat bottom (different bore diameter type/ large bore diameter type)

Split type : large size

One-piece type

Unit : mm

	Tak	ole 1 Plummer block types	
		Applicable bearing series (plu	ummer block unit series number)
Housing typ	ie	Self-aligning ball bearing	Spherical roller bearing
Split type : standard (SN)	SN5 SN6 SN33 SN34	12K(SN15), 22K(SN25) 13K(SN16), 23K(SN26) — — Small-or medium	222K(SN225), 232K(SN235) 213K(SN216), 223K(SN226) 230K(SN233) 231K(SN234) -size ; most general
Split type : flat bottom (SSN)	SSN5 SSN6 * SSN2 * SSN3 ** SSN2B ** SSN3B	12K(SSN15), 22K(SSN25) 13K(SSN16), 23K(SSN26) 12 (SSN12), 22 (SSN22) 13 (SSN13), 23 (SSN23) 12 (SSN12B), 22 (SSN22B) 13 (SSN13B), 23 (SSN23B) • Has a flat bottom and is mor • Optionally, bolt holes can be	222K(SSN225), 232K(SSN235) 213K(SSN216), 223K(SSN226) 222 (SSN222), 232 (SSN232) 213 (SSN213), 223 (SSN223) 222 (SSN222B), 232 (SSN232B) 213 (SSN213B), 223 (SSN232B) 213 (SSN213B), 223 (SSN223B) e heavy-duty than the SN type. provided.
Split type : large size (SD)	SD5 SD6 SD31L SD33 SD34	Large size and most suitable for appl	222K(SD225) 223K(SD226) 231K(SD231L) 230K(SD233) 231K(SD234) ications which involve heavy loading.
One-piece type (V)	V5 V6 * V2 * V3	12K(V15), 22K(V25) 13K(V16), 23K(V26) 12 (V12), 22 (V22) 13 (V13), 23 (V23) • Has a monolithic housin • Excellent processing pe	222K(V225), 232K(V235) 213K(V216), 223K(V226) 222 (V222), 232 (V232) 213 (V213), 223 (V223) rg.

[Notes] * "Different bore diameter type," whose bore diameter of housing or cover differs from side to side. A cylindrical bore bearing is attached to a stepped shaft with a locknut and lockwasher.

- ** "Large bore diameter type," whose housing or cover has a large-diameter bore. A cylindrical bore bearing is attached to the small side of a stepped shaft with a concentric collar.
- [Remark] This catalog includes major types of plummer blocks which are boxed in the table above. For other series and special series, refer to separate catalogs.

Housing series	Bearing seating bore diameter D	Bearing seating width g	Center height <i>H</i>
SN5, SN6 SN33, SN34 SSN5, SSN6 SSN2, SSN3 SD5, SD6 SD33, SD34 SD31L	H8	H13	h13

Outside diameter	Bore diameter	Width
D_1	d_3	W
h12	$\begin{array}{c} (SR47\times 5 \text{ to } SR130\times 12.5) \\ \pm 0.8 \end{array}$	0
1112	$\begin{array}{c} (SR140 \times 8.5 \text{ to } SR340 \times 10) \\ \pm 1.2 \end{array}$	- 0.2
0	tabilizing ring is installed in bea f plummer block, on the fixed sign revents bearing from moving in	de. It

direction.

 Table 3
 One-piece plummer block housing
 dimensional tolerance (BAS 188)

Unit : mm

Housing series	Bearing seating bore diameter D	Bearing seating width A_2	Center height H	Cover size l_2	Cover spigot joint height l_3
V5, V6 V2, V3	H7	+ 0.2 0	h11	± 1	0 - 0.2

[Remark] The degree of parallelism between the bottom surface and bearing seating center line should be 1/2 000 or less.

Refer to Table 7-3 on pp. A 54 to A 57 for the dimensional tolerance of self-aligning ball bearings and spherical roller bearings which are used with plummer blocks. Refer to Table 7-11 on p. A 70 for tapered bore tolerances.

Plummer blocks split type, standard SN 5, 6, 33, 34 d_1 **20** ~ (**60**) mm

A

 ϕd_1

Koyo

Shaft dia. (mm)						Dimer (m							Bolt size	Housing	(Refer.) Housing	Grease nipple	Drain plug	Applicable bearing No.	Applicable adapter	Applicable stabilizing ring	Applicable oil seal No.
d_1	D	H	J	L	A	A_1	H_1	H_2	N	N_1	g	t Bolt size	S	No.	(kg)	size	size	Self-aligning Spherical ball brg. roller brg.	ass'y No.	No. Outside dia.×Width Qt	/. MZ
20	52	40	130	165	67	46	22	75	15	20	25	M8	M12	SN505	1.2	R ¹ / ₈	R ¹ / ₈	1205K — 2205K 22205RHRK	H205X H305X	SR52×5 2 SR52×7 1	MZ05
	62	50	150	185	80	52	22	90	15	20	34	M8	M12	SN605	1.8	R ¹ / ₈	R ¹ / ₈	1305K — 2305K —	H305X H2305X	SR62×8.5 2 SR62×10 1	MZ05
25	62	50	150	185	77	52	22	90	15	20	30	M8	M12	SN506	1.9	R ¹ / ₈	R ¹ / ₈	1206K <u>—</u> 2206K 22206RHRK	H206X H306X	SR62×7 2 SR62×10 1	MZ06
	72	50	150	185	82	52	22	95	15	20	37	M10	M12	SN606	2.1	R ¹ / ₈	R ¹ / ₈	1306K — 2306K —	H306X H2306X	SR72×9 2 SR72×10 1	MZ06
30	72	50	150	185	82	52	22	95	15	20	33	M10	M12	SN507	2.3	R ¹ / ₈	R ¹ / ₈	1207K — 2207K 22207RHRK	H207X H307X	SR72×8 2 SR72×10 1	MZ07
	80	60	170	205	90	60	25	110	15	20	41	M10	M12	SN607	2.6	R ¹ / ₈	R ¹ / ₈	1307K —	H307X H2307X	SR80×10 2 SR80×10 1	MZ07
35	80	60	170	205	85	60	25	110	15	20	33	M10	M12	SN508	2.4	R ¹ / ₈	R ¹ / ₈	1208K <u>—</u> 2208K 22208RHRK	H208X H308X	SR80×7.5 2 SR80×10 1	MZ08
	90	60	170	205	95	60	25	115	15	20	43	M10	M12	SN608	2.8	R ¹ / ₈	R ¹ / ₈	1308K 21308RHK 2308K 22308RHRK	H308X H2308X	SR90×10 2 SR90×10 1	MZ08
40	85	60	170	205	85	60	25	112	15	20	31	M10	M12	SN509	2.7	R ¹ / ₈	R ¹ / ₈	1209K — 2209K 22209RHRK	H209X H309X	SR85×6 2 SR85×8 1	MZ09
	100	70	210	255	105	70	28	130	18	23	46	M12	M16	SN609	4.3	R ¹ / ₈	R ¹ / ₈	1309K 21309RHK 2309K 22309RHRK	H309X H2309X	SR100×10.5 2 SR100×10 1	MZ09
45	90	60	170	205	90	60	25	115	15	20	33	M10	M12	SN510	3.5	R ¹ / ₈	R ¹ / ₈	1210K <u>—</u> 2210K 22210RHRK	H210X H310X	SR90×6.5 2 SR90×10 1	MZ10
	110	70	210	255	115	70	30	135	18	23	50	M12	M16	SN610	4.7	R ¹ / ₈	R ¹ / ₈	1310K 21310RHK 2310K 22310RHRK	H310X H2310X	SR110×11.5 2 SR110×10 1	MZ10
50	100	70	210	255	95	70	28	130	18	23	33	M12	M16	SN511	3.7	R ¹ / ₈	R ¹ / ₈	1211K — 2211K 22211RHRK	H211X H311X	SR100×6 2 SR100×8 1	MZ11
	120	80	230	275	120	80	30	150	18	23	53	M12	M16	SN611	5.8	R ¹ / ₈	R ¹ / ₈	1311K 21311RHK 2311K 22311RHRK	H311X H2311X	SR120×12 2 SR120×10 1	MZ11
55	110	70	210	255	105	70	30	135	18	23	38	M12	M16	SN512	4.4	R ¹ / ₈	R ¹ / ₈	1212K <u>—</u> 2212K 22212RHRK	H212X H312X	SR110×8 2 SR110×10 1	MZ12
	130	80	230	280	125	80	30	155	18	23	56	M12	M16	SN612	6.4	R ¹ / ₈	R ¹ / ₈	1312K 21312RHK 2312K 22312RHRK	H312X H2312X	SR130×12.5 SR130×10	MZ12
60	120	80	230	275	110	80	30	150	18	23	43	M12	M16	SN513	5.4	R ¹ / ₈	R ¹ / ₈	1213K <u>—</u> 2213K 22213RHRK	H213X H313X	SR120×10 2 SR120×12 1	MZ13

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring. When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. SN524~SN532, SN620~SN632, SN3328~SN3338, SN3426~SN3438

Plummer blocks split type, standard SN 5, 6, 33, 34 d_1 (60) ~ (110) mm

Shaft dia. (mm)							msions m)						Bolt size	Housing	н	(Refer.) Housing	Grease nipple	Drain plug	bea	plicable aring No.	Applicable adapter	Applicat stabilizing		Applicable oil seal No.
d_1	D	Η	J	L	Α	A_1	H_1	H_2	N	N_1	g	t Bolt size	S	No.		mass (kg)	size	size	Self-aligning ball brg.	Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
60	140	95	260	315	130	90	32	175	22	27	58	M16	M20	SN613		8.6	R ¹ / ₈	R ¹ / ₈	1313K 2313K	21313RHK 22313RHRK	H313X H2313X	SR140×12.5 SR140×10	2 1	MZ13
65	130	80	230	280	115	80	30	155	18	23	41	M12	M16	SN515		6.1	R ¹ / ₈	R ¹ / ₈	1215K 2215K	22215RHRK		SR130×8 SR130×10	2 1	MZ15
	160	100	290	345	140	100	35	195	22	27	65	M16	M20	SN615		11.8	R ¹ / ₈	R ¹ / ₈	1315K 2315K	21315RHK 22315RHRK	H315X H2315X	SR160×14 SR160×10	2 1	MZ15
70	140	95	260	315	120	90	32	175	22	27	43	M16	M20	SN516		8.2	R ¹ /8	R ¹ / ₈	1216K 2216K	22216RHRK	H216X H316X	SR140×8.5 SR140×10	2 1	MZ16
	170	112	290	345	145	100	35	212	22	27	68	M16	M20	SN616		13.6	R ¹ / ₈	R ¹ / ₈	1316K 2316K	21316RHK 22316RHRK		SR170×14.5 SR170×10	2 1	MZ16
75	150	95	260	320	125	90	32	185	22	27	46	M16	M20	SN517		9.3	R ¹ / ₈	R ¹ / ₈	1217K 2217K	22217RHRK	H217X H317X	SR150×9 SR150×10	2 1	MZ17
	180	112	320	380	155	110	40	223	26	32	70	M20	M24	SN617		16.8	R ¹ / ₈	R ¹ / ₈	1317K 2317K	21317RHK 22317RHRK	H317X H2317X	SR180×14.5 SR180×10	2 1	MZ17
80	160	100	290	345	145	100	35	195	22	27	62.4	M16	M20	SN518		12	R ¹ /8	R ¹ / ₈	1218K 2218K —	22218RHRK 23218RHK	H318X	SR160×16.2 SR160×11.2 SR160×10	2 2 1	MZ18
	190	112	320	380	160	110	40	230	26	32	74	M20	M24	SN618		21	R ¹ / ₄	R ¹ / ₄	1318K 2318K	22318RHRK	H318X H2318X	SR190×15.5 SR190×10	2 1	MZ18
85	170	112	290	345	140	100	35	210	22	27	53	M16	M20	SN519		13	R ¹ / ₈	R ¹ / ₈	1219K 2219K	22219RHRK		SR170×10.5 SR170×10	2 1	MZ19
	200	125	350	410	170	120	45	250	26	32	77	M20	M24	SN619		23	R ¹ / ₄	R ¹ / ₄	1319K 2319K	22319RHRK		SR200×16 SR200×10	2 1	MZ19
90	180	112	320	380	160	110	40	223	26	32	70.3	M20	M24	SN520		17	R ¹ / ₄	R ¹ / ₄	1220K 2220K	22220RHRK 23220RHK	H320X	SR180×18.1 SR180×12.1 SR180×10	2 2 1	MZ20
	215	140	350	410	175	120	45	270	26	32	83	M20	M24	SN620		31	R ¹ / ₄	R ¹ / ₄	1320K 2320K	22320RHRK	H320X H2320X	SR215×18 SR215×10	2 1	MZ20
100	180	112	320	380	155	110	40	223	26	32	66	M20	M24	SN3422		20	R ¹ / ₄	R ¹ / ₄		23122RHK	H3122X	SR180×10	1	MZ22
	200	125	350	410	175	120	45	245	26	32	80	M20	M24	SN522		20	R ¹ / ₄	R ¹ / ₄	1222K 2222K 	22222RHRK 23222RHK	H222X H322X H2322X	SR200×21 SR200×13.5 SR200×10	2 2 1	MZ22
	240	150	390	450	190	130	50	300	28	36	90	M24	M24	SN622		38	R ¹ / ₄	R ¹ / ₄	1322K 2322K	22322RHRK	H322X H2322X	SR240×20 SR240×10	2 1	MZ22
110	180	112	320	380	150	110	40	223	26	32	56	M20	M24	SN3324		19	R ¹ / ₄	R ¹ / ₄	_	23024RHK	H3024	SR180×10	1	MZ24

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring. When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. SN524~SN532, SN620~SN632, SN3328~SN3338, SN3426~SN3438

B 546

B 547

Plummer blocks split type, standard SN 5, 6, 33, 34 d_1 (110) ~ (140) mm

Koyo

Shaft dia. (mm)							msions m)						Bolt size	Housing	(Refe Hous	ing	Grease nipple	Drain plug	bea	plicable aring No.	Applicable adapter	Applicab stabilizing		Applicable oil seal No.
d_1	D	Η	J	L	Α	A_1	H_1	H_2	N	N_1	g	t Bolt size	S	No.	ma (kg		size	size	Self-aligning ball brg.	s Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
110	200	125	350	410	165	120	45	245	26	32	72	M20	M24	SN3424	22		R ¹ / ₄	R ¹ / ₄	_	23124RHK	H3124	SR200×10	1	MZ24
	215	140	350	410	185	120	45	270	26	32	86	M20	M24	SN524	23		R ¹ / ₄	R ¹ / ₄	_	22224RHRK 23224RHK	H3124 H2324	SR215×14 SR215×10	2 1	MZ24
	260	160	450	530	200	160	60	320	33	42	96	M24	M30	SN624	48		R ¹ / ₄	R ¹ / ₄	_	22324RHRK	H2324	SR260×10	1	MZ24
115	200	125	350	410	160	120	45	245	26	32	62	M20	M24	SN3326	21		R ¹ / ₄	R ¹ / ₄		23026RHK	H3026	SR200×10	1	MZ26
	210	140	350	410	170	120	45	270	26	32	74	M20	M24	SN3426	29		R ¹ / ₄	R ¹ / ₄	_	23126RHK	H3126	SR210×10	1	MZ26
	230	150	380	445	190	130	50	290	28	36	90	M24	M24	SN526	33		R ¹ / ₄	R ¹ / ₄	_	22226RHRK 23226RHK		SR230×13 SR230×10	2 1	MZ26
	280	170	470	550	210	160	60	340	33	42	103	M24	M30	SN626	78		R ¹ / ₄	R ¹ / ₄	_	22326RHRK	H2326	SR280×10	1	MZ26
125	210	140	350	410	170	120	45	270	26	32	63	M20	M24	SN3328	28		R ¹ / ₄	R ¹ / ₄		23028RHK	H3028	SR210×10	1	MZ28
	225	150	380	445	180	130	50	290	28	36	78	M24	M24	SN3428	36		R ¹ / ₄	R ¹ / ₄	_	23128RHK	H3128	SR225×10	1	MZ28
	250	150	420	500	205	150	50	305	33	42	98	M24	M30	SN528	40		R ¹ / ₄	R ¹ / ₄	_	22228RHRK 23228RHK		SR250×15 SR250×10	2 1	MZ28
	300	180	520	610	235	170	65	365	35	45	112	M30	M30	SN628	97		R ¹ / ₄	R ¹ / ₄	_	22328RK	H2328	SR300×10	1	MZ28
135	225	150	380	445	175	130	50	290	28	36	66	M24	M24	SN3330	32		R ¹ / ₄	R ¹ / ₄		23030RHK	H3030	SR225×10	1	MZ30
	250	150	420	500	200	150	50	305	33	42	90	M24	M30	SN3430	42		R ¹ / ₄	R ¹ / ₄	_	23130RHK	H3130	SR250×10	1	MZ30
	270	160	450	530	220	160	60	325	33	42	106	M24	M30	SN530	45		R ¹ / ₄	R ¹ / ₄	_	22230RHRK 23230RHK		SR270×16.5 SR270×10	2 1	MZ30
	320	190	560	650	245	180	65	385	35	45	118	M30	M30	SN630	110		R ¹ / ₄	R ¹ / ₄	—	22330RK	H2330	SR320×10	1	MZ30
140	240	150	390	450	190	130	50	300	28	36	70	M24	M24	SN3332	36		R ¹ / ₄	R ¹ / ₄		23032RHK	H3032	SR240×10	1	MZ32
	270	160	450	530	215	160	60	325	33	42	96	M24	M30	SN3432	53		R ¹ / ₄	R ¹ / ₄	_	23132RHK	H3132	SR270×10	1	MZ32

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.

When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. SN524~SN532, SN620~SN632, SN3328~SN3338, SN3426~SN3438

Plummer blocks split type, standard SN 5, 6, 33, 34 d_1 (140) ~ 170 mm

Koyo

Shaft dia. (mm)							nsions m)						Bolt size	Housing	(Refer.) Housing	Grease nipple	Drain plug		oplicable aring No.	Applicable adapter	Applicab stabilizing		Applicable oil seal No.
d_1	D	H	J	L	Α	A_1	H_1	H_2	N	N_1	g	t Bolt size	S	No.	(kg)	size	size	Self-aligning ball brg.	g Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
140	290	170	470	550	235	160	60	345	33	42	114	M24	M30	SN532	51	R ¹ / ₄	R ¹ / ₄		22232RK 23232RK	H3132 H2332	SR290×17 SR290×10	2 1	MZ32
	340	200	580	680	255	190	70	405	42	50	124	M30	M36	SN632	120	R ¹ / ₄	R ¹ / ₄	_	22332RK	H2332	SR340×10	1	MZ32
150	260	160	450	530	200	160	60	320	33	42	77	M24	M30	SN3334	45	R ¹ / ₄	R ¹ / ₄	_	23034RHK	H3034	SR260×10	1	MZ34
	280	170	470	550	220	160	60	340	33	42	98	M24	M30	SN3434	61	R ¹ / ₄	R ¹ / ₄	_	23134RHK	H3134	SR280×10	1	MZ34
160	280	170	470	550	210	160	60	340	33	42	84	M24	M30	SN3336	57	R ¹ / ₄	R ¹ / ₄		23036RHK	H3036	SR280×10	1	MZ36
	300	180	520	610	230	170	65	365	35	45	106	M30	M30	SN3436	80	R ¹ / ₄	R ¹ / ₄	_	23136RK	H3136	SR300×10	1	MZ36
170	290	170	470	550	210	160	60	345	33	42	85	M24	M30	SN3338	59	R ¹ / ₄	R ¹ / ₄	_	23038RK	H3038	SR290×10	1	MZ38
	320	190	560	650	240	180	65	385	35	45	114	M30	M30	SN3438	95	R ¹ / ₄	R ¹ / ₄	_	23138RK	H3138	SR320×10	1	MZ38

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.
 When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. SN524~SN532, SN620~SN632, SN3328~SN3338, SN3426~SN3438

Plummer blocks split type, flat bottom SSN 5, 6 d_1 **20** ~ (**60**) mm

9hr

 $-\phi d_1 \phi D$

 ϕd_1

NPI Let

SSN...TAC

500

dia.

Koyo

																	(ring u	sea	J						
Shaft dia. (mm)							nensi (mm)							Bolt		Housing	(Refer.) Housing	Grease nipple	Drain plug	be	plicable aring No.	Applicable adapter	Applicab stabilizing		Applicable oil seal No.
d_1	D	H	J	J_1	L	A	A_1	A_2	A_3	H_1	H_2	g	t Bolt size	S (Two)		No.	(kg)	size	size	Self-aligning ball brg.	Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
20	52	40	130	25	165	67	46		_	22	75	25	M8	M12	M10	SSN505	1.8	R ¹ / ₈	R ¹ / ₈	1205K 2205K	22205RHRK	H205X H305X	SR52×5 SR52×7	2 1	MZ05
	62	50	150	25	185	80	52		_	22	90	34	M8	M12	M10	SSN605	2.6	R ¹ / ₈	R ¹ / ₈	1305K 2305K	—	H305X H2305X	SR62×8.5 SR62×10	2 1	MZ05
25	62	50	150	25	185	77	52	_		22	90	30	M8	M12	M10	SSN506	2.7	R ¹ / ₈	R ¹ / ₈	1206K 2206K	22206RHRK	H206X H306X	SR62×7 SR62×10	2 1	MZ06
	72	50	150	25	185	82	52		_	22	95	37	M10	M12	M10	SSN606	2.8	R ¹ / ₈	R ¹ / ₈	1306K 2306K	—	H306X H2306X	SR72×9 SR72×10	2 1	MZ06
30	72	50	150	25	185	82	52	_		22	95	33	M10	M12	M10	SSN507	3.0	R ¹ / ₈	R ¹ / ₈	1207K 2207K	22207RHRK	H207X H307X	SR72×8 SR72×10	2 1	MZ07
	80	60	170	30	205	90	60	_	_	25	110	41	M10	M12	M10	SSN607	3.8	R ¹ / ₈	R ¹ / ₈	1307K 2307K	—	H307X H2307X	SR80×10 SR80×10	2 1	MZ07
35	80	60	170	30	205	85	60	_		25	110	33	M10	M12	M10	SSN508	3.8	R ¹ / ₈	R ¹ / ₈	1208K 2208K	22208RHRK	H208X H308X	SR80×7.5 SR80×10	2 1	MZ08
	90	60	170	30	205	95	60	_	_	25	115	43	M10	M12	M10	SSN608	3.9	R ¹ / ₈	R ¹ / ₈	1308K 2308K	21308RHK 22308RHRK	H308X H2308X	SR90×10 SR90×10	2 1	MZ08
40	85	60	170	30	205	85	60	_	_	25	112	31	M10	M12	M10	SSN509	4.3	R ¹ / ₈	R ¹ / ₈	1209K 2209K	22209RHRK	H209X H309X	SR85×6 SR85×8	2 1	MZ09
	100	70	210	35	255	105	70	_		28	130	46	M12	M16	M12	SSN609	6.2	R ¹ / ₈	R ¹ / ₈	1309K 2309K	21309RHK 22309RHRK	H309X H2309X	SR100×10.5 SR100×10	2 1	MZ09
45	90	60	170	30	205	90	60	_		25	115	33	M10	M12	M10	SSN510	5.2	R ¹ / ₈	R ¹ / ₈	1210K 2210K	22210RHRK	H210X H310X	SR90×6.5 SR90×10	2 1	MZ10
	110	70	210	35	255	115	70	_	_	30	135	50	M12	M16	M12	SSN610	6.5	R ¹ / ₈	R ¹ / ₈	1310K 2310K	21310RHK 22310RHRK	H310X H2310X	SR110×11.5 SR110×10	2 1	MZ10
50	100	70	210	35	255	95	70	160	57	28	130	33	M12	M16	M12	SSN511	5.5	R ¹ / ₈	R ¹ / ₈	1211K 2211K	22211RHRK	H211X H311X	SR100×6 SR100×8	2 1	MZ11
	120	80	230	40	275	120	80	185	70	30	150	53	M12	M16	M12	SSN611	8.5	R ¹ / ₈	R ¹ / ₈	1311K 2311K	21311RHK 22311RHRK	H311X H2311X	SR120×12 SR120×10	2 1	MZ11
55	110	70	210	35	255	105	70	164	62	30	135	38	M12	M16	M12	SSN512	6.3	R ¹ / ₈	R ¹ / ₈	1212K 2212K	22212RHRK	H212X H312X	SR110×8 SR110×10	2 1	MZ12
	130	80	230	40	280	125	80	184	72	30	155	56	M12	M16	M12	SSN612	8.9	R ¹ / ₈	R ¹ / ₈	1312K 2312K	21312RHK 22312RHRK	H312X H2312X	SR130×12.5 SR130×10	2 1	MZ12
60	120	80	230	40	275	110	80	168	65	30	150	43	M12	M16	M12	SSN513	6.8	R ¹ / ₈	R ¹ / ₈	1213K 2213K	22213RHRK	H213X H313X	SR120×10 SR120×12	2 1	MZ13

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.
 When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

 Use of labyrinth or taconite seals are indicated by TS or TAC suffixed to housing numbers.
 Housings shown below are equipped with eyebolts. SSN524~SSN532, SSN618~SSN632 [Remarks]

Plummer blocks split type, flat bottom SSN 5, 6 d_1 (60) ~ 110 mm

TR

Koyo

Shaft dia. (mm)							nensi (mm)							Bolt	size	Housing	(Refe Housi	sing	Grease nipple	Drain plug		plicable aring No.	Applicable adapter	Applicab stabilizing		Applicable oil seal No.
d_1	D	H	J	J_1	L	A	A_1	A_2	A_3	H_1	H_2	g	t Bolt size		S (Four)	No.	mas (kg		size	size	Self-aligning ball brg.	Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
60	140	95	260	50	315	130	90	188	75	32	175	58	M16	M20	M16	SSN613	12.9	.9	R ¹ / ₈	R ¹ / ₈	1313K 2313K	21313RHK 22313RHRK	H313X H2313X	SR140×12.5 SR140×10	2 1	MZ13
65	130	80	230	40	280	115	80	172	67	30	155	41	M12	M16	M12	SSN515	7.9	.9	R ¹ / ₈	R ¹ / ₈	1215K 2215K	22215RHRK	H215X H315X	SR130×8 SR130×10	2 1	MZ15
	160	100	290	50	345	140	100	197	80	35	195	65	M16	M20	M16	SSN615	16.5	.5	R ¹ / ₈	R ¹ / ₈	1315K 2315K	21315RHK 22315RHRK	H315X H2315X	SR160×14 SR160×10	2 1	MZ15
70	140	95	260	50	315	120	90	190	70	32	175	43	M16	M20	M16	SSN516	12		R ¹ / ₈	R ¹ / ₈	1216K 2216K	22216RHRK		SR140×8.5 SR140×10	2 1	MZ16
	170	112	290	50	345	145	100	215	83	35	212	68	M16	M20	M16	SSN616	18		R ¹ / ₈	R ¹ / ₈	1316K 2316K	21316RHK 22316RHRK	H316X H2316X	SR170×14.5 SR170×10	2 1	MZ16
75	150	95	260	50	320	125	90	194	75	32	185	46	M16	M20	M16	SSN517	13		R ¹ / ₈	R ¹ / ₈	1217K 2217K	22217RHRK		SR150×9 SR150×10	2 1	MZ17
	180	112	320	60	380	155	110	224	90	40	223	70	M20	M24	M20	SSN617	25.8	.8	R ¹ / ₈	R ¹ / ₈	1317K 2317K	21317RHK 22317RHRK	H317X H2317X	SR180×14.5 SR180×10	2 1	MZ17
80	160	100	290	50	345	145	100	214	85	35	195	62.4	M16	M20	M16	SSN518	17		R ¹ / ₈	R ¹ / ₈	1218K 2218K —	22218RHRK 23218RHK	H318X	SR160×16.2 SR160×11.2 SR160×10	2 2 1	MZ18
	190	112	320	60	380	160	110	229	93	40	230	74	M20	M24	M20	SSN618	28		R ¹ / ₄	R ¹ / ₄	1318K 2318K	22318RHRK	H318X H2318X	SR190×15.5 SR190×10	2 1	MZ18
85	170	112	290	50	345	140	100	214	85	35	210	53	M16	M20	M16	SSN519	18		R ¹ / ₈	R ¹ / ₈	1219K 2219K	22219RHRK	H219X H319X	SR170×10.5 SR170×10	2 1	MZ19
	200	125	350	70	410	170	120	235	98	45	250	77	M20	M24	M20	SSN619	31		R ¹ / ₄	R ¹ / ₄	1319K 2319K	22319RHRK	H319X H2319X	SR200×16 SR200×10	2 1	MZ19
90	180	112	320	60	380	160	110	220	92	40	223	70.3	M20	M24	M16	SSN520	24		R 1/4	R ¹ / ₄	1220K 2220K —	 22220RHRK 23220RHK		SR180×18.1 SR180×12.1 SR180×10	2 2 1	MZ20
	215	140	350	70	410	175	120	235	100	45	270	83	M20	M24	M20	SSN620	41		R ¹ / ₄	R ¹ / ₄	1320K 2320K	22320RHRK	H320X H2320X	SR215×18 SR215×10	2 1	MZ20
100	200	125	350	70	410	175	120	240	100	45	245	80	M20	M24	M16	SSN522	28		R ¹ / ₄	R ¹ / ₄	1222K 2222K —	 22222RHRK 23222RHK	H322X	SR200×21 SR200×13.5 SR200×10	2 2 1	MZ22
	240	150	390	70	450	190	130	255	108	50	300	90	M24	M24	M24	SSN622	51		R ¹ / ₄	R ¹ / ₄	1322K 2322K	22322RHRK	H322X H2322X	SR240×20 SR240×10	2 1	MZ22
110	215	140	350	70	410	185	120	254	110	45	270	86	M20	M24	M16	SSN524	33		R ¹ / ₄	R ¹ / ₄		22224RHRK 23224RHK	H3124 H2324	SR215×14 SR215×10	2 1	MZ24
	260	160	450	90	530	200	160	269	118	60	320	96	M24	M30	M24	SSN624	63		R ¹ / ₄	R ¹ / ₄	_	22324RHRK	H2324	SR260×10	1	MZ24

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring. When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remarks] 1) Use of labyrinth or taconite seals are indicated by TS or TAC suffixed to housing numbers.
 2) Housings shown below are equipped with eyebolts. SSN524~SSN532, SSN618~SSN632

B 555

Plummer blocks split type, flat bottom SSN 5, 6 d_1 **115** ~ **140 mm**

Koyo

Shaft dia. (mm)			7	T	T		mensi (mm))	4	77	77		t		size	Housing No.	(Refer.) Housing mass	Grease nipple	plug		pplicable aring No. g Spherical	Applicable adapter	Applical stabilizing No.	ring	Applicable oil seal No.
d_1	D	Η	J	J_1	L	Α	A_1	A_2	A_3	H_1	H_2	g	Bolt size	(Two)	(Four)		(kg)	size	size	ball brg.	roller brg.	ass'y No.	Outside dia.×Width	Qty.	MZ
115	230	150	380	70	445	190	130	260	112	50	290	90	M24	M24	M20	SSN526	45	R ¹ / ₄	R ¹ / ₄	—	22226RHRK 23226RHK	H3126 H2326	SR230×13 SR230×10	2 1	MZ26
	280	170	470	90	550	210	160	280	122	60	340	103	M24	M30	M24	SSN626	96	R ¹ / ₄	R ¹ / ₄	-	22326RHRK	H2326	SR280×10	1	MZ26
125	250	150	420	80	500	205	150	274	120	50	305	98	M24	M30	M24	SSN528	54	R ¹ / ₄	R ¹ / ₄	—	22228RHRK 23228RHK	H3128 H2328	SR250×15 SR250×10	2 1	MZ28
	300	180	520	100	610	235	170	304	135	65	365	112	M30	M30	M24	SSN628	117	R ¹ / ₄	R ¹ / ₄	—	22328RK	H2328	SR300×10	1	MZ28
135	270	160	450	90	530	220	160	280	127	60	325	106	M24	M30	M24	SSN530	60	R ¹ / ₄	R ¹ / ₄	—	22230RHRK 23230RHK	H3130 H2330	SR270×16.5 SR270×10	2 1	MZ30
	320	190	560	110	650	245	180	310	140	65	385	118	M30	M30	M24	SSN630	132	R ¹ / ₄	R ¹ / ₄	—	22330RK	H2330	SR320×10	1	MZ30
140	290	170	470	90	550	235	160	300	135	60	345	114	M24	M30	M24	SSN532	69	R ¹ / ₄	R ¹ / ₄	—	22232RK 23232RK	H3132 H2332	SR290×17 SR290×10	2 1	MZ32
	340	200	580	110	680	255	190	320	145	70	405	124	M30	M36	M30	SSN632	145	R ¹ / ₄	R ¹ / ₄	_	22332RK	H2332	SR340×10	1	MZ32

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.
 When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

 Use of labyrinth or taconite seals are indicated by TS or TAC suffixed to housing numbers.
 Housings shown below are equipped with eyebolts. SSN524~SSN532, SSN618~SSN632 [Remarks]

F

Plummer blocks split type, flat bottom different bore type SSN 2, 3 large bore type SSN 2B, 3B d_1 **20** ~ (**60**) mm

SSN 2B. 3B

 $\phi D \phi d_2$

Stabilizing ring - Width Outside dia.

Koyo

Sh	a ft dia (mn		r						mensio (mm)	ns					Bolt	size	Housing	(Refer.) Housing	Greas			pplicable aring No.	Applicab stabilizing		Applicable o	il seal No.
d_1	d	d_2	2)	D	H	J	J_1	L	Α	A_1	H_1	H_2	g	t Bolt size		S (Four)	No.	mass (kg)	size		Self-alignin ball brg.	g Spherical roller brg.	No. Outside dia.×Width	Qty.	d_1 side	d_2 side
20	25	*3	0	52	40	130	25	165	67	46	22	75	25	M8	M12	M10	SSN205	1.8	R ¹ /8	R ¹ / ₈	1205 2205	22205RHR	SR52×5 SR52×7	2 1	MZ05	MZ07
	25	3	0	62	50	150	25	185	80	52	22	90	34	M8	M12	M10	SSN305	2.6	R 1/8	R ¹ / ₈	1305 2305	—	SR62×8.5 SR62×10	2 1	MZ05	MZ07
25	30	*3	5	62	50	150	25	185	77	52	22	90	30	M8	M12	M10	SSN206	2.7	R 1/8	R ¹ / ₈	1206 2206	22206RHR	SR62×7 SR62×10	2 1	MZ06	MZ08
	30	3	5	72	50	150	25	185	82	52	22	95	37	M10	M12	M10	SSN306	2.8	R ¹ /8	R ¹ / ₈	1306 2306	—	SR72×9 SR72×10	2 1	MZ06	MZ08
30	35	4	5	72	50	150	25	185	82	52	22	95	33	M10	M12	M10	SSN207	3.0	R ¹ /8	R ¹ / ₈	1207 2207	22207RHR	SR72×8 SR72×10	2 1	MZ07	MZ10
	35	4	5	80	60	170	30	205	90	60	25	110	41	M10	M12	M10	SSN307	3.8	R 1/8	R ¹ / ₈	1307 2307	—	SR80×10 SR80×10	2 1	MZ07	MZ10
35	40	5	0	80	60	170	30	205	85	60	25	110	33	M10	M12	M10	SSN208	3.8	R 1/8	R ¹ / ₈	1208 2208	22208RHR	SR80×7.5 SR80×10	2 1	MZ08	MZ11
	40	5	0	90	60	170	30	205	95	60	25	115	43	M10	M12	M10	SSN308	3.9	R ¹ /8	R ¹ / ₈	1308 2308	21308RH 22308RHR	SR90×10 SR90×10	2 1	MZ08	MZ11
40	45	5	5	85	60	170	30	205	85	60	25	112	31	M10	M12	M10	SSN209	4.3	R ¹ /8	R ¹ / ₈	1209 2209	22209RHR	SR85×6 SR85×8	2 1	MZ09	MZ12
	45	5	5	100	70	210	35	255	105	70	28	130	46	M12	M16	M12	SSN309	6.2	R ¹ /8	R ¹ / ₈	1309 2309	21309RH 22309RHR	SR100×10.5 SR100×10	2 1	MZ09	MZ12
45	50	6	0	90	60	170	30	205	90	60	25	115	33	M10	M12	M10	SSN210	5.2	R 1/8	R ¹ / ₈	1210 2210	22210RHR	SR90×6.5 SR90×10	2 1	MZ10	MZ13
	50	6	0	110	70	210	35	255	115	70	30	135	50	M12	M16	M12	SSN310	6.5	R ¹ /8	R ¹ / ₈	1310 2310	21310RH 22310RHR	SR110×11.5 SR110×10	2 1	MZ10	MZ13
50	55	6	5	100	70	210	35	255	95	70	28	130	33	M12	M16	M12	SSN211	5.5	R ¹ /8	R ¹ / ₈	1211 2211	22211RHR	SR100×6 SR100×8	2 1	MZ11	MZ15
	55	6	5	120	80	230	40	275	120	80	30	150	53	M12	M16	M12	SSN311	8.5	R ¹ /8	R ¹ / ₈	1311 2311	21311RH 22311RHR	SR120×12 SR120×10	2 1	MZ11	MZ15
55	60	7	0	110	70	210	35	255	105	70	30	135	38	M12	M16	M12	SSN212	6.3	R 1/8	R ¹ / ₈	1212 2212	22212RHR	SR110×8 SR110×10	2 1	MZ12	MZ16
	60	*7	0	130	80	230	40	280	125	80	30	155	56	M12	M16	M12	SSN312	8.9	R ¹ /8	R ¹ / ₈	1312 2312	21312RH 22312RHR	SR130×12.5 SR130×10	2 1	MZ12	MZ16
60	65	7	5	120	80	230	40	275	110	80	30	150	43	M12	M16	M12	SSN213	6.8	R ¹ /8	R ¹ / ₈	1213 2213	22213RHR	SR120×10 SR120×12	2 1	MZ13	MZ17

[Notes] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring. When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.
 2) If bearing of shaft diameter marked with * (shoulder diameter) receives large axial load, the use of spacers

is recommended.

[Remarks] 1) Large bore diameter types (concentric collar locking) are identified by B suffixed to housing numbers.

2) Housings shown below are equipped with eyebolts. SSN224~SSN232, SSN318~SSN332
Plummer blocks split type, flat bottom different bore type SSN 2, 3 large bore type SSN 2B, 3B d_1 (60) ~ (105) mm

SSN 2B. 3B

Stabilizing

Koyo

SI		diam nm)	eter					Di	mensio (mm)	ns					Bolt s		Housing	(Refer Housi	ing	Grease nipple	Drain plug		plicable aring No.	Applicab stabilizing		Applicable	oil seal No.
d	1	d	$d_2{}^{2)}$	D	H	J	J_1	L	A	A_1	H_1	H_2	g	<i>t</i> Bolt size	(Two)		No.	mas (kg	5	size	size	Self-aligning ball brg.	Spherical roller brg.	No. Outside dia.×Width	Qty.	d_1 side	d_2 side
6	0	65	*75	140	95	260	50	315	130	90	32	175	58	M16	M20	M16	SSN313	12.9	9	R ¹ / ₈	R ¹ / ₈	1313 2313	21313RH 22313RHR	SR140×12.5 SR140×10	2 1	MZ13	MZ17
6	5	70	80	125	80	230	40	275	115	80	30	155	44	M12	M16	M12	SSN214	7.5	5	R ¹ / ₈	R ¹ / ₈	1214 2214	22214RHR	SR125×10 SR125×13	2 1	MZ15	MZ18
		70	*80	150	95	260	50	320	130	90	32	185	61	M16	M20	M16	SSN314	15		R ¹ / ₈	R ¹ / ₈	1314 2314	21314RH 22314RHR	SR150×13 SR150×10	2 1	MZ15	MZ18
7	0	75	85	130	80	230	40	280	115	80	30	155	41	M12	M16	M12	SSN215	7.9	9	R ¹ / ₈	R ¹ / ₈	1215 2215	22215RHR	SR130×8 SR130×10	2 1	MZ16	MZ19
		75	*85	160	100	290	50	345	140	100	35	195	65	M16	M20	M16	SSN315	16.5	5	R ¹ / ₈	R ¹ / ₈	1315 2315	21315RH 22315RHR	SR160×14 SR160×10	2 1	MZ16	MZ19
7	5	80	90	140	95	260	50	315	120	90	32	175	43	M16	M20	M16	SSN216	12		R ¹ / ₈	R ¹ / ₈	1216 2216	22216RHR	SR140×8.5 SR140×10	2 1	MZ17	MZ20
		80	*90	170	112	290	50	345	145	100	35	212	68	M16	M20	M16	SSN316	18		R ¹ / ₈	R ¹ / ₈	1316 2316	21316RH 22316RHR	SR170×14.5 SR170×10	2 1	MZ17	MZ20
8	0	85	95	150	95	260	50	320	125	90	32	185	46	M16	M20	M16	SSN217	13		R ¹ / ₈	R ¹ / ₈	1217 2217	 22217RHR	SR150×9 SR150×10	2 1	MZ18	MZ21
		85	95	180	112	320	60	380	155	110	40	223	70	M20	M24	M20	SSN317	25.8	8	R ¹ / ₈	R ¹ / ₈	1317 2317	21317RH 22317RHR	SR180×14.5 SR180×10	2 1	MZ18	MZ21
8	5	90	100	160	100	290	50	345	145	100	35	195	62.4	M16	M20	M16	SSN218	17		R ¹ / ₈	R ¹ / ₈	1218 2218 	 22218RHR 23218RH	SR160×16.2 SR160×11.2 SR160×10	2 2 1	MZ19	MZ22
		90	105	190	112	320	60	380	160	110	40	230	74	M20	M24	M20	SSN318	28		R ¹ / ₄	R ¹ / ₄	1318 2318	22318RHR	SR190×15.5 SR190×10	2 1	MZ19	MZ23
9	0	95	110	170	112	290	50	345	140	100	35	210	53	M16	M20	M16	SSN219	18		R ¹ / ₈	R ¹ / ₈	1219 2219	22219RHR	SR170×10.5 SR170×10	2 1	MZ20	MZ24
		95	110	200	125	350	70	410	170	120	45	250	77	M20	M24	M20	SSN319	31		R ¹ / ₄	R ¹ / ₄	1319 2319	22319RHR	SR200×16 SR200×10	2 1	MZ20	MZ24
9	5 ·	100	115	180	112	320	60	380	160	110	40	223	70.3	M20	M24	M16	SSN220	24		R ¹ / ₄	R ¹ / ₄	1220 2220	22220RHR 23220RH	SR180×18.1 SR180×12.1 SR180×10	2 2 1	MZ21	MZ26
		100	115	215	140	350	70	410	175	120	45	270	83	M20	M24	M20	SSN320	41		R ¹ / ₄	R ¹ / ₄	1320 2320	22320RHR	SR215×18 SR215×10	2 1	MZ21	MZ26
10	5	110	125	200	125	350	70	410	175	120	45	245	80	M20	M24	M16	SSN222	28		R ¹ / ₄	R ¹ / ₄	1222 2222 —	 22222RHR 23222RH	SR200×21 SR200×13.5 SR200×10	2 2 1	MZ23	MZ28

[Notes] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.

When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing. 2) If bearing of shaft diameter marked with * (shoulder diameter) receives large axial load, the use of spacers is recommended.

2) Housings shown below are equipped with eyebolts. SSN224~SSN232, SSN318~SSN332

Plummer blocks split type, flat bottom different bore type SSN 2, 3 large bore type SSN 2B, 3B d_1 (105) ~ 150 mm

SSN 2B. 3B

Koyo

S	h aft di a (mi		ter					Di	mensio (mm)	ons					Bolt	size	Housing	(Refer.) Housing	Grease	Drain	-	plicable aring No.	Applicab stabilizing		Applicable	oil seal No.
d	$_1$ d	l c	$d_2^{(2)}$	D	H	J	J_1	L	Α	A_1	H_1	H_2	g	t Bolt size	(Two)		No.	mass (kg)	nipple size	plug size	Self-aligning ball brg.	Spherical roller brg.	No. Outside dia.×Width	Qty.	d_1 side	d_2 side
10	5 11	0	125	240	150	390	70	450	190	130	50	300	90	M24	M24	M24	SSN322	51	R ¹ / ₄	R ¹ / ₄	1322 2322	22322RHR	SR240×20 SR240×10	2 1	MZ23	MZ28
11	5 12	20 .	135	215	140	350	70	410	185	120	45	270	86	M20	M24	M16	SSN224	33	R 1/4	R ¹ / ₄	_	22224RHR 23224RH	SR215×14 SR215×10	2 1	MZ26	MZ30
	12	20	135	260	160	450	90	530	200	160	60	320	96	M24	M30	M24	SSN324	63	R ¹ / ₄	R ¹ / ₄	—	22324RHR	SR260×10	1	MZ26	MZ30
12	5 13	80 ⁻	145	230	150	380	70	445	190	130	50	290	90	M24	M24	M20	SSN226	45	R ¹ / ₄	R ¹ / ₄	—	22226RHR 23226RH	SR230×13 SR230×10	2 1	MZ28	MZ33
	13	80 ·	150	280	170	470	90	550	210	160	60	340	103	M24	M30	M24	SSN326	96	R ¹ / ₄	R ¹ / ₄	—	22326RHR	SR280×10	1	MZ28	MZ34
13	5 14	۰ 0۱	155	250	150	420	80	500	205	150	50	305	98	M24	M30	M24	SSN228	54	R 1/4	R ¹ / ₄	—	22228RHR 23228RH	SR250×15 SR250×10	2 1	MZ30	MZ35
	14	10 ·	160	300	180	520	100	610	235	170	65	365	112	M30	M30	M24	SSN328	117	R ¹ / ₄	R ¹ / ₄	—	22328R	SR300×10	1	MZ30	MZ36
14	5 15	50 ·	165	270	160	450	90	530	220	160	60	325	106	M24	M30	M24	SSN230	60	R ¹ / ₄	R ¹ / ₄	—	22230RHR 23230RH	SR270×16.5 SR270×10	2 1	MZ33	MZ37
	15	50 ·	170	320	190	560	110	650	245	180	65	385	118	M30	M30	M24	SSN330	132	R ¹ / ₄	R ¹ / ₄	—	22330R	SR320×10	1	MZ33	MZ38
15	0 16	50 ·	175	290	170	470	90	550	235	160	60	345	114	M24	M30	M24	SSN232	69	R ¹ / ₄	R ¹ / ₄		22232R 23232R	SR290×17 SR290×10	2 1	MZ34	MZ39
	16	50 ·	180	340	200	580	110	680	255	190	70	405	124	M30	M36	M30	SSN332	145	R ¹ / ₄	R ¹ / ₄	_	22332R	SR340×10	1	MZ34	MZ40

[Notes] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.

When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing. 2) If bearing of shaft diameter marked with * (shoulder diameter) receives large axial load, the use of spacers is recommended.

[Remarks] 1) Large bore diameter types (concentric collar locking) are identified by B suffixed to housing numbers.

2) Housings shown below are equipped with eyebolts. SSN224~SSN232, SSN318~SSN332

B 562

B 563

Shaft dia. (mm)							nensio (mm)	ns						Bolt size	Housing	(Refer.) Housing	Grease	Drain	Applicable	Applicable	Applicable
d_1	D	H	J	J_1	L	Α	A ₁	H_1	H_2	Ν	N_1	g	t Bolt size	S	No.	mass (kg)	nipple size	plug size	bearing No.	adapter ass'y No.	oil seal No. MZ
150	260 310 360	160 180 210	450 510 610	110 140 170	540 620 740	230 270 300	200 250 290	50 60 65	315 360 420	36 36 36	46 46 46	77 96 130	M24 M24 M30	M30 M30 M30	SD3334 SD534 SD634	70 105 165	R ³ / ₈ R ³ / ₈ R ³ / ₈	R ³ / ₈ R ³ / ₈ R ³ / ₈	23034RHK 22234RK 22334RK	H3034 H3134 H2334	MZ34 MZ34 MZ34
160	280 320 380	170 190 225	470 540 640	120 150 180	560 650 780	250 280 320	220 260 310	50 60 70	335 380 450	36 36 43	46 46 59	84 96 136	M24 M24 M30	M30 M30 M36	SD3336 SD536 SD636	80 120 200	R ³ / ₈ R ³ / ₈ R ³ / ₈	R ³ / ₈ R ³ / ₈ R ³ / ₈	23036RHK 22236RK 22336RK	H3036 H3136 H2336	MZ36 MZ36 MZ36
170	290 340 400	170 200 240	470 570 680	120 160 190	560 700 820	250 290 330	220 280 320	50 65 70	340 400 475	36 36 43	46 46 59	85 102 142	M24 M30 M30	M30 M30 M36	SD3338 SD538 SD638	90 145 220	R ³ / ₈ R ³ / ₈ R ³ / ₈	R ³ / ₈ R ³ / ₈ R ³ / ₈	23038RK 22238RK 22338RK	H3038 H3138 H2338	MZ38 MZ38 MZ38
180	310 340 360 420	180 200 210 250	510 570 610 710	140 160 170 200	620 700 740 860	270 310 300 350	250 280 290 340	60 65 65 85	360 400 420 500	36 36 36 43	46 46 46 59	92 122 108 148	M24 M30 M30 M36	M30 M30 M30 M36	SD3340 SD3440 SD540 SD640	100 135 170 250	R ³ / ₈ R ³ / ₈ R ³ / ₈ R ³ / ₈	R ³ / ₈ R ³ / ₈ R ³ / ₈ R ¹ / ₂	23040RK 23140RK 22240RK 22340RK	H3040 H3140 H3140 H2340	MZ40 MZ40 MZ40 MZ40
200	340 370 400 460	200 225 240 280	570 640 680 770	160 180 190 210	700 780 820 920	290 320 330 360	280 310 320 350	65 70 70 85	400 445 475 550	36 43 43 43	46 59 59 59	100 130 118 155	M30 M30 M30 M36	M30 M36 M36 M36	SD3344 SD3444 SD544 SD644	130 185 220 320	R ³ /8 R ³ /8 R ³ /8 R ³ /8	R ³ / ₈ R ³ / ₈ R ³ / ₈ R ¹ / ₂	23044RK 23144RK 22244RK 22344RK	H3044 H3144 H3144 H2344	MZ44 MZ44 MZ44 MZ44
220	360 400 440 500	210 240 260 300	610 680 740 830	170 190 200 230	740 820 880 990	300 330 340 390	290 320 330 380	65 70 85 100	420 475 515 590	36 43 43 50	46 59 59 67	102 138 130 165	M30 M30 M36 M36	M30 M36 M36 M42	SD3348 SD3448 SD548 SD648	160 210 260 415	R ³ / ₈ R ³ / ₈ R ³ / ₈ R ³ / ₈	R ³ / ₈ R ³ / ₈ R ¹ / ₂ R ¹ / ₂	23048RK 23148RK 22248RK 22348RK	H3048 H3148 H3148 H2348	MZ48 MZ48 MZ48 MZ48
240	400 440 480 540	240 260 280 325	680 740 790 890	190 200 210 250	820 880 940 1 060	340 360 370 410	320 350 360 400	70 85 85 100	475 515 560 640	43 43 43 50	59 59 59 67	114 154 140 175	M30 M36 M36 M36	M36 M36 M36 M42	SD3352 SD3452 SD552 SD652	215 245 325 490	R ³ / ₈ R ³ / ₈ R ³ / ₈ R ³ / ₈	R ³ / ₈ R ¹ / ₂ R ¹ / ₂ R ³ / ₄	23052RK 23152RK 22252RK 22352RK	H3052 H3152 H3152 H3152 H2352	MZ52 MZ52 MZ52 MZ52

[Note] 1) Since bearings are designed to be locked by housing, stabilizing rings are unnecessary.

[Remark] The structure of certain housings may differ from those shown in the figures.

Shaft dia. (mm)							nensio (mm)	ns						Bolt size	Housing	(Refer.) Housing	Grease nipple	Drain plug	Applicable	Applicable adapter	Applicable oil seal No.
d_1	D	H	J	J_1	L	A	A_1	H_1	H_2	N	N_1	g	t Bolt size	S	No.	(kg)	size	size	bearing No.	ass'y No.	MZ
260	420 460 500 580	250 280 300 355	710 770 830 930	200 210 230 270	860 920 990 1 110	350 360 390 440	340 350 380 430	85 85 100 110	500 550 590 690	43 43 50 57	59 59 67 77	116 156 140 185	M36 M36 M36 M42	M36 M36 M42 M48	SD3356 SD3456 SD556 SD656	245 320 395 615	R ³ / ₈ R ³ / ₈ R ³ / ₈ R ³ / ₈	R ¹ / ₂ R ¹ / ₂ R ¹ / ₂ R ³ / ₄	23056RK 23156RK 22256RK 22356RK	H3056 H3156 H3156 H2356	MZ56 MZ56 MZ56 MZ56
280	460 500 540	280 300 325	770 830 890	210 230 250	920 990 1 060	360 390 410	350 380 400	85 100 100	550 590 640	43 50 50	59 67 67	128 170 150	M36 M36 M36	M36 M42 M42	SD3360 SD3460 SD560	305 400 490	R ³ / ₈ R ³ / ₈ R ³ / ₈	R ¹ / ₂ R ¹ / ₂ R ³ / ₄	23060RK 23160RK 22260RK	H3060 H3160 H3160	MZ60 MZ60 MZ60
300	480 540 580	280 325 355	790 890 930	210 250 270	940 1 060 1 110	380 430 440	360 400 430	85 100 110	560 640 690	43 50 57	59 67 77	131 186 160	M36 M36 M42	M36 M42 M48	SD3364 SD3464 SD564	325 480 600	R ³ / ₈ R ³ / ₈ R ³ / ₈	R ¹ / ₂ R ³ / ₄ R ³ / ₄	23064RK 23164RK 22264RK	H3064 H3164 H3164	MZ64 MZ64 MZ64
320	520 580	310 355	860 930	230 270	1 020 1 110	400 470	370 450	100 110	615 690	50 57	67 77	143 200	M36 M42	M42 M48	SD3368 SD3468	420 645	R ³ / ₈ R ³ / ₈	R ³ / ₄ R ³ / ₄	23068RK 23168RK	H3068 H3168	MZ68 MZ68
340	540	325	890	250	1 060	410	390	100	640	50	67	144	M36	M42	SD3372	470	R ³ /8	R ³ / ₄	23072RK	H3072	MZ72
360	560	340	900	260	1 080	410	390	100	665	50	67	145	M36	M42	SD3376	485	R ³ /8	R ³ / ₄	23076RK	H3076	MZ76

[Note] 1) Since bearings are designed to be locked by housing, stabilizing rings are unnecessary.

[Remark] The structure of certain housings may differ from those shown in the figures.

Plummer blocks split type, large size SD 31 d_1 **150** ~ **300 mm**

 ϕD

Koyo

Shaft dia. (mm)								Dime (m	nsions m)	5							Housing	Bolt size	(Refer.) Housing	Grease nipple	Drain plug	Applicable	Applicable adapter	Applicab stabilizing r	
d_1	D	H	J	J_1	L	A	A_1	A_2	A_3	A_4	H_1	H_2	N	g	t Bolt size	$x^{1)}$	No.	S	(kg)	size	size	bearing No.	ass'y No.	No. Outside dia.×Width	Qty.
150	280	170	430	100	510	230	180	240	300	120	70	335	28	108	M20	14	SD3134L	M24	65	R ³ / ₈	R ³ / ₈	23134RHK	H3134	SR280×10	2
160	300	180	450	110	530	240	190	250	310	125	75	355	28	116	M20	15	SD3136L	M24	75	R ³ / ₈	R ³ / ₈	23136RK	H3136	SR300×10	2
170	320	190	480	120	560	260	210	270	330	135	80	375	28	124	M24	10	SD3138L	M24	95	R ³ / ₈	R ³ / ₈	23138RK	H3138	SR320×10	2
180	340	210	510	130	610	280	230	290	350	145	85	410	35	132	M24	10	SD3140L	M30	120	R ³ /8	R ³ /8	23140RK	H3140	SR340×10	2
200	370	220	540	140	640	290	240	300	360	152	90	435	35	140	M24	12	SD3144L	M30	140	R ³ / ₈	R ³ / ₈	23144RK	H3144	SR370×10	2
220	400	240	600	150	700	310	260	320	380	162	95	475	35	148	M30	12	SD3148L	M30	180	R ³ / ₈	R ³ / ₈	23148RK	H3148	SR400×10	2
240	440	260	650	160	770	320	280	330	396	170	100	515	42	164	M30	13	SD3152L	M36	220	R ³ / ₈	R ¹ / ₂	23152RK	H3152	SR440×10	2
260	460	280	670	160	790	320	280	330	396	170	105	550	42	166	M30	16	SD3156L	M36	250	R ³ / ₈	R ¹ / ₂	23156RK	H3156	SR460×10	2
280	500	300	710	190	830	350	310	360	420	193	110	590	42	180	M30	22	SD3160L	M36	300	R ³ / ₈	R ¹ / ₂	23160RK	H3160	SR500×10	2
300	540	320	750	200	880	370	330	380	440	203	115	630	42	196	M30	23	SD3164L	M36	340	R ³ / ₈	R ³ / ₄	23164RK	H3164	SR540×10	2

[Notes] 1) Dimension x shows the shear between center of bearing and housing.
2) Stabilizing rings are mounted to the fixed side of the SD 31...TS and SD 31 ...TAC series (both sides of bearings).
SD31...L series are locked by housings.

[Remark] Use of labyrinth or taconite seals are indicated by TS or TAC suffixed to housing numbers.

Plummer blocks one-piece type V 5, 6 d_1 30 ~ 65 mm

Koyo

Shaft dia. (mm)							nsion 1m)	6					Bolt	size	Housing	Tiousing	Grease nipple	Drain plug	Housing	bea	plicable ring No.	Applicable adapter	Applicab stabilizing		Applicable oil seal No.
d_1	D	Η	J	J_1	L	A	A_1	H_1	H_2	N	N_1	g	(Two)	(Four)	No.	(kg)	size	size	No.	Self-aligning ball brg.	Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
30	80	60	170		205	95	60	25	118	16	20	37	M14	_	V607	4.8	R ¹ / ₈	R ¹ / ₈	V080	1307K 2307K	—	H307X H2307X	SR80×8 SR80×6	2 1	MZ07
35	80	60	170		205	95	60	25	118	16	20	37	M14		V508	4.4	R ¹ / ₈	R ¹ / ₈	V080	1208K 2208K	 22208RHRK	H208X H308X	SR80×9.5 SR80×7	2 2	MZ08
	90	67	170	_	205	100	60	25	128	16	20	39	M14		V608	5.1	R ¹ / ₈	R ¹ / ₈	V090	1308K 2308K	21308RHK 22308RHRK	H308X H2308X	SR90×8 SR90×6	2 1	MZ08
40	85	63	170		205	98	60	25	125	16	20	39	M14		V509	4.6	R ¹ /8	R ¹ / ₈	V085	1209K 2209K	 22209RHRK	H209X H309X	SR85×10 SR85×8	2 2	MZ09
	100	71	210		255	106	70	28	140	16	23	42	M14	_	V609	6.6	R ¹ / ₈	R ¹ / ₈	V100	1309K 2309K	21309RHK 22309RHRK	H309X H2309X	SR100×8.5 SR100×6	2 1	MZ09
45	90	67	170		205	100	60	25	128	16	20	39	M14		V510	4.7	R ¹ / ₈	R ¹ / ₈	V090	1210K 2210K	 22210RHRK	H210X H310X	SR90×9.5 SR90×8	2 2	MZ10
	110	80	210		255	112	70	30	155	21	25	46	M18		V610	8.3	R ¹ / ₈	R ¹ / ₈	V110	1310K 2310K	21310RHK 22310RHRK	H310X H2310X	SR110×9.5 SR110×6	2 1	MZ10
50	100	71	210		255	106	70	28	140	16	23	42	M14		V511	6.2	R ¹ /8	R ¹ / ₈	V100	1211K 2211K	 22211RHRK	H211X H311X	SR100×10.5 SR100×8.5	2 2	MZ11
	120	85	230	_	275	118	80	30	165	21	25	49	M18	—	V611	10	R ¹ / ₈	R ¹ / ₈	V120	1311K 2311K	21311RHK 22311RHRK	H311X H2311X	SR120×10 SR120×6	2 1	MZ11
55	110	80	210	_	255	112	70	30	155	21	25	46	M18		V512	7.6	R ¹ / ₈	R ¹ / ₈	V110	1212K 2212K	 22212RHRK	H212X H312X	SR110×12 SR110×9	2 2	MZ12
	130	90	230	_	280	118	80	30	175	21	25	50	M18		V612	11	R ¹ / ₈	R ¹ / ₈	V130	1312K 2312K	21312RHK 22312RHRK	H312X H2312X	SR130×9.5 SR130×4	2 1	MZ12
60	120	85	230	_	275	118	80	30	165	21	25	49	M18	_	V513	9.9	R ¹ /8	R ¹ / ₈	V120	1213K 2213K	 22213RHRK	H213X H313X	SR120×13 SR120×9	2 2	MZ13
	125	90	230		280	118	80	30	175	21	25	50	M18		V514	10	R ¹ / ₈	R ¹ / ₈	V125	—	22214RHRK	H314X	SR125×9.5	2	MZ13
	140	100	260		315	136	90	32	195	25	30	56	M22		V613	17	R ¹ / ₈	R ¹ / ₈	V140	1313K 2313K	21313RHK 22313RHRK	H313X H2313X	SR140×11.5 SR140×8	2 1	MZ13
	150	100	260	_	315	140	90	32	195	25	30	56	M22	_	V614	16	R ¹ / ₈	R ¹ / ₈	V150	—	21314RHK 22314RHRK	H314X H2314X	SR150×10.5 SR150×5	2 1	MZ13
65	130	90	230	_	280	118	80	30	175	21	25	50	M18	_	V515	10	R ¹ /8	R ¹ / ₈	V130	1215K 2215K	22215RHRK	H215X H315X	SR130×12.5 SR130×9.5	2 2	MZ15
	160	112	290	_	345	150	100	35	224	25	30	62	M22	_	V615	23	R ¹ / ₈	R ¹ / ₈	V160	1315K 2315K	21315RHK 22315RHRK	H315X H2315X	SR160×12.5 SR160×7	2 1	MZ15

 δd_1

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring. When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. V180~V340 (V520~V538 and V617~V632)

Plummer blocks one-piece type V 5, 6

Shaft dia. (mm)	Dimensions (mm)		Bolt size	Housing	(Refer.) Housing	Grease	Drain plug	Housing	Applicable bearing No.	Applicable adapter	stabilizing ring	Applicable oil seal No.
d_1	D H J J_1 L A A_1 H_1 H_2	N N_1 g (T	(Two) (Four)	No.	mass (kg)	size	size	No.	Self-aligning Spheric ball brg. roller br	ass'v No	No. Outside dia.×Width Qty.	MZ
70	140 100 260 — 315 136 90 32 195	25 30 56 M	M22 —	V516	16	R ¹ / ₈	R ¹ / ₈	V140	1216K — 2216K 22216RH	H216X H316X	SR140×15 2 SR140×11.5 2	MZ16
	170 112 290 — 345 165 100 35 224	25 30 62 M	M22 —	V616	22	R ¹ / ₈	R ¹ / ₈	V170	1316K 21316RH 2316K 22316RH		SR170×11.5 2 SR170×4 1	MZ16
75	150 100 260 — 315 140 90 32 195	25 30 56 M	M22 —	V517	15	R ¹ / ₈	R ¹ / ₈	V150	1217K — 2217K 22217RH	H217X H317X	SR150×14 2 SR150×10 2	MZ17
	180 125 320 56 380 170 110 40 243	23 32 70 -	— M20	V617	28	R ¹ / ₄	R ¹ / ₄	V180	1317K 21317RH 2317K 22317RH	K H317X RK H2317X	SR180×14.5 2 SR180×10 1	MZ17
80	160 112 290 — 345 150 100 35 224	25 30 62 1	M22 —	V518	22	R ¹ / ₈	R ¹ / ₈	V160	1218K — 2218K 22218RH — 23218RH		SR160×16 2 SR160×11 2 SR160×9.6 1	MZ18
	190 125 320 56 380 170 110 40 243	23 32 70 -	— M20	V618	27	R ¹ / ₄	R ¹ / ₄	V190	1318K 21318RH 2318K 22318RH		SR190×13.5 2 SR190×6 1	MZ18
85	170 112 290 — 345 165 100 35 224	25 30 62 1	M22 —	V519	21	R ¹ / ₈	R ¹ / ₈	V170	1219K — 2219K 22219RH	H219X H319X	SR170×11 2 SR170×9.5 2	MZ19
	200 132 350 60 410 190 120 45 265	23 32 82 -	— M20	V619	37	R ¹ / ₄	R ¹ / ₄	V200	1319K 21319RH 2319K 22319RH		SR200×18.5 2 SR200×15 1	MZ19
90	180 125 320 56 380 170 110 40 243	23 32 70 -	— M20	V520	27	R ¹ / ₄	R ¹ / ₄	V180	1220K — 2220K 22220RH — 23220RH		SR180×18 2 SR180×12 2 SR180×9.7 1	MZ20
	215 140 350 60 410 190 120 45 280	23 32 82 -	— M20	V620	40	R ¹ / ₄	R ¹ / ₄	V215	1320K 21320RH 2320K 22320RH	K H320X RK H2320X	SR215×17.5 2 SR215×9 1	MZ20
100	200 132 350 60 410 190 120 45 265	23 32 82 -	— M20	V522	36	R ¹ / ₄	R ¹ / ₄	V200	1222K — 2222K 22222RH — 23222RH		SR200×22 2 SR200×14.5 2 SR200×12.2 1	MZ22
	240 160 390 80 470 218 150 50 315	23 32 96 -	— M20	V622	56	R ¹ / ₄	R ¹ / ₄	V240	1322K 21322RH 2322K 22322RH	К Н322X К Н2322X	SR240×23 2 SR240×16 1	MZ22
110	215 140 350 60 410 190 120 45 280	23 32 82 -	— M20	V524	39	R ¹ / ₄	R ¹ / ₄	V215	22224RF 23224RF		SR215×12 2 SR215×6 1	MZ24
	260 170 450 92 540 236 160 60 335	29 42 103 -	— M24	V624	71	R ¹ / ₄	R ¹ / ₄	V260	— 22324RH	RK H2324	SR260×17 1	MZ24
115	230 150 380 65 450 200 130 50 300	23 32 86 -	— M20	V526	48	R ¹ / ₄	R ¹ / ₄	V230	22226RH 23226RH		SR230×11 2 SR230×6 1	MZ26
	280 180 470 92 560 243 160 60 355	29 42 103 -	— M24	V626	82	R ¹ / ₄	R ¹ / ₄	V280	— 22326RF	RK H2326	SR280×15 1	MZ26
125	250 160 420 80 500 218 150 50 315	23 32 94 -	— M20	V528	54	R ¹ / ₄	R ¹ / ₄	V250	— 22228RH 23228RH		SR250×13 2 SR250×6 1	MZ28

 $d d_1$

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.
 When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. V180~V340 (V520~V538 and V617~V632)

B 573

Plummer blocks one-piece type V 5, 6 Fixed side Free side Stabilizing When one stabilizing ring used ring d_1 (125) ~ 170 mm N_{\perp} Α -Width N_1 N_1 Outside ϕD H_2 d_1 -Sdia. H_1 Ĥ Ø I O Th Ĵ,

Shaft dia. (mm)						D	imen (mi	nsions m)							t size S	Housing	(Refer.) Housing	Grease nipple	Drain plug	Housing	bea	olicable ring No.	Applicable adapter	Applicabl stabilizing		Applicable oil seal No.
d_1	D	Η	J	J	1 I	5	Α	A_1	H_1	H_2	N	N_1	g	(Two)	(Four)	No.	mass (kg)	size	size	No.	Self-aligning ball brg.	Spherical roller brg.	ass'y No.	No. Outside dia.×Width	Qty.	MZ
125	300	190	52	0 9	02 61	10 2	250	170	65	375	29	50	113	—	M24	V628	101	R ¹ / ₄	R ¹ / ₄	V300	—	22328RK	H2328	SR300×11	1	MZ28
135	270	170	45	0 9	02 54	40 2	236	160	60	335	29	42	103	_	M24	V530	64	R ¹ / ₄	R ¹ / ₄	V270		22230RHRK 23230RHK	H3130 H2330	SR270×15 SR270×7	2 1	MZ30
	320	200	56	0 9	66	50 2	258	180	65	405	29	50	122	—	M24	V630	129	R ¹ / ₄	R ¹ / ₄	V320	—	22330RK	H2330	SR320×14	1	MZ30
140	290	190	47	0 9	92 56	50 ž	250	170	60	375	29	50	113		M24	V532	92	R ¹ / ₄	R ¹ / ₄	V290		22232RK 23232RK	H3132 H2332	SR290×16.5 SR290×9	2 1	MZ32
	340	212	58	0 10	68	30 3	300	190	65	425	33	54	130	—	M27	V632	149	R ¹ / ₄	R ¹ / ₄	V340	—	22332RK	H2332	SR340×16	1	MZ32
150	310	200	56	0 9	02 66	50 ž	258	180	65	405	29	50	122		M24	V534	110	R ¹ / ₄	R ¹ / ₄	V310	—	22234RK 23234RK	H3134 H2334	SR310×18 SR310×12	2 1	MZ34
160	320	200	56	0 9	02 66	50 2	258	180	65	405	29	50	122		M24	V536	110	R ¹ / ₄	R ¹ / ₄	V320	_	22236RK 23236RK	H3136 H2336	SR320×18 SR320×10	2 1	MZ36
170	340	212	58	0 10)4 68	30 3	300	190	65	425	33	54	130		M27	V538	130	R ¹ / ₄	R ¹ / ₄	V340		22238RK 23238RK	H3138 H2338	SR340×19 SR340×10	2 1	MZ38

[Note] 1) Dimension x shows the shear between center of bearing and housing when one stabilizing ring is used. The value is 1/2 the width dimension of stabilizing ring.
 When mounting two stabilizing rings, x becomes equal to 0, since they are mounted to each side of bearing.

[Remark] Housings shown below are equipped with eyebolts. V180~V340 (V520~V538 and V617~V632)

Ceramic&Exsev bearing series

More and more bearings are being used in extreme special environments, such as in a vacuum, or in a clean, corrosive, or heated place. In some cases bearings are required to be insulated or antimagnetic.

Applications of bearings in such environments are increasing in the field of state-of-the-art technology, e.g. vacuum equipment, aerospace equipment and semi-conductor production facilities. Bearings made of conventional materials and lubricants can hardly meet these new needs.

JTEKT has succeeded in developing a series of bearings for use in extreme special environments, having started from the study of the very basics of materials and testing of their performance under various severe conditions.

JTEKT has standardized the following bearings as the "Koyo **EXSEV** bearing series".

• Exsev bearings for use in a clean environment Designed for use in a vacuum.

The friction surface of the bearing interior is coated with solid lubricant (or soft metal). Bearings pre-lubricated with special grease are also available.

- Exsev bearings for use in a vacuum environment Produce insignificant contamination, provided with rolling elements and a cage made of self-lubricating materials. Optimal for use in environments which need to be clean.
- Ceramic bearings

Ceramic rings and rolling elements (silicon nitride $Si_{8}N_{4}$) ensure excellent performance in various extreme special environments.

• For details, refer to JTEKT separate catalog "Ceramic bearings and **EXSEV** bearings for extreme special environments" (CAT. NO. B2004E).

Exsev bearings for use in a vacuum environment

Ceramic bearings

	F
--	---

Bore diameter 4	– 120 mm
-----------------	-----------------

Linear ball bearings for vacuum

The chart below summarizes the EXSEV bearing series and the conditions in which each operates successfully. Materials and lubricants which are resistant to certain special conditions are listed in Tables 1 and 2. Major Koyo EXSEV bearing series made of these materials and lubricants are listed in Table 3.

		Table 2 EX	KSEV bearing	g lubricants	
	Lubricant	Operating temperature range ℃	Vacuum resis- tance(room temperature) Pa	Steam pressure at high temperature Pa	Remarks
	Vacuum grease	- 30 to + 200	Atmospheric pressure(10 ⁵) to 10 ⁻⁵	-	Not to be used when grease affects operating environment.
	Polytetrafluoroethylene resin (PTFE)	- 100 to + 200	Atmospheric pressure to 10 ⁻⁵	_	Highly resistant to chemicals and highly insulating. Suitable when the environment repeats alternation between the atmosphere and a vacuum.
Solid Iubricant	Molybdenum (MoS ₂) disulfide	- 100 to + 300	Atmospheric pressure to 10 ⁻⁵	-	Friction torque is low even in a vacuum. Not suitable for use in air at high temperature.
	$Lead^{1)}$ (Pb)	- 200 to + 300	10^{-3} to 10^{-10}	10 ⁻⁶ (300°C)	Low friction torque. Not suitable for use in air.
	$Silver^{1)}$ (Ag)	- 200 to + 600	10 ⁻³ to 10 ⁻¹⁰	10 ⁻⁵ (550°C)	Not suitable for use in air or in corrosive gas.

[Note] 1) Rolling elements or bearing rings are coated using the special ion plating method JTEKT developed. [Remark] The lubricants in the table above are usually applied to bearings for use in a vacuum. The most suitable one should be selected in consideration of the vacuum condition, temperature, and whether reactive gas

or inert gas exists. ∧ Fair

	Та	ble 1	EXS	SEV bearing	materials				⊖ Go	bod	\triangle I	Fair	×N	lo goo	d									
	(Compone	ent	Operating	Vacuum resistance	Density	Young's ¹⁾	Coefficient ²⁾			sm				Co	rrosion	resista	nce				Use	d to produ	uce :
Bearing material	ring	e na	q	temperature range	(room temperature)		modulus	of linear thermal	tion	ion	gneti		ater	ent	acid	g liquid	Stror acid	ng liquid	Molten	metal	rogen ride	Vacuum		
Deaning material	Bearing ring	Rolling element Cage	Shield	°C	Pa	g/cm ³	GPa	expansion ×10 ^{−6} / ℃	Self- lubrication	Insulation	Nonmagnetism	Water	Sea water	Alkalescent liquid		Strong alkali lic	Sulfuric acid		Al Zn	Fe	Hydrog	bearings	bearings	bearings
Martensitic stainless steel				- 250 to + 400	Atmospheric pressure(10 ⁵)to 10 ⁻⁸	7.7	208	10.5	×	×	×		×	0	×	×	×	×	×	×	×			
Precipitation hardening stainless steel				- 250 to + 400	Atmospheric pressure to 10 ⁻⁸	7.8	196	11.0	×	×	×	0	\bigtriangleup	0	0	0	0	×	×	×	×			
High speed tool steel				- 250 to + 550	Atmospheric pressure to 10 ⁻⁸	8.5	207	12.0	×	×	×		×	0	×	×	×	×	×	×	×			
Ceramics (Si ₃ N ₄)				- 270 to + 800	Atmospheric pressure to 10 ⁻⁸	3.2	320	3.2	×	0	0	0	0	0	0	\bigtriangleup	0	0	0	×	×			
Graphite (GF)				+ 500 max.	-	2.15	-	5.5	0	×	0	0	0	0	0	0	0	0	0	0	0			
Reinforced fluorocarbon resin (FA)				- 100 to + 200	Atmospheric pressure to 10 ⁻⁶	1.9	-	-	0	0	0	0	0	0	0	0	0	0	×	×	0			
Reinforced fluorocarbon resin (PT)				- 100 to + 200	Atmospheric pressure to 10 ⁻⁴	2.15	-	-	0	0	0	0	0	0	0	0	0	0	×	×	0			
Reinforced PEEK resin (PN)				- 100 to + 300	Atmospheric pressure to 10 ⁻⁶	1.54	-	-	0	0	0	0	0	0	0	0	0	0	×	×	0			
Austenitic stainless steel				- 200 to + 300	Atmospheric pressure to 10 ⁻⁸	8.0	193	16.3	×	×	0	0	0	0	\triangle	×	×	×	×	×	×			
(Ref.) High carbon chromium bearing steel				- 200 to + 120	Atmospheric pressure to 10 ⁻⁸	7.8	208	12.5	×	×	×	×	×	×	×	×	×	×	×	×	×		_	

[Notes] 1) A larger Young's modulus indicates higher rigidity.

2) A smaller coefficient of linear thermal expansion indicates a greater dimensional stability under heating.

Table 3 Koyo EXSEV bearing series models and types

		E	Exsev bearings for use	in a vacuum environm	ent	Exsev bearings	s for use in a cle	an environment		Ceramic b	earings 4)	
elective points)	Vacuum resistance 1)	Repeated alternation between atmospheric pressure and medium vacuum environments	Repeated alternative between atmosp pressure and hig environments	heric	From high vacuum to ultra-high vacuum	atmosph	d alternation be eric pressure ar environments				atmospheri	ic pressure
s(sele	Operating temperature range, $\ ^{\circ}\!$	- 30 to + 200	- 100 to + 300	- 100 to + 350	- 200 to + 350	- 30 to + 120	- 120 to + 200	+ 200 to + 260	– 100 te	0 + 200	- 30 to + 120	+ 500 max.
cteristics	Cleanness	(class 100 ⁵⁾)	-	-	-		class 10 ⁵⁾		-	-	-	-
	Corrosion resistance 2)	0	0	0	-		0		0	-	-	-
Chara	Running friction torque	-	Low torque	Low torque	-	E>	stremely low tore	que	-	-	-	-
	Others	-	-	_	Unstable for use with oxygen or corrosive gas	-	-	-	Corrosion resistant	nonmagnetism	Insulation	High temperature
		DL bearing	MO bearing	WS bearing	MG bearing	Clean pro PRA bearing	Clean pro bearing	High temperature clean pro bearing	Hybrid ceramic bearing	Hybrid ceramic bearing	Hybrid ceramic bearing	Hybrid ceramic bearing
	Bearing types											
		SVST	SESTMSA7	SESTWS	SESTMG3	SESTPRA	SESTPR	SESTPRB	3NCMD4FA	3NCYH4FA	3NCFG	3NCHT4GF
(0	Inner ring and outer ring		N			Martensitic stainless steel			Precipitation hardening stainless steel stainless steel		High carbon chrome bearing steel	High speed tool steel
Materials	Rolling elements (balls or rollers)		Martensitic s	stainless steel		Mart	ensitic stainless	steel		Cera	mics	
2	Cage	Austen stainle	itic ss steel	Tungsten disulfide (WS)	Austenitic stainless steel	Aus	tenitic stainless	steel	Fluorocarbo	n resin (FA)	Polyamide resin	Graphite (GF)
	Lubricant	Vacuum grease	Cage coated with molybdenum disulfide(MoS ₂)	Self-lubrication ⁶⁾	Balls coated with ³⁾ silver(Ag)	Fluorocart	oon-base polyme	eric coating	Self-lubr	rication ⁶⁾	Vacuum grease	Self-lubrication ⁶⁾
	Applications	Vacuum pump, general vacuum equipment	P-CVD equipment semiconductors an spattering equipme	d electronic parts,	Electron beam epitaxial equipment	Semico	onductor manufa	acturing	Food or chemical manufacturing equipment	Vacuum equipment	Motors	Heat roll heat treatment furnaces

- The corrosion resistance column shows general evaluations.
 Marks "⊙" and "○", respectively, denote "excellent", "good", and "fair".
 Refer to Table 1 for the corrosive materials concerned.
- These soft metals are applied by the special ion plating method JTEKT developed, so that they feature excellent bonding strength, extending the service life of bearings.

 When higher corrosion resistance, nonmagnetism and heat resistance are required, Full Ceramic Bearings should be used. Please consult with JTEKT for details.

Ceramics can also be used to produce many types of bearings, such as angular contact ball bearings and cylindrical roller bearings.

5) These evaluations indicate the cleanness

around the bearing, or in the equipment interior. Cleanness is largely dependent on the amount of dirt produced by operation of the bearing. The suffixed numbers refer to amounts of dirt, and the smaller the number is, the less dirt produced by the bearing.

 $\label{eq:expectation} \begin{array}{l} \mbox{[Ex.] Class 10} & \mbox{momentum there are less than 10} \\ & \mbox{particles 0.5 } \mu m \mbox{ or larger in diameter in} \\ & \mbox{a 1-cubic-foot space.(as specified in} \\ & \mbox{USA standards FED-STD-209D.)} \end{array}$

6) Because the cage is made from selflubricating material. Kovo

Life of EXSEV Bearings

EXSEV bearings, lubricated with a solid lubricant, are usually used under relatively light load conditions, such as 10% of their static load ratings or less.

These bearings can maintain stable performance as long as the solid lubricant is maintained. Once the lubricant wears out, metallic contact occurs, which increases rotational friction torque and shortens service life.

Service life depends on use conditions. At present, it is not possible to predict their service life under varied use conditions.

However, based on a variety of experiments and tests, JTEKT has established an experimental formulae to predict the lives of bearings. The formulae is described in the following subsections for reference only.

(1) Life of MG bearings consisting of silver-coated balls

The life of MG bearings (JTEKT serial number, SE...STMG3) can be predicted according to the following formula;

 $L_{\rm vh} = b_1 \cdot b_2 \cdot b_3 (C_{\rm v}/P)^q \times 16\ 667/n$ (1)

where,

 $L_{\rm vh}$: 90% reliable life, $\rm h$

- $C_{\rm v}~$: Basic dynamic load rating of vacuum-resistant ball bearings (1/13 of basic dynamic load rating of steel bearings of equal size), $\rm N$
- P : Dynamic equivalent load, N
- ^q : Index, ^q = 1
- n : Rotational speed, min⁻¹, limited to $10 \le n \le 10000$
- b_1 : Rotational speed-dependant coefficient $b_1 = 1.5 \times 10^{-3}n + 1$
- b_2 : Material coefficient
- $b_2 = 1$ (for bearings ion-plated with silver by the special ionplating process)
- b_3 : Coefficient for atmospheric pressure and temperature $b_3 = 1$ (for 10^{-3} Pa and room temperature)

(2) For bearings coated with PTFE or special polymeric fluoride

For those bearings coated with PTFE (MP7) or those coated with the special polymeric fluoride (PR), the following formula gives their mean life for reference only. (See Fig. 3.8.)

 $L_{\rm av} = b_2 \cdot (C_{\rm e}/P)^d \times 0.016667/n$ (2)

where,

- $L_{\rm av}$: Average life, h
- b2 : Lubrication coefficient
 6 for bearings coated with PTFE
 42 for bearings coated with special polymeric fluoride
- $C_{\rm e}$: 0.85 times the basic dynamic load rating of steel bearings of equal size, N
- *P* : Dynamic equivalent load, N
- d : Coefficient, d = 3
- n : Rotational speed, min⁻¹

(3) Ceramic bearing service life

Ceramic bearings are used for a variety of pur-poses, and their specifications differ case by case. Therefore, there is no common system for estimating their service lives.

The estimation of full ceramic bearing service life is especially difficult at present for theoretical reasons, and requires further study.

JTEKT estimates the full ceramic bearing service life on a case by case basis according to the customer request, based on experience and experimental data.

For hybrid ceramic bearings, in many cases the conventional equation (2) below based on rolling contact fatigue is used to estimate service life, where grease or oil can be used for lubrication and, at the same time, bearings are required to be insulating and antimagnetic, or to be highly rigid and have excellent high-speed performance.

This equation is called the corrected rated life estimation equation. (refer to p. A 26.)

 $L_{\rm na} = a_1 a_2 a_3 L_{10} = a_1 a_2 a_3 (C/P)^{p} \quad \dots \qquad (3)$

- In an environment where a lubricating film is formed properly, the bearing characteristic coefficient a_2 is expected to be equivalent to or larger than that of conventional steel bearings. However, given current conditions, coefficient a_2 is counted as : $a_2 = 1$. Basic dynamic load rating *C* is treated as being equivalent to that of steel bearings of the same type and size.
- When a satisfactory oil film is formed, the operating condition coefficient *a*₃ is counted as : *a*₃ > 1.

EXSEV bearing series for use in a vacuum environment $d \quad 4 \sim 17 \text{ mm}$

	Boundary d		s		ng No.		(Refer.)	Basic bearing	
d	(mr D	n) B	<i>r</i> ¹⁾ min.	Atmospheric pre With vacuum grease filled	ssure to 10 ⁻⁵ Pa MoS ₂ coating (cage)	10 ⁻³ to 10 ⁻¹⁰ Pa Ag ion-plating (balls)	Bearing No.	Basic load ra $C_{ m r}$	atings (kN) $C_{ m 0r}$
4	10 12 13	4 4 5	0.1(0.15) 0.2 0.2	SVWML 4010 ZZST SV 604 ZZST SV 624 ZZST	SEWML 4010 ZZSTMSA7 SE 604 ZZSTMSA7 SE 624 ZZSTMSA7	SE 604 ZZSTMG3 SE 624 ZZSTMG3	WML4010 604 624	0.65 0.97 1.30	0.23 0.36 0.49
5	14 16	5 5	0.2 0.3	SV 605 ZZST SV 625 ZZST	SE 605 ZZSTMSA7 SE 625 ZZSTMSA7	SE 605 ZZSTMG3 SE 625 ZZSTMG3	605 625	1.30 1.75	0.49 0.67
6	10 12 13 17	3 4 5 6	0.08(0.1) 0.1(0.15) 0.15 0.3	SVWML 6010 ZZST SVWML 6012 ZZST SV 686 ZZST SV 666 ZZST	SEWML 6010 ZZSTMSA7 SEWML 6012 ZZSTMSA7 SE 686 ZZSTMSA7 SE 606 ZZSTMSA7	SE 686 ZZSTMG3 SE 606 ZZSTMG3	WML6010 WML6012 686 606	0.36 0.71 1.10 1.95	0.16 0.29 0.44 0.74
7	19 19 22	6 6 7	0.3 0.3 0.3	SV 626 ZZST SV 607 ZZST SV 627 ZZST	SE 626 ZZSTMSA7 SE 607 ZZSTMSA7 SE 627 ZZSTMSA7	SE 626 ZZSTMG3 SE 607 ZZSTMG3 SE 627 ZZSTMG3	626 607 627	2.60 2.60 3.30	1.05 1.05 1.35
8	22 24	7 8	0.3 0.3	SV 608 ZZST SV 628 ZZST	SE 608 ZZSTMSA7 SE 628 ZZSTMSA7	SE 608 ZZSTMG3 SE 628 ZZSTMG3	608 628	3.30 3.35	1.35 1.40
9	24 26	7 8	0.3 0.6	SV 609 ZZST SV 629 ZZST	SE 609 ZZSTMSA7 SE 629 ZZSTMSA7	SE 609 ZZSTMG3 SE 629 ZZSTMG3	609 629	3.35 4.55	1.40 1.95
10	26 30	8 9	0.3 0.6	SV 6000 ZZST SV 6200 ZZST	SE 6000 ZZSTMSA7 SE 6200 ZZSTMSA7	SE 6000 ZZSTMG3 SE 6200 ZZSTMG3	6000 6200	4.55 5.10	1.95 2.40
12	28 32	8 10	0.3 0.6	SV 6001 ZZST SV 6201 ZZST	SE 6001 ZZSTMSA7 SE 6201 ZZSTMSA7	SE 6001 ZZSTMG3 SE 6201 ZZSTMG3	6001 6201	5.10 6.80	2.40 3.05
15	32 35	9 11	0.3 0.6	SV 6002 ZZST SV 6202 ZZST	SE 6002 ZZSTMSA7 SE 6202 ZZSTMSA7	SE 6002 ZZSTMG3 SE 6202 ZZSTMG3	6002 6202	5.60 7.65	2.85 3.75
17	35 40	10 12	0.3 0.6	SV 6003 ZZST SV 6203 ZZST	SE 6003 ZZSTMSA7 SE 6203 ZZSTMSA7	SE 6003 ZZSTMG3 SE 6203 ZZSTMG3	6003 6203	6.00 9.55	3.25 4.80

[Note] 1) The value in () shows the minimum chamfer dimension of open type bearings. If there is no indication, the value is the same as that of the shielded type (zz).

EXSEV bearing series for use in a vacuum environment d 20 ~ 40 mm

	Boundary d			Bearin Atmospheric pre	n g No. ssure to 10 ⁻⁵ Pa	10 ⁻³ to 10 ⁻¹⁰ Pa	(Refer.)	Basic bearin Basic load r	
d	D	В	r ¹⁾ min.	With vacuum grease filled	MoS ₂ coating (cage)	Ag ion-plating (balls)	Bearing No.	$C_{ m r}$	$C_{0\mathrm{r}}$
20	42 47	12 14	0.6 1	SV 6004 ZZST SV 6204 ZZST	SE 6004 ZZSTMSA7 SE 6204 ZZSTMSA7	SE 6004 ZZSTMG3 SE 6204 ZZSTMG3	6004 6204	9.40 12.8	5.05 6.65
25	47 52	12 15	0.6 1	SV 6005 ZZST SV 6205 ZZST	SE 6005 ZZSTMSA7 SE 6205 ZZSTMSA7	SE 6005 ZZSTMG3 SE 6205 ZZSTMG3	6005 6205	10.1 14.0	5.85 7.85
30	55 62	13 16	1 1	SV 6006 ZZST SV 6206 ZZST	SE 6006 ZZSTMSA7 SE 6206 ZZSTMSA7	SE 6006 ZZSTMG3 SE 6206 ZZSTMG3	6006 6206	13.2 19.5	8.25 11.3
35	62 72	14 17	1 1.1	SV 6007 ZZST SV 6207 ZZST	SE 6007 ZZSTMSA7 SE 6207 ZZSTMSA7	SE 6007 ZZSTMG3 SE 6207 ZZSTMG3	6007 6207	15.9 25.7	10.3 15.4
40	68 80	15 18	1 1.1	SV 6008 ZZST SV 6208 ZZST	SE 6008 ZZSTMSA7 SE 6208 ZZSTMSA7	SE 6008 ZZSTMG3 SE 6208 ZZSTMG3	6008 6208	16.7 29.1	11.5 17.8

[Note] 1) The value in () shows the minimum chamfer dimension of open type bearings. If there is no indication, the value is the same as that of the shielded type (zz).

EXSEV bearing series for use in a clean environment d 4 ~ (25) mm

-	Boundary d	limensions		Beari	ng No.	
	(m:			<120°C	<200°C	<260°C
d	D	В	r	Clean	Clean	Clean
u	<i>D</i>	Б	min.	Class10	Class10	Class10
4	12	4	0.2	SE 604 ZZSTPRA	SE 604 ZZSTPR	SE 604 ZZSTPRB
	13	5	0.2	SE 624 ZZSTPRA	SE 624 ZZSTPR	SE 624 ZZSTPRB
5	14	5	0.2	SE 605 ZZSTPRA	SE 605 ZZSTPR	SE 605 ZZSTPRB
	16	5	0.3	SE 625 ZZSTPRA	SE 625 ZZSTPR	SE 625 ZZSTPRB
6	12	4	—	SEWML6012-1 ZZSTPRA	SEWML6012-1 ZZSTPR	SEWML6012-1 ZZSTPRB
	13	5		SEW686 ZZSTPRA	SEW686 ZZSTPR	SEW686 ZZSTPRB
	17	6	0.3	SE 606 ZZSTPRA	SE 606 ZZSTPR	SE 606 ZZSTPRB
	19	6	0.3	SE 626 ZZSTPRA	SE 626 ZZSTPR	SE 626 ZZSTPRB
7	19	6	0.3	SE 607 ZZSTPRA	SE 607 ZZSTPR	SE 607 ZZSTPRB
	22	7	0.3	SE 627 ZZSTPRA	SE 627 ZZSTPR	SE 627 ZZSTPRB
8	22	7	0.3	SE 608 ZZSTPRA	SE 608 ZZSTPR	SE 608 ZZSTPRB
	24	8	0.3	SE 628 ZZSTPRA	SE 628 ZZSTPR	SE 628 ZZSTPRB
9	24	7	0.3	SE 609 ZZSTPRA	SE 609 ZZSTPR	SE 609 ZZSTPRB
	26	8	0.6	SE 629 ZZSTPRA	SE 629 ZZSTPR	SE 629 ZZSTPRB
10	26	8	0.3	SE 6000 ZZSTPRA	SE 6000 ZZSTPR	SE 6000 ZZSTPRB
	30	9	0.6	SE 6200 ZZSTPRA	SE 6200 ZZSTPR	SE 6200 ZZSTPRB
12	28	8	0.3	SE 6001 ZZSTPRA	SE 6001 ZZSTPR	SE 6001 ZZSTPRB
	32	10	0.6	SE 6201 ZZSTPRA	SE 6201 ZZSTPR	SE 6201 ZZSTPRB
15	32	9	0.3	SE 6002 ZZSTPRA	SE 6002 ZZSTPR	SE 6002 ZZSTPRB
	35	11	0.6	SE 6202 ZZSTPRA	SE 6202 ZZSTPR	SE 6202 ZZSTPRB
17	35	10	0.3	SE 6003 ZZSTPRA	SE 6003 ZZSTPR	SE 6003 ZZSTPRB
	40	12	0.6	SE 6203 ZZSTPRA	SE 6203 ZZSTPR	SE 6203 ZZSTPRB
20	42	12	0.6	SE 6004 ZZSTPRA	SE 6004 ZZSTPR	SE 6004 ZZSTPRB
	47	14	1	SE 6204 ZZSTPRA	SE 6204 ZZSTPR	SE 6204 ZZSTPRB
25	47	12	0.6	SE 6005 ZZSTPRA	SE 6005 ZZSTPR	SE 6005 ZZSTPRB

C 14

EXSEV bearing series for use in a clean environment d (25) ~ 40 mm

	Boundary d	imensions		Bearii	ng No.	
	(mr	n)		<120°C	<200°C	<260°C
d	D	В	r	Clean	Clean	Clean
u	D	Б	min.	Class10	Class10	Class10
25	52	15	1	SE 6205 ZZSTPRA	SE 6205 ZZSTPR	SE 6205 ZZSTPRB
30	55	13	1	SE 6006 ZZSTPRA	SE 6006 ZZSTPR	SE 6006 ZZSTPRB
	62	16	1	SE 6206 ZZSTPRA	SE 6206 ZZSTPR	SE 6206 ZZSTPRB
35	62	14	1	SE 6007 ZZSTPRA	SE 6007 ZZSTPR	SE 6007 ZZSTPRB
	72	17	1.1	SE 6207 ZZSTPRA	SE 6207 ZZSTPR	SE 6207 ZZSTPRB
40	40 68 15 1		1	SE 6008 ZZSTPRA	SE 6008 ZZSTPR	SE 6008 ZZSTPRB
	80 18 1.1			SE 6208 ZZSTPRA	SE 6208 ZZSTPR	SE 6208 ZZSTPRB

Ceramic bearing series

d **4** ~ **25 mm**

Bou		dimens	ions			ing No. eramic type		Full c	eramic type
d	D	В	r min.	High temperature (up to 500°C)	For corrosion resistance	Non magnetism	Insulation	High temperature (up to 800°C)	For corrosion resistance/ Non magnetism/Insulation
4	12 13	4 5	0.2 0.2	—	3NC604MD4 3NC624MD4	3NC604YH4 3NC624YH4	3NC604ST4 3NC624ST4	—	NC604 NC624
5	14 16	5 5	0.2 0.3		3NC605MD4 3NC625MD4	3NC605YH4 3NC625YH4	3NC605ST4 3NC625ST4		NC605 NC625
6	17 19	6 6	0.3 0.3	3NC606HT4 GF 3NC626HT4 GF	3NC606MD4 3NC626MD4	3NC606YH4 3NC626YH4	3NC606ST4 3NC626ST4	NC706V NC726V	NC606 NC626
7	19 22	6 7	0.3 0.3	3NC607HT4 GF 3NC627HT4 GF	3NC607MD4 3NC627MD4	3NC607YH4 3NC627YH4	3NC607ST4 3NC627ST4	NC707V NC727V	NC607 NC627
8	22 24	7 8	0.3 0.3	3NC608HT4 GF 3NC628HT4 GF	3NC608MD4 3NC628MD4	3NC608YH4 3NC628YH4	3NC608ST4 3NC628ST4	NC708V NC728V	NC608 NC628
9	24 26	7 8	0.3 0.6	3NC609HT4 GF 3NC629HT4 GF	3NC609MD4 3NC629MD4	3NC609YH4 3NC629YH4	3NC609ST4 3NC629ST4	NC709V NC729V	NC609 NC629
10	26 30	8 9	0.3 0.6	3NC6000HT4 GF 3NC6200HT4 GF	3NC6000MD4 3NC6200MD4	3NC6000YH4 3NC6200YH4	3NC6000ST4 3NC6200ST4	NC7000V NC7200V	NC6000 NC6200
12	28 32	8 10	0.3 0.6	3NC6001HT4 GF 3NC6201HT4 GF	3NC6001MD4 3NC6201MD4	3NC6001YH4 3NC6201YH4	3NC6001ST4 3NC6201ST4	NC7001V NC7201V	NC6001 NC6201
15	32 35	9 11	0.3 0.6	3NC6002HT4 GF 3NC6202HT4 GF	3NC6002MD4 3NC6202MD4	3NC6002YH4 3NC6202YH4	3NC6002ST4 3NC6202ST4	NC7002V NC7202V	NC6002 NC6202
17	35 40	10 12	0.3 0.6	3NC6003HT4 GF 3NC6203HT4 GF	3NC6003MD4 3NC6203MD4	3NC6003YH4 3NC6203YH4	3NC6003ST4 3NC6203ST4	NC7003V NC7203V	NC6003 NC6203
20	42 47	12 14	0.6 1	3NC6004HT4 GF 3NC6204HT4 GF	3NC6004MD4 3NC6204MD4	3NC6004YH4 3NC6204YH4	3NC6004ST4 3NC6204ST4	NC7004V NC7204V	NC6004 NC6204
25	47 52	12 15	0.6 1	3NC6005HT4 GF 3NC6205HT4 GF	3NC6005MD4 3NC6205MD4	3NC6005YH4 3NC6205YH4	3NC6005ST4 3NC6205ST4	NC7005V NC7205V	NC6005 NC6205

Ceramic bearing series

d **30** ~ **40** mm

Bou	ndary o		ions			ing No. eramic type		Full ceramic type				
d	D	В	r min.	High temperature (up to 500°C)	For corrosion resistance	Non magnetism	Insulation		High temperature (up to 800°C)	For corrosion resistance/ Non magnetism/Insulation		
30	55 62	13 16	1 1	3NC6006HT4 GF 3NC6206HT4 GF	3NC6006MD4 3NC6206MD4	3NC6006YH4 3NC6206YH4	3NC6006ST4 3NC6206ST4		NC7006V NC7206V	NC6006 NC6206		
35	62 72	14 17	1 1.1	3NC6007HT4 GF 3NC6207HT4 GF	3NC6007MD4 3NC6207MD4	3NC6007YH4 3NC6207YH4	3NC6007ST4 3NC6207ST4		NC7007V NC7207V	NC6007 NC6207		
40	68 80	15 18	1 1.1	3NC6008HT4 GF 3NC6208HT4 GF	3NC6008MD4 3NC6208MD4	3NC6008YH4 3NC6208YH4	3NC6008ST4 3NC6208ST4		NC7008V NC7208V	NC6008 NC6208		

d 15 ~ (75) mm

NU 10 series

 This type of bearing is mainly used in high speed rotating parts such as machine tool spindles.
 Since rolling elements are made of ceramics, this type of bearing is shown here, even though not designed as EXSEV bearing series.
 (Bearing rings are made of high carbon chromium bearing steel) Koyo

70,72 series

HAR 0,9 series

						Bearing No.	Cylindrical	Bearing	Basic loa	d ratings	(Refer.) B aring	asic bear Basic loa		Bearing	Pasie los	ad ratings
d	מ		r	r_1	Ũ	act ball bearings	roller bearings	No.	Dasic iua (k		No.	(k)		No.	(k	N)
a	D	Б	min.	min.	70,72 series	HAR 0,9 series	NU 10 series	70,72	$C_{ m r}$	$C_{0\mathrm{r}}$	HAR 0,9	$C_{ m r}$	$C_{0\mathrm{r}}$	NU 10	$C_{ m r}$	$C_{0\mathrm{r}}$
15	32 35	9 11	0.3 0.6	0.15 0.3	3NC 7002 FT 3NC 7202 FT		—	7002 7202	6.10 8.10	3.45 4.25	_			_		
20	42 47	12 14	0.6 1	0.3 0.6	3NC 7004 FT 3NC 7204 FT			7004 7204	10.3 14.5	6.10 8.40		_	_			
25	47 52	12 15	0.6 1	0.3 0.6	3NC 7005 FT 3NC 7205 FT			7005 7205	11.3 15.3	7.40 9.50		_	_		_	
30	55 62	13 16	1 1	0.6 0.6	3NC 7006 FT 3NC 7206 FT	3NC HAR006C FT —	—	7006 7206	14.5 21.3	10.1 13.7	HAR006C	8.7	4.85 —			
35	62 72	14 17	1 1.1	0.6 0.6	3NC 7007 FT 3NC 7207 FT	3NC HAR007C FT		7007 7207	17.5 28.1	12.6 18.6	HAR007C	9.25	5.55 —			_
40	68 80	15 18	1 1.1	0.6 0.6	3NC 7008 FT 3NC 7208 FT	3NC HAR008C FT		7008 7208	18.7 33.6	14.6 23.3	HAR008C	9.70	6.20			_
45	75	16	1	0.6	3NC 7009 FT	3NC HAR009C FT	_	7009	22.2	17.7	HAR009C	10.9	7.1	_	—	_
50	72 80	12 16	0.6 1	0.3 0.6	3NC 7010 FT	3NC HAR910C FT 3NC HAR010C FT	3NC NU1010 FY	7010	23.6	20.1	HAR910C HAR010C	9.10 11.4	6.30 7.85	 NU1010	33.6	 36.8
55	80 90	13 18	1 1.1	0.6 0.6	3NC 7011 FT	3NC HAR911C FT 3NC HAR011C FT	3NC NU1011 FY	7011	 31.1	26.3	HAR911C HAR011C	10.1 14.1	7.65 9.9	 NU1011	 37.4	43.8
60	85 95	13 18	1 1.1	0.6 0.6	3NC 7012 FT	3NC HAR912C FT 3NC HAR012C FT	3NC NU1012 FY	 7012	 31.9	28.1	HAR912C HAR012C	9.95 14.7	7.75 10.8	 NU1012	 42.1	 50.0
65	90 100	13 18	1 1.1	0.6 0.6	 3NC 7013 FT	3NC HAR913C FT 3NC HAR013C FT	3NC NU1013 FY	7013	 33.7	 31.4	HAR913C HAR013C	11.8 15.3	9.45 11.8	 NU1013	 43.3	 52.9
70	100 110	16 20	1 1.1	0.6 0.6	3NC 7014 FT	3NC HAR914C FT 3NC HAR014C FT		 7014	 42.7	 39.4	HAR914C HAR014C	12.9 20.7	10.5 15.5	 NU1014	 57.9	 70.4
75	105	16	1	0.6	_	3NC HAR915C FT	—	_		—	HAR915C	13.3	11.2	—		

 ϕd

d (**75**) ~ **120 mm**

NU 10 series

 This type of bearing is mainly used in high speed rotating parts such as machine tool spindles.
 Since rolling elements are made of ceramics, this type of bearing is shown here, even though not designed as EXSEV bearing series.
 (Bearing rings are made of high carbon chromium bearing steel) Koyo

	Boundary dimensions (mm)					Bearing No.					(Refer.)	asic bea	ring			
7	D	. ,	r	r_1	Angular cor	ntact ball bearings	Cylindrical roller bearings	Bearing No.		ad ratings N)	Bearing No.		ad ratings N)	Bearing No.		ad ratings (N)
d	D	В	min.	min.	70,72 series	HAR 0,9 series	NU 10 series	70,72	$C_{ m r}$	$C_{0\mathrm{r}}$	HAR 0,9	$C_{ m r}$	$C_{0\mathrm{r}}$	NU 10	$C_{ m r}$	$C_{0\mathrm{r}}$
75	115	20	1.1	0.6	3NC 7015 FT	3NC HAR015C FT	3NC NU1015 FY	7015	43.6	41.7	HAR015C	21.1	16.2	NU1015	63.6	78.1
80	110 125	16 22	1 1.1	0.6 0.6	_	3NC HAR916C FT 3NC HAR016C FT	3NC NU1016 FY		_	_	HAR916C HAR016C	13.6 24.7	11.9 19.2	 NU1016	 69.3	 86.4
85	120 130	18 22	1.1 1.1	0.6 0.6		3NC HAR917C FT 3NC HAR017C FT	3NC NU1017 FY		_		HAR917C HAR017C	16.3 25.1	14.2 20.1	 NU1017	 71.4	 91.2
90	125 140	18 24	1.1 1.5	0.6 1	—	3NC HAR918C FT 3NC HAR018C FT	3NC NU1018 FY		_		HAR918C HAR018C	16.8 32.8	15.1 26.1	 NU1018	84.7	109
95	130 145	18 24	1.1 1.5	0.6 1	—	3NC HAR919C FT 3NC HAR019C FT	3NC NU1019 FY		_		HAR919C HAR019C	17.3 33.4	16.0 27.2	 NU1019	 87.2	115
100	140 150	20 24	1.1 1.5	0.6 1		3NC HAR920C FT 3NC HAR020C FT	3NC NU1020 FY		_	_	HAR920C HAR020C	24.2 34.0	21.7 28.4	 NU1020	 91.0	120
105	145 160	20 26	1.1 2	0.6 1		3NC HAR921C FT 3NC HAR021C FT			_		HAR921C HAR021C	24.9 38.6	23.1 32.5			
110	150 170	20 28	1.1 2	0.6 1		3NC HAR922C FT 3NC HAR022C FT			_	_	HAR922C HAR022C	25.1 43.4	23.8 37.0	_	_	_
120	165 180	22 28	1.1 2	0.6 1		3NC HAR924C FT 3NC HAR024C FT			_	_	HAR924C HAR024C	29.4 44.9	28.4 39.9		_	_

70,72 series

HAR 0,9 series

EXSEV bearing series Linear ball bearings for vacuum d 3 ~ 60 mm

Standard type

Open type (OP)

Shaft dia.				Boundary of		;			Bearing No.			Basic load		No	. of ball re	ows
(mm) d	D	L	В	(m W	m) D1	h	h_1	θ	Standard type	Clearance adjustable type	Open type	(k) C	C_0	Standard type	Clearance adjustable type	Open type
3	7	10	—	_	_	_	_		SESDM 3	_	—	69	105	4	_	_
4	8	12	_	_	_	_	_		SESDM 4	_	_	88	127	4	_	_
5	10	15	10.2	1.1	9.6		_	_	SESDM 5	_	_	167	206	4	_	_
6	12	19	13.5	1.1	11.5			_	SESDM 6	_	_	206	265	4		_
8	15 15	17 24	11.5 17.5	1.1 1.1	14.3 14.3		_	_	SESDM 8S SESDM 8			176 274	216 392	4 4		
10	19	29	22	1.3	18			_	SESDM10	_	_	372	549	4	_	_
12	21	30	23	1.3	20	1.5	8	80°	SESDM12	SESDM12 AJ	SESDM12 OP	510	784	4	4	3
13	23	32	23	1.3	22	1.5	9	80°	SESDM13	SESDM13 AJ	SESDM13 OP	510	784	4	4	3
16	28	37	26.5	1.6	27	1.5	11	80°	SESDM16	SESDM16 AJ	SESDM16 OP	774	1 180	4	4	3
20	32	42	30.5	1.6	30.5	1.5	11	60°	SESDM20	SESDM20 AJ	SESDM20 OP	882	1 370	5	5	4
25	40	59	41	1.85	38	2	12	50°	SESDM25	SESDM25 AJ	SESDM25 OP	980	1 570	6	6	5
30	45	64	44.5	1.85	43	2.5	15	50°	SESDM30	SESDM30 AJ	SESDM30 OP	1 570	2 740	6	6	5
35	52	70	49.5	2.1	49	2.5	17	50°	SESDM35	SESDM35 AJ	SESDM35 OP	1 670	3 140	6	6	5
40	60	80	60.5	2.1	57	3	20	50°	SESDM40	SESDM40 AJ	SESDM40 OP	2 160	4 020	6	6	5
50	80	100	74	2.6	76.5	3	25	50°	SESDM50	SESDM50 AJ	SESDM50 OP	3 820	7 940	6	6	5
60	90	110	85	3.15	86.5	3	30	50°	SESDM60	SESDM60 AJ	SESDM60 OP	4 700	10 000	6	6	5

K-series super thin section ball bearings

Koyo K-series super thin section ball bearings were developed to meet current engineering needs for thinner, lighter bearings. They are used extensively in automation and labor saving equipment, such as industrial robots.

Koyo

These bearings are sorted into nine dimension series according to cross-sectional area.

Those of the same dimension series have an equivalent cross-sectional area irrespective of the bore diameter.

They are available in three types that differ in structure.

Deep groove type

Carries radial load, axial load in both directions, and combined loads.

- Angular contact type
 Has a 30° contact angle, and carries radial load and axial load in one direction.
 Two bearings are usually used together facing one another.
- Four-point contact type Has a contact angle of 30° both to the right and to the left.

Able to carry axial load in both directions. Also able to support moment and radial loads.

		В	earing type coo	le	
		C (Deep groove type)	A (Angular contact type)	X (Four-point contact type)	
Dimension series code	Cross- sectional dimension B = E (mm)				Bore diameter (mm)
т	4.762	ктс	КТА	ктх	25.4 to 38.1
А	6.35	KAC	KAA	КАХ	50.8 to 304.8
В	7.938	КВС	КВА	квх	50.8 to 508
С	9.525	ксс	KCA	ксх	101.6 to
D	12.7	KDC	K D A	крх	762
F	19.05	KFC	KFA	KFX	101.6 to
G	25.4	KGC	K G A	КGХ	1 016
J	<i>B</i> = 11.1 <i>E</i> = 9.525	_	KJARD	_	101.6
U	<i>B</i> = 12.7 <i>E</i> = 9.525	KUC2RD	_	KUX2RD	to 304.8

Table 1 K-series super thin section ball bearings : tolerance Unit : µm Assembled bearing ring face Single plane mean bore diameter deviation Single plane mean outside diameter deviation Single inner (outer) ring Radial runout of assembled bearing ring, max. runout with raceway, max. width deviation Bore Bore Inner ring K_{ia} Outer ring K_{ea} Inner ring S_{ia} | Outer ring S_{ea} Δ_{dmp} $\Delta D_{\rm mp}$ Δ_{Bs}, Δ_{Cs} diameter diameter classes classes number number classes K0, K1, K2 classes K0, K1, K2 class K0 class K0 class class class class class class classes classes class class classes classes class classes classes classes classes K0, K2 K0, K2 K2, K6 div. I K3 K4 K6 K3 K4 K6 K0, K1, K2 K3, K4 K6 K3 K1, K4 K3 K1, K4 K2, K6 K1, K4 K1, K4 div. II div. I div. II div. I div. II div. I div. II K3. K6 K3, K6 - 10 - 5 0 010 8 13 8 010 - 4 0 - 8 0 20 10 10 5 8 - 8 5 0 - 13 _ - 5 015 15 10 015 0 - 13 0 _ 5 020 5 4 8 020 0 13 10 13 13 8 10 0 - 15 - 5 0 025 20 25 5 025 - 10 0 0 030 030 - 10 _ 8 - 8 0 - 15 0 035 15 15 15 035 _ Ř 30 040 040 Same Same 0 0 0 25 13 5 - 20 - 13 - õ as as 042 10 13 042 limit limit values values 045 045 0 0 0 20 20 for for 36 20 - 20 - 13 - 1**0** 047 047 radial radial 10 runout 8 runout 0 - 127 050 8 050 of of assem assem 055 055 bled bled 0 - 15 0 0 - 10 0 30 15 - 8 0 - 25 0 - 15 0 - 10 bearbear-060 23 060 ing ing 25 41 25 inner outer 065 8 065 ring ring 070 13 15 070 0 075 075 - 13 0 0 25 - 30 - 18 0 - 30 0 - 18 0 080 30 30 41 20 10 46 13 080 - 10 10 090 090 0 - 13 100 100 0 30 15 18 - 20 0 0 0 - 13 110 25 15 110 0 - 13 - 36 - 36 0 - 36 0 0 36 13 10 36 - 36 - 20 120 46 120 0 0 36 18 13 20 - 23 - 15 0 - 41 0 - 41 0 - 15 0 - 254 140 30 18 140 0 160 160 0 0 0 - 15 0 0 0 0 0 41 36 18 41 41 20 20 23 - 46 - 41 - 23 - 46 - 41 - 25 - 18 - 254 180 51 180 0 - 51 0 - 51 0 0 0 Δ 200 41 20 46 23 23 25 200 - 25 - 18 - 30 - 20 0 - 254 0 0 250 46 46 250 - 46 - 46 0 0 51 - 76 - 76 300 300 350 350 0 0 0 0 51 51 - 102 - 102 - 51 - 51 400 400

[Notes] Division I is for deep groove type ball bearings.

Division $\, {\mathbb I} \,$ is for angular contact type and four-point contact type ball bearings.

Kovo

Table 2			clearance of ontact type	f deep ball bearings	σ Unit : μm
Bore		Radia	al internal clea	rance	
diameter	classes K	(0, K1, K2			
number	Deep groove type	Four-point contact type	class K3	class K4	class K6
010	25 - 41	25 - 38	18 – 28	13 – 23	10 – 20
015	30 - 46	30 - 43	20 - 30	10-20	13 – 23
020					10 – 25
025	30 - 61	30 - 56	20 - 46		10-25
030				15 – 30	
035					15 – 30
040	41 - 71	41 - 66	25 – 51		
042			20 01		
045				20 – 36	
047	51 - 86			20 00	
050					
055		51 - 76	30 – 56		
060					20 - 36
065					
070					
075			36 – 61	25 – 41	
080	61 – 107	61 - 86			
090					
100			41 – 66		
110	71 – 122	71 – 97			25 – 41
120			46 – 71	30 – 46	
140	81 – 132				30 - 46
160	91 – 142	81 – 107	51 – 76	36 – 51	
180	100 150		01 00	00 50	
	200 102 – 152 250	01 117	61 – 86	36 – 56	
300	152 – 203	91 – 117			
350		102 - 127			
400	203 - 254				/

Table 3 Mounting dimensions

Unit : mm

Dimension		Bearing type		φ	d_{a}	φ	Da	ra
series		bearing type		max.	min.	min.	max.	max.
Т	KTC	KTA	ктх	<i>d</i> + 5.3	<i>d</i> + 3.4	<i>d</i> + 4.2	<i>d</i> + 6.1	0.2
А	KAC	KAA	KAX	<i>d</i> + 7.3	<i>d</i> + 4.6	<i>d</i> + 5.4	<i>d</i> + 8.2	0.4
В	KBC	KBA	КВХ	<i>d</i> + 9.3	<i>d</i> + 5.7	<i>d</i> + 6.6	<i>d</i> + 10.2	0.8
С	KCC	KCA	КСХ	<i>d</i> + 11.3	<i>d</i> + 6.9	<i>d</i> + 7.7	<i>d</i> + 12.2	0.8
D	KDC	KDA	KDX	<i>d</i> + 15.3	<i>d</i> + 9.2	<i>d</i> + 10.1	<i>d</i> + 16.2	1.3
F	KFC	KFA	KFX	<i>d</i> + 23.3	<i>d</i> + 13.9	<i>d</i> + 14.8	<i>d</i> + 24.2	1.8
G	KGC	KGA	KGX	<i>d</i> + 31.3	<i>d</i> + 18.7	<i>d</i> +19.5	<i>d</i> + 32.1	1.8
J	-	KJA	-	d + 11.3	<i>d</i> + 6.9	<i>d</i> + 7.7	<i>d</i> + 12.2	0.2
U	KUC	-	KUX	<i>a</i> + 11.3	<i>a</i> + 6.9	a + 7.7	<i>a</i> + 12.2	0.2

Koyo

Unit : µm

Bore

diameter number

Table 4 Shaft diameter and housing bore diameter tolerance

					Inner ring	g rotation									Outer rin	g rotation	1			
Bore diameter		Shaft d	iameter to	lerance		н	ousing bo	ore diamet	er toleran	ce		Shaft d	iameter to	lerance		н	lousing bo	ore diamet	er toleran	ce
number	classes K	(0, K1, K2	alaaa K2	olooo K4	class K6	classes k	(0, K1, K2	alaaa K2	oloop K4	class K6	classes K	0, K1, K2		alaaa K4	class K6	classes k	K0, K1, K2	alaaa K2	oloop K4	class K6
	div. I	div. II		Class 1(4		div. I	div. II		Class 114	Class NO	div. I	div. II		Class 114		div. I	div. II	Class 10	Class 14	Class NO
010	+	10 0	+ 5 0	+ 5	+ 4 0	+ 13		+ 8	+ 50		-	10 20	- 5 - 10	- 5 - 10	- 4 - 8	- 13 - 25		- 8 - 15	- 5 - 10	
015	+	13 0	+ 8 0	0		0	+ 13	0	0	+ 5		13 25	- 8 - 15	- 10		- 25	- 13 - 25	- 15	- 10	- 5 - 10
020					+ 5		0			0			10		- 5 - 10		- 25			- 10
025	+	15 0	+ 10 0		0	. 15		. 10				15 30	- 10 - 20		- 10	15		10		
030						+ 15 0	. 15	+ 10 0	+ 8 0							- 15 - 30	15	- 10 - 20	- 8 - 15	
035				+ 8 0			+ 15 0			+ 8 0				- 8 - 15			- 15 - 30			- 8 - 15
040	+	20 0	+ 13		+ 6 0							20 40	- 13 - 25		- 6 - 13					
042																				
045						+	20 0	+ 13	+ 10 0								20 40	- 13 - 25	- 10 - 20	-
047																				
055	-									-										
060	+	25 0	+ 15 0	+ 10 0	+ 8 0	+	25 0	+ 15		+ 10		25 50	- 15 - 30	- 10 - 20	- 8 - 15	-	25 50	- 15 - 30		- 10 - 20
065							0	0		0							50	- 30		- 20
070	-								-										-	
075							30	+ 18	+ 13							- -	30	_ 18	- 13 - 25	
080	+	30 0	+ 18		+ 10	, T	30 0	+ 18 0				30 60	- 18 - 35		- 10 - 20	-	30 60	- 18 - 35	20	
090			-	+ 13										- 13						
100				+ 13 0				+ 20	1					- 13 - 25				- 20 - 40	1	
110	+ 35 0	+ 35	+ 20		+ 13	+ 35 0	+ 35	0		+ 13 0	- 35 - 70	- 35 - 70	- 20 - 40		- 13 - 25	- 35 - 70	- 35 - 70	- 40		- 13 - 25
120		0	0		0		0	+ 23	+ 15			- 70	- 40		- 25		_ 70	- 23 - 45	- 15 - 30	
140	+ 40 0					+ 40 0		0	0	+ 15 0	- 48 - 80					- 40 - 80		- 45	- 30	- 15 - 30
160	+ 45	+ 40	+ 23	+ 15 0	/	+ 45	+ 40	+ 25	+ 18	/	- 45 - 90	- 40 - 80	- 23 - 45	- 15 - 30	/	- 45 - 90	- 40 - 80	- 25 - 50	- 18 - 35	$ \Lambda$
180		0	+ 25	+ 18	/	+ 50		+ 30	+ 20	/	- 50	- 00	- 45	- 15	/	- 90	- 00	- 50	- 35	/
200	+ 50 0	+ 45	+ 25	+ 18	. /	+ 50	+ 45	+ 30	+ 20	/ /	- 50 - 100	- 45	- 25 - 50	- 15 - 35		- 50 - 100	- 45	- 30	- 18	\downarrow / \downarrow
250 300	+ 75 0	0				+ 75 0	0				- 75 - 150	- 90				- 75 - 150	- 90			
350 400	+ 100	+ 50 0				+ 100	+ 50				- 100 - 200	- 50 - 100				- 100 - 200	- 50 - 100			

[Notes] Division I is for deep groove type ball bearings.

Division II is for angular contact type and four-point contact type ball bearings.

d 25.4 ~ (114.3) mm

Deep groove type

Angular contact type Four-point contact type

E	Boundary d				groove t Basic loa	d ratings	Bearing	Angular	Basic lo	ad rating	S	F Bearing			ad ratings	;		efer.) Ma (kg)	
d	D	В	r min.	No.	$C_{\rm r}$	C_{0r}	No.	$C_{ m r}$	C_{0r}	άN) C _a	$C_{0\mathrm{a}}$	No.	$C_{ m r}$	(k C_{0r}	Ca	$C_{0\mathrm{a}}$	Deep groove type	0	Four-point contact type
25.4	34.925	4.762	0.4	KTC010	2.50	1.95	KTA010	2.65	2.20	3.45	6.70	КТХ010	2.15	1.65	3.70	7.15	0.012	0.011	0.012
38.1	47.625	4.762	0.4	KTC015	2.90	2.70	KTA015	3.05	3.10	4.00	9.35	KTX015	2.50	2.30	4.20	10.5	0.018	0.017	0.018
50.8	63.5 66.675	6.35 7.938	0.6 1	KAC020 KBC020	4.50 6.35	4.30 5.85	KAA020 KBA020	4.75 6.75	4.95 6.70	6.25 8.90	14.9 20.4	KAX020 KBX020	3.90 5.55	3.70 5.00	6.60 9.35	16.9 22.0	0.045 0.073	0.045 0.068	0.045 0.073
63.5	76.2 79.375	6.35 7.938	0.6 1	KAC025 KBC025	4.85 6.90	5.20 7.00	KAA025 KBA025	5.10 7.35	5.95 8.15	6.75 9.65	18.0 24.6	KAX025 KBX025	4.20 6.00	4.45 6.00	7.05 10.0	20.9 27.3	0.059 0.086	0.054 0.086	0.059 0.086
76.2	88.9 92.075	6.35 7.938	0.6 1	KAC030 KBC030	5.20 7.35	6.10 8.15	KAA030 KBA030	5.45 7.70	7.00 9.35	7.15 10.2	21.2 28.3	KAX030 KBX030	4.50 6.35	5.25 7.00	7.45 10.6	24.9 32.5	0.068 0.109	0.064 0.100	0.068 0.109
88.9	101.6 104.775	6.35 7.938	0.6 1	KAC035 KBC035	5.45 7.75	7.00 9.30	KAA035 KBA035	5.75 8.20	8.00 10.7	7.55 10.8	24.3 32.5	KAX035 KBX035	4.75 6.70	6.00 8.00	7.80 11.1	29.0 37.8	0.082 0.122	0.077 0.122	0.082 0.122
101.6	114.3 117.475 120.65	6.35 7.938 9.525	0.6 1 1	KAC040 KBC040 KCC040	5.75 8.10 10.3	7.85 10.5 12.4	KAA040 KBA040 KCA040	6.00 8.60 11.2	9.05 12.1 14.9	7.90 11.3 14.7	27.4 36.8 45.1	KAX040 KBX040 KCX040	4.95 7.05 8.95	6.80 9.00 10.6	8.10 11.6 14.8	33.0 43.1 50.0	0.086 0.136 0.204	0.086 0.136 0.200	0.086 0.136 0.204
	127 139.7 152.4	12.7 19.05 25.4	1.5 2 2	KDC040 KFC040 KGC040	15.7 28.2 42.6	17.2 28.1 39.6	KDA040 KFA040 KGA040	16.5 30.3 45.2	19.7 32.9 46.0	21.7 39.8 59.5	59.8 99.6 139	KDX040 KFX040 KGX040	13.6 24.6 37.3	14.8 24.0 34.5	22.6 41.0 62.4	67.4 103 141	0.354 0.862 1.63	0.363 0.871 1.64	0.354 0.862 1.63
107.95	120.65 123.825 127	6.35 7.938 9.525	0.6 1 1	KAC042 KBC042 KCC042	5.85 8.25 10.5	8.30 10.9 13.0	KAA042 KBA042 KCA042	6.15 8.75 11.5	9.55 12.7 15.8	8.10 11.5 15.1	29.0 38.6 47.8	KAX042 KBX042 KCX042	5.10 7.15 9.15	7.15 9.40 11.2	8.25 11.7 15.0	35.0 45.2 53.0	0.091 0.141 0.213	0.091 0.141 0.209	0.091 0.141 0.213
	133.35 146.05 158.75	12.7 19.05 25.4	1.5 2 2	KDC042 KFC042 KGC042	15.8 28.8 42.2	17.8 29.4 39.9	KDA042 KFA042 KGA042	16.8 30.6 46.2	20.8 34.0 48.0	22.1 40.3 60.8	62.9 103 146	KDX042 KFX042 KGX042	13.7 25.1 36.9	15.3 25.2 34.3	22.8 41.8 61.8	70.2 109 142	0.376 0.907 1.72	0.381 0.925 1.74	0.376 0.907 1.72
114.3	127 130.175 133.35	6.35 7.938 9.525	0.6 1 1	KAC045 KBC045 KCC045	6.00 8.45 10.7	8.75 11.6 13.7	KAA045 KBA045 KCA045	6.25 8.90 11.7	10.1 13.3 16.6	8.25 11.7 15.4	30.5 40.4 50.4	KAX045 KBX045 KCX045	5.20 7.35 9.30	7.55 10.0 11.8	8.40 12.0 15.3	37.0 48.3 56.1	0.100 0.150 0.218	0.095 0.154 0.222	0.100 0.150 0.218
	139.7	12.7	1.5	KDC045	16.3	19.0	KDA045	17.2	21.8	22.6	66.0	KDX045	14.2	16.3	23.4	75.5	0.399	0.399	0.399

C 35

d (114.3) ~ (165.1) mm

Deep groove type

Angular contact type Four-point contact type

	Boundary o				groove t Basic loa		Bearing	Angula		ct type bad rating	S	F Bearing		nt conta Basic loa	i ct type ad rating	s		efer.) Ma (kg)	
d	D	В	r min.	No.	$C_{\rm r}$	$^{ m N)}_{C_{ m 0r}}$	No.	$C_{ m r}$	C_{0r}	kN) C _a	C_{0a}	No.	$C_{ m r}$	C_{0r}	xN) Ca	$C_{0\mathrm{a}}$		Angular contact type	Four-point contact type
114.3	152.4 165.1	19.05 25.4	2 2	KFC045 KGC045	29.4 43.6	30.8 42.7	KFA045 KGA045	31.7 47.1	36.4 50.1	41.7 62.0	110 152	KFX045 KGX045	25.6 38.1	26.3 36.4	42.6 63.6	115 152	0.953 1.81	0.971 1.79	0.953 1.81
120.65	133.35 136.525 139.7	6.35 7.938 9.525	0.6 1 1	KAC047 KBC047 KCC047	6.10 8.55 10.9	9.20 12.1 14.4	KAA047 KBA047 KCA047	6.40 9.10 12.0	10.6 14.2 17.5	8.40 12.0 15.7	32.1 42.9 53.0	KAX047 KBX047 KCX047	5.30 7.45 9.50	7.95 10.4 12.4	8.55 12.1 15.5	39.0 50.4 59.1	0.104 0.154 0.227	0.100 0.159 0.231	
	146.05 158.75 171.45	12.7 19.05 25.4	1.5 2 2	KDC047 KFC047 KGC047	16.5 29.9 44.9	19.6 32.1 45.2	KDA047 KFA047 KGA047	17.5 32.0 48.0	22.8 37.5 52.1	23.0 42.2 63.1	69.1 114 158	KDX047 KFX047 KGX047	14.3 26.1 39.2	16.8 27.5 38.6	23.6 43.3 65.4	78.2 121 162	0.426 0.998 1.86	0.422 1.03 1.89	0.426 0.998 1.86
127	139.7 142.875 146.05	6.35 7.938 9.525	0.6 1 1	KAC050 KBC050 KCC050	6.20 8.80 11.1	9.65 12.8 15.0	KAA050 KBA050 KCA050	6.50 9.25 12.2	11.1 14.8 18.4	8.55 12.2 16.0	33.6 44.7 55.7	KAX050 KBX050 KCX050	5.35 7.60 9.65	8.35 11.0 12.9	8.65 12.4 15.8	41.1 53.6 62.1	0.109 0.172 0.263	0.104 0.168 0.245	0.172
	152.4 165.1 177.8	12.7 19.05 25.4	1.5 2 2	KDC050 KFC050 KGC050	16.9 30.5 46.2	20.8 33.4 47.6	KDA050 KFA050 KGA050	17.8 32.4 48.8	23.8 38.6 54.2	23.4 42.6 64.3	72.2 117 164	KDX050 KFX050 KGX050	14.7 26.5 40.3	17.9 28.7 40.7	24.2 44.0 67.1	83.5 127 173	0.454 1.04 1.95	0.445 1.08 2.00	0.454 1.04 1.95
139.7	152.4 155.575 158.75	6.35 7.938 9.525	0.6 1 1	KAC055 KBC055 KCC055	6.40 9.10 11.5	10.5 13.9 16.4	KAA055 KBA055 KCA055	6.75 9.60 12.5	12.1 16.2 19.8	8.85 12.6 16.5	36.8 49.0 60.0	KAX055 KBX055 KCX055	5.55 7.85 10.0	9.10 12.0 14.1	8.90 12.7 16.2	45.1 58.8 68.2	0.113 0.186 0.268	0.113 0.181 0.263	0.186
	165.1 177.8 190.5	12.7 19.05 25.4	1.5 2 2	KDC055 KFC055 KGC055	17.5 31.5 47.0	22.6 36.1 49.8	KDA055 KFA055 KGA055	18.4 33.6 50.5	25.9 42.1 58.3	24.2 44.3 66.4	78.5 128 177	KDX055 KFX055 KGX055	15.2 27.4 41.0	19.4 31.0 42.6	24.9 45.3 68.0	91.6 140 184	0.481 1.13 2.13	0.481 1.17 2.15	0.481 1.13 2.13
152.4	165.1 168.275 171.45	6.35 7.938 9.525	0.6 1 1	KAC060 KBC060 KCC060	6.60 9.35 11.9	11.4 15.1 17.7	KAA060 KBA060 KCA060	6.95 9.90 12.9	13.2 17.6 21.5	9.15 13.0 17.0	39.9 53.3 65.3	KAX060 KBX060 KCX060	5.75 8.10 10.3	9.85 13.0 15.3	9.15 13.1 16.7	49.1 64.1 74.2	0.127 0.200 0.286	0.127 0.200 0.290	0.200
	177.8 190.5 203.2	12.7 19.05 25.4	1.5 2 2	KDC060 KFC060 KGC060	18.0 32.5 49.3	24.4 38.8 54.7	KDA060 KFA060 KGA060	19.0 34.8 52.0	27.9 45.6 62.4	24.9 45.8 68.4	84.7 138 189	KDX060 KFX060 KGX060	15.7 28.2 42.9	21.0 33.3 46.8	25.5 46.5 71.1	99.7 152 205	0.526 1.22 2.31	0.522 1.23 2.30	0.526 1.22 2.31
165.1	177.8 180.975	6.35 7.938	0.6 1	KAC065 KBC065	6.80 9.65	12.3 16.3	KAA065 KBA065	7.15 10.1	14.2 18.8	9.40 13.3	43.0 56.9	KAX065 KBX065	5.90 8.35	10.6 14.0	9.40 13.4	53.2 69.3	0.136 0.213	0.136 0.213	

C 37

d (165.1) ~ 228.6 mm

Deep groove type

Angular contact type Four-point contact type

	Boundary c				groove (Basic loa	type ad ratings	Bearing	Angula		ct type ad rating	S	F Bearing			act type ad rating	S		efer.) Ma (kg)	
d	D	В	r min.	No.	C_r (k	C_{0r}	No.	C_r	C_{0r}	kN) Ca	C_{0a}	No.	C_{r}	C_{0r}	kN) Ca	C_{0a}	0	contact	Four-point contact
					-	-		-					-				type	type	type
165.1	184.15 190.5	9.525 12.7	1 1.5	KCC065 KDC065	12.2 18.6	19.0 26.1	KCA065 KDA065	13.4 19.5	23.3 30.0	17.6 25.6	70.6 90.9	KCX065 KDX065	10.6 16.1	16.4 22.5	17.1 26.2	80.3 108	0.308	0.308 0.562	0.308 0.553
	203.2	12.7	2	KFC065	33.4	20.1 41.5	KDA065 KFA065	19.5 36.0	30.0 49.1	25.6 47.3	90.9 149	KFX065	29.0	22.5 35.6	20.2 47.7	164	1.32	1.33	1.32
	215.9	25.4	2	KGC065	50.0	57.0	KGA065	53.5	66.5	70.3	202	KGX065	43.5	48.8	71.8	216	2.45	2.45	2.45
		-																	
177.8	190.5	6.35	0.6	KAC070 KBC070	7.00	13.2	KAA070 KBA070	7.35	15.2	9.65	46.1	KAX070 KBX070	6.05	11.4	9.60	57.2	0.141	0.145	
	193.675 196.85	7.938 9.525	1 1	KCC070	9.90 12.5	17.4 20.4	KCA070	10.4 13.6	20.2 24.7	13.7 17.9	61.2 74.9	КСХ070	8.55 10.9	15.0 17.6	13.7 17.5	74.6 86.3	0.227	0.227 0.336	0.227 0.331
				KDC070			KDA070					KDX070							
	203.2 215.9	12.7 19.05	1.5 2	KFC070	19.0 34.3	27.9 44.1	KDA070 KFA070	20.0 37.0	32.1 52.6	26.3 48.7	97.2 159	KFX070	16.5 29.8	24.0 37.9	26.7 48.7	116 176	0.594	0.603 1.43	0.594 1.45
	228.6	25.4	2	KGC070	52.1	61.8	KGA070	54.8	70.7	72.2	214	KGX070	45.3	53.0	74.5	237	2.63	2.66	2.63
190.5	203.2	6.35	0.6	KAC075	7.15	14.1	KAA075	7.50	16.2	9.90	49.2	KAX075	6.20	12.2	9.80	61.3	0.154	0.154	0.154
	206.375	7.938	1	KBC075	10.1	18.6	KBA075	10.7	21.6	14.1	65.4	KBX075	8.80	16.0	14.0	79.8	0.240	0.245	0.240
	209.55	9.525	1	KCC075	12.8	21.7	KCA075	14.0	26.5	18.4	80.2	KCX075	11.1	18.7	17.8	92.4	0.354	0.354	0.354
	215.9	12.7	1.5	KDC075	19.5	29.7	KDA075	20.5	34.1	27.0	103	KDX075	16.9	25.6	27.3	124	0.640	0.644	0.640
	228.6	19.05	2	KFC075	35.1	46.8	KFA075	37.5	54.8	49.3	166	KFX075	30.5	40.2	49.8	188	1.54	1.54	1.54
	241.3	25.4	2	KGC075	52.6	64.1	KGA075	56.2	74.8	73.9	227	KGX075	45.8	55.0	75.2	249	2.77	2.81	2.77
203.2	215.9	6.35	0.6	KAC080	7.35	15.0	KAA080	7.70	17.3	10.1	52.3	KAX080	6.35	13.0	10.0	65.3	0.172	0.163	
	219.075	7.938	1	KBC080	10.4	19.7	KBA080	11.0	23.0	14.4	69.7	KBX080	9.00	17.0	14.3	85.1	0.259	0.259	
	222.25	9.525	1	KCC080	13.1	23.1	KCA080	14.4	28.2	18.9	85.5	KCX080	11.4	19.9	18.2	98.5	0.381	0.381	0.381
	228.6	12.7	1.5	KDC080	20.0	31.5	KDA080	21.0	36.2	27.6	110	KDX080	17.3	27.1	27.9	132	0.694	0.689	
	241.3 254	19.05 25.4	2 2	KFC080 KGC080	35.9 54.5	49.5 69.0	KFA080 KGA080	38.5 57.4	58.3 78.9	50.6 75.5	177 239	KFX080 KGX080	31.2 47.4	42.5 59.2	50.7 77.6	200 270	1.59 2.95	1.64 2.97	1.59 2.95
	LUT	20.7	L		04.0	03.0		.	10.5	10.0	200		т.,т	00.2	11.0	210	2.00	2.31	2.55
228.6	241.3	6.35	0.6	KAC090	7.65	16.8	KAA090	8.00	19.3	10.5	58.6	KAX090	6.60	14.5	10.4	73.4	0.200	0.186	
	244.475 247.65	7.938 9.525	1	KBC090 KCC090	10.8	22.1 25.7	KBA090 KCA090	11.4	25.6 31.4	15.0 19.6	77.6 95.1	KBX090 KCX090	9.35 11.9	19.1	14.8 18.9	95.6 111	0.299	0.290	
			1		13.7			14.9						22.2			0.426	0.445	
	254 266.7	12.7	1.5	KDC090 KFC090	20.8 37.4	35.0	KDA090 KFA090	21.8 40.3	40.3	28.7 53.1	122 198	KDX090 KFX090	18.0 32.5	30.2 47.2	28.9 52.6	148 224	0.780	0.767	0.780 1.77
		19.05 25.4	2			54.8 76 1			65.3 87 1								1.77 3.27	1.79 3.27	3.27
	279.4	25.4	2	KGC090	56.8	76.1	KGA090	59.8	87.1	78.7	264	KGX090	49.4	65.3	80.5	302	3.27	3.2	7

C 39

d **254** ~ **406.4** mm

Deep groove type

Angular contact type Four-point contact type

	Boundary d					nd ratings	Bearing	Angula		ad rating	S	F Bearing	our-poi	Basic Io	act type ad rating	6		fer.) Ma (kg)	
d	D	В	r min.	No.	$C_{\rm r}$	N) C _{0r}	No.	$C_{ m r}$	C_{0r}	kN) Ca	$C_{0\mathrm{a}}$	No.	$C_{ m r}$	C_{0r}	xN) Ca	C_{0a}	groove		Four-point contact type
254	266.7 269.875 273.05	6.35 7.938 9.525	0.6 1 1	KAC100 KBC100 KCC100	7.95 11.2 14.2	18.6 24.4 28.4	KAA100 KBA100 KCA100	8.30 11.9 15.6	21.4 28.4 34.9	11.0 15.6 20.5	64.8 86.1 106	KAX100 KBX100 KCX100	6.85 9.75 12.3	16.0 21.1 24.5	10.7 15.3 19.5	81.4 106 123	0.227 0.331 0.481	0.204 0.322 0.472	
	279.4 292.1 304.8	12.7 19.05 25.4	1.5 2 2	KDC100 KFC100 KGC100	21.6 38.8 59.0	38.6 60.2 83.2	KDA100 KFA100 KGA100	22.7 41.6 62.0	44.4 71.1 95.3	29.8 54.7 81.6	135 215 289	KDX100 KFX100 KGX100	18.7 33.7 51.2	33.3 51.8 71.5	29.8 54.3 83.1	164 249 334	0.853 1.95 3.58	0.848 2.00 3.63	0.853 1.95 3.58
279.4	292.1 295.275 298.45	6.35 7.938 9.525	0.6 1 1	KAC110 KBC110 KCC110	8.20 11.6 14.7	20.3 26.7 31.1	KAA110 KBA110 KCA110	8.60 12.3 16.1	23.4 31.0 38.0	11.3 16.1 21.1	71.0 94.0 115	KAX110 KBX110 KCX110	7.10 10.1 12.7	17.6 23.1 26.8	11.1 15.7 20.1	89.5 117 135	0.236 0.340 0.526	0.227 0.354 0.517	0.236 0.340 0.526
	304.8 317.5 330.2	12.7 19.05 25.4	1.5 2 2	KDC110 KFC110 KGC110	22.3 40.2 61.0	42.2 65.5 90.3	KDA110 KFA110 KGA110	23.4 43.2 64.1	48.5 78.0 104	30.8 56.9 84.3	147 236 314	KDX110 KFX110 KGX110	19.3 34.8 52.9	36.4 56.4 77.7	30.7 55.9 85.5	180 273 366	0.934 2.18 3.90	0.930 2.15 3.94	0.934 2.18 3.90
304.8	317.5 320.675 323.85	6.35 7.938 9.525	0.6 1 1	KAC120 KBC120 KCC120	8.45 12.0 15.2	22.1 29.0 33.8	KAA120 KBA120 KCA120	8.90 12.7 16.5	25.5 33.8 41.2	11.7 16.7 21.8	77.3 103 125	KAX120 KBX120 KCX120	7.35 10.4 13.1	19.1 25.1 29.2	11.4 16.2 20.6	97.6 127 147	0.254 0.376 0.567	0.245 0.386 0.558	
	330.2 342.9 355.6	12.7 19.05 25.4	1.5 2 2	KDC120 KFC120 KGC120	23.0 41.4 62.9	45.7 70.9 97.5	KDA120 KFA120 KGA120	24.2 44.3 66.0	52.6 83.8 112	31.8 58.3 86.9	160 254 339	KDX120 KFX120 KGX120	20.0 35.9 54.5	39.5 61.1 83.9	31.5 57.4 87.8	197 297 399	1.02 2.36 4.22	1.01 2.36 4.30	1.02 2.36 4.22
355.6	371.475 374.65 381	7.938 9.525 12.7	1 1 1.5	KBC140 KCC140 KDC140	12.7 16.0 24.3	33.7 39.1 52.9	KBA140 KCA140 KDA140	13.4 17.5 25.5	39.1 47.9 60.9	17.6 23.0 33.6	118 145 184	KBX140 KCX140 KDX140	11.0 13.9 21.1	29.1 33.8 45.7	17.0 21.6 33.1	148 171 229	0.476 0.689 1.24	0.445 0.649 1.17	
	393.7 406.4	19.05 25.4	2 2	KFC140 KGC140	43.7 66.3	81.5 112	KFA140 KGA140	46.8 69.7	96.5 128	61.6 91.7	293 389	KFX140 KGX140	37.9 57.5	70.3 96.2	60.2 92.0	345 463	2.72 4.90	2.61 4.94	2.72 4.90
406.4	422.275 425.45 431.8	7.938 9.525 12.7	1 1 1.5	KBC160 KCC160 KDC160	13.3 16.8 25.5	38.3 44.4 60.0	KBA160 KCA160 KDA160	14.0 18.4 26.8	44.5 54.5 69.1	18.4 24.2 35.2	135 165 209	KBX160 KCX160 KDX160	11.5 14.6 22.1	33.1 38.4 51.8	17.7 22.6 34.5	169 195 261	0.544 0.785 1.41	0.508 0.739 1.33	0.544 0.785 1.41
	444.5 457.2	19.05 25.4	2 2	KFC160 KGC160	45.8 69.5	92.2 126	KFA160 KGA160	49.0 73.0	109 145	64.5 96.0	331 439	KFX160 KGX160	39.7 60.3	79.6 109	62.7 95.9	394 528	3.22 5.58	3.08 5.62	3.22 5.58

d **457.2** ~ **1 016 mm**

Deep groove type

Angular contact type Four-point contact type

	Boundary d					ad ratings	Bearing	Angula		oad ratin	gs	F Bearing	our-po	Basic le	act type		(Re Deep	efer.) Ma (kg) Angular	
d	D	В	r min.	No.	$C_{\rm r}$	$({ m xN}) C_{0{ m r}}$	No.	$C_{ m r}$	$C_{0\mathrm{r}}$	(kN) Ca	$C_{0\mathrm{a}}$	No.	$C_{ m r}$	C_{0r}	(kN) Ca	$C_{0\mathrm{a}}$	groove type	contact type	contact type
457.2	473.075 476.25 482.6	7.938 9.525 12.7	1 1 1.5	KBC180 KCC180 KDC180	13.9 17.5 26.6	42.9 49.8 67.1	KBA180 KCA180 KDA180	14.6 19.2 27.6	49.9 61.2 77.3	19.2 25.3 36.3	151 185 234	KBX180 KCX180 KDX180	12.0 15.2 23.0	37.1 43.0 58.0	18.4 23.4 35.8	190 220 293	0.612 0.880 1.58	0.572 0.830 1.49	0.880 1.58
	495.3 508	19.05 25.4	2 2	KFC180 KGC180	47.8 72.5	103 140	KFA180 KGA180	51.5 76.0	123 161	67.7 100	373 488	KFX180 KGX180	41.4 62.8	88.8 121	65.0 99.4	442 592	3.58 6.21	3.48 6.26	3.58 6.21
508	523.875 527.05 533.4 546.1	7.938 9.525 12.7 19.05	1 1 1.5 2	KBC200 KCC200 KDC200 KFC200	14.4 18.2 27.6 49.6	47.6 55.1 74.3 114	KBA200 KCA200 KDA200 KFA200	15.2 19.9 29.0 53.4	55.3 67.5 85.6 136	20.0 26.2 38.1 70.3	168 205 259 412	KBX200 KCX200 KDX200 KFX200	12.5 15.8 23.9 43.0	41.2 47.7 64.2 98.1	19.0 24.2 37.0 67.2	211 244 326 491	0.680 0.980 1.75 4.04	0.635 0.921 1.66 3.84	0.680 0.980 1.75 4.04
	558.8	25.4	2	KGC200	75.2	154	KGA200	78.9	178	104	538	KGX200	65.2	133	103	657	8.53	6.89	8.53
635	654.05 660.4 673.1 685.8	9.525 12.7 19.05 25.4	1 1.5 2 2	KCC250 KDC250 KFC250 KGC250	19.7 29.9 53.7 81.4	68.5 92.1 140 190	KCA250 KDA250 KFA250 KGA250	21.6 31.4 57.6 85.4	84.0 106 167 219	28.4 41.3 75.8 112	255 322 506 663	KCX250 KDX250 KFX250 KGX250	17.1 25.9 46.5 70.5	59.2 79.6 121 164	26.0 39.7 72.0 110	304 407 612 819	1.22 2.17 4.94 8.85	1.14 2.06 4.76 8.53	1.22 2.17 4.94 8.85
762	781.05 787.4 800.1 812.8	9.525 12.7 19.05 25.4	1 1.5 2 2	KCC300 KDC300 KFC300 KGC300	21.1 32.0 57.3 86.8	81.9 110 167 226	KCA300 KDA300 KFA300 KGA300	23.1 33.5 61.6 91.1	101 127 200 260	30.3 44.1 81.0 120	305 384 605 788	KCX300 KDX300 KFX300 KGX300	18.3 27.7 49.6 75.2	70.8 95.0 144 195	27.6 42.1 76.3 116	365 487 733 980	1.46 2.60 5.90 10.6	1.37 2.47 5.67 10.2	1.46 2.60 5.90 10.6
889	927.1 939.8	19.05 25.4	2 2 2	KFC350 KGC350	60.6 91.7	194 261	KFA350 KGA350	65.2 96.2	232 301	85.8 127	703 912	KFX350 KGX350	52.5 79.4	168 226	80.1 122	854 1 140	6.85 12.3	6.62 11.9	6.85 12.3
1 016	1 054.1 1 066.8	19.05 25.4	2 2	KFC400 KGC400	63.5 96.2	221 297	KFA400 KGA400	68.4 101	264 342	90.0 133	801 1 040	KFX400 KGX400	55.0 83.3	191 257	83.6 128	975 1 300	7.80 14.0	7.53 13.5	7.80 14.0

Angular contact type J size (With seal)

Four-point contact type U size (With seals)

	Boundar	y dime	nsions		Deep gro		pe ad ratings		gular co B	ontact t asic loa		s	Four	-point o	ontact asic loa		s	(R	efer.) Ma (kg)	iss
d	D	В	B_1	r min.	Bearing No.	$(k C_r)$	N) C _{0r}	Bearing No.	$C_{ m r}$	(k) C_{0r}	N) Ca	$C_{0\mathrm{a}}$	Bearing No.	$C_{ m r}$	(k) C_{0r}	N) Ca	$C_{0\mathrm{a}}$	Deep groove type		Four-point contact type
101.6	120.65	12.7	11.1	0.4	KUC040 2RD	10.3	12.4	KJA040 RD	11.2	14.9	14.7	45.1	KUX040 2RD	8.95	10.6	14.8	50.0	0.249	0.222	0.249
107.95	127	12.7	11.1	0.4	KUC042 2RD	10.5	13.0	KJA042 RD	11.5	15.8	15.1	47.8	KUX042 2RD	9.15	11.2	15.0	53.0	0.263	0.236	0.263
114.3	133.35	12.7	11.1	0.4	KUC045 2RD	10.7	13.7	KJA045 RD	11.7	16.6	15.4	50.4	KUX045 2RD	9.30	11.8	15.3	56.1	0.277	0.254	0.277
120.65	139.7	12.7	11.1	0.4	KUC047 2RD	10.9	14.4	KJA047 RD	12.0	17.5	15.7	53.0	KUX047 2RD	9.50	12.4	15.5	59.1	0.295	0.268	0.295
127	146.05	12.7	11.1	0.4	KUC050 2RD	11.1	15.0	KJA050 RD	12.2	18.4	16.0	55.7	KUX050 2RD	9.65	12.9	15.8	62.1	0.308	0.281	0.308
139.7	158.75	12.7	11.1	0.4	KUC055 2RD	11.5	16.4	KJA055 RD	12.5	19.8	16.5	60.0	KUX055 2RD	10.0	14.1	16.2	68.2	0.336	0.304	0.336
152.4	171.45	12.7	11.1	0.4	KUC060 2RD	11.9	17.7	KJA060 RD	12.9	21.5	17.0	65.3	KUX060 2RD	10.3	15.3	16.7	74.2	0.367	0.331	0.367
165.1	184.15	12.7	11.1	0.4	KUC065 2RD	12.2	19.0	KJA065 RD	13.4	23.3	17.6	70.6	KUX065 2RD	10.6	16.4	17.1	80.3	0.395	0.354	0.395
177.8	196.85	12.7	11.1	0.4	KUC070 2RD	12.5	20.4	KJA070 RD	13.6	24.7	17.9	74.9	KUX070 2RD	10.9	17.6	17.5	86.3	0.422	0.381	0.422
190.5	209.55	12.7	11.1	0.4	KUC075 2RD	12.8	21.7	KJA075 RD	14.0	26.5	18.4	80.2	KUX075 2RD	11.1	18.7	17.8	92.4	0.449	0.404	0.449
203.2	222.25	12.7	11.1	0.4	KUC080 2RD	13.1	23.1	KJA080 RD	14.4	28.2	18.9	85.5	KUX080 2RD	11.4	19.9	18.2	98.5	0.481	0.431	0.481
228.6	247.65	12.7	11.1	0.4	KUC090 2RD	13.7	25.7	KJA090 RD	14.9	31.4	19.6	95.1	KUX090 2RD	11.9	22.2	18.9	111	0.535	0.499	0.535
254	273.05	12.7	11.1	0.4	KUC100 2RD	14.2	28.4	KJA100 RD	15.6	34.9	20.5	106	KUX100 2RD	12.3	24.5	19.5	123	0.594	0.531	0.594
279.4	298.45	12.7	11.1	0.4	KUC110 2RD	14.7	31.1	KJA110 RD	16.1	38.0	21.1	115	KUX110 2RD	12.7	26.8	20.1	135	0.649	0.581	0.649
304.8	323.85	12.7	11.1	0.4	KUC120 2RD	15.2	33.8	KJA120 RD	16.5	41.2	21.8	125	KUX120 2RD	13.1	29.2	20.6	147	0.708	0.630	0.708

C 45

Bearings for machine tool spindles (for support of axial loading)

JTEKT supplies double direction angular contact thrust ball bearings and ACT type matched pair angular contact ball bearings which are used with machine tool spindles to support axial loading.

These bearings were developed to meet needs which have grown as machine tool spindle rotation has become faster and more accurate.

Several dimension series are available for selection according to operating conditions.

For details, refer to JTEKT separate catalog "Precision Ball and Roller Bearings for Machine Tools" (CAT. NO. B2005E). See also the catalog for high ability bearings, CAT NO. B2006 for High Ability Ball Bearing Series Angular Contact Ball Bearings for Machining Tools.

(Reference)

Major bearing types which are used to carry radial loading of machine tool spindles are shown below. For further details, refer to the specification table for each type.

Angul	ar contact ball be	earings	Double-row cylind	lrical roller bearings
	(for high-speed	applications)		
79 C 70, 70 B, 70 C 72, 72 B, 72 C Refer to p. B 92.	79 CPA 70 CPA 72 CPA (for bearings w refer to p. C 2	HAR 9 C HAR 0 C (high ability ball bearing)	NN 30 NN 30 K (Tapered bore) Refer to	NNU 49 NNU 49 K (Tapered bore) p. B 194.

Double direction angular contact

Kovo

	Table 1Bearing types for	or support of axia	l loading	
Туре	Double direction angular contact thrust ball bearings	Matched pair angular	contact ball bearings	
Diameter series				Types of ¹⁾ arrangement with a double-row cylindrical roller bearing
0	2344 B 2347 B	ACT 0 B DB	ACT 0 DB	(1) (2)
9	2394 B 2397 B			3 4
Characteristics	 Supports axial loading in both directions. Highly rigid in the axial direction. Bearings with a larger contact angle feature higher rigidity, while those with a smaller contact angle feature better high-speed performance. 	 For support of axial Negative tolerances outside diameter. Excellent high-spee achieved because of the sma Interchangeable wit bearings. ²⁾ 	s are specified for the d performance is Il contact angle.	

[Notes]

- These bearings are usually used in arrangement with a doublerow cylindrical roller bearing which carries a radial load. There are four arrangement types (1) to (4) as follows :
- ① Mounted with an NN30K tapered bore bearing or with an NN30 cylindrical bore bearing. The tapered bore bearing is combined at its smaller side.
- ② Mounted with an NN30K tapered bore bearing, which is combined at its larger side.
- ③ Mounted with an NNU49K tapered bore bearing or with an NNU49 cylindrical bore bearing. The tapered bore bearing is combined at its smaller side.
- ④ Mounted with an NNU49K tapered bore bearing, which is combined at its larger side.
- 2) The overall width "2 *B*" of ACT0 DB and ACT0B DB bearings is equivalent to dimension " C_1 " of 2344B bearings. Therefore, when a 2344B bearing is replaced with an ACT0 DB or ACT0B DB bearing, change the width of spacer "A" only. No change is necessary to the spindle or housing dimensions.

Spacer A	

1) Inn	er ring	g and a	ssemb	led be	aring v	width						U	nit : µm
diam			\varDelta_{dmp} c	or $\varDelta_{ds}^{(1)}$			eviation	Inner rin variatio V		inner ring respect to	face with	Assemble inner ring runout wit	face
(m	-	class equiv		class equiv	a 4 or Valent	classes or equiv				class 5 or equivalent			
over	up to	upper	lower	upper	lower	upper	lower	ma	ax.	ma	ax.	ma	ax.
18	30	0	- 6	0	- 5	0	- 300	5	2.5	8	4	5	3
30	50	0	- 8	0	- 6	0	- 400	5	3	8	4	5	3
50	80	0	- 9	0	- 7	0	- 500	6	4	8	4	6	5
80	120	0	- 10	0	- 8	0	- 600	7	4	9	5	6	5
120	180	0	- 13	0	- 10	0	- 700	8	5	10	6	8	6
180	250	0	- 15	0	- 12	0	- 800	10	6	11	7	8	6
250	315	0	- 18	0	- 15	0	- 900	13	7	13	8	10	8
315	400	0	- 23	0	- 18	0	- 1 000	15	9	15	9	13	10

-- --

(2) Outer ring

Unit : µm

Nominal diam	eter	⊿ _{Dmp} c	or $\varDelta {_{Ds}}^{2)}$	Outer ring w	idth variation			Assembled bearing outer ring face runou with raceway $S_{\rm ea}$		
(m	m)	classes or equiv	5 and 4, alent	class 5 or equivalent	class 4 or equivalent	class 5 or equivalent	class 4 or equivalent	classes 5 and 4, or equivalent		
over	up to	upper	lower	ma	ax.	ma	ax.	max.		
30	50	- 30	- 40	5	2.5	8	4			
50	80	- 40	- 50	6	3	8	4			
80	120	- 50	- 60	8	4	9	5	Shall conform		
120	150	- 60	- 75	8	5	10	5	to the tolerance		
150	180	- 60	- 75	8	5	10	5			
180	250	- 75	- 90	10	7	11	7	$S_{\rm ia}$ on d of the		
250	315	- 90	- 105	11	7	13	8	same bearing		
315	400	- 110	- 125	13	8	13	10			
400	500	- 120	- 140	15	10	15	13			

[Notes] 1) Single plane mean bore diameter deviation or single bore diameter deviation

2) Single plane mean outside diameter deviation or single outside diameter deviation

Table 3 ACT 0 series angular contact ball bearing outside diameter tolerance $$U\mbox{nit}:\mbox{μm}$}$												
Nominal outside	diameter D (mm)	Single outside diameter deviation \varDelta_{Ds}										
over	up to	upper	lower									
50	80	- 32	- 47									
80	120	- 39	- 56									
120	150	- 44	- 66									
150	180	- 44	- 68									
180	250	- 51	- 79									
250	315	- 56	- 89									

[Remark] Refer to JIS B 1514 "radial bearing tolerance" class 4 and class 5 (pp. A 54 to A 57, Table 7-3) for the accuracy of dimensions other than outside diameter and for running accuracy.

[Reference] Axial load and axial displacement

The relationship between axial loading and the axial displacement of double direction angular contact thrust ball bearings and ACT type angular contact ball bearings is shown below :

Axial load (kN)

Double direction angular contact thrust ball bearings -

d **25** ~ **105** mm

Koyo

Boundary dimensions						Basic load				Beari	ing No.		Di	imensio (mm)	ns		M	ounting d		ons	Amount of	(Refer.) Mass (kg)		
	Large bore type	D	Т	С	r min.	r_1 min.	Ca	C_{0a}	Grease lub.	Oil lub.	Small bore type	Large bore type	$E_{\rm w}{}^{1)}$	d_1	В	d_0	w	$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	$r_{ m b}$ max.	grease fill (cm ³ /row)	Small bore type	Large bore type
25		47	28	14	0.6	0.3	13.2	19.9	7 700	11 000	234405B		41.3	40	7	2	4.5	33	44	0.6	0.3	0.18 ~ 0.26	0.194	—
30	32	55	32	16	1	0.6	14.0	23.6	6 700	9 500	234406B	234706B	48.5	47	8	2	4.5	40	50.5	1	0.6	0.30 ~ 0.45	0.296	0.272
35	37	62	34	17	1	0.6	20.8	34.8	6 100	8 700	234407B	234707B	55	53	8.5	2	4.5	45.5	57.5	1	0.6	0.40 ~ 0.60	0.388	0.357
40	42	68	36	18	1	0.6	23.9	41.7	5 700	8 100	234408B	234708B	61	58.5	9	2	4.5	50	63.5	1	0.6	0.50 ~ 0.75	0.475	0.437
45	47	75	38	19	1	0.6	26.0	50.1	5 200	7 500	234409B	234709B	67.5	65	9.5	2	4.5	56.5	70.5	1	0.6	0.65 ~ 0.98	0.602	0.554
50	52	80	38	19	1	0.6	26.8	54.4	5 100	7 300	234410B	234710B	72.5	70	9.5	2	4.5	61.5	75.5	1	0.6	0.70 ~ 1.1	0.654	0.602
55	57	90	44	22	1.1	0.6	37.2	71.7	4 400	6 400	234411B	234711B	81	78	11	4	8	67.5	84	1	0.6	1.0 ~ 1.5	0.978	0.900
60	62	95	44	22	1.1	0.6	37.6	75.2	4 300	6 200	234412B	234712B	86.1	83	11	4	8	72.5	89	1	0.6	1.1 ~ 1.7	1.04	0.957
65	67	100	44	22	1.1	0.6	39.0	81.8	4 200	6 000	234413B	234713B	91	88	11	4	8	77.5	94	1	0.6	1.2 ~ 1.7	1.11	1.02
70	73	110	48	24	1.1	0.6	47.5	103	3 800	5 500	234414B	234714B	100	97	12	4	8	85	104	1	0.6	1.7 ~ 2.5	1.52	1.40
75	78	115	48	24	1.1	0.6	49.1	111	3 700	5 300	234415B	234715B	105	102	12	4	8	90	109	1	0.6	1.8 ~ 2.6	1.62	1.49
80	83	125	54	27	1.1	0.6	57.6	132	3 400	4 800	234416B	234716B	113	110	13.5	4	8	96.5	119	1	0.6	2.4 ~ 3.6	2.19	2.03
85	88	130	54	27	1.1	0.6	58.2	137	3 300	4 700	234417B	234717B	118	115	13.5	4	8	102	124	1	0.6	2.5 ~ 3.8	2.30	2.12
90	93	140	60	30	1.5	1	67.4	160	3 000	4 300	234418B	234718B	127	123	15	4	8	109	133.5	1.5	1	3.3 ~ 4.9	3.03	2.79
95	98	145	60	30	1.5	1	68.0	166	3 000	4 200	234419B	234719B	132	128	15	4	8	114	138.5	1.5	1	3.4 ~ 5.0	3.17	2.92
100	 103	140 150	48 60	24 30	1.1 1.5	0.6 1	52.2 68.7	135 172	2 800 2 900	3 800 4 100	239420B 234420B	 234720B	131 137	126 133	12 15	4 4	8 8	114 119	134 143.5	1 1.5	0.6 1	3.1 ~ 4.6 3.4 ~ 5.1	2.08 3.33	3.06
105	109	145 160	48 66	24 33	1.1 2	0.6 1	53.6 78.8	143 199	2 700 2 700	3 800 3 800	239421B 234421B	 234721B	136 146	131 142	12 16.5	4 6	8 12	119 127	139 152	1 2	0.6 1	3.1 ~ 4.6 4.7 ~ 7.1	2.16 4.15	3.82

[Note] 1) The dimension $E_{\rm w}$ is used as a reference for the ball set outside diameter.

Double direction angular contact thrust ball bearings -

d **110** ~ (**240**) mm

Koyo

Boundary dimensions d (mm)							Basic load ratings		Limiting speeds		ing No.			D)imensio (mm)	ns		Mounting dime			ns	Amount of	(Refer.) Mass (kg)		
	Large bore type	D	Т	С	r min.	r_1 min.	Ca	C_{0a}	Grease lub.	Oil lub.	Small bore type	re Large bore type		H_{i} H_{i		$d_{ m a}$ min.	$D_{ m a}$ max.	r _a max.	$r_{ m b}$ max.	grease fill (cm ³ /row)	Small bore type	Large bore type			
110	 114	150 170	48 72	24 36	1.1 2	0.6 1	53.9 95.9	148 235	2 700 2 500	3 700 3 500	239422B 234422B	 234722B		141 155	136 150	12 18	4 6	8 12	124 133	144 162	1 2	0.6 1	3.0 ~ 4.5 5.9 ~ 8.8	2.25 5.38	 4.95
120	124 124	165 180	54 72	27 36	1.1 2	0.6 1	64.9 98.3	185 252	2 400 2 400	3 300 3 400		239724B 234724B		154.5 165	150 160	13.5 18	4 6	8 12	138 143	160 172	1 2	0.6 1	4.2 ~ 6.3 6.4 ~ 9.5	3.12 5.77	2.81 5.31
130	134 135	180 200	60 84	30 42	1.5 2	1 1	75.0 139	217 340	2 100 2 100	3 000 3 000		239726B 234726B		168 182	163 177	15 21	4 6	8 12	150 155	172 192	1.5 2	1 1	5.8 ~ 8.7 9.3 ~ 13.9	4.19 8.63	3.77 7.94
140	144 145	190 210	60 84	30 42	1.5 2	1 1	75.9 144	229 366	2 100 2 000	2 900 2 900		239728B 234728B		178 192	173 187	15 21	4 6	8 12	160 165	182 202	1.5 2	1 1	6.3 ~ 9.4 9.7 ~ 14.5	4.47 9.18	4.03 8.44
150	155 155	210 225	72 90	36 45	2 2.1	1 1.1	107 147	312 394	1 800 1 900	2 500 2 700		239730B 234730B		196.5 206	190 200	18 22.5	4 6	8 14	174 178	200 215	2 2	1 1	9.6 ~ 14.4 12.0 ~ 17.9	7.01 11.3	6.31 10.4
160	165 165	220 240	72 96	36 48	2 2.1	1 1.1	109 173	329 460	1 700 1 700	2 400 2 500		239732B 234732B		206.5 219	200 212	18 24	4 6	8 14	184 189	210 230	2 2	1 1	9.3 ~ 14.0 14.1 ~ 21.1	7.40 13.3	6.66 12.2
170	175 176	230 260	72 108	36 54	2 2.1	1 1.1	111 203	346 547	1 700 1 600	2 300 2 200		239734B 234734B		216.5 236	210 230	18 27	4 6	8 14	194 203	220 250	2 2	1 1	10.8 ~ 16.2 18.6 ~ 27.8	7.79 18.1	7.01 16.6
180	186 187	250 280	84 120	42 60	2 2.1	1 1.1	157 234	460 642	1 500 1 400	2 100 2 000		239736B 234736B		234 255	227 248	21 30	4 8	8 16	207 219	240 270	2 2	1 1	14.9 ~ 22.3 23.4 ~ 35.1	11.3 24.9	10.2 22.9
190	196 197	260 290	84 120	42 60	2 2.1	1 1.1	157 237	474 665	1 400 1 400	2 000 1 900		239738B 234738B		242 265	237 258	21 30	4 8	8 16	217 229	250 280	2 2	1 1	15.7 ~ 23.5 24.7 ~ 37.1	11.9 25.0	10.7 23.0
200	207 207	280 310	96 132	48 66	2.1 2.1	1.1 1.1	185 279	557 771	1 300 1 200	1 800 1 800		239740B 234740B		259 282	252 274	24 33	4 8	8 16	231 243	268 300	2 2	1 1	23.5 ~ 35.2 31.8 ~ 47.7	16.6 32.1	14.9 29.5
220	227 228	300 340	96 144	48 72	2.1 3	1.1 1.1	191 334	606 939	1 200 1 100	1 700 1 600		239744B 234744B		280 310	272 304	24 36	6 12	12 22	251 267	288 330	2 2.5	1 1	24.7 ~ 37.0 43.0 ~ 64.4	18.0 42.0	16.2 38.6
240	247	320	96	48	2.1	1.1	196	655	1 200	1 600	239448B	239748B		299	292	24	6	12	271	308	2	1	26.4 ~ 39.5	19.1	17.2

[Note] 1) The dimension $E_{\rm w}$ is used as a reference for the ball set outside diameter.
Double direction angular contact thrust ball bearings -

d (240) ~ 340 mm

Koyo

	1	Bounda	ary dime (mm)	nsions				ad ratings kN)	Limiting (mi	s peeds n^{-1})	Bearii	ng No.		D	(mm)	ns		м	ounting (m	dimensio nm)	ons	Amount of) Mass (g)
Small bore type	Large bore type	D	Т	С	r min.	r_1 min.	Ca	$C_{0\mathrm{a}}$	Grease lub.	Oil lub.	Small bore type	Large bore type	$E_{\rm w}{}^{1)}$	d_1	В	d_0	w	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	grease fill (cm ³ /row)	Small bore type	Large bore type
240	248	360	144	72	3	1.1	342	1 010	1 100	1 500	234448B	234748B	330	322	36	12	22	287	350	2.5	1	47.7 ~ 71.6	45.0	41.4
260	269 269	360 400	120 164	60 82	2.1 4	1.1 1.5	261 406	869 1 270	950 920	1 300 1 300	239452B 234452B		335 364	328 354	30 41	6 12	12 22	299 315	344 388	2 3	1 1.5	43.7 ~ 65.5 67.0 ~ 101	33.5 65.8	30.2 60.5
280	289 289	380 420	120 164	60 82	2.1 4	1.1 1.5	265 417	915 1 360	910 880	1 300 1 300	239456B 234456B		356 384	348 374	30 41	6 12	14 22	319 335	363 408	2 3	1 1.5	49.1 ~ 73.7 73.5 ~ 110	35.7 69.8	32.1 64.2
300	310 310	420 460	144 190	72 95	3 4	1.1 1.5	352 476	1 150 1 630	770 760	1 100 1 100	239460B 234460B		391 418	384 406	36 47.5	6 12	14 22	349 364	398 448	2.5 3	1 1.5	71.5 ~ 107 98.0 ~ 147	56.1 100	50.5 91.8
320	330 330	440 480	144 190	72 95	3 4	1.1 1.5	361 479	1 220 1 680	740 730	1 000 1 000	239464B 234464B		408 438	404 426	36 47.5	6 12	14 22	369 384	419 468	2.5 3	1 1.5	81.5 ~ 122 108 ~ 162	59.2 106	53.3 97.5
340	_	460	144	72	3	1.1	368	1 290	710	980	239468B	_	428	424	36	8	16	389	438	2.5	1	84.5 ~ 127	63.1	_

[Note] 1) The dimension $E_{\rm w}$ is used as a reference for the ball set outside diameter.

Matched pair angular contact ball bearings -

d **30** ~ **85** mm

Koyo

	Bound	ary dimensi (mm)	ons			ad ratings	Limiting (mir	speeds		Permissble axial loads	I	Mounting ((m	limensions m)	;	Envelope	(Refer.) Mass
d	D	2 <i>B</i>	r min.	r_1 min.	Ca	$C_{0\mathrm{a}}$	Grease lub.	Oil lub.	Bearing No. 1)	(kN) (static)	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	volume (cm ³ /row)	(kg/row)
30	55 55	24 24	1 1	0.6 0.6	15.1 18.1	26.6 30.5	15 000 13 000	20 000 18 000	ACTO06DB ACTO06BDB	2.92 9.86	41 41	50 50	1 1	0.6 0.6	3.0 3.0	0.235 0.235
35	62 62	25.5 25.5	1 1	0.6 0.6	15.8 18.9	30.2 34.5	13 000 12 000	17 000 15 000	ACT007DB ACT007BDB	3.25 10.9	46 46	57 57	1 1	0.6 0.6	4.2 4.2	0.312 0.312
40	68 68	27 27	1 1	0.6 0.6	16.5 19.6	33.8 37.7	12 000 11 000	15 000 14 000	ACT008DB ACT008BDB	3.58 12.1	51 51	63 63	1 1	0.6 0.6	5.0 5.0	0.391 0.391
45	75 75	28.5 28.5	1 1	0.6 0.6	18.4 21.8	38.6 42.7	11 000 9 500	14 000 13 000	ACT009DB ACT009BDB	3.84 13.2	56 56	70 70	1 1	0.6 0.6	5.7 5.7	0.536 0.536
50	80 80	28.5 28.5	1 1	0.6 0.6	19.1 22.7	41.7 46.3	9 700 8 800	13 000 12 000	ACT010DB ACT010BDB	4.20 14.5	61 61	75 75	1 1	0.6 0.6	8.0 8.0	0.551 0.551
55	90 90	33 33	1.1 1.1	0.6 0.6	23.7 28.1	52.8 58.6	8 700 7 900	11 000 10 000	ACTO11DB ACTO11BDB	5.63 19.0	68 68	84 84	1 1	0.6 0.6	12 12	0.831 0.831
60	95 95	33 33	1.1 1.1	0.6 0.6	24.6 29.1	56.9 63.1	8 100 7 400	11 000 9 700	ACT012DB ACT012BDB	6.11 20.6	73 73	89 89	1 1	0.6 0.6	13 13	0.887 0.887
65	100 100	33 33	1.1 1.1	0.6 0.6	25.4 30.1	60.9 67.6	7 600 6 900	10 000 9 000	ACT013DB ACT013BDB	6.59 22.2	78 78	94 94	1 1	0.6 0.6	14 14	0.943 0.945
70	110 110	36 36	1.1 1.1	0.6 0.6	34.8 41.3	82.1 91.1	7 000 6 300	9 200 8 300	ACT014DB ACT014BDB	8.39 28.8	85 85	104 104	1 1	0.6 0.6	16 16	1.33 1.33
75	115 115	36 36	1.1 1.1	0.6 0.6	35.3 41.8	84.9 94.2	6 600 6 000	8 700 7 800	ACT015DB ACT015BDB	8.74 30.0	90 90	109 109	1 1	0.6 0.6	20 20	1.35 1.35
80	125 125	40.5 40.5	1.1 1.1	0.6 0.6	41.3 49.1	101 112	6 100 5 500	8 000 7 200	ACT016DB ACT016BDB	10.8 36.6	97 97	118 118	1 1	0.6 0.6	27 27	1.86 1.86
85	130 130	40.5 40.5	1.1 1.1	0.6 0.6	41.9 49.7	105 116	5 800 5 200	7 600 6 900	ACT017DB ACT017BDB	11.2 38.0	102 102	123 123	1 1	0.6 0.6	29 29	1.94 1.94

[Note] 1) B and no indication before matching code in bearing numbers represent nominal contact angle of 40° and 30° respectively.

Matched pair angular contact ball bearings -

d **90** ~ **180** mm

Koyo

	Bounda	ary dimensi (mm)	ons			ad ratings kN)	Limiting (min			Permissble axial loads			dimensions m)	;	Envelope	(Refer.) Mass
d	D	2 <i>B</i>	r min.	r_1 min.	C_{a}	C_{0a}	Grease lub.	Oil lub.	Bearing No. 1)	(kN) (static)	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	volume (cm ³ /row)	(kg/row)
90	140 140	45 45	1.5 1.5	1 1	55.0 65.3	138 153	5 400 4 900	7 100 6 400	ACTO18DB ACTO18BDB	14.2 48.7	109 109	132 132	1.5 1.5	1 1	39 39	2.55 2.55
95	145 145	45 45	1.5 1.5	1 1	55.8 66.3	143 159	5 200 4 700	6 800 6 200	ACT019DB ACT019BDB	14.8 50.6	114 114	137 137	1.5 1.5	1 1	40 40	2.62 2.62
100	150 150	45 45	1.5 1.5	1 1	56.6 67.2	148 164	5 000 4 500	6 500 5 900	ACT020DB ACT020BDB	15.3 52.5	119 119	143 143	1.5 1.5	1 1	42 42	2.77 2.77
105	160 160	49.5 49.5	2 2	1 1	64.4 76.4	170 188	4 700 4 200	6 100 5 500	ACT021DB ACT021BDB	18.2 63.2	125 125	151 151	2 2	1 1	50 50	3.61 3.61
110	170 170	54 54	2 2	1 1	72.4 86.0	193 214	4 400 4 000	5 800 5 200	ACT022DB ACT022BDB	19.6 71.3	132 132	160 160	2 2	1 1	64 64	4.52 4.52
120	180 180	54 54	2 2	1 1	74.6 88.4	206 228	4 100 3 700	5 400 4 900	ACT024DB ACT024BDB	21.0 76.4	142 142	170 170	2 2	1 1	69 69	4.83 4.83
130	200 200	63 63	2 2	1 1	94.2 112	253 281	3 700 3 300	4 800 4 400	ACT026DB ACT026BDB	25.9 93.0	156 156	188 188	2 2	1 1	106 106	7.21 7.21
140	210 210	63 63	2 2	1 1	102 121	290 323	3 400 3 100	4 500 4 100	ACT028DB ACT028BDB	29.9 107	166 166	198 198	2 2	1 1	110 110	7.69 7.65
150	225 225	67.5 67.5	2.1 2.1	1.1 1.1	120 143	344 382	3 200 2 900	4 200 3 800	ACT030DB ACT030BDB	34.7 125	178 178	213 213	2 2	1 1	138 138	9.39 9.39
160	240 240	72 72	2.1 2.1	1.1 1.1	130 155	377 419	3 000 2 700	3 900 3 500	ACT032DB ACT032BDB	39.1 139	190 190	227 227	2 2	1 1	167 167	11.4 11.4
170	260 260	81 81	2.1 2.1	1.1 1.1	153 181	449 499	2 700 2 500	3 600 3 200	ACT034DB ACT034BDB	45.7 163	204 204	245 245	2 2	1 1	221 221	15.7 15.7
180	280 280	90 90	2.1 2.1	1.1 1.1	173 205	510 566	2 500 2 300	3 300 3 000	ACT036DB ACT036BDB	54.0 183	216 216	264 264	2 2	1 1	313 313	22.2 22.2

[Note] 1) B and no indication before matching code in bearing numbers represent nominal contact angle of 40° and 30° respectively.

Matched pair angular contact ball bearings -

d **190** ~ **320** mm

Koyo

	Bound	ary dimens	ions			oad ratings (kN)	Limiting (min		Descript No. 1)	Permissble axial loads		Mounting o (m	dimensions m)		Envelope	(Refer.) Mass
d	D	2 <i>B</i>	r min.	r_1 min.	C_{a}	$C_{0\mathrm{a}}$	Grease lub.	Oil lub.	Bearing No. $^{1)}$	(kN) (static)	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	$r_{ m b}$ max.	volume (cm ³ /row)	(kg/row)
190	290 290	90 90	2.1 2.1	1.1 1.1	179 213	544 604	2 400 2 200	3 100 2 800	ACT038DB ACT038BDB	57.9 196	226 226	275 275	2 2	1 1	329 329	23.0 23.0
200	310 310	99 99	2.1 2.1	1.1 1.1	215 255	633 702	2 200 2 000	2 900 2 600	ACT040DB ACT040BDB	64.8 229	240 240	293 293	2 2	1 1	421 421	29.5 29.5
220	340 340	108 108	3 3	1.1 1.1	252 299	773 858	2 000 1 800	2 600 2 400	ACT044DB ACT044BDB	81.9 278	263 263	321 321	2.5 2.5	1 1	566 566	38.5 38.5
240	360 360	108 108	3 3	1.1 1.1	260 308	823 914	1 800 1 600	2 400 2 200	ACT048DB ACT048BDB	87.9 298	283 283	343 343	2.5 2.5	1 1	605 605	41.1 41.1
260	400 400	123 123	4 4	1.5 1.5	321 381	1 090 1 210	1 600 1 500	2 100 1 900	ACT052DB ACT052BDB	111 393	310 310	379 379	3 3	1.5 1.5	866 866	60.5 60.5
280	420 420	123 123	4 4	1.5 1.5	332 393	1 160 1 290	1 500 1 400	2 000 1 800	ACT056DB ACT056BDB	119 421	330 330	401 401	3 3	1.5 1.5	915 915	64.1 64.1
300	460 460	142.5 142.5	4 4	1.5 1.5	375 444	1 370 1 530	1 300 1 200	1 800 1 600	ACT060DB ACT060BDB	143 501	358 358	435 435	3 3	1.5 1.5	1 320 1 320	92.1 92.1
320	480 480	142.5 142.5	4 4	1.5 1.5	378 449	1 420 1 570	1 200 1 100	1 600 1 500	ACT064DB ACT064BDB	148 518	378 378	457 457	3 3	1.5 1.5	1 400 1 400	96.9 96.9

[Note] 1) B and no indication before matching code in bearing numbers represent nominal contact angle of 40° and 30° respectively.

Precision ball screw support bearings and bearing units

Support bearings were developed to support precision ball screw shafts. They have the same structure as angular contact thrust ball bearings with a contact angle of 60°.

- Have a large axial load carrying capacity. Also able to carry a certain degree of radial load.
- Support bearing units

Bore diameter 17 - 60 mm

Support bearings

Koyo

- Starting torque is small.
- Support bearing units consist of the bearings described above and a precisely processed housing. Units with a Koyo precision ball screw are also available.
- For details, refer to JTEKT separate catalog "Precision Ball and Roller Bearings for Machine Tools" (CAT. NO. B2005E).

						Tab	le 1	Supp	port	bear	ing t	olera	ance						
(1) I	nner	ring																Unit	t∶μm
bore	neter	bor	e dian iatior	ane n neter 1	nean		jle bo neter		tion	ring w deviat		Inner width varia	tion	bearin inner	it of nbled ng	Perpe larity of inner if face w respec the bo	of ring rith ct to	Assen bearin inner face ru with racew	ig ring unout
(m	ım)	clas	s 5Z	clas	s 4Z	clas	s 5Z		s 4Z	clas		class 5Z	class 4Z	class 5Z	class 4Z	class 5Z	class 4Z		class 4Z
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	ma	ax.	ma	ax.	ma	ax.	ma	ax.
10	18	0	- 5	0	- 4	0	- 5	0	- 4	0	- 80	5	2.5	4	2.5	7	3	5	3
18	30	0	- 6	0	- 5	0	- 6	0	- 5	0	- 120	5	2.5	4	3	8	4	5	3
30	50	0	- 8	0	- 6	0	- 8	0	- 6	0	- 120	5	3	5	4	8	4	6	3
50	80	0	- 9	0	-7	0	- 9	0	-7	0	- 150	6	4	5	4	8	5	7	4
(2) ()uter	ring																Uni	t:μm
Non	ninal			ane n diame			le ou neter		tion	Singl outer		Oute width	r ring	Radia runou		Perper larity o		Asser bearin	nbled 1g

outs diar	ninal side neter	out	side c iation	-			neter	tside devia	tion	Single outer ring v devia	vidth tion	widtl varia	tion	Radia runou asser bearin outer	it of nbled ng ring	Perper larity o ring ou surface respec the fac	f outer itside e with t to e	bearin outer ring fa runou racew	ace it with vay
-	D		Δj	Dmp			Δ	Ds			$C_{\rm S}$		Cs	K	ea	S	D	S	ea
(1	nm)	clas	s 5Z	clas	s 4Z	clas	s 5Z	clas	s 4Z	clas 5Z,	ses 4Z	class 5Z	class 4Z	class 5Z	class 4Z	class 5Z	class 4Z	class 5Z	class 4Z
over	up to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	m	ax.	ma	ax.	ma	ax.	ma	ax.
30	50	0	- 7	0	- 6	0	- 7	0	- 6	Equival		5	2.5	7	5	8	4	Equival	
50	80	0	- 9	0	-7	0	- 9	0	-7	Δ_{Bs} tole of a bea		6	3	8	5	8	4	S_{ia} tole of a bea	
80	120	0	- 10	0	- 8	0	- 10	0	- 8	the sam	ne ď	8	4	10	6	9	5	the san	ne ď

Precision ball screw support bearings -

d **17** ~ **60 mm**

Koyo

	Bounda	ary dim (mm)	ension	s	Basic dynamic load rating 1)	Max.	axial loa (kN)	adings	Limiting (min			Envelope		Dimen (m)			Standar Mate	d preloa ching typ			g torque tching ty			rigidity tching ty		(Refer.) Mass
d	D	В	r min.	r_1 min.	C _a (kN)	Single- row	Double- row	Triple- row	Grease lub.	Oil lub.	Bearing No. 2)	volume (cm ³ /row)	d_1	d_2	D_1	D_2	Two bearings	Three bearings	Four bearings	Two bearings	Three bearings	Four bearings	Two bearings	Three bearings	Four s bearings	(kg/row)
17	47	15	1	0.6	26.0	34.3	68.6	103	6 300	8 000	SAC1747B	3.7	25.5	33.7	33.5	41	2.15	2.92	4.30	140	180	280	695	1 030	1 390	0.13
20	47	15	1	0.6	26.0	34.3	68.6	103	6 300	8 000	SAC2047B	3.7	26.8	33.7	33.5	41	2.15	2.92	4.30	140	180	280	695	1 030	1 390	0.12
25	62	15	1	0.6	30.2	48.1	96.2	144	4 600	6 000	SAC2562B	4.9	38	46.2	46	53.5	3.04	4.13	6.08	200	260	400	970	1 440	1 940	0.24
30	62	15	1	0.6	30.2	48.1	96.2	144	4 600	6 000	SAC3062B	4.9	38	46.2	46	53.5	3.04	4.13	6.08	200	260	400	970	1 440	1 940	0.21
35	72	15	1	0.6	32.8	58.8	118	176	3 700	5 000	SAC3572B	6.2	48	56.3	55.9	63.5	3.73	5.07	7.46	240	320	480	1 180	1 760	2 360	0.29
40	72 90	15 20	1 1	0.6 0.6	32.8 65.4	58.8 122	118 244	176 366	3 700 3 100	4 800 4 000	SAC4072B SAC4090B	6.2 15	48 54.5	56.3 67.5	55.9 66.8	63.5 78.5	3.73 5.00	5.07 6.80	7.46 10.0	240 440	320 610	480 880	1 180 1 270	1 760 1 890	2 360 2 540	0.26 0.62
45	75 100	15 20	1 1	0.6 0.6	34.0 68.8	64.4 137	129 274	193 411	3 400 2 800	4 300 3 600	SAC4575B SAC45100B	6.9 16	54 61.5	61.7 74.2	61.5 74	69 85.5	3.89 5.95	5.29 8.09	7.78 11.9	250 540	330 730	500 1 080	1 270 1 450	1 890 2 150	2 540 2 900	0.25 0.79
50	100	20	1	0.6	70.3	144	288	432	2 700	3 400	SAC50100B	17	65.8	78.2	78	89.5	6.00	8.15	12.0	540	730	1 080	1 500	2 230	3 000	0.65
55	120	20	1	0.6	73.9	166	332	498	2 300	3 000	SAC55120B	20	79.5	92.2	92	103.6	7.08	9.62	14.2	640	860	1 280	1 740	2 590	3 480	1.15
60	120	20	1	0.6	73.9	166	332	498	2 300	3 000	SAC60120B	20	78.3	92.2	92	103.6	7.08	9.62	14.2	640	860	1 280	1 740	2 590	3 480	1.15

[Notes] 1) The basic dynamic load ratings of a single-row bearing are shown in this column. Those of matched pair and stack bearings are as shown below.

 Matched bearing numbers consist of a single-row bearing number and a matching code such as DB or DF which is shown as a suffix. Dynamic equivalent load $P_a = XF_r + YF_a$

		Two be	earings	Thr	ee beari	ngs	Fo	ur bearir	ngs
Matching Ty	oes	DB DF	DT		BD FD	DTD	DBT DFT	DBB DFF	DBT DFT
Number of rows support axial load		One	Two	One	Two	Three	One	Two	Three
$F_{a < 0.17}$	X	1.9	—	1.43	2.33	—	1.17	2.33	2.53
$\frac{F_{\rm a}}{F_{\rm r}} \le 2.17$	Y	0.54	—	0.77	0.35	—	0.89	0.35	0.26
$\frac{F_{\rm a}}{F_{\rm r}}$ > 2.17	X				0.	92			
$F_{\rm r}$	Y				1				

Precision ball screw support bearing units

d **17** ~ **40 mm**

					Di	mensio (mm)	ons						Applicable shaft dia.	Unit No. 1)	Bearing	D	hous			dust-c		Standard preload	Starting torque	(Refer.) Mass
d	D	D_1	L	L_1	L_2	L_3	d_1	d_2	x	x_1	x_2	x_3	(mm)		qty.	P (mm)	θ (°)	Z_1 - M_1 Hole Nothread	$\begin{array}{c} P_1 \\ (\mathrm{mm}) \end{array}$	θ ₁ (°)	Z_2 - M_2 Hole Nothread	(kN)	$(mN{\cdot}m)$	(kg)
17	60	90	65	15	15	35	38	47	6	6	15	20	28	BSU1747BDF	2	75	45	4-M6	75	22.5	4-M6	2.15	140	1.72
20	60	90	65	15	15	35	38	47	6	6	15	20	28	BSU2047BDF	2	75	45	4-M6	75	22.5	4-M6	2.15	140	1.70
25	74 74	108 108	68 83	13 13	17 17	38 53	52 52	63 63	6 6	6 6	20 20	18 18	32 32	BSU2562BDF BSU2562BDFD	2 3	90 90	30 30	6-M8 6-M8	78 78	15 15	3-M6 3-M6	3.04 4.13	200 260	2.45 2.85
30	74 74	108 108	68 83	13 13	17 17	38 53	52 52	63 63	6 6	6 6	20 20	18 18	40 40	BSU3062BDF BSU3062BDFD	2 3	90 90	30 30	6-M8 6-M8	78 78	15 15	3-M6 3-M6	3.04 4.13	200 260	2.38 2.74
35	84 84 84	118 118 118	68 83 98	13 13 13	17 17 17	38 53 68	60 60 60	73 73 73	6 6 6	6 6 6	20 20 20	18 18 18	45 45 45	BSU3572BDF BSU3572BDFD BSU3572BDFF	2 3 4	100 100 100	30 30 30	6-M8 6-M8 6-M8	88 88 88	15 15 15	3-M6 3-M6 3-M6	3.73 5.07 7.46	240 320 480	2.81 3.28 3.74
40	84 84 84	118 118 118	68 83 98	13 13 13	17 17 17	38 53 68	60 60 60	73 73 73	6 6 6	6 6 6	20 20 20	18 18 18	50 50 50	BSU4072BDF BSU4072BDFD BSU4072BDFF	2 3 4	100 100 100	30 30 30	6-M8 6-M8 6-M8	88 88 88	15 15 15	3-M6 3-M6 3-M6	3.73 5.07 7.46	240 320 480	2.77 3.20 3.64

[Note] 1) Diagrams show a unit mounted with triple-row matched bearing DFD. Specifications of each bearing are shown in the former pages. (BSU1747BDF \rightarrow SAC1747BDF)

Koyo

Full complement type cylindrical roller bearings for crane sheaves

Shielded type Bore diameter 40 – 440 mm Open type Bore diameter 50 – 440 mm

Kovo

Crane rope sheaves and running wheels which are operated at low or medium speed are generally equipped with full complement type cylindrical roller bearings because the operation of these machines involves heavy, impact loading.

These bearings are divided into shielded and open types. The shielded type is often used with the outer ring rotation.

Shielded type

- The shielded type was developed for use with rope sheaves. It is shielded, non-separable and pre-lubricated with grease.
- Bearings with locating snap rings around the outer ring can be positioned and fit to sheaves with ease.
- The bearing surface is coated with phosphate for rust prevention.

Open type

- Open type bearings are further divided into those used on the fixed side and those used on the free side. The former carry axial load in both directions. The relative position of the latter's inner ring and outer ring can be adjusted by moving them along the axis.
- Open type bearings are separable because the outer ring divided into two annular pieces in a plane perpendicular to its axis. Triple-row and four-row bearings are available along with double-row types.

Tolerances	As specified in	n JIS B 1514-1, classe	es 0 and 6 (re	f. Table 7-3 o	n pp. A 54-A 57).
Recommended fits and radial internal	■ Fits	ded fits: refer to Table and clearance of full use with crane sheave	complement ty	ype cylindrica	0
clearance	С	Condition	Shaft tolerance class	Housing bore tolerance class	Bearing radial internal clearance
		ht or fluctuating load		M 7	CN clearance
	outer	rmal or heavy load avy load on thin	g 6 or h 6	N 7	C3 clearance
		ction housing		P 7	C3 clearance
		(DC50) shown clearance of shielded	the nominal b 00 series), the below.	oore dia. up to e correspondi	140mm shielded type ng CN clearance are
	Nominal b	bore dia. $d(mm)$		CN clearance	e (μm)
	over	r up to	min	1.	max.
	30		35		70
	40		40		75
	50		45		90 105
	80		65		115
	100	0 120	80		120
	120	0 140	90		130

Full complement type cylindrical roller bearings for crane sheaves

shielded type

Design 1

R

Design 2

Design 3

With locating snap rings

Koyo

Boundary dimensions **Basic load ratings** Bearing No. Locating snap ring specifications Mounting dimensions (Refer.) (kN) (mm)(mm)(mm) Mass Design Without locating With locating d_{a} $D_{\rm x}$ rDBC $C_{\rm r}$ C_{0r} $C_1^{(1)}$ SE $C_2^{(2)}$ (kg) dt min. min. min. snap rings snap rings 40 68 38 37 0.9 87.8 125 DC5008N **DC5008NR** 4.5 71.8 2 80 28 0.55 0.6 1 28 46 DC5009N 45 75 40 39 0.9 0.6 95.1 144 **DC5009NR** 1 30 4.5 78.8 2 51 87 30 0.70 50 158 DC5010N **DC5010NR** 80 40 39 0.9 0.6 99.7 1 30 4.5 83.8 2 56 92 30 0.75 55 46 45 193 DC5011N **DC5011NR** 1 1.19 90 1.2 0.6 118 34 5.5 94.8 2.5 63 104 34 60 95 46 45 1.2 0.6 123 208 DC5012N **DC5012NR** 1 34 5.5 99.8 2.5 68 109 34 1.27 65 100 46 45 1.2 0.6 128 224 DC5013N **DC5013NR** 1 34 5.5 104.8 2.5 73 114 34 1.30 70 285 DC5014N **DC5014NR** 42 1.94 110 54 53 1.2 0.6 170 1 42 5.5 114.5 2.5 78 124 75 115 54 53 1.2 0.6 178 307 DC5015N DC5015NR 1 42 5.5 119.5 2.5 83 129 42 2.11 80 125 60 59 1.2 0.6 250 429 DC5016N **DC5016NR** 1 48 129.5 88 146 48 2.65 5.5 2.5 85 130 60 59 1.2 0.6 255 446 DC5017N **DC5017NR** 1 48 5.5 134.5 2.5 93 155 48 2.80 DC5018N 90 140 67 66 0.6 303 541 DC5018NR 1 54 6 145.4 2.5 100 165 54 3.70 1.4 DC5019N **DC5019NR** 95 145 67 66 1.4 0.6 310 562 1 54 6 150.4 2.5 105 175 54 3.90 DC5020N **DC5020NR** 1 180 100 150 67 66 1.4 0.6 316 584 54 6 155.4 2.5 110 54 4.05 110 170 80 79 1.7 1 382 697 DC5022N **DC5022NR** 1 65 7 175.4 2.5 122 200 65 6.50 120 180 80 79 1.7 1 398 750 DC5024N **DC5024NR** 1 65 7 188.4 3 132 210 65 6.95 1.7 1 0 0 0 DC5026N DC5026NR 1 77 8.5 208.4 77 130 200 95 94 1 534 3 142 230 10.5 140 210 95 94 1.7 1 540 1 070 DC5028N **DC5028NR** 1 77 8.5 218.4 3 152 245 77 11.0 2 150 225 100 99 2 1 682 1 400 DC5030N DC5030NR 81 9 233 3 178.5 244 81 13.9

[Notes] 1) Dimensional tolerance of C_1 is +0.4/0 when bore diameter is not more than 170mm, while +0.6/0 when bore diameter is not more than 170mm.

2) Dimensional tolerance of C_2 is -0.1/-0.5 when bore diameter is not more than 170mm, while -0.1/-0.7 when bore diameter is not more than 170mm.

Full complement type cylindrical roller bearings for crane sheaves

Design 1

shielded type

Design 2

Design 3

Koyo

With locating snap rings

	Bo	oundary o		ns			ad ratings kN)		ng No.	Design	Locati		ing specif nm)	ications	Mount	ing dime (mm)	ensions	(Refer.) Mass
d	D	В	С	t	r min.	C_{r}	$C_{0\mathrm{r}}$	Without locating snap rings	With locating snap rings	Design	$C_1{}^{1)}$	S	Ε	f	$d_{ m a}$ min.	$D_{ m x}$ min.	$C_2^{2)}$	(kg)
160	240	109	108	2	1.1	786	1 640	DC5032N	DC5032NR	2	89	9.5	248	3	190	259	89	17.2
170	260	122	121	2	1.1	977	2 020	DC5034N	DC5034NR	2	99	11	270	4	204	286	99	23.1
180	280	136	135	2	1.1	1 150	2 440	DC5036N	DC5036NR	2	110	12.5	290	4	217.5	306	110	30.8
190	290	136	135	2	1.1	1 180	2 530	DC5038N	DC5038NR	2	110	12.5	300	4	225	316	110	32.4
200	310	150	149	2	1.1	1 390	2 980	DC5040N	DC5040NR	2	120	14.5	320	4	240	336	120	41.7
220	340	160	159	2.5	1.1	1 620	3 590	DC5044N	DC5044NR	2	130	14.5	356	6	266.5	380	130	53.5
240	360	160	159	2.5	1.1	1 690	3 850	DC5048N	DC5048NR	2	130	14.5	376	6	284.5	400	130	57.3
260	400	190	189	3	1.5	2 230	4 980	DC5052N	DC5052NR	2	154	17.5	416	7	312.5	444	154	87.2
280	420	190	189	3	1.5	2 330	5 350	DC5056N	DC5056NR	2	154	17.5	436	7	334.5	464	154	93.0
300	460	218	216	3	1.5	2 860	6 610	DC5060	_	3				_	361			134
320	480	218	216	3	1.5	2 950	6 930	DC5064	_	3	_	_	_	_	378.5	_	_	140
340	520	243	241	3.5	2	3 590	8 420	DC5068	_	3		_	_	_	413		_	189
360	540	243	241	3.5	2	3 660	8 720	DC5072	_	3	_	_	_	_	427	_	_	197
380	560	243	241	3.5	2	3 730	9 020	DC5076	_	3		_		_	441			207
400	600	272	270	3.5	2	4 510	11 000	DC5080	_	3		_	_	_	475.5		_	281
420	620	272	270	3.5	2	4 650	11 400	DC5084	_	3		_	_	_	496	_		290
440	650	280	278	4.5	3	4 940	12 200	DC5088	_	3		_	_	_	521	_	_	330

[Notes] 1) Dimensional tolerance of C₁ is +0.4/0 when bore diameter is not more than 170mm, while +0.6/0 when bore diameter is not more than 170mm.
2) Dimensional tolerance of C₂ is -0.1/-0.5 when bore diameter is not more than 170mm, while -0.1/-0.7 when bore diameter is not more than 170mm.

Full complement type cylindrical roller bearings for crane sheaves

Fixed side Free side

В	Boundary d		IS	S ¹⁾		ad ratings	Bearin	ng No.	Lubri	cation (mm)	hole	Mounti	ng dime (mm)	nsions	Mass
d	D	В	r min.	(mm)	$C_{ m r}$	$C_{0\mathrm{r}}$	Fixed side	Free side	Р	n qty	d_0	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	Fixed side (kg)
50	72	22	0.6	1	49.1	82.9	DC4910AVW	DC4910VW	11	4	2	55	67	0.6	0.30
60	85	25	1	1	72.7	136	DC4912AVW	DC4912VW	12.5	4	2	66	79	1	0.46
70	100	30	1	1	105	193	DC4914AVW	DC4914VW	15	4	2	76	94	1	0.78
80	110	30	1	1	114	218	DC4916AVW	DC4916VW	15	4	2	86	104	1	0.88
90	125	35	1.1	1.5	150	301	DC4918AVW	DC4918VW	17.5	4	2.5	97	118	1	1.35
100	140	40	1.1	2	194	400	DC4920AVW	DC4920VW	20	4	2.5	107	133	1	1.95
110	150	40	1.1	2	202	431	DC4922AVW	DC4922VW	20	4	2.5	117	143	1	2.15
120	165	45	1.1	3	226	479	DC4924AVW	DC4924VW	22.5	4	3	127	158	1	2.95
130	180	50	1.5	4	276	560	DC4926AVW	DC4926VW	25	4	3	138.5	171.5	1.5	3.95
140	190	50	1.5	4	284	589	DC4928AVW	DC4928VW	25	4	3	148.5	181.5	1.5	4.20
150	190	40	1.1	2	234	575	DC4830AVW	DC4830VW	20	4	3	157	183	1	2.90
	210	60	2	4	406	842	DC4930AVW	DC4930VW	30	6	4	160	200	2	6.65
160	200	40	1.1	2	242	616	DC4832AVW	DC4832VW	20	4	3	167	193	1	3.05
	220	60	2	4	428	895	DC4932AVW	DC4932VW	30	6	4	170	210	2	7.00
170	215	45	1.1	3	269	655	DC4834AVW	DC4834VW	22.5	4	3	177	208	1	4.10
	230	60	2	4	440	944	DC4934AVW	DC4934VW	30	6	4	180	220	2	7.35
180	225	45	1.1	3	276	690	DC4836AVW	DC4836VW	22.5	4	4	187	218	1	4.30
	250	69	2	4	547	1 140	DC4936AVW	DC4936VW	34.5	6	4	190	240	2	10.7
190	240	50	1.5	4	327	782	DC4838AVW	DC4838VW	25	4	4	198.5	231.5	1.5	5.65
	260	69	2	4	555	1 200	DC4938AVW	DC4938VW	34.5	6	5	200	250	2	11.2
200	250	50	1.5	4	337	826	DC4840AVW	DC4840VW	25	4	4	208.5	241.5	1.5	5.90
	280	80	2.1	5	667	1 500	DC4940AVW	DC4940VW	40	6	6	212	268	2	15.7

[Note] 1) Effective movement of the bearing on the free side in an axial direction.

Koyo

Full complement type cylindrical roller bearings for crane sheaves

Fixed side Free side

В	-	dimension m)	IS	S ¹⁾		ad ratings kN)	Beari	ng No.	Lubri	ication (mm)	hole		ng dime (mm)		Mass Fixed side
d	D	В	r min.	(mm)	$C_{ m r}$	$C_{0\mathrm{r}}$	Fixed side	Free side	Р	n qty	d_0	$d_{ m a}$ min.	$D_{ m a}$ max.	$r_{ m a}$ max.	(kg)
220	270	50	1.5	4	355	971	DC4844AVW	DC4844VW	25	6	4	228.5	261.5	1.5	6.40
	300	80	2.1	5	707	1 600	DC4944AVW	DC4944VW	40	6	6	232	288	2	17.1
240	300	60	2	4	509	1 330	DC4848AVW	DC4848VW	30	6	5	250	290	2	10.2
	320	80	2.1	5	735	1 720	DC4948AVW	DC4948VW	40	6	6	252	308	2	18.4
260	320	60	2	4	532	1 450	DC4852AVW	DC4852VW	30	6	5	270	310	2	11.0
	360	100	2.1	6	1 070	2 520	DC4952AVW	DC4952VW	50	8	6	272	348	2	32.0
280	350	69	2	4	663	1 720	DC4856AVW	DC4856VW	34.5	6	5	290	340	2	16.0
	380	100	2.1	6	1 130	2 700	DC4956AVW	DC4956VW	50	8	6	292	368	2	33.9
300	380	80	2.1	6	802	2 160	DC4860AVW	DC4860VW	40	8	6	312	368	2	23.0
	420	118	3	6	1 560	3 710	DC4960AVW	DC4960VW	59	8	8	314	406	2.5	53.0
320	400	80	2.1	6	832	2 310	DC4864AVW	DC4864VW	40	8	6	332	388	2	24.3
	440	118	3	6	1 620	3 940	DC4964AVW	DC4964VW	59	8	8	334	426	2.5	56.0
340	420	80	2.1	6	853	2 430	DC4868AVW	DC4868VW	40	8	6	352	408	2	25.6
	460	118	3	6	1 660	4 150	DC4968AVW	DC4968VW	59	8	8	354	446	2.5	59.0
360	440	80	2.1	6	880	2 580	DC4872AVW	DC4872VW	40	8	6	372	428	2	27.0
	480	118	3	6	1 700	4 390	DC4972AVW	DC4972VW	59	8	8	374	466	2.5	62.0
380	480	100	2.1	6	1 310	3 570	DC4876AVW	DC4876VW	50	8	6	392	468	2	45.3
	520	140	4	7	2 290	5 600	DC4976AVW	DC4976VW	70	8	8	398	502	3	92.3
400	540	140	4	7	2 380	5 990	DC4980AVW	DC4980VW	70	8	8	418	522	3	96.4
420	560	140	4	7	2 440	6 270	DC4984AVW	DC4984VW	70	8	8	438	542	3	101
440	600	160	4	7	2 970	7 390	DC4988AVW	DC4988VW	80	8	8	458	582	3	139

[Note] 1) Effective movement of the bearing on the free side in an axial direction.

Koyo

Rolling mill roll neck bearings

Rolling mill roll neck four-row cylindrical roller bearings and tapered roller bearings are designed to achieve the maximum load rating capacity in a limited space.

- Four-row cylindrical roller bearings
 - Suitable for high-speed rotation. Thin section designs are also available.
- The inner ring raceway surface and the roll can be finished simultaneously after the inner ring is mounted on the roll neck. This feature is useful in improving rolling mill accuracy.
- Four-row tapered roller bearings
 - Suitable for low- and medium-speed rotation. Available in both metric and inch series.
- The internal clearance is preadjusted, facilitating mounting.
- More sealed type four-row tapered roller bearings are being used currently.

Kovo

	Four-row cylindrical roller bearings	Four-row tapered roller bearings
Tolerances	As specified in JIS B 1514-1.	• Metric series : as specified in BAS 1002.
	(refer to Table 7-3 on pp. A 54-A 57.)	(refer to Table 7-6 on p. A 63.)
		Inch series : as specified in ABMA
		Section 19.
		(refer to Table 7-7 on pp. A 64, 65.)
		• Special series (47T···, 4TR···) :
		Special allowances are applied to these
		series. For details, consult with JTEKT.
Recommended fits	Refer to Table 1.	Metric series : refer to Table 2.
		• Inch series : refer to Table 3.
Internal clearance	Refer to Table 10-8 on pp. A 100, 101.	Refer to Table 10-10 on p. A 104.
	(JTEKT should be consulted to determine the	clearance according to application conditions.)
Equivalent load	Dynamic equivalent radial load : $P_{\rm r} = F_{\rm r}$	Dynamic equivalent radial load :
	Static equivalent radial load : $P_{0r} = F_r$	$\left[\text{ when } rac{F_{\mathrm{a}}}{F_{\mathrm{r}}} \leq e ight] P_{\mathrm{r}} = F_{\mathrm{r}} + Y_2 F_{\mathrm{a}}$
		$\left[\text{ when } \frac{F_{\mathrm{a}}}{F_{\mathrm{r}}} > e \right] P_{\mathrm{r}} = 0.67 F_{\mathrm{r}} + Y_{\mathrm{3}} F_{\mathrm{a}}$
		Static equivalent radial load :
		$P_{0r} = F_r + Y_0 F_a$

[Note] For axial load factor Y_2 , Y_3 and Y_0 , and the constant e, use values listed in the specification table.

. Koyo

	Tab	le 1 Ro	l neck f	our-row	v <mark>cylindric</mark> a	l roller l	bearing	recomm	ended f	its	Unit : µm
	Inner	ring and	roll nec	k (shaft)			Outer	ring and	l chock (housing)
Nomina diam (m	neter l	mean diame deviat	ter	dia	II neck meter viation	dian	l outside neter D m)	diamet deviati	outside ter	dian	ck bore neter ation
over	up to	upper	lower	upper	lower	over	up to	upper	lower	upper	lower
80 120 180	120 180 250	0 0 0	- 20 - 25 - 30	+ 59 + 68 + 79	+ 37 + 43 (p6) + 50	120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	+ 40 + 40 + 46	0 0 (H7) 0
250 280 315	280 315 355	0 0 0	- 35 - 35 - 40	+ 126 + 130 + 144	+ 94 + 98 (r6) + 108	250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	+ 52 + 75 + 83	0 (H7) + 18 + 20 (G7)
355 400 450	400 450 500	0 0 0	- 40 - 45 - 45	+ 150 + 166 + 172	+ 114 + 126 (r6) + 132	500	630	0	- 50	+ 92	+ 22 (G7)
500 560 630	560 630 710	0 0 0	- 50 - 50 - 75	+ 194 + 354 + 390	+ 150 (r6) + 310 + 340 (s6)	630	800	0	- 75	+ 160	+ 80 (F7)
710 800 900	800 900 1 000	0 0 0	- 75 - 100 - 100	+ 430 + 486 + 526	+ 380 + 430 (s6) + 470	800	1 000	0	- 100	+ 176	+ 86 (F7)
1 000 1 120	1 120 1 250	0 0	– 125 – 125	+ 588 + 646	+ 520 + 580 (s6)	1 000	1 250	0	- 125	+ 203	+ 98 (F7)
						1 250	1 400	0	- 160	+ 235	+ 110 (F7)
						1 400	1 600	0	- 160	+ 345	+ 220 (E7)

[Note] The table above shows general values. JTEKT determines recommended fit on a case by case basis according to bearing materials and operating conditions to prevent the inner ring from creeping. Consult with JTEKT when referring to this table.

Table 2 Roll neck metric series four-row	tapered roller bearing recommended fit	s Unit:μm
--	--	-----------

D	ouble in	ner ring a	nd roll n	eck (shaf	t)		Outer I	ring and o	chock (ho	ousing)	
Nomina diam	neter	Single mean diame deviat	bore ter	Roll diam devia	eter	diam 1	l outside neter D m)	diamet deviati	outside er	Chocl diame deviat	
over	up to	upper	lower	upper	lower	over	up to	upper	lower	upper	lower
80	120	0	- 20	- 120	- 150	120	150	0	- 20	+ 57	+ 25
120	180	0	- 25	- 150	- 175	150	180	0	- 25	+ 100	+ 50
180	250	0	- 30	– 175	- 200	180	250	0	- 30	+ 120	+ 50
250	315	0	- 35	- 210	- 250	250	315	0	- 35	+ 115	+ 50
315	400	0	- 40	- 240	- 300	315	400	0	- 40	+ 110	+ 50
400	500	0	- 45	- 245	- 300	400	500	0	- 45	+ 105	+ 50
500	630	0	- 50	- 250	- 300	500	630	0	- 50	+ 100	+ 50
630	800	0	- 75	- 325	- 400	630	800	0	- 75	+ 150	+ 75
800	1 000	0	- 100	- 350	- 425	800	1 000	0	- 100	+ 150	+ 75
1 000	1 250	0	- 125	- 425	- 500	1 000	1 250	0	- 125	+ 175	+ 100
1 250	1 600	0	- 160	- 510	- 600	1 250	1 600	0	- 160	+ 215	+ 125
						1 600	2 000	0	- 200	+ 250	+ 150

Ta	able 3 R	oll neck	inch sei	ries four	-row tap	ered rolle	er bearir	ng recon	mended	lfits l	Jnit : µm
D	ouble inr	ner ring a	and roll n	eck (shaf	it)		Outer r	ing and o	chock (ho	ousing)	
Nomina diam (mm)(1	eter	mean diame deviat	ter	Roll diam devia	eter	Nominal diam (mm)(1	eter	diamet deviati	outside er	Choc diame devia	
over	up to	upper	lower	upper	lower over		up to	upper	lower	upper	lower
76.2 (3.0)	101.6 (4.0)	+ 25	0	- 75	- 100	-	304.8 (12.0)	+ 25	0	+ 75	+ 50
101.6 (4.0)	127.0 (5.0)	+ 25	0	- 100	- 125	304.8 (12.0)	609.6 (24.0)	+ 51	0	+ 150	+ 100
127.0 (5.0)	152.4 (6.0)	+ 25	0	- 125	- 150	609.6 (24.0)	914.4 (36.0)	+ 76	0	+ 225	+ 150
152.4 (6.0)	203.2 (8.0)	+ 25	0	- 150	- 175	914.4 (36.0)	1 219.2 (48.0)	+ 102	0	+ 300	+ 200
203.2 (8.0)	304.8 (12.0)	+ 25	0	– 175	- 200	1 219.2 (48.0)	1 524.0 (60.0)	+ 127	0	+ 375	+ 250
304.8 (12.0)	609.6 (24.0)	+ 51	0	- 200	- 250	1 524.0 (60.0)	-	+ 127	0	+ 450	+ 300
609.6 (24.0)	914.4 (36.0)	+ 76	0	- 250	- 325						
914.4 (36.0)	1 219.2 (48.0)	+ 102	0	- 300	- 400						
1 219.2 (48.0)	-	+ 127	0	- 375	- 475						

d 100 ~ (160) mm

Koyo

	(Refer.) Mass			ng dimens (mm)			Design ¹⁾	Peoving No.		Basic load			5		Boundary d	I	
_	(kg)	$r_{ m b}{}^{2)}$ max.	$r_{ m a}{}^{2)}$ max.) _a min.	L max.	$d_{ m a}$ min.	Design	Bearing No.	$C_{0\mathrm{r}}$	$C_{ m r}$	r_1 min.	r min.	$F_{ m w}$	С	В	D	d
	5.6	1	1	131	133	107	2-2	20FC14120	945	485	1.1	1.1	110	120	120	140	100
ľ	7.4 12	2 1.5	2 2	155 164	160 170	120 119	1-2 2-2	22FC1790 22FC18120	692 971	428 636	2 2	2 2	127 128	90 120	90 120	170 180	110
_	6.5	1	1	154	158	122	1-1	23FC1690	751	398	1.1	1.1	132.5	90	90	165	115
	5.6 9.3	1 1	1 2	154 165	158 170	127 127	1-2 1-2	24FC1787 4CR120	745 796	374 487	1.1 1.1	1.1 2	134.5 135	87 105	87 105	165 180	120
	10.5 15.4	1 2	1 2	163 185	167 193	134 137	2-2 1-3	25FC17150 25FC20127	1 300 1 180	630 740	1.1 2	1.1 2	139.5 147	150.812 127	150.812 127	174.65 203.2	127
	11.8 14.4	2 2	2 2	182 183	190 190	140 140	1-2 1-2	26FC20104 26FC20125	953 1 310	566 752	2 2	2 2	150 149	104 125	104 125	200 200	130
-	9.6 13.5	1.5 2	1.5 2	178 194	181 200	149 150	1-3 1-2	28FC19119W 28FC21116	1 160 1 120	565 675	1.5 2	1.5 2	154 158	119 116	119 116	190 210	140
-	17.8 22.9	1 2	1 2	196 205	203 215	152 155	1-2 1-2	29FC21155 313924	1 710 1 680	845 912	1.1 2	1.1 2	166 169	155 156	155 156	210 225	145
-	10.1 12.8 15.9	2 2 2	2 2 2	188 196 195	190 200 200	160 160 160	1-2 2-2 1-2	30FC20120 30FC21120 30FC21150	1 400 1 380 1 780	672 686 872	2 2 2	2 2 2	162 168.5 165	120 120 150	120 120 150	200 210 210	150
Ī	19.2 19.5 23.8	2 2 2	2 2 2	202 200 210	210 210 220	160 160 160	1-2 1-2 1-2	30FC22150 30FC22150A 313891-1	1 760 1 760 1 810	887 889 961	2 2 2	2 2 2	170 168 174	150 150 156	150 150 156	220 220 230	
ϕD	20.5 17.7	2 2	2 2	205 212	210 218	170 172	1-2 1-2	32FC22180 314190	2 170 1 740	964 867	2 2.1	2 2.1	177 180	180 130	180 130	220 230	160

[Notes] 1) Design numbers indicate the following meanings with P pin type cages without P machined cages

-		
	Outer ring with rib	Outer ring with loose rib
One inner ring	1-1, 1-2, 1-3, 1-4	1-6P
Two inner rings	2-1P, 2-2, 2-2P, 2-3, 2-4	2-5P, 2-6P
Extended inner ring		3-1, 3-1P, 3-2P

 r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r₁.

sign 3-1 Design 3-1P

Design 3-2P

d (160) ~ 190 mm

╞╍╫╍╫

Design 2-6P

Design 3-1P

 $\phi d_{\rm a}$

Koyo

			y dimensio	ons				ad ratings	Bearing No.	Design ¹⁾			g dimensi (mm)			(Refer.) Mass	
d	D	В	C	$F_{ m w}$	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No.	Design	$d_{ m a}$ min.	D max.	a min.	$r_{ m a}{}^{2)}$ max.	$r_{ m b}{}^{2)}$ max.	(kg)	
160	230	168	168	182	1.1	1.1	1 040	2 210	32FC23170	1-2	167	223	214	1	1	22.8	
	230	168	168	180	2	2	1 040	2 200	32FC23170A	1-2	170	220	212	2	2	23.1	
	230	168	168	179	2	2	1 110	2 210	32FC23170B	1-4	170	220	215	2	2	22.6	Design 2-5P
	230	180	180	177	2	2	1 1 4 0	2 270	32FC23180A	1-2	170	220	213	2	2	24.1	0
	240	120	120	183	2.1	2.1	663	1 140	32FC24120W	1-3	172	228	219	2	2	18.5	
	240	170	170	183	2.1	2.1	1 180	2 220	32FC24170	1-2	172	228	223	2	2	26.8	
170	230	120	120	187	2	2	782	1 680	34FC23120	1-2	180	220	215	2	2	14.4	
	240	156	156	190	2	2	972	2 050	34FC24156A	1-2	180	230	222	2	2	22.4	
	240	156	156	189	2	2	1 060	2 100	34FC24156B	1-2	180	230	225	2	2	21.8	
	240	190	190	187	1.5	1.5	1 260	2 620	34FC24190	1-2	179	231	223	1.5	1.5	26.9	
	250	168	168	192	2.1	2.1	1 170	2 230	34FC25168	1-2	182	238	232	2	2	27.6	
	250	170	170	192	2.1	2.1	1 170	2 230	34FC25170	1-2	182	238	232	2	2	27.8	Design 3-1
	260	150	150	195	2.1	2.1	1 100	2 000	34FC26150	1-2	182	248	237	2	2	28.8	
178	258.75	150	150	199	1.5	1.5	1 090	2 070	36FC26150	1-2	187	250	239	1.5	1.5	25.8	
180	250	156	156	200	2	2	1 020	2 130	36FC25156A	1-2	190	240	234	2	2	23.3	
	260	168	168	202	2.1	2.1	1 150	2 390	313812W	1-4	192	248	238	2	2	29.7	
	260	168	168	202	2.1	2.1	1 230	2 420	36FC26168	1-2	192	248	242	2	2	29.3	
	265	180	180	203	2	2	1 300	2 600	36FC27180	1-2	190	255	243	2	2	33.6	
190	260	168	168	212	2.1	2.1	1 1 4 0	2 600	38FC26168-1	1-2	202	248	244	2	2	26.5	Design 3-2P
	270	170	170	212	2	2	1 1 4 0	2 310	38FC27170	1-2	200	260	250	2	2	30.8	
	270	170	170	213	2	2	1 1 4 0	2 310	38FC27170A	1-2	200	260	251	2	2	31.0	
	270	200	200	212	2	2	1 460	3 080	314199	1-2	200	260	252	2	2	36.1	
	280	200	200	214	2.1	2.1	1 550	3 100	38FC28200	1-2	202	268	258	2	2	42	
	290	190	190	215	2.1	2.1	1 550	2 860	38FC29190	1-2	202	278	265	2	2	44.9	$\phi D_{\rm a}$
[Notes]					nings	<hr/>		Outer ring with	rib Outer ring with loose rib			ing chamfer				outer ring	
	with P without P					One inne		1-1, 1-2, 1-3, 1				n r. rb indic ring chamfe			fer dimer	nsion corre-	
	without 1					Two inne	r rings 2-	1P, 2-2, 2-2P, 2-	3, 2-4 2-5P, 2-6P	50010							

3-1, 3-1P, 3-2P

Extended inner ring

d 195 ~ 230 mm

Koyo

	(Refer.)		ions	ng dimens (mm)	Mountir					Basic loa			ns	dimensio mm)		I	
	Mass (kg)	$r_{ m b}{}^{2)}$ max.	$r_{ m a}{}^{2)}$ max.	D _a min.	I max.	$d_{ m a}$ min.	Design ¹⁾	Bearing No.	C_{0r}	$C_{\rm r}$	r_1 min.	r min.	$F_{ m w}$	C	В	D	d
	57.9	2	2	274	288	207	1-2	39FC30226	3 690	1 960	2.1	2.1	220	226	226	300	195
		-															
Desigr	28.0	2	2	254	260	212	1-2	314553	2 780	1 190	2.1	2	222	170	170	270	200
0	28.0	2	2	262	268	212	1-3	40FC28152BW	2 150	1 100	2.1	2.1	222	152	152	280	
	31.7	2	2	262	268	212	1-2	40FC28170	2 620	1 280	2.1	2.1	222	170	170	280	
	35.0	2	2	262	268	212	1-2	40FC28188	2 810	1 350	2.1	2.1	222	188	188	280	
	36.0	2.5	2.5	263	266	214	1-2	40FC28190A	3 100	1 460	3	3	223	190	190	280	
	37.7	2	2	262	270	210	1-2	313893-1	3 090	1 450	2	2	222	200	200	280	
	38.7	2	2	260	268	212	1-2	40FC28200	3 330	1 450	2.1	2.1	224	200	200	280	
	42.0	2	2	268	278	212	1-2	313811	3 030	1 460	2.1	2.1	226	192	192	290	
	44.6	2	2	282	298	212	1-1	40FC31160	2 240	1 260	2.1	2.1	232	160	160	310	
Desig	56.6	2	2	283	298	212	1-2	40FC31206	3 240	1 790	2.1	2.1	227	206	206	310	
	39.2	2	2	277	289	216	1-2	41FC30170	2 780	1 470	2	2	229	170	170	299.97	206
	38.1	2	2	274	278	222	1-2	42FC29192	3 270	1 460	2.1	2.1	236	192	192	290	210
	47.3	2	2	278	288	222	1-2	42FC30210	3 490	1 660	2.1	2.1	234	210	210	300	
	30.7	2	2	280	288	232	1-3	44FC30150W	2 500	1 210	2.1	2.1	240	150	150	300	220
	45.5	2	2	289	298	232	1-2	313837-1	3 270	1 520	2.1	2.1	247	192	192	310	
	44.9	2	2	291	300	230	1-2	313837A	3 420	1 630	2	2	246	192	192	310	
	43.9	2	2.5	289	296	232	1-3	44FC31192W	2 980	1 450	2.1	3	245	192	192	310	
Desigr	53.5	2	2	288	298	232	1-2	44FC31225A	4 160	1 880	2.1	2.1	244	225	225	310	
	55.4	2	2	296	308	232	1-2	44FC32210	3 490	1 760	2.1	2.1	246	210	210	320	
	56.7	2	2	296	308	232	1-4	44FC32210-1	3 740	1 810	2.1	2.1	248	210	210	320	
1 ⊨	59.0	2.5	2.5	310	326	234	1-4	44FC34180A	2 750	1 500	3	3	256	180	180	340	
D_{a}	57.5 d	2	2	308	318	242	1-2	313824A	3 980	1 880	2.1	2.1	260	206	206	330	230
	81.2	2.5	2.5	313	326	244	1-2	46FC34260	4 900	2 310	3	3	261	260	260	340	

[Notes] 1) Design numbers indicate the following meanings with P pin type cages without P machined cages

	Outer ring with rib	Outer ring with loose rib
One inner ring	1-1, 1-2, 1-3, 1-4	1-6P
Two inner rings	2-1P, 2-2, 2-2P, 2-3, 2-4	2-5P, 2-6P
Extended inner ring		3-1, 3-1P, 3-2P

2) $r_{\rm a}$ indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. rb indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

Ü P

d 237 ~ (280) mm

╞╌╌╬<u></u>──╬

Design 2-6P

Design 3-1P

 ϕd_{a}

Koyo

	(Refer.) Mass			ng dimens (mm)			Design ¹⁾	Bearing No.		Basic loa (kl			ns	dimensio nm)	-	I	
	(kg)	$r_{ m b}{}^{2)}$ max.	$r_{ m a}{}^{2)}$ max.	D _a min.	1 max.	$d_{ m a}$ min.	Design	bouring ito.	$C_{0\mathrm{r}}$	$C_{ m r}$	r_1 min.	r min.	$F_{ m w}$	С	В	D	d
	58.0	2	2	314	329	247	1-2	47FC34200	3 780	1 840	2	2	264	200	200	339.67	237
Design 2	55.5	2.5	2.5	310	316	254	1-4	312943/1YD	4 250	1 780	3	3	270	220	220	330	240
Design 2	54.3	2	2	308	318	252	1-2	48FC33220	4 120	1 830	2.1	2.1	264	220	220	330	
	55.5	2.5	2.5	310	316	254	1-4	48FC33220BW	4 070	1 770	3	3	268	220	220	330	
	63.7	2	2	309	318	252	1-3	48FC33250W	4 910	2 160	2.1	2.1	263	250	250	330	
	56.3	2.5	2.5	318	326	254	1-2	48FC34200	3 780	1 880	3	3	266	200	200	340	
	63.4	2.5	2.5	318	326	254	1-2	48FC34220	4 240	2 000	3	3	268	220	220	340	
	64.6	2.5	2.5	326	336	264	1-2	50FC35220	4 200	1 930	3	3	278	220	220	350	250
	75.0	2	2	332	343	272	2-2	52FC35260	5 440	2 290	2.1	2.1	286	260	260	355	260
	59.8	2	2	335	348	272	1-3	52FC36192W	3 740	1 750	2.1	2.1	287	192	192	360	
Design	62.0	2	2	335	348	272	1-2	52FC36200	4 110	1 880	2.1	2.1	287	200	200	360	
	69.7	2	2	340	348	272	1-4	52FC36230CW	4 900	2 140	2.1	2.1	292.5	230	230	360	
	72.6	2	2	336	348	272	1-2	52FC36230D	4 790	2 020	2.1	2.1	292	230	230	360	
	80.0	2	2	335	348	272	2-2	52FC36260	5 320	2 300	2.1	2.1	287	260	260	360	
+	89.9	2	2	344	356	272	1-4	52FC37268W	5 990	2 740	2.1	2.1	288	268	268	368	
	76.0	2.5	2.5	342	356	274	1-2	313823	4 330	2 000	3	3	292	220	220	370	
	75.0	2.5	2.5	346	356	274	1-2	313823A	4 480	2 180	3	3	290	220	220	370	
	88.5	2	2	346	358	272	1-2	52FC37260	5 740	2 640	2.1	2.1	290	260	260	370	
Design 3	76.3	1.5	1.5	346	361	274	1-2	53FC37234A	4 910	2 290	1.5	1.5	292	234	234	370	265
	78.5	1.5	1.5	348	361	274	2-2	53FC37234B	5 290	2 270	1.5	1.5	300	234	234	370	
	80.0	2	2	354	368	282	1-2	54FC38230	4 910	2 330	2.1	2.1	298	230	230	380	270
	55.0	2	2	356	368	292	1-3	56FC38170W	3 590	1 710	2.1	2.1	306	170	170	380	280
$\phi D_{\rm a}$	81.8	2.5	2.5	362	376	294	1-2	313822	4 640	2 070	3	3	312	220	220	390	
	79.7	2.5	2.5	362	376	294	1-2	313822A	4 670	2 180	3	3	308	220	220	390	

[Notes] 1) Design numbers indicate the following meanings with P pin type cages without P machined cages

	Outer ring with rib	Outer ring with loose rib
One inner ring	1-1, 1-2, 1-3, 1-4	1-6P
Two inner rings	2-1P, 2-2, 2-2P, 2-3, 2-4	2-5P, 2-6P
Extended inner ring		3-1, 3-1P, 3-2P

 r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r₁.

without P machined cages

d (280) ~ (320) mm

╞╌╌╬<u></u>──╬

Design 2-6P

Design 3-1P

 ϕd_{a}

Koyo

			/ dimensio mm)	ons				ad ratings	Bearing No.	Design ¹⁾			n g dimens i (mm)			(Refer.) Mass	
d	D	В	С	$F_{ m w}$	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No.	Design	$d_{ m a}$ min.	L max.) _a min.	$r_{ m a}{}^{2)}$ max.	$r_{ m b}{}^{2)}$ max.	(kg)	
280	390	220	220	306	3	2.1	2 520	5 350	313822C	1-2	292	376	364	2.5	2	79.7	
	390	220	220	312	3	3	2 320	5 100	313822D	1-2	294	376	366	2.5	2.5	80.1	
	390	240	240	312	3	3	2 460	5 620	56FC39240	1-2	294	376	364	2.5	2.5	88.1	Design 2-5P
	390	275	275	309	2.1	2.1	2 680	6 110	56FC39275B	1-2	292	378	363	2	2	100	ra Mar
	390 410	275 300	275 300	308 314	3 3	2.1 3	3 040 3 730	6 850 8 400	56FC39275J 56FC41300	2-4 2-6P	292 294	376 396	366 378	2.5 2.5	2 2.5	102 137	لصرهم
	410	300	300	314	3	3	3730	0 400	50FC41500	2-0F	294	390	370	2.0	2.5	137	
290	390	234	234	320	3	3	2 300	5 500	58FC39234	1-2	304	376	368	2.5	2.5	80.0	
	400	180	180	320	3	3	1 880	4 010	58FC40180W	1-2	304	386	372	2.5	2.5	68.3	
	410	240	240	320	3	3	2 610	5 540	58FC41240	1-2	304	396	380	2.5	2.5	99.0	
	420	300	300	327	3	3	3 100	6 960	58FC42300	1-2	304	406	387	2.5	2.5	138	
300	400	300	300	328	3	3	2 920	7 310	60FC40300A	1-2	314	386	378	2.5	2.5	103	Design 3-1
	420	218	218	332	3	3	2 350	5 010	60FC42218	1-1	314	406	390	2.5	2.5	93.0	
	420	240	240	332	3	3	2 660	5 750	60FC42240	1-1	314	406	392	2.5	2.5	102	
	420	300	300	332	3	3	3 370	7 840	4CR300	3-2P	314	406	392	2.5	2.5	125	
	420	300	300	331	1.5	1.5	3 420	7 750	60FC42300DW	2-4	309	411	395	1.5	1.5	127	
	420	300	300	332	2	2	3 750	8 690	60FC42300L-2	2-6P	310	410	395	2	2	129	
	420	300	300	332	3	3	3 250	7 270	60FC42300W	2-3	314	406	394	2.5	2.5	127	
310	420	300	300	338	3	3	3 090	7 370	62FC42300	1-2	324	406	394	2.5	2.5	119	
	430	240	240	344.5	3	3	2 640	5 770	62FC43240	1-2	324	416	404	2.5	2.5	105	Design 3-2P
	440	240	240	341	3	3	2 820	5 730	62FC44240	1-2	324	426	409	2.5	2.5	113	Design 5-2F
320	440	230	230	351	3	3	2 530	5 490	64FC44230/240	1-2	334	426	411	2.5	2.5	103	L.
	450	240	240	358	3	3	2 700	5 740	4CR320	1-2	334	436	422	2.5	2.5	119	
	450	240	240	355	3	3	2 700	5 730	64FC45240	1-2	334	436	419	2.5	2.5	117	
	450	240	240	358	3	3	2 770	5 930	64FC45240CW	1-4	334	436	422	2.5	2.5	118	φD _a
	460	340	340	360	3	3	3 860	8 730	64FC46340A	1-4	334	446	428	2.5	2.5	187	
	Design num				ings			Outer ring with	rib Outer ring with loose rib			ing chamfe on $r. r_{\rm b}$ indic					
	with P without P					One inne	er ring	1-1, 1-2, 1-3, 1	-4 1-6P			ring chamf			ner unner	ision corre-	

1-1, 1-2, 1-3, 1-4 1-6P 2-1P, 2-2, 2-2P, 2-3, 2-4 2-5P, 2-6P

3-1, 3-1P, 3-2P

Two inner rings

C 93

Extended inner ring

d (320) ~ 370 mm

Koyo

																	p	<u>Y</u>	
	E		y dimensio mm)	ons				ad ratings kN)	Bearing No.	Design ¹⁾			g dimens (mm)			(Refer.) Mass			
d	D	В	С	$F_{ m w}$	r min.	$r_1^{\ 3)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$		Design	$d_{ m a}$ min.	D max.) _a min.	$r_{ m a}{}^{2)}$ max.	$r_{ m b}{}^{2)}$ max.	(kg)			
320	480	290	290	361	4	4	4 080	8 450 11 000	64FC48290	2-6P	338	462	441	3	3	189			
	480	350	350	364	2.1	2.1	5 010	11 000	314274A	2-6P	332	468	444	2	2	227			
330	440	200	200	358	3	3	2 340	5 220	66FC44200AW	1-3	344	426	414	2.5	2.5	83.4	Des	gn 2-	5P
	440	200	200	360	3	5	2 050	4 670	66FC44200W	1-3	352	426	412	2.5	4	83.0	Ē	ME	<u>e</u> p
	460	340	340	364	2.1	2.1	3 860	9 150	66FC46340	1-2	342	448	428	2	2	172			Þ
	460	340	340	368	4	4	4 060	9 800	66FC46340B	1-2	348	442	432	3	3	176			
	460	380	380	364	2.1	2.1	4 380	10 800	66FC46380W	1-4	342	448	428	2	2	195			
340	445	250	250	367	2.1	4	2 510	6 110	68FC45250W	1-3	358	433	419	2	3	100			
	450	250	250	368	2.1	2.1	2 750	6 480	68FC45250BW	1-3	352	438	424	2	2	106	-	_	
	480	350	350	378	4	SP	4 580	11 100	68FC48350-2	2-4	354	462	446	3	2	211			T
	480	350	350	378	3	SP	4 780	11 500	68FC48350D	3-2P	354	466	448	2.5	2	201		sign 3	
	480	350	350	376	4	4	4 840	11 400	68FC48350L	3-2P	358	462	448	3	3	201	مہمیں	- 	᠃᠆᠆᠆
	480	385	350	378	2.1	SP	4 780	11 500	68FC48350N	2-6P	358	468	448	2	3	209			
	490	300	300	380	5	5	3 500	7 690	68FC49300	1-2	362	468	450	4	4	187			
	490	300	300	379	5	5	3 680	7 850	68FC49300A	1-2	362	468	453	4	4	182			
343.052	457.098	254	254	374	3	3	2 640	6 190	69FC46254W	1-4	358	443	430	2.5	2.5	112			
350	500	460	460	388	2	2	6 570	16 500	70FC50460	2-6P	360	490	464	2	2	296			00====0
360	480	290	290	392	3	3	3 470	8 510	72FC48290	1-2	374	466	452	2.5	2.5	145		gn 3-	
	500	250	250	394	3	3	3 510	7 340	72FC50250	2-2	374	486	470	2.5	2.5	145	Des	gii 5-	26
	510	370	370	400	4	4	4 590	11 000	72FC51370	1-2	378	492	470	3	3	241			
	520	380	380	405	2	5	5 800	13 700	72FC52380	2-6P	382	510	485	2	4	270		_[
370	520	380	380	409	5	5	5 320	13 200	74FC52380	2-6P	392	498	481	4	4	257			
	520	400	400	413	5	5	4 740	11 900	74FC52400W	2-4	392	498	481	4	4	268	$\phi D_{\rm a}$ —		
	540	400	400	415	4	4	5 190	11 500	74FC54400A	 1-2	388	522	499	3	3	311			
[Notes] 1) D	Design numbo vith P				nings	<u> </u>		Outer ring with	rib Outer ring with loose rib			sing chamfei on <i>r. r</i> ь indio							

╞╍╓╧╗╌╔

Design 3-1P

with P pin type cages without P machined cages One inner ring 1-1, 1-2, 1-3, 1-4 1-6P Two inner rings 2-1P, 2-2, 2-2P, 2-3, 2-4 2-5P, 2-6P Extended inner ring 3-1. 3-1P. 3-2P chamfer dimension r. rb indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 .

3) SP indicates the specially chamfered form.

d 375 ~ (420) mm

Design 2-6P

Design 3-1P

 $\phi d_{\rm a}$

Koyo

		(Refer.) Mass			g dimensi (mm)			Design ¹⁾	Bearing No.		Basic loa (k)			15	dimension nm)	Boundary ((m		
	_ T	(kg)	$r_{ m b}{}^{2)}$ max.	$r_{ m a}{}^{2)}$ max.	a min.	D max.	$d_{ m a}$ min.	Design	bouring ito.	$C_{0\mathrm{r}}$	$C_{ m r}$	$r_1^{\ 3)}$ min.	r min.	$F_{ m w}$	C	В	D	d
	_	315	3	3	505	527	393	3-2P	75FC55400	14 500	6 310	4	4	417	400	400	545	375
		173	3	3	487	502	398	1-2	76FC52280	8 550	3 720	4	4	417	280	280	520	380
esign 2-5P		181	3	3	486	502	398	1-2	76FC52290	8 840	3 760	4	4	418	290	290	520	
	E	222	2.5	2.5	505	526	394	2-6P	76FC54300	10 100	4 650	3	3	421	300	300	540	
		256	3	3	502	522	398	3-1	76FC54340W	10 300	4 600	4	4	422	340	340	540	
		266	3	3	502	522	398	2-6P	76FC54360	12 900	5 480	4	4	422	360	360	540	
	+	287	3	3	504	522	398	2-6P	76FC54380	14 300	6 010	4	4	422	380	400	540	
		298	3	3	502	522	398	2-6P	76FC54400BW	14 600	6 040	4	4	422	400	400	540	
		298	3	3	502	522	398	3-2P	76FC54400DW	14 600	6 040	4	4	422	400	400	540	
		296	4	4	510	528	410	2-3	78FC55400AW	12 400	5 130	SP	5	434	400	400	550	390
esign 3-1	_	133	3	3	492	502	418	1-3	80FC52250W	7 100	2 920	4	4	432	250	250	520	00
	F	277	4	4	521	538	422	2-6P	80FC56360	13 400	5 570	5	5	441	360	360	560	100
	Ē	310	4	4	525	538	422	3-2P	4CR400	15 800	6 330	5	5	445	410	410	560	
		315	4	2	525	550	422	2-6P	80FC56410	16 300	6 470	5	2	445	410	410	560	
	+	388	4	4	552	578	422	2-6P	80FC60380	14 300	6 610	5	5	450	380	380	600	
	_	307	4	4	556	587	429	1-4	81FC6130W	8 750	4 380	5	5	460	304.8	304.8	609.6	06.4
		256	4	4	516	524	432	2-2	82FC55400	13 000	5 010	5	5	448	400	400	546	10
esign 3-2P		432	4	4	560	578	432	2-6P	 82FC60440	18 800	8 070	5	5	460	440	440	600	
		385	4	4	560	578	441	2-6P	84FC60410A	15 700	6 630	5	5	470	410	410	600	18.5
	1	304	3	3	552	574	437	1-6P	84FC59350	12 900	5 690	4	4	462	350	350	592	19
		189	3	3	527	542	438	1-1	84FC56280	9 410	3 930	4	4	457	280	280	560	20
+	$\phi D_{\rm a}$	270	3	3	526	542	438	2-4	84FC56400	12 700	4 870	4	4	458	400	400	560	

with P pin type cages without P machined cages

	Outer ring with rib	Outer ring with loose rib
One inner ring	1-1, 1-2, 1-3, 1-4	1-6P
Two inner rings	2-1P, 2-2, 2-2P, 2-3, 2-4	2-5P, 2-6P
Extended inner ring		3-1, 3-1P, 3-2P

 r_a indicates housing chamfer dimension corresponding to outer ring chamfer dimension r. r_b indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r₁.

3) SP indicates the specially chamfered form.

d (420) ~ (480) mm

╞╌╌╬<u></u>──╬

Design 2-6P

Design 3-1P

 ϕd_{a}

Koyo

	(Refer.) Mass			ng dimens (mm)			Design ¹⁾	Bearing No.	ad ratings				IS		Boundary o (m		
	(kg)	r _b ²⁾ max.	$r_{ m a}{}^{2)}$ max.	D _a min.	I max.	$d_{ m a}$ min.	Design	Dearing No.	$C_{0\mathrm{r}}$	$C_{ m r}$	$r_1^{\ 3)}$ min.	r min.	$F_{ m w}$	С	В	D	d
	249 420	3 4	3 4	543 560	562 578	438 442	2-4 3-1P	84FC58320 4CR420A	11 000 17 700	4 760 7 240	4 5	4 5	463 470	320 440	320 440	580 600	420
Design 2-5	345 349	4 3	4 3	552 552	569 573	452 448	2-2P 2-6P	86FC59420 86FC59420-2	16 800 17 400	6 550 6 520	5 4	5 4	472 476	420 420	420 420	591 591	430
	340 405	3 4	3 4	552 559	573 578	448 452	1-3 2-6P	86FC59420A-1 86FC60450	14 700 19 300	5 910 7 460	4 5	4 5	476 475	420 450	420 450	591 600	
	207 440	3	3	554 577	572 602	458 458	1-3 3-1P	88FC59270W 4CR440	8 460 20 000	3 620 7 900	4	4	482 487	270 450	270 450	590 620	440
Design 3-	440 470 740	3 4 5	3 4 5	577 592 652	602 618 692	458 462 468	2-6P 2-6P 1-6P	88FC62450AW 88FC64420 88FC72452	20 000 18 400 16 600	7 900 7 820 8 570	4 5 6	4 5 6	487 492 512	450 420 452	450 420 452	620 640 720	
	400	3	3	608	642	463	1-6P	89FC66324	12 600	6 040	4	4	500	323.85	323.85	660.4	444.5
	385	3	3	588	617	463	3-1P	4CR445	14 600	6 240	4	4	496	375	375	635	445
	433	3	3	590	612	468	2-2	90FC63450A	16 600	6 820	4	4	500	450	450	630	450
	287 350 350	3 3 3	3 3 3	567 584 582	582 602 602	478 478 478	2-4 3-1P 1-6P	92FC60400 4CR460C 92FC62400BW	14 300 18 200 17 000	5 300 6 850 6 510	SP 4 4	4 4 4	497 504 502	400 400 400	400 400 400	600 620 620	460
Design 3-2	340	3	3	583	602	478	1-6P	92FC62400D 92FC65470W	14 800	5 900	4	4	502	400	400	620	
	494 590	5 3	5 3	609 612	622 642	488 478	3-1P	4CR460	22 200 23 300	8 990 9 310	6 4	6 4	509 512	470 500	470 500	650 660	
	573 510	4 3	4 3	614 624	638 662	482 478	2-6P 3-1P	92FC66500 4CR460D	23 400 16 600	9 540 7 910	5 4	5 4	510 504	500 400	500 400	660 680	
Da	440	4	4	615	628	502	2-6P	96FC65450B	22 400	8 480	5	5	525	450	450	650	480

with P pin type cages without P machined cages One inner ring 1-1, 1-2, 1-3, 1-4 1-6P Two inner rings 2-1P, 2-2, 2-2P, 2-3, 2-4 2-5P. 2-6P Extended inner ring 3-1, 3-1P, 3-2P

chamfer dimension r. rh indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r_1 . 3) SP indicates the specially chamfered form.

d (480) ~500 mm

Koyo

			/ dimensio mm)	ns				ad ratings	Bearing No.	Design ¹⁾		Mountir	ng dimens (mm)			(Refer Mas
d	D	В	С	$F_{ m w}$	r ³⁾ min.	$r_1^{\ 3)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	bearing No.	Design	$d_{ m a}$ min.	L max.) _a min.	$r_{\mathrm{a}}{}^{2)}$ max.	$r_{ m b}{}^{2)}$ max.	(kg)
480	650	460	460	526	5	5	7 730	20 800	96FC65460	2-6P	502	628	610	4	4	443
	680	460	460	532	5	5	8 620	21 300	96FC68460	2-6P	502	658	632	4	4	545
	680	500	500	534	5	5	8 620	22 000	4CR480	3-1P	502	658	630	4	4	580
	680	500	500	534	5	5	8 620	22 000	4CR480B	3-2P	502	658	630	4	4	580
	680	500	500	532	5	5	9 550	24 300	96FC68500A	2-6P	502	658	632	4	4	595
495	615	360	360	530	SP	SP	4 030	12 000	99FC62360	2-4	511	597	586	3	3	235
500	670	450	450	540	5	SP	8 460	22 500	100FC67450A-3	2-6P	522	648	630	4	4	451
	680	420	405	550	5	5	6 7 1 0	17 600	100FC68405	2-6P	522	658	634	4	4	442
	680	450	450	542.5	4	4	8 980	23 100	100FC68450	2-6P	518	662	639	3	3	495
	690	510	510	550	5	5	9 350	24 600	100FC69510A	3-2P	522	668	646	4	4	562
	710	480	480	558	6	6	9 770	24 800	100FC71480	2-6P	528	682	662	5	5	631
	720	400	400	558	5	6	8 320	18 900	100FC72400	1-6P	528	698	672	4	5	549
	720	530	530	560	6	6	10 800	26 500	100FC72530	2-6P	528	692	674	5	5	725
	720	530	530	568	5	4	11 000	28 900	100FC72530C	2-6P	518	698	672	4	3	742
	720	530	530	560	6	6	10 800	26 500	100FC72530W	3-2P	528	692	674	5	5	725

52] with P pin type cages without P machined cages

chamfer dimension r. $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to inner ring chamfer dimension r₁.
3) SP indicates the specially chamfered form.

d 65 ~ 133.350 mm

Koyo

	Bo	oundary di (mm				Basic loa			Desire		Мо	0	dimensio m)	ons		Con- stant	Axia	l load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. ¹⁾	Design	$d_{ m a}$ max.	L max.) _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
65	100	98	98	1.5	0.3	309	550	47T131010	1	73	91.5	87	3.6	1.5	0.3	0.46	1.47	2.19	1.44	2.82
80	115	88	88	1.5	1.5	265	543	47T1611	1	91	106.5	102	3.4	1.5	1.5	0.33	2.03	3.02	1.98	2.99
95	130	100	100	1.5	1.5	347	729	47T191310	1	104	121.5	117	3.5	1.5	1.5	0.33	2.03	3.02	1.98	3.83
100	140	104	104	2	2.5	338	661	37220	1	112	130	125	3.8	2	2	0.28	2.37	3.53	2.32	4.6
	140	104	104	2	1	407	852	37220A	1	110	130	125	4.1	2	1	0.40	1.68	2.50	1.64	4.8
	170	155	155	2	2.5	787	1 470	47T2017	1	119	160	149	5.7	2	2	0.35	1.95	2.90	1.91	14.7
105	160	150	150	1.5	1	747	1 420	47T211615	1	118	151.5	146	5.9	1.5	1	0.33	2.03	3.02	1.98	10.6
110	155	114	114	2	2.5	475	955	37222	1	121	145	140	4.8	2	2	0.33	2.03	3.02	1.98	6.45
	160	115	115	1.5	1	548	1 030	47T221612	1	121	151.5	146	5.2	1.5	1	0.43	1.57	2.34	1.53	7.63
	180	154	154	2	2.5	882	1 530	47T221815	1	127	170	162	5.9	2	2	0.39	1.74	2.59	1.70	15.4
	180	170	170	1	1	989	1 770	47T221817	1	126	174.5	162	6.5	1	1	0.33	2.03	3.02	1.98	17
115	155	115	115	1.5	0.6	437	1 020	47T231612A	1	126	146.5	142	3.4	1.5	0.6	0.40	1.68	2.50	1.64	6.12
	160	120	120	1.5	0.6	560	1 160	47T231612	1	124	151.5	147	5.7	1.5	0.6	0.35	1.95	2.90	1.91	7.2
120	170	124	124	2	2.5	472	943	37224	1	135	160	155	4.1	2	2	0.28	2.37	3.53	2.32	8.56
	170	130	130	1.5	2	591	1 290	47T241713	1	133	161.5	155	4.4	1.5	2	0.40	1.68	2.50	1.64	9.38
	200	132	132	2	2.5	706	1 200	47324	1	143	190	178	5.7	2	2	0.35	1.95	2.90	1.91	16.5
	210	174	174	2.5	3	1 110	1 770	47T242117	1	143	198	188	4	2	2.5	0.33	2.03	3.02	1.98	24.5
120.650	161.925	106.365	106.365	1.6	1.6	322	771	L624549D/514/514D	1	130	153	147	5.1	1.6	1.6	0.43	1.56	2.32	1.52	6.24
	166.688	152.414	152.400	3.3	1.6	637	1 460	LM124449D/410/410D	1	132	155	150	2.3	3.3	1.6	0.29	2.30	3.42	2.25	9.84
	174.625	139.703	141.288	1.6	0.8	712	1 450	M224749D/710/710D	1	133	166	159	4.9	1.6	0.8	0.33	2.03	3.02	1.98	11.1
127.000	182.563	158.750	158.750	3.2	1.6	778	1 720	48290D/20/20D	1	140	171	166	3.7	3.2	1.6	0.31	2.21	3.29	2.16	13.6
130	184	134	134	2	2.5	645	1 330	37226	1	143	174	169	4.3	2	2	0.33	2.03	3.02	1.98	11
133.350	196.850	193.675	193.675	3.2	1.6	1 070	2 240	67390D/22/22D	1	148	185	180	5.6	3.2	1.6	0.34	1.96	2.92	1.92	19.8

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d 135 ~ 170 mm

Koyo

	Bo	undary di (mm				Basic loa					Mo	unting d		ons		Con- stant	Axia	l load fa	ctors	(Refer.) Mass
d	D	Т	W	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. ¹⁾	Design	$d_{ m a}$ max.	L max.	a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
135	180 195	160 160	160 160	1.5 1.5	1 0.6	559 938	1 290 1 930	47T271816 47T272016	1 1	146 147	171.5 186.5	166 179	1.4 3.9	1.5 1.5	1 0.6	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	10.7 15.4
136.525	190.500 190.500	161.925 161.925	161.925 161.925	3.2 3.2	1.6 1.6	809 809	1 890 1 890	47T271916 48393D/20/20D	2 1	150 150	179 179	174 174	4.8 4.8	3.2 3.2	1.6 1.6	0.32 0.32	2.10 2.10	3.13 3.13	2.06 2.06	14.3 14.3
139.700	200.025	160.340	157.166	3.3	0.8	844	1 960	48680D/20/20D	1	157	187	182	4	3.3	0.8	0.34	2.01	2.99	1.96	16.6
140	198 210 225	144 114 145	144 114 145	2 2 2.5	2.5 2.5 3	770 623 973	1 650 1 130 1 610	37228 47228 47328	1 1 1	157 160 161	188 200 213	183 190 203	5.3 6 6.5	2 2 2	2 2 2.5	0.28 0.27 0.40	2.43 2.47 1.68	3.61 3.67 2.50	2.37 2.41 1.64	13.6 13.7 21.2
145	195	130	130	1.5	0.6	641	1 550	47T292013	1	158	186.5	177	5.1	1.5	0.6	0.40	1.68	2.50	1.64	11.1
150	210 212	190 155	190 155	2 2.5	0.6 3	993 774	2 270 1 640	47T302119 37230	1 1	163 168	200 200	190 190	5 6	2 2	0.6 2.5	0.39 0.28	1.74 2.37	2.59 3.53	1.70 2.32	20.2 16.7
152.400	222.250	174.625	174.625	1.6	1.6	1 080	2 390	M231649D/610/610D	1	168	213	201	6	1.6	1.6	0.33	2.03	3.02	1.98	22.8
160	226 250 265	165 145 173	165 145 173	2.5 2.5 2.5	3 3 1	873 1 090 1 320	1 870 1 870 2 400	37232 47T322515 47T322717	1 1 1	178 182 193	214 238 253	204 226 241	6 6.5 7	2 2 2	2.5 2.5 1	0.28 0.33 0.35	2.37 2.03 1.95	3.53 3.02 2.90	2.32 1.98 1.91	20.1 25.4 37.6
165.100	225.425	168.275	165.100	3.2	0.8	868	2 140	46791D/20/21D	1	180	213	203	4.5	3.2	0.8	0.38	1.77	2.63	1.73	19.7
168.275	247.650	192.088	192.088	3.2	1.6	1 190	2 800	67782D/20/21D	1	189	236	226	5	3.2	1.6	0.44	1.54	2.29	1.50	31.7
170	230 240 240 260 280 280	175 175 175 160 181 185	175 175 175 160 181 185	2 2.5 2.5 2.5 2.5 2.5 2.5	1 3 1.5 3 3 3	1 030 1 020 1 120 1 110 1 330 1 330	2 370 2 310 2 340 1 900 2 420 2 420	47T342318 37234A 47T342418A 47T342616 47334/181 47334	1 1 2 1 1 1	183 189 184 194 202 202	220 228 228 248 268 268	210 218 218 238 250 250	6 5 7.5 6 6 6	2 2 2 2 2 2 2	1 2.5 1.5 2.5 2.5 2.5	0.40 0.33 0.40 0.35 0.33 0.33	1.68 2.03 1.68 1.95 2.03 2.03	2.50 3.02 2.50 2.90 3.02 3.02	1.64 1.98 1.64 1.91 1.98 1.98	19.9 24.2 24.7 28.5 44 44.8

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d 177.800 ~ 205 mm

Koyo

	Bo	oundary di (mm				Basic loa		Bearing No. ¹⁾	Design		Мо	ounting d		ons		Con- stant	Axia	load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No/	Design	d _a max.	L max.) _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
177.800	247.650 279.400 285.750	192.088 234.948 222.245	192.088 234.950 222.500	3.2 3.2 3.2	1.6 1.6 1.6	1 190 1 660 1 520	2 800 3 290 2 860	67791D/20/21D 82681D/20/20D EE91700D/112/113XD	1 1 1	189 197 201	235 267 273	225 251 251	5 6.5 3.5	3.2 3.2 3.2	1.6 1.6 1.6	0.44 0.52 0.43	1.54 1.29 1.57	2.29 1.92 2.34	1.50 1.26 1.53	28.4 52.5 53.7
180	250 254 260	185 185 160	185 185 160	2.5 2.5 2.5	3 3 1	1 140 1 140 1 090	2 550 2 550 2 090	47T362519 37236 47T362616	1 1 1	198 198 198	238 242 248	228 232 238	6 6 5	2 2 2	2.5 2.5 1	0.33 0.33 0.37	2.03 2.03 1.80	3.02 3.02 2.69	1.98 1.98 1.76	26.9 29.1 26.4
	260 280 300 300	200 181 202 280	200 181 202 280	2 2.5 3 3	2.5 3 4 4	1 390 1 510 1 580 2 400	2 950 2 830 2 750 4 430	47T362620 47T362818A 47336 47T363028	1 1 1 1	200 204 211 211	250 268 286 286	240 253 267 270	4.5 8 5.5 6	2 2 2.5 2.5	2 2.5 3 3	0.31 0.33 0.35 0.33	2.15 2.03 1.95 2.03	3.20 3.02 2.90 3.02	2.10 1.98 1.91 1.98	33.6 40.8 54.9 78.4
187	270	210	210	2.5	1	1 660	3 570	47T372721B	1	205	258	248	8	2	1	0.33	2.03	3.02	1.98	39.1
187.325	269.875	211.138	211.138	3.2	1.6	1 410	3 220	M238849D/810/810D	1	206	257	245	5	3.2	1.6	0.33	2.03	3.02	1.98	39.5
190	268 270	196 160	196 160	2.5 2.5	3 1	1 210 1 170	2 760 2 370	37238 47T382716	1 1	210 208	256 258	246 248	6 7	2 2	2.5 1	0.33 0.40	2.03 1.68	3.02 2.50	1.98 1.64	33.4 28.3
190.000	270.000	190.000	190.000	3.2	1.6	1 160	2 810	4TR3827	1	208	257	244	6	3.2	1.6	0.48	1.42	2.11	1.38	34.7
190.500	266.700	188.913	187.325	3.2	1.6	1 160	2 810	67885D/67820/67820D	1	208.5	255.3	245.1	6	3.2	1.6	0.48	1.42	2.11	1.38	32.4
198.438	284.163	225.425	225.425	3.2	1.6	1 740	3 780	M240648D/611/611D	1	215	271	260	5	3.2	1.6	0.33	2.03	3.02	1.98	44.7
200	280 282 340	206 206 234	206 206 234	2.5 2.5 3	1.5 3 4	1 670 1 490 2 340	3 830 3 380 4 150	47T402821 37240 47T403423	1 1 1	216 223 234	268 270 326	258 260 302	6.5 5.5 6	2 2 2.5	1.5 2.5 4	0.39 0.28 0.40	1.71 2.43 1.68	2.54 3.61 2.50	1.67 2.37 1.64	39.7 39.6 86
203.200	317.500 317.500	209.550 266.700	215.900 266.700	3.2 3.2	3.2 1.6	1 510 2 070	2 900 4 540	EE132082D/125/126D 93800D/125/127D	1 1	235 223	304 304	284 278	7 6.5	3.2 3.2	3.2 1.6	0.31 0.52	2.15 1.29	3.21 1.92	2.11 1.26	61 78.8
205	320	205	205	3	4	1 740	3 030	47T413221	1	230	306	292	7.5	2.5	3	0.46	1.46	2.17	1.42	58.9

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d 206.375 ~ 235 mm

Koyo

	Bo	oundary di (mm				Basic loa	nd ratings				M	ounting ((m	dimension m)	ons		Con- stant	Axia	load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. ¹⁾	Design	$d_{ m a}$ max.	max.	D _a min.	Smin.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
206.375	282.575 282.575 282.575	184.150 190.500 210.000	184.150 190.500 210.000	3.2 3.2 3.2	0.8 0.8 0.8	1 200 1 200 1 380	2 830 2 830 3 010	67985D/20/20D 67986D/20/21D 47T412821A	1 1 1	219 222 219	270 270 270	259 259 260	7 7 3.5	3.2 3.2 3.2	0.8 0.8 0.8	0.51 0.51 0.43	1.33 1.33 1.57	1.97 1.97 2.34	1.30 1.30 1.53	33.9 34.8 36.2
215.090	311.150	228.600	228.600	3.2	1.6	1 750	4 040	47T433123	1	233	297	278	7	3.2	1.6	0.40	1.68	2.50	1.64	57.5
215.900	288.925 336.550	177.800 266.700	177.800 266.700	3.2 3.2	0.8 6.4	1 220 2 430	3 120 4 760	LM742749D/714/714D 47T433427	1 1	229 238	276 323	265 304	5.5 6.5	3.2 3.2	0.8 6.4	0.48 0.50	1.40 1.34	2.09 2.00	1.37 1.32	32.8 85.1
216.103	330.200	269.875	263.525	3.2	1.6	2 500	5 120	47T433327	1	237	316	300	7	3.2	1.6	0.46	1.47	2.19	1.44	81.6
220	300 310 320 320	230 226 201 250	230 226 201 250	2.5 3 3 2.5	3 4 3 3	1 750 1 690 1 660 1 930	4 040 3 880 3 760 4 230	47T443023 37244 47T443220 47T443225	1 1 1	231 242 247 244	288 296 306 308	278 285 290 293	6.5 6 5.5 6.5	2 2.5 2.5 2	2.5 3 2.5 2.5	0.40 0.33 0.33 0.35	1.68 2.03 2.03 1.95	2.50 3.02 3.02 2.90	1.64 1.98 1.98 1.91	45.1 52 52.4 64.7
	330 330	260 260	260 260	3 3	1 1	2 350 2 330	5 070 4 860	47T443326A 47T443326B	1 2	243 238	316 316	299 300	9 8	2.5 2.5	1 1	0.40 0.55	1.68 1.24	2.50 1.84	1.64 1.21	78.4 77.5
	340 340 340	190 280 305	190 280 305	3 3 3	4 1 4	1 490 2 720 2 910	2 910 5 580 5 940	47244 47T443428-1 47T443431	1 1 1	260 247 244	326 326 326	308 308 307	6 10 8	2.5 2.5 2.5	3 1 3	0.28 0.33 0.35	2.43 2.03 1.95	3.61 3.02 2.90	2.37 1.98 1.91	62.2 95.1 99.6
220.662	314.325	290.000	290.000	3.2	1.6	2 300	5 050	47T443129A	1	240	300	289	4.5	3.2	1.6	0.33	2.03	3.02	1.98	70
220.663	314.325	239.713	239.713	3.2	1.6	2 100	4 890	M244249D/210/210D	1	241	300	288	5	3.2	1.6	0.33	2.03	3.02	1.98	59
225	320	230	230	2	2.5	1 670	3 730	4TR225A	1	246	310	293	5	2	2	0.37	1.80	2.69	1.76	57
228.600	311.150	200.025	200.025	3.2	1.6	1 660	3 760	LM245149D/110/110D	1	247	297	287	5.5	3.2	1.6	0.33	2.03	3.02	1.98	41.8
230	315	190	190	2	2.5	1 510	3 470	47T463119	1	248	305	290	7.5	2	2	0.37	1.80	2.69	1.76	43
234.950	327.025	196.850	196.850	3.2	1.6	1 600	3 720	8576D/20/20D	1	255	313	299	5.5	3.2	1.6	0.41	1.66	2.47	1.62	50.1
235	325	240	240	2.5	1.5	2 200	5 310	47T473324	1	254	313	301	8.5	2	1.5	0.33	2.03	3.02	1.98	60.5

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d 240 ~ (260) mm

Koyo

	Bo	oundary di				Basic loa	d ratings				M	ounting o	dimensio m)	ons		Con- stant	Axia	l load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	$r_1{}^{1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. 2)	Design	$d_{ m a}$ max.	l max.	D _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}$ $^{3)}$ max.	e	Y_2	Y_3	Y_0	(kg)
240	320 338	250 248	250 248	2 3	1 4	1 880 2 360	4 760 5 360	47T483225B 37248	1	257 259	310 324	299 312	7.5 8.5	2 2.5	1 3	0.33 0.39	2.03 1.74	3.02 2.59	1.98 1.70	54.2 68.4
	338 360	248 194	248 194	3 3	4 4	2 360 1 830	5 360 3 580	37248/DP1 47248	2	259 272	324 346	312 327	8.5 8.5	2.5 2.5	3 3	0.39	1.74 2.12	2.59 3.15	1.70 2.07	68.4 66.5
	360 360	214 308.5	214 308.5	3 3	2.5 2.5	2 170 3 320	4 340 7 400	47T483621 47T483631A	1 1	268 268	346 346	328 329	9 9.5	2.5 2.5	2.5 2.5	0.40 0.26	1.68 2.55	2.50 3.80	1.64 2.50	75.4 112
	365 410	290 270	290 270	2 4	SP 2.5	2 870 3 220	5 930 5 520	47T483729 47T484127A	1	265 281	355 392	333 369	9 8.5	2 3	0.8 2	0.46 0.40	1.47 1.68	2.19 2.50	1.44 1.64	108 144
241.478	349.148 349.148	228.600 228.600	228.600 228.600	3.2 3.2	1.6 1.6	2 190 1 900	4 920 4 100	47T483523A EE127097D/135/136D	1	267 267	335 335	319 319	8.5 5.5	3.2 3.2	1.6 1.6	0.35 0.35	1.91 1.91	2.84 2.84	1.86 1.86	72.9 70.4
244.475	327.025 327.025	193.675 193.675	193.675 193.675	3.2 3.2	1.6 1.6	1 470 1 570	3 500 3 780	47T493319 LM247748D/710/710D	1	259 265	313 313	303 305	5.5 7.5	3.2 3.2	1.6 1.6	0.55	1.24 2.10	1.84 3.13	1.21 2.06	44.4
247.650	381.000 400.050	304.800 253.995	304.800 249.235	4.8 6.4	3.2	2 700 2 600	5 870 5 140	EE126096D/150/151D EE220975D/1575/1576D	1	269 292	364 379	336 359	6 7.5	4.8 6.4	3.2 1.6	0.52	1.31 1.71	1.95 2.54	1.28	129 123
250	350 365	240 270	240 270	2.5 3	1 1.5	2 180 2 650	4 970 6 340	47T503524 47T503627	1	270 277	338 351	324 330	6 8	2 2.5	1 1.5	0.40 0.33	1.68 2.03	2.50 3.02	1.64 1.98	70 96.7
254.000	358.775 358.775 358.775	147.000 269.875 269.875	147.000 269.875 269.875	3.2 3.2 3.2	1.6 1.6 1.6	1 320 2 650 2 630	2 910 6 340 6 030	47T513615 47T513627A 47T513627B	1 2 1	290 277 272	345 345 345	331 330 331	7 8 7.5	3.2 3.2 3.2	1.6 1.6 1.6	0.33 0.33 0.46	2.03 2.03 1.47	3.02 3.02 2.19	1.98 1.98 1.44	46.9 85.8 85.5
	358.775 358.775	269.875 269.875	269.875 269.875	3.2 3.2	1.6 3.2	2 630 2 650	6 030 6 340	47T513627C M249748D/710/710D	2 1	272 277	345 345	331 330	7.5 8	3.2 3.2	1.6 3.2	0.46 0.33	1.47 2.03	2.19 3.02	1.44 1.98	86.1 86
260	360 368 400	272 268 220	272 268 220	3 4 4	1 5 1.5	2 910 2 510 2 390	7 020 6 020 4 520	47T523627A 37252 47T524022	1 1 1	280 286 295	346 350 382	335 338 364	9 6 7.5	2.5 3 3	1 4 1.5	0.33 0.33 0.40	2.03 2.03 1.68	3.02 3.02 2.50	1.98 1.98 1.64	83.6 88.4 98.5
	400 400	255 320	255 320	7.5 4	5 5	2 620 3 270	5 400 7 070	47T524026 47T524032	1 1	296 294	400 382	360 361	9 8.5	6 3	4 4	0.39 0.33	1.72 2.03	2.56 3.02	1.68 1.98	113 145

[Notes]

SP indicates the specially chamfered form.
 While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

3) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d (260) ~ 288.925 mm

Koyo

	Вс	oundary di (mm					id ratings		Deview		M	ounting (n	dimensio m)	ons		Con- stant	Axia	load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. ¹⁾	Design	$d_{ m a}$ max.	max.	D _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
260	440	300	300	4	5	3 470	6 880	47352	1	311	422	392	10	3	4	0.35	1.95	2.90	1.91	188
260.350	422.275	317.500	314.325	3.2	6.4	3 470	6 720	HM252348D/310/310D	1	304	407	384	1	3.2	6.4	0.33	2.03	3.02	1.98	167
266.700	335.600 355.600	228.600 228.600	230.188 230.188	3.2 3.2	1.6	1 850 2 230	5 260 5 690	47T533423 47T533623B	1	281	322 342	312 332	7	3.2	1.6	0.28 0.36	2.43 1.87	3.61 2.79	2.37 1.83	46.4 62.7
	355.600 355.600	228.600	230.188	3.2 3.2	1.6 1.6	1 980	5 690 4 830	471533623B 76589D/20/20D	1	285 285	342 342	332 331	8 7	3.2 3.2	1.6 1.6	0.36	1.87	2.79	1.83	62.7 59.8
									1											
	393.700	269.878	269.878	6.4	1.6	2 990	6 460	47T533927-1	1	294	373	361	8.5	6.4	1.6	0.40	1.68	2.50	1.64	112
269.875	381.000	282.575	282.575	3.2	3.2	2 930	6 690	M252349D/310/310D	1	291	367	350	6	3.2	3.2	0.33	2.03	3.02	1.98	98.4
270	364	260	260	3	1.5	2 370	5 720	47T543626	1	285	350	338	4.5	2.5	1.5	0.42	1.59	2.37	1.56	72.8
	410	222	222	4	5	2 250	4 380	47254	1	308	392	372	6.5	3	4	0.27	2.51	3.74	2.45	100
276.225	393.700	269.878	269.878	6.4	1.6	2 730	5 830	47T553927	1	299	373	363	4.5	6.4	1.6	0.40	1.68	2.50	1.64	101
279.400	393.700	269.875	269.875	6.4	1.6	2 660	5 990	47T563927A	2	305	373	363	9.5	6.4	1.6	0.40	1.68	2.50	1.64	101
	393.700	269.875	269.875	6.4	1.6	2 660	5 990	47T563927B	1	305	373	363	9.5	6.4	1.6	0.40	1.68	2.50	1.64	101
	410.000	310.000	310.000	6.4	1.6	3 120	7 290	47T564131	2	308	389	374	8	6.4	1.6	0.40	1.68	2.50	1.64	140
279.578	380.898	244.475	244.475	3.2	1.6	2 280	5 650	LM654644D/610/610D	1	303	367	356	6.5	3.2	1.6	0.43	1.57	2.34	1.53	80.4
280	380	290	290	2	2	2 810	6 940	47T563829	1	300	370	354	6	2	2	0.33	2.03	3.02	1.98	91.8
	380	290	290	2	1	2 810	6 940	47T563829A	2	300	370	354	6	2	1	0.33	2.03	3.02	1.98	92.1
	395	288	288	4	2	2 880	6 900	37256X	1	303	377	363	8	3	2	0.40	1.68	2.50	1.64	110
	395	288	288	4	2	2 880	6 900	47T564029A	2	303	377	363	8	3	2	0.40	1.68	2.50	1.64	110
	420	225	225	4	5	2 390	4 950	47256	1	322	402	382	8.5	3	4	0.25	2.69	4.00	2.63	104
	460	324	324	5	6	4 300	8 230	47T564632	1-P	321	438	415	10.5	4	5	0.46	1.47	2.19	1.44	214
280.268	379.887	244.475	244.475	3.2	1.6	2 280	5 650	47T563824	1	303	366	355	6.5	3.2	1.6	0.43	1.57	2.34	1.53	80
285.750	380.898	244.475	244.475	3.2	1.6	2 280	5 650	LM654648D/610/610D	1	303	367	356	6.5	3.2	1.6	0.43	1.57	2.34	1.53	75.6
288.925	406.400	298.450	298.450	3.2	3.2	3 450	8 840	M255449D/410/410D	1	316	392	373	9	3.2	3.2	0.34	2.00	2.97	1.95	127

 [Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d 292.100 ~ (320) mm

Koyo

	Bo	oundarv di	monsions			Basic Ios	d ratings				м	ounting	dimonei	one		Con-	Avia	load fa	ctore	
	DU	(mm					N)	D 1 N 2)	. .		IVI		um)	0115		stant	AXId	iuau ia	CLOIS	(Refer.) Mass
d	D	T	W	r min.	$r_1{}^{1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. ²⁾	Design	d _a max.	max.	D _a min.	S min.	r _a max.	$r_{ m b}{}^{3)}$ max.	е	Y_2	Y_3	Y_0	(kg)
292.100	422.275	269.875	269.875	3.2	6.4	3 170	6 830	EE330116D/166/167D	1	321	407	387	7.5	3.2	6.4	0.32	2.11	3.14	2.06	124
300	420 424 430	310 310 300	310 310 300	3 4 3	1 5 4	3 390 3 000 3 320	8 050 6 570 7 630	47T604231 37260 47T604330	1 1 1	325 334 328	406 406 416	388 391 393	8.5 6 10	2.5 3 2.5	1 4 3	0.34 0.28 0.35	2.00 2.37 1.95	2.98 3.53 2.90	1.96 2.32 1.91	132 134 141
	430 460 460	310 248 360	310 248 360	3 4 4	2.5 1.5 5	3 520 3 060 4 300	8 420 6 300 9 550	47T604331 47T604625 47T604636	1 1 1	332 342 339	416 442 442	399 416 416	10 8.5 9	2.5 3 3	2 1.5 4	0.40 0.40 0.33	1.68 1.68 2.03	2.50 2.50 3.02	1.64 1.64 1.98	146 149 220
	470 470 470	270 292 292	270 292 292	4 4 4	5 SP 1.5	3 500 3 980 4 120	6 440 7 870 8 210	47T604727A 47T604729B 47T604729C	1 1-P 1-P	338 341 343	452 452 452	426 428 428	8 8.5 9.5	3 3 3	4 2 1.5	0.40 0.40 0.33	1.68 1.68 2.03	2.50 2.50 3.02	1.64 1.64 1.98	165 193 198
	500	350	350	4	2.5	5 010	9 290	47T605035	1	346	482	451	8	3	2	0.40	1.68	2.50	1.64	270
300.038	422.275	311.150	311.150	3.2	3.2	3 390	8 050	HM256849D/810/810D	1	325	407	388	7	3.2	3.2	0.34	2.00	2.98	1.96	136
304.648	438.048 438.048	279.400 279.400	280.990 280.990	4.8 4.8	3.2 3.2	3 230 3 230	6 980 6 980	47T614428C M757448D/410/410D	2 1	331 331	420 420	403 403	7 7	4.8 4.8	3.2 3.2	0.47 0.47	1.44 1.44	2.15 2.15	1.41 1.41	133 132
304.800	419.100 482.600 495.300	269.875 377.825 349.250	269.875 365.125 342.900	6.4 6.4 6.4	1.6 3.2 3.2	2 840 4 820 4 370	6 950 9 800 9 370	M257149D/110/110D 47T614838A EE724121D/195/196D	1 1-P 1	331 343 355	398 461 474	387 437 438	7 1 7	6.4 6.4 6.4	1.6 3.2 3.2	0.33 0.47 0.40	2.03 1.43 1.68	3.02 2.12 2.50	1.98 1.40 1.64	110 250 267
304.902	412.648	266.7	266.7	3.2	3.2	2 990	7 280	M257248D/210/210D	1	328	398	383	7	3.2	3.2	0.32	2.12	3.15	2.07	101
310	430 460	310 325	310 325	3 4	3 5	3 520 4 200	8 420 9 500	47T624331A 47T6246A	1 1	332 346	416 442	399 421	10 12	2.5 3	2.5 4	0.40 0.32	1.68 2.12	2.50 3.15	1.64 2.07	135 188
317.500	422.275 447.675 447.675	269.875 327.025 327.025	269.875 327.025 327.025	3.2 6.4 6.4	1.6 1.6 1.6	2 930 4 120 4 280	7 450 9 820 10 100	LM258649D/610/610D 47T644533J 47T644533L	1 1-P 1	341 341 344	407 426 426	392 411 411	8.5 7.5 11.5	3.2 6.4 6.4	1.6 1.6 1.6	0.32 0.33 0.33	2.12 2.02 2.03	3.15 3.00 3.02	2.07 1.97 1.98	104 161 161
320	440	335	335	2	2.5	3 590	8 750	47T644434	1	341	430	408	5.5	2	2	0.40	1.68	2.50	1.64	149

[Notes]

SP indicates the specially chamfered form.
 While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

3) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d (320) ~ (355.600) mm

Koyo

	Во	oundary di (mm					nd ratings N)	Deceiver No. 1)	Desim		M	ounting (n	dimensio m)	ons		Con- stant	Axia	load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	r_1 min.	$C_{ m r}$	C_{0r}	Bearing No. ¹⁾	Design	$d_{ m a}$ max.	max.	D _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
320	460 460 480	325 338 254	325 338 254	4 4 4	2.5 5 2.5	4 030 3 500 3 400	9 420 8 590 6 940	47T644633 37264 47T644825	1 1 1-P	349 356 358	442 442 462	424 421 437	10 8.5 9	3 3 3	2.5 4 2	0.42 0.33 0.40	1.62 2.03 1.68	2.42 3.02 2.50	1.59 1.98 1.64	175 183 161
	480 480 500	260 360 380	260 360 380	4 4 4	5 1 1.5	3 360 4 970 5 540	6 890 11 000 11 900	47T644826 47T644836-1 47T645038	1 1-P 1-P	359 352 363	462 462 482	437 442 454	11.5 9 11.5	3 3 3	5 1 1.5	0.40 0.47 0.33	1.68 1.43 2.03	2.50 2.12 3.02	1.64 1.40 1.98	165 229 284
325	540	364	364	5	61	5 380	10 600 5 800	47364 47T654323	1	376	518	479	8.5	4	5	0.32	2.12	3.15	2.07	340
325	430	230	230	3	1	2 410 2 620		471654523	1	347	416	401	8.5	2.5	1	0.40	1.68	2.50	1.64	88.5
	445	230		3	•		6 080	471654523	1	353	431	-	9	2.5	1	0.40	1.68	2.50	1.64	102
330.200	444.500 508.000	301.625 307.975	301.625 307.975	3.2 6.4	3.2 1.6	3 550 4 320	9 260 8 500	47T665131A	1	357 372	430 486	414 462	10 8	3.2 6.4	3.2 1.6	0.26 0.33	2.55 2.03	3.80 3.02	2.50 1.98	134 219
335.000	460.000	342.900	342.900	3.2	1.6	3 960	9 390	47T674634/DP	2	361	445	428	7.5	3.2	1.6	0.40	1.68	2.50	1.64	165
337.375	469.900	342.900	342.900	3.2	1.6	4 630	11 400	HM261049D/010/010D	1-P	360	455	432	9	3.2	1.6	0.33	2.02	3.01	1.97	190
340	480 520 520	350 278 323	350 278 323	5 5 5	6 6 6	4 700 4 040 4 380	11 700 8 110 8 930	37268A 47T685228 47T685232	1-P 1 1	371 384 381	458 498 498	443 473 473	9.5 9 10	4 4 4	6 6 5	0.33 0.40 0.40	2.03 1.68 1.68	3.02 2.50 2.50	1.98 1.64 1.64	198 212 242
343.052	457.098 457.098	254.000 254.000	254.000 254.000	3.2 3.2	1.6 1.6	2 850 2 850	6 950 6 950	47T694625 47T694625/DP3	1 2	363 363	442 442	425 425	6 6	3.2 3.2	1.6 1.6	0.47 0.47	1.43 1.43	2.12 2.12	1.40 1.40	111 111
346.075	488.950	358.775	358.775	3.2	3.2	4 620	11 600	HM262749D/10/10D	1	378	474	449	8	3.2	3.2	0.33	2.02	3.00	1.97	214
347.663	469.900	292.100	292.100	3.2	3.2	3 600	9 040	M262449D/10/10D	1	374	455	436	10	3.2	3.2	0.33	2.03	3.02	1.98	145
355	490	316	316	2	2.5	4 160	10 000	47T714932	1	385	480	455	12.5	2	2	0.33	2.03	3.02	1.98	180
355.600	482.600 482.600	269.875 269.875	265.113 265.112	3.2 3.2	1.6 1.6	3 390 3 060	7 860 7 020	47T714827-1 LM763449D/410/410D	1 1	386 381	468 468	450 450	8 3.5	3.2 3.2	1.6 1.6	0.26 0.47	2.55 1.43	3.80 2.14	2.50 1.40	139 136

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d (355.600) ~ (380) mm

Koyo

	Вс	oundary di					d ratings				М	-	dimensi	ons		Con-	Axia	load fa	ctors	(Refer.)
		(mn	1)			(k	N)	Bearing No. 1)	Design	,		· ·	nm)		9)	stant			ł	Mass
d	D	Т	W	r min.	r_1 min.	$C_{\rm r}$	$C_{0\mathrm{r}}$		20018.1	d _a max.	max.	D _a min.	S min.	r _a max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
355.600	488.950	317.500	317.500	3.2	1.6	4 370	10 900	M263349D/310/310D	1-P	383	474	452	7.5	3.2	1.6	0.33	2.03	3.02	1.98	182
360	480 480 508	375 375 370	375 375 370	3 3 5	4 1 6	3 930 4 190 4 840	9 910 11 100 11 500	47T724838A 47T724838C 47T725137	1 1 1	383 381 392	466 466 486	446 448 471	3.5 5 7	2.5 2.5 4	3 1 6	0.40 0.33 0.33	1.68 2.03 2.03	2.50 3.02 3.02	1.64 1.98 1.98	177 183 232
	520 520 540 540 540	370 410 280 280 460	370 410 280 280 460	5 5 5 5 4	6 6 6 5	4 920 5 970 3 790 3 760 6 440	11 400 14 300 7 820 8 000 15 800	47T725237 47T725241 47272 47T725428 47T725428	1 1-P 1 1	395 395 406 402 408	498 498 518 518 522	476 479 490 489 492	8.5 8.5 10 10.5 9.5	4 4 4 4 3	5 5 5 5 4	0.33 0.33 0.32 0.55 0.27	2.03 2.03 2.12 1.24 2.47	3.02 3.02 3.15 1.84 3.67	1.98 1.98 2.07 1.21 2.41	259 292 221 224 373
368.300	523.875 523.875 523.875 523.875	382.588 382.588 382.588	382.588 382.588 382.588	6.4 3.2 6.4	3.2 1.6 3.2	5 530 5 620 5 920	13 600 13 600 14 100 14 500	47T745238B 47T745238D 47T745238J	1-P 1 1-P	404 403 401	502 508 502	483 483 485	9 7.5 10.5	6.4 3.2 6.4	3.2 1.6 3.2	0.29 0.33 0.33	2.32 2.03 2.03	3.45 3.02 3.02	2.26 1.98 1.98	269 265 268
	523.875 563.000	382.588 382.588	382.588 382.588	6.4 6.4	3.2 3.2	5 460 6 300	13 600 13 600	HM265049D/010/010D 47T745638	1-P 1-P	403 417	502 541	483 516	7 10.5	6.4 6.4	3.2 3.2	0.33 0.29	2.03 2.32	3.02 3.45	1.98 2.26	269 344
370	516	346	346	4	1.5	4 880	11 700	47T745235	1-P	398	498	479	9	3	1.5	0.40	1.68	2.50	1.64	216
374.650	501.650	260.350	260.350	3.2	1.6	2 930	7 750	47T745026	1	399	486	459	7	3.2	1.6	0.43	1.56	2.32	1.52	145
380	520 520 536	360 400 390	360 400 390	5 4 5	6 2.5 6	4 610 5 020 5 760	12 200 13 000 12 900	47T765236 47T765240 37276	1 1 1	417 404 415	498 502 514	484 482 496	11 9.5 7.5	4 3 4	5 2 5	0.32 0.40 0.40	2.12 1.68 1.68	3.15 2.50 2.50	2.07 1.64 1.64	225 248 268
	560 560 560	282 285 285	282 285 285	5 4 4	6 5 5	3 670 4 600 4 420	7 580 10 000 9 240	47276 47T765629 47T765629A	1 1-P 1	429 428 427	538 542 542	511 513 515	9 11 11	4 3 3	5 4 5	0.27 0.27 0.27	2.47 2.47 2.47	3.67 3.67 3.67	2.41 2.41 2.41	232 246 244
	560 560 560	325 360 370	325 390 370	5 4 5	6 1.5 6	5 330 5 310 5 910	11 900 11 800 13 600	47T765633A 47T765639 47T765637	1-P 1 1-P	427 422 423	538 542 538	514 514 515	11 9 10	4 3 4	5 1.5 5	0.27 0.35 0.33	2.47 1.95 2.03	3.67 2.90 3.02	2.41 1.91 1.98	278 307 312
	580	500	500	5	6	7 410	17 500	47T765850	1	427	558	529	10.5	4	5	0.33	2.03	3.02	1.98	478

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension r_1 .

d (380) ~ 430 mm

Koyo

	Bo	oundary di	mensions				ad ratings				M	0	dimensio	ons		Con- stant	Axia	l load fa	ctors	(Refer.)
d	D	T	W	r min.	r_1 min.	C _r	C_{0r}	Bearing No. 1)	Design	$d_{ m a}$ max.	max.	D _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	e	Y_2	Y_3	Y_0	Mass (kg)
380	620 620	400 418.5	400 418.5	5 5	6 6	6 130 7 080	12 700 14 000	47376 47T766242	1 1-P	445 435	598 598	552 561	6.5 10	4 4	5 5	0.32 0.46	2.12 1.47	3.15 2.19	2.07 1.44	476 499
384.175	546.100 546.100	400.050 470.000	400.050 470.000	6.4 6.4	3.2 3.2	6 530 6 220	16 900 16 200	HM266449D/410/410D 47T775547	1-P 1	418 418	524 524	502 503	10.5 7.5	6.4 6.4	3.2 3.2	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	315 360
390	510 510	350 350	350 350	3 3	1.5 1	4 300 4 150	11 700 11 200	47T785135A 47T785135B	1 1	413 415	496 496	478 479	10.5 5.5	2.5 2.5	1.5 1	0.33 0.29	2.03 2.32	3.02 3.45	1.98 2.26	186 183
395	545	288.7	270.3	7.5	5	3 330	7 680	47T795529	1	433	509	494	3	6	4	0.43	1.57	2.34	1.53	190
400	560 564 590 600	380 412 304 308	380 412 304 308	4 4 4 5	1.5 2.5 1.5 6	5 970 6 470 4 760 4 810	15 200 16 500 10 200 9 930	47T805638A 47T805641 47T805930A 47280	1-P 1-P 1-P 1	435 432 449 452	542 546 572 578	519 522 540 548	10 9 7.5 9	3 3 3 4	1.5 2.5 1.5 5	0.33 0.40 0.33 0.33	2.03 1.68 2.03 2.03	3.02 2.50 3.02 3.02	1.98 1.64 1.98 1.98	296 329 289 310
406.400	546.100 546.100 562.000 565.150	288.925 330.000 381.000 381.000	288.925 330.000 381.000 381.000	6.4 6.4 6.4 6.4	1.6 3.2 3.2 3.2	3 960 4 800 5 990 5 990	9 540 12 400 15 000 15 000	47T815529 47T815533B 47T815538 M267949D/910/910XD	1 1-P 1	435 434 439 438.3	524 524 540 544	509 509 524 524	9.5 8.5 9.5 9.5	6.4 6.4 6.4 6.4	1.6 3.2 3.2 3.2	0.47 0.40 0.33 0.33	1.43 1.68 2.03 2.03	2.12 2.50 3.02 3.02	1.40 1.64 1.98 1.98	184 214 284 291
409.575	546.100	334.963	334.963	6.4	1.6	4 570	11 500	M667947D/911/911D	1	432	524	509	8.5	6.4	1.6	0.42	1.62	2.42	1.59	213
415.925	590.550	434.975	434.975	6.4	3.2	7 060	18 800	47T835943A	1-P	455	568	543	10	6.4	3.2	0.33	2.03	3.02	1.98	391
420	560 560 592 620 650	370 437 432 312 460	370 437 432 312 460	5 4 5 5 6	6 1.5 6 6 6	4 950 5 620 6 030 4 810 8 560	13 600 14 900 15 700 10 400 18 300	47T845637 47T845644 37284 47284 477846546	1 1 1 1 1	459 450 460 473.5 468	538 542 570 598 622	527 526 544 567 595	12 4 7.5 10 8.5	4 3 4 4 5	5 1.5 5 5 5	0.32 0.26 0.33 0.33 0.40	2.12 2.55 2.03 2.03 1.68	3.15 3.80 3.02 3.02 2.50	2.07 2.50 1.98 1.98 1.64	252 283 374 328 558
430	570 570	336 380	336 380	4 4	1.5 1.5	4 790 5 640	12 500 15 900	47T865734C 47T865738	1 1	460 463	552 552	536 534	10 10.5	3 3	1.5 1.5	0.36 0.26	1.87 2.55	2.79 3.80	1.83 2.50	232 269

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d **431.800** ~ **475.000** mm

Koyo

	Bo	oundary di (mm					ad ratings	Bearing No. 1)	Design		М	ounting (n	dimensio nm)	ons		Con- stant	Axia	load fa	ctors	(Refer.) Mass
d	D	Т	W	r min.	r_1 min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No. 1)	Design	$d_{ m a}$ max.	max.	D _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}{}^{2)}$ max.	е	Y_2	Y_3	Y_0	(kg)
431.800	571.500 571.500 635.000	336.550 336.550 355.600	336.550 336.550 355.600	6.4 6.4 6.4	1.6 1.6 6.4	5 070 4 290 6 310	13 500 11 300 13 700	47T865734 LM769349D/310/310D EE931170D/250/251XD	1-P 1 1-P	460 463 481	549 549 612	534 534 586	10 7 8	6.4 6.4 6.4	1.6 1.6 6.4	0.36 0.48 0.32	1.87 1.41 2.10	2.79 2.10 3.13	1.83 1.38 2.06	232 231 385
432.003	609.524	317.500	317.500	6.4	3.6	5 210	12 100	EE736173D/238/239D	1-P	474	586	562	9	6.4	3.6	0.35	1.94	2.89	1.90	291
440	580 620 620 635	420 454 454 430	420 454 454 430	4 6 4 5	1.5 6 5 6	5 730 7 110 7 610 7 560	15 400 17 500 19 800 18 000	47T885842 37288 47T886246 47T886443	1-P 1 1-P 1-P	467 482 474 485	562 592 602 613	544 576 573 587	1.5 9 10.5 9.5	3 5 3 4	1.5 5 5 5	0.26 0.40 0.40 0.33	2.55 1.68 1.68 2.03	3.80 2.50 2.50 3.02	2.50 1.64 1.64 1.98	288 417 436 450
	635 650	470 326	470 326	5 6	2.5 6	8 510 5 080	20 900 11 000	47T886447 47288	1-P 1-P	483 500	613 622	588 595	10.5 11	4 5	2 5	0.33 0.28	2.03 2.43	3.02 3.61	1.98 2.37	500 361
	650 660	334 450	334 450	6 5	6 2	5 490 8 690	12 200 19 000	47288A 47T886645	1	500 489	622 638	595 610	9.5 9.5	5 4	5 2	0.28 0.32	2.43 2.12	3.61 3.15	2.37 2.07	375 532
447.675	635.000	463.550	463.550	6.4	3.2	7 860	21 000	M270749D/710/710D	1-P	491	612	584	8	6.4	3.2	0.33	2.03	3.02	1.98	472
449.949	594.949	368.000	368.000	5	2.5	5 980	16 200	M270449D/10/10D	1-P	478	573	557	9	5	2	0.33	2.03	3.02	1.98	278
450	580	450	450	6	1.5	5 130	14 600	47T905845	1	475	552	537	2	5	1.5	0.26	2.55	3.80	2.50	286
457.200	596.900 660.400	279.400 323.847	276.225 323.850	3.2 6.4	1.6 3.2	4 260 5 700	11 400 12 700	47T916028A EE737179D/260/261D	1-P 1-P	485 501	581 637	560 603	8.5 9	3.2 6.4	1.6 3.2	0.47 0.37	1.43 1.80	2.12 2.69	1.40 1.76	307 365
460	586 615 625	280 360 421	280 360 421	3 3 4	1 1 1.5	3 710 5 000 6 920	9 810 13 300 18 800	47T925928 47T926236 47T926342	1 1 1-P	483 490 495	572 601 607	555 572 582	10.5 8 8	2.5 2.5 3	1 1 1.5	0.44 0.47 0.33	1.52 1.43 2.03	2.26 2.12 3.02	1.49 1.40 1.98	177 292 386
	650 680 730	474 375 440	474 375 440	6 5 6	6 2 3	7 680 6 500 8 650	19 400 15 200 17 700	37292 47T926838 47T927344	1 1 1-P	500 515 519	622 658 702	598 618 662	8 10.5 13	5 4 5	5 2 2.5	0.33 0.36 0.47	2.03 1.87 1.43	3.02 2.79 2.12	1.98 1.83 1.40	495 475 710
475.000	600.000	368.000	368.000	4.8	1.6	4 970	15 100	47T956037A	1	501	581	566	10.5	4.8	1.6	0.26	2.55	3.80	2.50	246

[Notes] 1) While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

2) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension $r_{\rm 1}$.

d 479.425 ~ 500 mm

Koyo

	Bo	oundary di (mm					ad ratings	Bearing No. 2)	Design		М		dimensi nm)	ons		Con- stant	Axia	l load fa	ctors	(Refer.) Mass
d	D	T	W	r min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No.	Design	d _a max.	max.	D _a min.	S min.	$r_{ m a}$ max.	$r_{ m b}$ $^{3)}$ max.	е	Y_2	Y_3	Y_0	(kg)
479.425	679.450 679.450	495.300 495.300	495.300 495.300	6.4 6.4	3.2 3.2	9 660 8 480	25 400 22 200	47T966850 M272749D/710/710D	1-P 1-P	523 524	656 656	641 627	12.5 7.5	6.4 6.4	3.2 3.2	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	591 575
480	678 700	494 390	494 390	6 5	6 6	9 160 7 400	23 300 16 800	37296 47T967039	1-P 1-P	520 536	650 678	629 647	9.5 11	5 4	5 6	0.33 0.33	2.03 2.03	3.02 3.02	1.98 1.98	563 508
480.000	700.000	420.000	420.000	6.4	3.2	8 060	18 800	47T967042C	1	531	677	644	10.5	6.4	3.2	0.35	1.95	2.90	1.91	540
482.600	615.950 615.950 615.950	330.200 330.200 330.200	330.200 330.200 330.200	6.4 6.4 6.4	6.4 6.4 4.8	4 830 4 830 5 270	13 400 13 400 15 000	47T976233 4TR19A 4TR19B	2-P 1-P 1-P	512 512 509	593 593 593	573 573 573	6 6.5 10.5	6.4 6.4 6.4	6.4 6.4 4.8	0.44 0.44 0.33	1.54 1.54 2.03	2.30 2.30 3.02	1.51 1.51 1.98	240 240 243
	615.950 615.950 647.700 647.700	330.200 420.000 417.512 417.512	330.200 420.000 417.512 417.512	6.4 4 6.4 6.4	3.2 2.5 3.2 3.2	5 210 5 810 7 390 7 390	15 000 16 700 20 300 20 300	4TR19D 47T976242 47T976542A M272647D/610/610D	1 1 2-P 1-P	508 508 514 514	593 597 624 624	573 577 603 604	10 6 9.5 9.5	6.4 4 6.4 6.4	3.2 2.5 3.2 3.2	0.36 0.26 0.33 0.33	1.87 2.55 2.03 2.03	2.79 3.80 3.02 3.02	1.83 2.50 1.98 1.98	240 296 397 395
488.950	622.300 660.400	365.125 361.950	365.125 365.125	3.6 6.4	3.6 7.9	4 950 6 200	13 900 15 800	47T986236 EE640193D/260/261D	1 1-P	516 527	605 637	585 616	7.5 11	3.6 6.4	3.6 7.9	0.33 0.31	2.03 2.20	3.02 3.27	1.98 2.15	262 357
489.026	634.873 634.873	320.675 320.675	320.675 320.675	3.2 3.2	3.2 3.2	4 520 4 930	13 200 13 700	EE243193D/250/251D LM772749D/710/710D	1 1	526 513	618 618	595 594	9.5 9.5	3.2 3.2	3.2 3.2	0.34 0.47	1.97 1.43	2.93 2.12	1.93 1.40	263 261
490	625 625	385 385	385 385	4 4	1.5 1.5	5 690 5 540	17 200 16 600	47T986339A 47T986339B	1 1	520 517	607 607	587 587	9.5 4.5	3 3	1.5 1.5	0.28 0.32	2.43 2.12	3.61 3.15	2.37 2.07	290 285
500	640 670 705	450 515 515	450 515 515	4 5 6	1.5 6 SP	7 050 9 110 9 530	20 300 25 700 24 500	4TR500M 4TR500B 372/500	2-P 1-P 1-P	527 530 544	622 648 677	602 626 651	10.5 11 8.5	3 4 5	1.5 5 6	0.24 0.32 0.37	2.84 2.12 1.80	4.23 3.15 2.69	2.78 2.07 1.76	352 510 641
	710 720 760	430 400 420	425 400 420	5 6 2	3 6 6	8 170 7 990 8 730	20 000 18 700 19 300	4TR500T 4TR500J 4TR500Q	1 1-P 1-P	547 552 566	688 692 750	658 663 696	12 12.5 11.5	4 5 2	3 5 6	0.37 0.33 0.39	1.80 2.03 1.74	2.69 3.02 2.59	1.76 1.98 1.70	528 547 698

[Notes]

SP indicates the specially chamfered form.
 While metric series bearings have minus tolerances for bore and OD, inch series have plus tolerances. Refer to page C 82 for details of applicable tolerance standards.

3) $r_{\rm b}$ indicates the shaft chamfer dimension corresponding to cone chamfer dimension r_1 .

Sealed type four-row tapered roller bearings

Design 2-P

			В	oundary d	limensio	ons				Basic load		Bearing No.	Design	Con- stant	Axial loa	d factors	(Refer.) Mass
$d \atop { m mm}$	1/25.4	D mm	1/25.4	T mm	1/25.4	W mm	1/25.4	$r^{1)}$ min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No.	Design	е	Y_2	Y_3	(kg)
75		120 135		150 180	_	150 187		2 1.5	1 1.5	424 455	764 776	47TS151215 47TS151418	1 1	0.33 0.87	2.03 0.78	3.02 1.16	6.4 10.7
140	_	198	_	174	_	174	_	4	1	803	1 630	47TS282017	1	0.47	1.43	2.12	16.3
150	_	210	_	240	_	240	_	1.5	0.5	993	2 270	47T\$302124	1	0.39	1.74	2.59	23.5
170	_	240 250	_	175 230	_	175 230	_	2.5 2.5	1.5 1.5	980 1 370	1 990 2 860	47TS342418 47TS342523	1 1	0.26 0.26	2.55 2.55	3.8 3.8	23.9 37.7
190.500	7.5000	266.700	10.5000	188.913	7.4375	187.325	7.3750	3.2	1	1 060	2 270	47TS382719A	1	0.46	1.47	2.19	27.6
195	_	270	_	250	_	250	_	2.5	1	1 420	3 550	47TS392725-1	1	0.4	1.68	2.5	43.6
200	_	300	_	300	_	300	_	4	1.6	2 260	4 900	47TS403030	1	0.26	2.55	3.8	73.5
203.200	8.0000	317.500	12.5000	266.700	10.5000	266.700	10.5000	5	1.6	2 060	4 010	47T\$413227	1	0.4	1.68	2.5	76.8
206.375	8.1250 8.1250	282.575 282.575	11.1250 11.1250	190.500 240.000	7.5000 9.4488	190.500 210.000	7.5000 8.2677	3.2 3	1 1	1 100 1 450	2 240 3 380	47TS412819 47TS412824	1 1	0.51 0.43	1.33 1.57	1.97 2.34	33.5 39.6
215.900	8.5000	288.925	11.3750	177.800	7.0000	177.800	7.0000	3.2	1	1 060	2 350	47T\$432918	1	0.4	1.68	2.5	30.6
220		295 320 330	_	315 290 260		315 290 260	_	SP 3 5	SP 2 2.5	1 540 2 200 2 100	3 910 4 700 4 220	47TS443032A 47TS443229B 47TS443326	1 1 1	0.4 0.39 0.4	1.68 1.74 1.68	2.5 2.59 2.5	55.8 73.9 79.5
220.663	8.6875 8.6875	314.325 314.325	12.3750 12.3750	239.713 330.000	9.4375 12.9921	239.713 330.000	9.4375 12.9921	3.2 3.2	3 3	1 680 2 360	3 410 5 650	47TS443124 47TS443133	1 1	0.33 0.26	2.03 2.55	3.02 3.8	51.9 79.2
225	_	320	_	230	_	230	_	3	1.5	1 630	3 350	47T\$453223A	1	0.47	1.43	2.12	56.9
228.600	9.0000	311.150	12.2500	200.025	7.8750	200.025	7.8750	3.2	SP	1 330	2 850	47TS463120-1	1	0.4	1.68	2.5	41.3
234.950	9.2500	327.025	12.8750	196.850	7.7500	196.850	7.7500	3.2	1	1 490	3 310	47TS473320A	2	0.4	1.68	2.5	48.1

[Note] 1) SP indicates the specially chamfered form.

Koyo
Sealed type four-row tapered roller bearings

d **240** ~ (**280**) mm

Design 2

Design 2-P

			В	oundary d	imensio	ons				Basic load		Desiring No.	Desim	Con- stant	Axial loa	d factors	(Refer.) Mass
$d \atop{\mathrm{mm}}$	1/25.4	D mm	1/25.4	T mm	1/25.4	W mm	1/25.4	r min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No.	Design	е	Y_2	Y_3	(kg)
240		320 338 338		294 248 290		294 248 290		4 3 3	1 1.5 1	1 880 1 890 2 360	4 760 4 120 5 360	47TS483229-1 47TS483425B 47TS483429	1 1 1	0.33 0.47 0.39	2.03 1.43 1.74	3.02 2.12 2.59	63.6 66 78
	_	338 338	_	320 340	_	320 340	_	3 3	1 1	2 430 2 450	5 890 5 930	47TS483432 47TS483434A	1 1	0.28 0.4	2.43 1.68	3.61 2.5	87.3 88
241.478	9.5070	349.148	13.7460	228.600	9.0000	228.600	9.0000	3.2	SP	2 000	4 110	47TS483523A	2	0.35	1.91	2.84	67.5
244.475	9.6250 9.6250	327.025 381.000	12.8750 15.0000	193.675 304.800	7.6250 12.0000	193.675 304.800	7.6250 12.0000	5 5	1.5 1.6	1 280 2 700	2 790 5 240	47TS493319 47TS493830	1 1	0.33 0.47	2.03 1.43	3.02 2.12	41.5 124
245	-	345	-	310	_	310	_	3	1.5	2 520	6 020	47TS493531-2	1	0.4	1.68	2.5	89.9
250	_	365	_	270	_	270	_	3	1.5	2 260	4 730	47TS503727A-1	1	0.4	1.68	2.5	94.2
254.000	10.0000 10.0000	358.775 358.775	14.1250 14.1250	269.875 269.875	10.6250 10.6250	269.875 269.875	10.6250 10.6250	3.2 3.2	1.6 1.5	2 130 2 520	4 760 6 010	47TS513627A-1 47TS513627B	1 2	0.55 0.4	1.24 1.68	1.84 2.5	82 85
260	_	365 370	_	340 354	_	340 354	_	3.5 4	1.6 1.5	2 800 3 100	6 530 7 410	47TS523734-5 47TS523735	1 1	0.4 0.26	1.68 2.55	2.5 3.8	110 120
266.700	10.5000	355.600	14.0000	228.600	9.0000	230.188	9.0625	3.2	1.6	1 940	4 880	47TS533623B	2	0.36	1.87	2.79	60
275	_	385	_	340	_	340	_	3	1.5	2 970	7 400	47TS553934	1	0.4	1.68	2.5	121
276.225	10.8750 10.8750	393.700 393.700	15.5000 15.5000	269.875 269.875	10.6250 10.6250	269.875 269.875	10.6250 10.6250	3.2 3.2	1.6 SP	2 350 2 770	5 040 6 510	47TS553927-4 47TS553927A	1 2	0.47 0.4	1.43 1.68	2.12 2.5	100 105
279.400	11.0000 11.0000 11.0000	393.700 393.700 393.700	15.5000 15.5000 15.5000	269.875 269.875 320.000	10.6250 10.6250 12.5984	269.875 269.875 320.000	10.6250 10.6250 12.5984	3.2 3.2 3.2	1.6 SP 1.5	2 350 2 770 2 880	5 040 6 510 6 900	47TS563927 47TS563927B 47TS563932-2	1 2 1	0.47 0.4 0.4	1.43 1.68 1.68	2.12 2.5 2.5	99.5 101 124
279.578	11.0070	380.898	14.9960	244.475	9.6250	244.475	9.6250	3.2	SP	2 270	5 360	47TS563824	2	0.4	1.68	2.5	78.3
280	—	380	—	290	_	290	_	3.2	SP	2 720	6 940	47TS563829A	2	0.33	2.03	3.02	93.8

[Note] 1) SP indicates the specially chamfered form.

Sealed type four-row tapered roller bearings -

Design 2-P

			В	oundary d	imensio	ons				Basic load		Bearing No.	Design	Con- stant	Axial loa	d factors	(Refer.) Mass
d mm	1/25.4	D mm	1/25.4	$_{ m mm}^{T}$	1/25.4	W mm	1/25.4	r min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No.	Design	е	Y_2	Y_3	(kg)
280		395 395 410		290 340 268	 	290 340 268		3 3 5.4	2.5 1.5 1.6	2 640 2 960 2 240	5 940 7 110 4 510	47TS564029 47TS564034A 47TS564127	1 1 1	0.4 0.4 0.33	1.68 1.68 2.03	2.5 2.5 3.02	110 130 118
	_	412 430	_	340 350	_	340 350	_	4 3.5	2 1.5	3 350 3 940	7 220 8 190	47TS564134 47TS564335	1 1	0.28 0.4	2.43 1.68	3.61 2.5	154 178
285	—	400	—	340	_	340	—	3	1.5	3 190	7 610	47TS574034	1	0.4	1.68	2.5	131
285.750	11.2500	380.898	14.9960	244.475	9.6250	244.475	9.6250	3.2	1	2 000	4 600	47TS573824A	1	0.43	1.57	2.34	73.2
290	 	400 400 420 450		346 420 380 415		346 420 380 415		4 4 3 4	1.5 1.5 1.2 1.5	3 070 3 070 3 640 4 460	7 860 7 860 8 260 9 460	47TS584035 47TS584042C 47TS584238 47TS584542	1 1 1	0.4 0.4 0.4 0.47	1.68 1.68 1.68 1.43	2.5 2.5 2.5 2.12	128 155 175 238
300	_	400 420	_	254 310	_	254 310	_	4 4	5 3.5	2 220 2 890	5 300 6 670	47TS604025 47TS604231	1 1	0.28 0.4	2.43 1.68	3.61 2.5	84.6 128
304.648	11.9940 11.9940	438.048 438.048	17.2460 17.2460	279.400 279.400	11.0000 11.0000	280.990 279.400	11.0626 11.0000	4 3.2	1.6 1.6	2 570 3 140	5 380 6 860	47TS614428B-10 47TS614428C-1	1 2	0.47 0.4	1.44 1.68	2.15 2.5	135 135
304.800	12.0000 12.0000	419.100 501.650	16.5000 19.7500	269.875 336.550	10.6250 13.2500	269.875 296.550	10.6250 11.6752	6.4 4	2 4	2 490 4 280	5 420 8 570	47TS614227 47TS615034	1 1-P	0.33 0.33	2.03 2.03	3.02 3.02	100 257
304.902	12.0040	412.648	16.2460	266.700	10.5000	266.700	10.5000	3.2	0.8	2 750	6 820	47TS614127D	2	0.39	1.74	2.59	99.5
310	 	430 430 430 457.098		310 350 350 390		310 350 350 390		3 3.5 3.5 4	1 1.5 SP 1.5	3 010 3 280 3 280 4 200	6 880 7 870 7 870 9 500	47TS624331-4 47TS624335A 47TS624335B-2 47TS624639	1 1 1	0.4 0.4 0.4 0.32	1.68 1.68 1.68 2.12	2.5 2.5 2.5 3.15	131 148 148 220
317.500	12.5000	447.675	17.6250	367.000	14.4488	367.000	14.4488	4	1.6	3 680	8 500	47TS644537-1	1	0.4	1.68	2.5	176

[Note] 1) SP indicates the specially chamfered form.

Sealed type four-row tapered roller bearings

d 320 ~ 410 mm

Design 2

Design 2-P

			В	oundary d	imensio	ons				Basic loa				Con- stant	Axial loa	d factors	(Refer.)
$d \atop { m mm}$	1/25.4	$D \atop { m mm}$	1/25.4	T m mm	1/25.4	W mm	1/25.4	<i>r</i> ¹⁾ min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Bearing No.	Design	e	Y_2	Y_3	Mass (kg)
320		440 480 480		335 360 420		335 360 420		4 4 4	1 1.5 1.5	3 140 4 210 5 470	7 330 8 800 12 100	47TS644434 47TS644836B 47TS644842	1 1-P 1-P	0.4 0.47 0.26	1.68 1.43 2.55	2.5 2.12 3.8	146 220 262
330.302	13.0040	438.023	17.2450	254.000	10.0000	247.650	9.7500	3.2	1.6	2 190	4 960	47TS664425	1	0.46	1.47	2.19	95.8
335.000	13.1890	460.000	18.1102	342.900	13.5000	342.900	13.5000	3.3	1.5	3 740	9 290	47TS674634A	1	0.4	1.68	2.5	167
342.875	13.4990	488.900	19.2480	410.000	16.1417	410.000	16.1417	4	2	4 620	11 600	47TS684941	1	0.33	2.02	3	233
342.875	_	560	_	500	_	500	_	5	2.5	7 210	15 000	47TS685650	1-P	0.33	2.03	3.02	495
343.052	13.5060 13.5060	457.098 457.098	17.9960 17.9960	254.000 299.000	10.0000 11.7717	254.000 299.000	10.0000 11.7717	3.2 3.2	0.8 SP	2 870 3 310	7 030 9 010	47TS694625D-1 47TS694630B	2 2	0.4 0.4	1.68 1.68	2.5 2.5	110 135
346.075	13.6250	488.950	19.2500	358.775	14.1250	358.775	14.1250	4	2	3 780	8 310	47TS694936	1	0.33	2.03	3.02	210
350	—	480	—	420	_	420	_	SP	1.5	3 700	9 100	45DS704842C	1-P	0.4	1.68	2.5	217
355	—	490	_	316	_	316	_	2	1.6	3 540	7 920	47TS714932	1	0.33	2.03	3.02	169
355.600	14.0000	482.600	19.0000	269.875	10.6250	265.112	10.4375	3.2	1.5	2 680	6 090	47TS714827	1-P	0.47	1.43	2.12	134
360	-	480	-	375	_	375	_	3	1	4 120	10 600	47TS724838A	1	0.4	1.68	2.5	181
374.650	14.7500	501.650	19.7500	260.350	10.2500	250.825	9.8750	3.2	1.6	3 120	7 470	47TS755026A	2	0.33	2.03	3.02	136
380	_	580	_	370	_	370	_	3	SP	5 690	12 300	47TS765837	1-P	0.33	2.03	3.02	353
395	_	545	_	360	_	360	_	6	1.6	3 790	8 930	47TS795536A	1	0.47	1.43	2.12	242
406.400	16.0000 16.0000 16.0000	546.100 546.100 546.100	21.5000 21.5000 21.5000	288.925 330.000 357.400	11.3750 12.9921 14.0709	288.925 330.000 357.400	11.3750 12.9921 14.0709	6.4 4 3.2	1 1.5 1.6	3 620 4 310 3 960	8 190 10 500 9 540	47TS815529D-2 47TS815533A 47TS815536A	2-P 2-P 1	0.47 0.43 0.47	1.43 1.57 1.43	2.12 2.34 2.12	195 204 220
410	_	546	_	400	_	400	_	4	1.5	4 630	12 000	47TS825540	1	0.26	2.55	3.8	255

[Note] 1) SP indicates the specially chamfered form.

Sealed type four-row tapered roller bearings -

Design 2

Design 2-P

			В	oundary d	limensio	ons				Basic loa (k)		Bearing No.	Design	Con- stant	Axial loa	d factors	(Refer.) Mass
$d \atop { m mm}$	1/25.4	D mm	1/25.4	$_{ m mm}^{T}$	1/25.4	W mm	1/25.4	r ¹⁾ min.	$r_1{}^{1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	Dearing No.	Design	е	Y_2	Y_3	(kg)
415.925	16.3750	590.550	23.2500	434.975	17.1250	434.975	17.1250	4	1.5	6 390	15 600	47TS835944A	2-P	0.4	1.68	2.5	377
420		560 574 620		437 480 395		437 480 320		4 3 SP	3 1.6 SP	5 620 6 730 5 160	14 900 17 800 11 600	47TS845644 47TS845748 47TS846240	1 1-P 1-P	0.26 0.28 0.47	2.55 2.43 1.43	3.8 3.61 2.12	298 352 390
430	_	575	_	380	_	380	_	3.2	SP	5 200	14 300	47TS865838A	2-P	0.26	2.55	3.8	276
431.800	17.0000	571.500	22.5000	336.550	13.2500	336.550	13.2500	3.2	1.5	4 440	11 600	47TS865734A	2	0.4	1.68	2.5	229
440		590 620 635		480 454 470		480 454 413		4 4 5	SP 1.5 2	6 870 6 580 6 870	18 700 16 100 15 700	47TS885948A-3 47TS886245-1 47TS886447	2-P 1-P 1	0.26 0.33 0.33	2.55 2.03 2.03	3.8 3.02 3.02	362 430 461
450	_	595	_	420	_	420	_	5	1.5	6 110	16 300	47TS906042	1-P	0.26	2.55	3.8	308
457.200	18.0000 18.0000	596.900 596.900	23.5000 23.5000	279.400 279.400	11.0000 11.0000	276.225 276.225	10.8750 10.8750	3.2 3.2	1.6 1.6	3 760 3 300	9 520 8 180	47TS916028C 47TS916028D	2-P 2-P	0.47 0.7	1.43 0.97	2.12 1.44	191 187
460	_	620	_	470	_	470	_	4	1.5	7 060	19 300	47TS926247	1-P	0.26	2.55	3.8	412
479.425	18.8750	679.450	26.7500	495.300	19.5000	495.300	19.5000	6.4	2	8 030	19 600	47TS966850	1-P	0.33	2.03	3.02	562
480.000	18.8976	647.700	25.5000	417.512	16.4375	417.512	16.4375	6.4	SP	6 680	17 400	47TS966542	1-P	0.33	2.03	3.02	391
480	_	700	-	470	_	470	_	5	1.5	8 080	18 800	47TS967047	1-P	0.32	2.12	3.15	621
482.600	19.0000 19.0000 19.0000	615.950 615.950 615.950	24.2500 24.2500 24.2500	330.200 330.200 330.200	13.0000 13.0000 13.0000	330.200 330.200 330.200	13.0000 13.0000 13.0000	6.4 3.2 3.2	1.6 1.6 1.6	4 310 4 360 4 510	11 700 11 800 12 400	4TRS19B 4TRS19C 4TRS19D	1-P 2 2-P	0.44 0.4 0.4	1.54 1.68 1.68	2.3 2.5 2.5	240 229 239
	19.0000 19.0000 19.0000	615.950 615.950 615.950	24.2500 24.2500 24.2500	385.000 420.000 425.000	15.1575 16.5354 16.7323	385.000 420.000 425.000	15.1575 16.5354 16.7323	6.4 6.4 6.4	1.6 1.6 1.6	5 270 5 090 5 090	15 000 14 500 14 500	47TS976239 47TS976242 47TS976243	1-P 1 1	0.33 0.33 0.33	2.03 2.03 2.03	3.02 3.02 3.02	278 302 306
[Note] 1)	19.0000	647.700	25.5000	417.512	16.4375	417.512	16.4375	6.4	1.6	6 680	17 400	47TS976542A	1-P	0.33	2.03	3.02	382

[Note] 1) SP indicates the specially chamfered form.

Sealed type four-row tapered roller bearings

Design 2

型

Design 2-P

			В	oundary d	limensio	ons				Basic loa (k)		Bearing No.	Design	Con- stant	Axial loa	d factors	(Refer.) Mass
$d \atop { m mm}$	1/25.4	D mm	1/25.4	T mm	1/25.4	W mm	1/25.4	r min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$	bearing No.	Design	е	Y_2	Y_3	(kg)
488.950	19.2500	622.300	24.5000	365.125	14.3750	365.125	14.3750	6.4	1.5	4 320	12 200	47TS986236	1	0.4	1.68	2.5	270
492	_	655	_	480	_	480	_	5	1.5	7 450	21 200	47TS986648	1-P	0.33	2.03	3.02	449
509.948	20.0767	654.924	25.7844	379.000	14.9213	377.000	14.8425	6.4	1.5	5 370	15 200	4TRS510B	1-P	0.41	1.64	2.44	320
530	_	715	_	590	_	590	_	5	1.5	10 300	28 900	4TRS530A	1-P	0.26	2.55	3.8	664
558.800	22.0000 22.0000 22.0000 22.0000 22.0000 22.0000	736.600 736.600 736.600 736.600 736.600	29.0000 29.0000 29.0000 29.0000 29.0000	372.263 409.575 450.000 480.000 500.000	14.6560 16.1250 17.7165 18.8976 19.6850	372.263 409.575 450.000 480.000 500.000	14.6560 16.1250 17.7165 18.8976 19.6850	7 6 6 6 6	SP 1.5 1.5 1.5 1.6	6 910 6 850 7 180 7 960 8 220	16 100 18 600 19 700 22 700 23 100	4TRS559J 4TRS559C 4TRS559A 4TRS559B 4TRS559	1-P 1-P 1-P 1-P 1-P	0.34 0.35 0.35 0.4 0.35	1.97 1.95 1.95 1.68 1.95	2.93 2.9 2.9 2.5 2.9	425 475 507 547 560
585.788	23.0625	771.525	30.3750	479.425	18.8750	479.425	18.8750	6.4	1.5	8 730	24 400	4TRS586A	1-P	0.33	2.03	3.02	613
595.312	23.4375	844.550	33.2500	615.950	24.2500	615.950	24.2500	6.4	3.6	12 700	32 200	4TRS595B	1-P	0.33	2.03	3.02	1 120
600	_	870	_	700	_	700	_	5	4	15 100	39 400	4TRS600A	1-P	0.33	2.03	3.02	1 370
609.600	24.0000 24.0000	787.400 813.562	31.0000 32.0300	361.950 540.000	14.2500 21.2598	361.950 540.000	14.2500 21.2598	6.4 6.4	3.2 1.5	5 920 10 200	14 900 28 500	4TRS610 4TRS610A	1-P 1-P	0.4 0.33	1.68 2.03	2.5 3.02	430 775
679.450	26.7500	901.700	35.5000	552.450	21.7500	552.450	21.7500	6.4	3	11 100	30 600	4TRS679	1-P	0.33	2.03	3.02	951
685.800	27.000	876.300	34.5000	355.600	14.0000	352.425	13.8750	6.4	3.2	6 130	16 300	4TRS686A	1-P	0.42	1.62	2.42	520
704.850	27.7500	914.400	36.0000	552.450	21.7500	552.450	21.7500	6.4	3.2	11 300	33 400	4TRS705	1-P	0.33	2.03	3.02	940
711.200	28.0000 28.0000 28.0000 28.0000	914.400 914.400 914.400 914.400	36.0000 36.0000 36.0000 36.0000	317.500 387.350 410.000 420.000	12.5000 15.2500 16.1417 16.5354	317.500 387.350 410.000 420.000	12.5000 15.2500 16.1417 16.5354	3.2 6.4 6.4 6.4	SP 3.2 3.2 3.2	6 070 7 160 7 610 7 870	16 700 19 400 20 500 22 200	4TRS711N 4TRS711A 4TRS711 4TRS711	2-P 1-P 1-P 1-P	0.46 0.38 0.44 0.4	1.47 1.78 1.54 1.68	2.19 2.65 2.29 2.5	507 615 670 678
800	_	1 130	—	780	_	780	—	6	1.5	21 900	58 800	4TRS800	1-P	0.26	2.55	3.8	2 520

[Note] 1) SP indicates the specially chamfered form.

. C 137

Bearings for railway rolling stock axle journals

Bearings used to support rolling stock axle journals are required to be very strong and, at the same time, to be small because of limited space.

Double-row bearings that are larger in width than general bearings are popular in that they are compact and have high load ratings.

- Cylindrical roller bearings
- Feature good high-speed performance, and can be maintained and inspected easily because of their separable structure.
 Most commonly used bearing.
- Those with a rib next to the inner ring are able to support not only radial load but also a certain degree of axial load, so that a ball bearing is not required to accommodate the axial load.
- Sealed type cylindrical roller bearing units and tapered roller bearing units
- Maintenance-free : pre-lubricated with grease and provided with oil seals.
- Can be used with a simplified axle box, or with an adapter instead.
- The inch series axle bearing units (ABU) are as specified in the "association of american rail-roads".

Cylindrical roller bearings

Kova

Sealed type cylindrical roller bearing units

Bore diameter 101.600 - 177.787 mm

V	/		_
Ν	0	Y	\mathbf{U}

Tolerances	 Cylindrical roller and axial load support ball bearings as specified in JIS B 1514-1, class 0 (Table 7-3 on pp. A 54–A 57). (The tolerances for cylindrical roller bearing width and overall width are as shown in Table 1. Metric series ABU bearings: refer to Table 2. Inch series ABU bearings : refer to Table 3.
Recommended fits	Refer to Table 4.
Radial internal clearance	 Cylindrical roller bearings : class C 3 UIC* standard cylindrical roller bearings : class C 4 (refer to Table 10-8 on p. A 100.) Axial load support ball bearings : class C 5 However, the clearance class should be adjusted according to the axle box structure. Consult with JTEKT for further information. ABU bearings : class C 3 (refer to Table 10-10 on p. A 104) *Denotes that the bearings are compatible with axle journals and axle boxes standardized by the UIC.

Table 1 Cylindrica inner ring			axle journa idth and ov				<i>C</i> ₁
) Tolerances for inne	er ring width	n and inner	ring overall	width	Unit : µm		
Bearing type	Design	dian	n al bore neter mm)	⊿ _{Bs} o	r ⊿ _{<i>B</i>1s}	1-1	<u> </u>
		over	up to	upper	lower		C_1
Inner ring one-piece	1-1, 1-2	80	120	0	- 400		
type, Inner ring with a rib and loose rib	2-1, 2-3	120	180	0	- 500	1	
Two inner rings and		80	120	0	- 600	1-2	
spacer	2-2	120	180	0	- 700		C_1
2) Tolerances for oute	er ring widtl	n and outer	ring overall	width	Unit : µm		╸ ┎──┰╂┎
2) Tolerances for oute Bearing type	er ring width Design	Nomin dian	ring overall al bore neter nm)		Unit : μm r⊿ _{C1s}	2-1	
		Nomin dian	al bore neter			2-1 .	
	Design	Nomin dian d (1	neter mm)	⊿ _{Cs} o	r ⊿ _{C1s}	2-1 .	
Bearing type		Nomin dian d (1 over	al bore neter mm) up to	⊿ _{Cs} o	r⊿ _{C1s}		B_1
Outer ring	Design 2-3	Nomin dian d (n over 80	al bore neter nm) up to 120	⊿ _{Cs} o upper 0	r⊿ _{C1s} lower - 300	2-1 . 2-2 .	
Bearing type Outer ring one-piece type	Design	Nomin dian d (n over 80 120	al bore neter mm) up to 120 180	⊿ _{Cs} o upper 0 0	r ⊿ _{C1s} lower - 300 - 350		
Bearing type Outer ring one-piece type Outer ring and	Design 2-3	Nomin dian d (n over 80 120 80	al bore neter mm) up to 120 180 120	⊿ _{Cs} o upper 0 0 + 100	r ⊿ _{C1s} lower - 300 - 350 - 200		
Bearing type Outer ring one-piece type Outer ring and two loose ribs	Design 2-3 1-1	Nomin dian d (n over 80 120 80 120	al bore meter mm) up to 120 180 120 180	$\begin{array}{c} \varDelta_{Cs} \text{ o}\\ \hline\\ \text{upper}\\ 0\\ \hline\\ 0\\ +100\\ +100 \end{array}$	r ⊿ _{C1s} lower - 300 - 350 - 200 - 250		

[Note] 1) (2-1) means that spacer shown in Design 2-1 is removed.

-1	
-2	
	-

Та	able 2	Metric s	eries A	BU bea	ring tol	erance	s Ur	nit : μm
Nominal bore diameter d (mm)	bore diar deviation		outside d deviation		Single ring w deviat	idth ion	.	
a (mm)	upper	lower	upper lower		upper lower		upper lower	
110 120 130	0 0 0	- 20 - 20 - 25	0	- 125	+ 50 + 100 + 100	- 50 - 100 - 100	+ 500	- 500

Table 3 Inch series ABU bearing tolerances Unit : µm

Nominal bore diameter d (mm)	bore dian deviation	Single plane mean bore diameter deviation \varDelta_{dmp}		ane mean liameter	Single ring w deviat	idth ion	Actual of width of rings de	f inner eviation
u (iiiii)	upper	lower	upper	lower	upper	lower	upper	lower
101.6to177.8	+ 25	0	+ 127	0	+ 50	- 250	+ 710	- 510

Table 4	Axle journa	l bearing rec	ommended fits							
Bearing type Axle journal diameter (mm) Axle journal Axle box bore tolerance class tolerance class										
Bearing type	over	up to	tolerance class							
	50	100	(m 6), n 6							
Cylindrical roller bearing Tapered roller bearing	100	140	n 6	Н7						
rapered toner bearing	140	240	p 6	-						
Axial load support deep groove ball bearing	All dia	k 5	Clearance fit (clearance of approx. 0.2 to 0.6 mm							

Cylindrical roller bearings for railway rolling stock axle journals d $85 \sim (120) \text{ mm}$

Design 2

		Bound	lary dim (mm)	ensions		•	Basic rati	ngs	Bearing No. ²⁾	Design ³⁾	(Refer.) Mass
d	D	В	C	$F_{ m w}$	r min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$			(kg)
85	150	130	120	101.5	1.1	(7)	369	592	2U2217SC	3	8.6
90	160	88	80	107	2	2	355	529	2CR90D	1	7.2
95	170	120	105	114	1.1	(10)	497	804	2UJ95	4	10.9
	170	125	115	113.5	2.5	(7)	441	687	2CR95A	1	11.5
	170	130	130	114	2	2	441	688	2UJ1917	3	11.4
	170	140	125	114	1.1	(10)	555	926	4UJ95	5	12.7
100	180	150	134	120	1.1	(10)	594	990	4UJ100	5	15.1
	190	140	130	122	2.5	(7)	697	1 120	20DC19130/140	3	16.9
	200	170	170	125	2	(7)	755	1 160	2CR100	1	23.7
	200	170	170	125	2	(10)	755	1 160	20DC20170	3	23.2
110	200	180	160	134	1.1	(7)	721	1 190	JC3	5	22.6
	220	180	160	138	2.5	(7)	789	1 190	JC6	1	30.0
	220	185	180	138	2	(7)	922	1 460	2CR110	1	31.3
	225	150	140	138	1.1	(7)	833	1 230	JC1A	4	27.7
	225	150	140	138	2.5	(7)	897	1 350	22DC23140/150	3	26.7
	235	180	160	141	2.5	(7)	934	1 430	JC2A	3	35.3
116	220	185	180	142	2	(7)	891	1 470	2CR116	1	30.5
	225	150	140	197.5	1.1	(7)	786	1 220	2UJ116	4	26.0
120	225	170	165	145	3	(10)	876	1 380	JC35	1	29.4
	230	170	165	145	3	(10)	943	1 460	JC34	1	30.8
	230	177	150	145	3	(30)	943	1 460	JC27X	(1)	29.7
	240	160	160	150	3	7.5	961	1 500	(24NJ/NJP2480)	2	33.9
	240	180	160	150	1.1	(10)	1 020	1 580	JC11	4	35.5
	240	180	176	150	3	(7)	1 020	1 580	JC12	1	37.7

1) Values in () indicate axial chamfer dimension. [Notes]

Bearings indicated in () are in accordance with UIC standards.
 (1) means that the inner ring (rib side) shown in Design 1 has a special form.
 (2) means that loose rib shown in Design 2 is replaced with thrust collar.

d (120) ~ 133 mm

Koyo

Design 3

Design 5

		Bound	ary dim (mm)	ensions	i			i load ngs N)	Bearing No. ²⁾	Design ³⁾	(Refer.) Mass
d	D	В	C	$F_{ m w}$	r min.	$r_1^{(1)}$ min.	$C_{ m r}$	$C_{0\mathrm{r}}$			(kg)
120	240	185	180	150	2	(7)	983	1 600	2CR120A	1	37.8
130	220	170	160	152	1.1	0.6	865	1 520	4UJ130B	5	25.2
	240	160	160	157	3	5	867	1 390	(2CR2624A)	2	32.0
	240	180	160	158	1.1	(10)	970	1 610	4UJ130A	5	35.8
	240	204	198	157	3	5	867	1 390	(2CR2624)	2	35.4
	250	160	160	158	3	7.5	1 090	1 720	(26NJ/NJP2580)	2	36.4
	260	180	160	163	1.1	(10)	1 080	1 710	JC5	4	42.7
	260	185	180	163	3	(7)	1 030	1 610	2CR130A	1	44.2
	260	186	172	164	3	7.5	1 220	1 930	26NJ/NUJ2686	(2)	44.6
	260	205.5	180	163	3	(30)	1 030	1 610	JC21	(1)	45.1
	270	215	210	164	4	(15)	1 280	2 000	JC29	3	55.1
	280	215	210	167	4	(15)	1 440	2 250	JC9-1	3	61.4
133	280	215	210	167	4	(15)	1 440	2 250	JC9-2	3	59.8

Sealed type cylindrical roller bearings for railway rolling stock axle journals

 B_3

C

 ϕd

Design 2

d 95 ~ 120 mm

Design 1

Design 4

Design 5

Koyo

Shaft **Boundary dimensions** Basic load ratings (Refer.) dia. Unit Unit No. Design Bearing No. (mm) (mm) (kN) Mass d $C_{0\mathrm{r}}$ D FGKRS $C_{\rm r}$ dC B_3 d_3 EHLMPQ (kg) Brg. JB1425 19RDC19140/158 95 140 25 62 90 35 48 M85×4 18 107 119 610 910 24.5 1 95 190 158 120 ____ 100 JB1199B 2 100 195 150 120 105 42 123 20RDC20150/133B 673 1 040 27.5 175 130 30 _ 24 130 110 JB1462 3 110 220 145 171 155 39 70 110 50 42 M100×2 ____ 33 127 134 S-JC33 789 1190 35.9 120 JB1356 150 36 51 M115×4 133 24RDC22150/170 702 1 1 10 34.9 4 120 220 170 158 46 70 116 ____ — 19 131 JC32 831 1 290 39.0 JB1380D 5 120 230 150 171 155 43 70 113 42 42 33 M110×2 85 25 130 152 JB1010 6 120 240 170 218 168 35 87 125 45 43 M110×2 ____ 25 145 164 JC17 1 020 1 580 57.7 ____ M110×2 JC26 JB1240 120 38 38 935 1 420 51.1 7 240 160 193 168 31 80 113 40 85 27 128 169 JB1377 38 M110×4 24RDC24160/192A 935 1 420 42.0 8 120 240 160 192 150 30 83 112 40 ____ ____ ____ 135 131

R

G

Design 3

ঠাল্য

E

Q

H

Design 7

C 145

Sealed type tapered roller bearings for railway rolling stock axle journals (ABU bearing) K

 $\begin{array}{l} \text{Dynamic equivalent load} \\ (\text{when } F_a/F_r \leq e) \\ P=F_r+Y_2F_a \\ (\text{when } F_a/F_r > e) \\ P=0.67F_r+Y_3F_a \\ \text{Static equivalent load} \\ P_0=F_r+Y_0F_a \end{array}$

Koyo

JB1486

JB1450

Class	Axle size	Unit No.				1	Boundar	y dime	nsions						Adapter No.	Din		ons of (mm)	adapte	r		Dimen- sions (mm)	Bearing No.		ngs	Con- stant	Ax f	tial loa actors	ad S	(Refer.) Mass (kg)
			Brg.	$d_{Axle^{1)}} D$	B_1	C	${d_1}^{1)}$	Ε	F	G	H	Q	R	S	110.	J	Κ	L	Μ	Ν		р		C_{r}	$C_{0\mathrm{r}}$	е	Y_2	Y_3	Y_0	(kg) Unit Adapter
В	4 ¹ / ₄ ×8	JB1201	101.600	101.702 101.676 165.100	106.362	114.300	127.0	182.6	101.6	117.5	41.3	41.3	117.5	134.8	JB701	117.5	68.3	165.9	124.6 1	01.6	3/4-10 UNC	61.9	HM120848/ HM120817XD	402	769	0.26	2.55	3.80	2.50	17.3 3.8
С	5 ×9	JB1202	119.062	119.164 119.139 195.262	136.525	142.875	149.2	217.5	112.7	134.9	36.5	36.5	134.9	147.0	JB702	146.0	74.6	196.1	143.7 1	17.5	7/8-9 UNC	76.2	HM124646/ HM124618XD	626	1 200	0.26	2.55	3.80	2.50	25.3 6.1
D	5 ¹ / ₂ ×10	JB1203	131.750	131.864 131.839 207.962	146.050	152.400	161.9	227.0	115.9	139.7	44.5	44.5	139.7	150.5	JB703	155.6	74.6	208.8	156.4 1	23.8	7/8-9 UNC	88.9	HM127446/ HM127415XD	641	1 270	0.26	2.55	3.80	2.50	28.3 7.4
E	0	JB1204	144.450	144.564 144.539 220.662	155.575	163.512	177.8	241.3	127.0	150.8	46.0	46.0	150.8	164.1	JB704	166.7	96.8	221.5	181.8 1	36.5	1-8 UNC	98.4	HM129848/ HM129814XD	667	1 380	0.26	2.55	3.80	2.50	34.3 10.8
E	6 ×11	JB1204P	144.450	144.564 144.539 220.662	155.575	163.512	178.613 178.562	241.3	127.0	150.8	46.0	36.8	160.0	164.1	JB704	166.7	96.8	221.5	181.8 1	36.5	1-8 UNC	98.4	HM129848/ HM129814XD	667	1 380	0.26	2.55	3.80	2.50	35.0 10.8
F	6 ¹ / ₂ ×12	JB1205	157.150	157.264 157.239 252.412	177.800	184.150	190.5	273.0	134.9	163.5	46.0	46.0	163.5	176.6	JB705	187.3	96.8	253.2	194.5 1	52.4	1 ¹ / ₈ -7 UNC	108.0	HM133444/ HM133416XD	910	1 890	0.26	2.55	3.80	2.50	51.6 16.3
r	0 /2×12	JB1205P	157.150	157.264 157.239 252.412	177.800	184.150	191.313 191.262	273.0	134.9	163.5	46.0	36.7	172.8	176.6	JB705	187.3	96.8	253.2	194.5 1	52.4	1 ¹ / ₈ -7 UNC	108.0	HM133444/ HM133416XD	910	1 890	0.26	2.55	3.80	2.50	52.4 16.3
G	7 ×12	JB1206P	177.787	177.902 177.876 276.225	180.975	185.738	203.251 203.200	269.9	130.2	150.8	58.7	46.0	163.5	180.1	JB706 ²⁾	189.7	181.0		279.4 1	68.3	1 ¹ / ₄ -7 UNC	117.5	HM136948/ HM136916XD	1 080	2 220	0.26	2.55	3.80	2.50	59.2 23
_	110	JB558	110	110.076 110.054 175	125	130	155	206	105	135	30	30	135	136.4	JB558	134	70	175	135 1	10	M22	75	JT9	481	972	0.26	2.55	3.80	2.50	22.0 5.6
_	110	JB1486	110	110.059 110.037 205	130	140	150.068 150.043	—	85	105	53	43	115	118.4	_	_	—	—		_	M22	75	JT13	743	1 220	0.26	2.55	3.80	2.50	27.3 —
_	120	JB613	120	120.076 120.054 195	136	142	155	217	113	135	30	30	135	147.5	JB613	146	74.5	196	142.5 1	18	M22	75	JT10	626	1 200	0.26	2.55	3.80	2.50	27.0 6.2
_	120	JB1450	120	120.059 120.037 220	155	155	150.068 150.043	—	125	100	55	35	120	164.4		_	—	_		_	M22	75	JT12	907	1 670	0.26	2.55	3.80	2.50	36.6 —
	130	JB633	130	130.076 130.054 208	146	152	165	227	139	139	26	26	139	149.2	JB633 ²⁾	156	110	255	232 1	30	M22	89	JT11	641	1 270	0.26	2.55	3.80	2.50	30.0 14.3

[Notes] 1) Upper figures : max. value ; lower : min.value

2) JB706 and JB633 indicate the specifications of wide adapters. Others indicate narrow adapters (shown in figures above).

Linear ball bearings

	 Ball complement
	bore diameter (mm)
Linear ball bearings have an outer cylinder and a	SDM series 6-120
cage with three or more elliptic raceways inside.	SDMF, SDMK series 6 – 80
Balls are aligned on these raceways.	SDE series 5 – 80

Koyo

Flanged type

Can be fit quickly, and helps make equipment smaller and lighter in weight. Helps reduce cost.

Sealed type

One or both side(s) is/are sealed with special synthetic rubber so that foreign material cannot enter the bearing while the grease is kept from leaking. This sealing can be provided on all bearings of the standard, clearance adjustable, open, and flanged types.

Bearir	ig numbe	ering sys	tem									
	1 35		AJ									
Series code	Ball complement bore diameter number	Seal code	Shape code	Material code	Tolerance code							
Seri	es code	SDM : metr SDMF : metr SDMK : metr SDE : metr SDB : inch	ic series (fla ic series (fla ic series (p	anged type)	n europe)							
Ball comple- ment bore	Metric series	35 : ball com	plement bo	re diameter 3	85 mm							
diameter number	Inch series	4 : ball complement bore diameter 4/16 = 1/4 inch										
Se	al code		: both side : single side : not seale	le sealed								
Sha	ipe code		: standard : clearance : open type	e adjustable i	type							
Material	Outer cylinder and balls	Not specified	: high carb	on chrome be	earing steel							
code	Cage	Not specified : cold rolled steel sheet MG : synthetic resin										
Toler	ance code	Not specified:upper-class P:precision-class										

■ Linear ball bearing service life

Linear ball bearing service life refers to the distance that the bearing travels until the outer cylinder, balls or shaft become damaged because of rolling contact fatigue from repeated stress.

The basic dynamic load rating refers to the magnitude of a constant load which makes a bearing's service life end after it travels a distance of 50

Ball row arrangement and load rating

The basic load ratings given in the specification table are those measured when a load is applied directly above a ball row (Q_1) . When the load is applied between two ball rows, the load ratings become larger (Q₂). Table 2 lists the ratios of Q_2 ratings to Q_1 ratings.

of 50 km. The linear ball bearing ser			Tab	0 2	arrangement and arison of load rat	ings
basic dynamic load rating bea below :	ar the relation	on shown	Number of ball rows	When a load is applied directly above a row (Q_1)	When a load is applied between two rows $\left(Q_{2} ight)$	$\begin{array}{c} \text{Ratios} \\ \text{of } Q_2 \\ \text{to } Q_1 \end{array}$
$L = 50 \left(\frac{C}{P}\right)^3$						
where : L : service life km P : radial load on the bearin C : bearing basic dynamic l (refer to the specification	oad rating	N N	4			1.414
Shaft surface hardness is closely related to running performance. In general, it is best for the hardness to	Tabla 1	Hardness coefficients	5			1.463
be 60 thru 64 HRC. If the hardness is 60	Shaft hardness HRC	Hardness coefficient $f_{\rm H}$			36°	
HRC or lower, the basic dynamic load rating (C)	60	1			AT TO	
should be corrected by	59	0.97	6	A		1 000
multiplying it by the appro- priate hardness coefficient	57	0.88	6		M i M	1.280
selected from Table 1.	55	0.76		THE P	Ve v	
	53	0.64			30°	
	51	0.52	[Note]	When there are only	three rows, $\mathrm{Q}_2/\mathrm{Q}_1$ =	= 1

	'	Table 4	4 SDM	[series	linea	r ball k	pearing	g toler:	ances		Un	it : µm	
Bearing number			ment bo ") deviat		Out		Overal	l length	<i>B</i> dev	viotion	Eccentricity		
SDM	Preci class		Upp clas	oer- ss		viation	(<i>L</i>) de	viation	D dev	nation	Precision- class	Upper- class	
	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	ma	ax.	
6, 8	0	- 6	0	- 9	0	- 11	0	- 200	0	- 200	8	12	
10, 12, 13, 16	0	- 6	0	- 9	0	- 13	0	- 200	0	- 200	8	12	
20	0	- 7	0	- 10	0	- 16	0	-200	0	-200	10	15	
25, 30	0	- 7	0	- 10	0	- 16	0	- 300	0	- 300	10	15	
35, 38, 40, 50	0	- 8	0	- 12	0	- 19	0	- 300	0	-300	12	20	
60	0	- 9	0	- 15	0	- 22	0	-300	0	-300	17	25	
80	0	- 9	0	- 15	0	- 22	0	- 400	0	- 400	17	25	
100, 120	0	- 10	0	- 20	0	- 25	0	- 400	0	- 400	20	30	

Recommended fits for linear ball bearings

Table 3 lists the recommended fits for linear ball bearings.

When a bearing is mounted with a housing, the normal clearance fit should be selected. When the application is highly precise or special, the transition fit should be selected.

For the clearance adjustable and open type bearings, it is best for the shaft diameter to be smaller than the ball complement bore diameter lower deviation, and for the housing bore diameter to be larger than the bearing outside diameter upper deviation.

Table 3 Linear ball bearing recommended fits											
Bearing	Tolerance	Shaft toler	ance class	Housing bore t	olerance class						
Dearing	TOIErance	Normal clearance	Close clearance	Clearance fit	Transition fit						
SDM, SDB	Upper-class	f 6, g 6	h 6	H 7	JS 7 (J 7)						
SDIVI, SDB	Precision-class	f 5, g 5	h 5	H 6	JS 6 (J 6)						
SDE	-	h 6	js 6 (j 6)	Η 7	JS 7 (J 7)						

Linear ball bearing clearance

Linear ball bearings provide linear motion smoothly with little wear when the clearance is 0.003 to 0.012 mm. However, when clearance increase due to wear is considered critical, e.g. when the bearing is provided to press die sets. precision machine tools or precision testers; when the bearing becomes unable to slide because of moment; or when smooth bearing operation is needed with no clearance provided. the clearance is adjusted to zero or negative.

In such a case, shafts generally need to be mounted by "selective fitting."

They should be handled carefully so as not to be preloaded excessively.

As Fig. 1 shows, the clearance of bearings with numbers SDM 6 thru SDM 10 can be easily set to

zero or negative, by adjusting one of the three ball rows with a bolt.

Consult with JTEKT on the gauging of linear ball bearings and shafts which should be mounted by "selective fitting," as well as on the whole design of shafts.

Fig. 1 Clearance adjustment

Table 5 SDE series linear ball bearing tolerancesUnit : μm												
Bearing number SDE	Ball comp bore diam deviation		Outsid diame deviat	ter (D)	Overal (L) dev	l length riation	B dev	viation	Eccentricity			
	upper	lower	upper	lower	upper	lower	upper	lower	max.			
5, 8	+ 8	0	0	- 8	0	- 200	0	- 200	12			
10, 12	+ 8	0	0	- 9	0	- 200	0	- 200	12			
16	+ 9	– 1	0	- 9	0	- 200	0	- 200	12			
20	+ 9	- 1	0	- 11	0	- 200	0	- 200	15			
25, 30	+ 11	– 1	0	- 11	0	- 300	0	- 300	15			
40, 50	+ 13	- 2	0	- 13	0	- 300	0	- 300	17			
60	+ 13	- 2	0	- 15	0 - 400		0	- 400	20			
80	+ 16	- 4	0	- 15	0	- 400	0	20				

Linear ball bearings -

SDM, SDE

Open type (...OP)

SDMMD

Koyo

Shaft dia. (mm)				Dir	nensi (mm)						Bearing No. ¹⁾			. of ball ro		Basic loa	0	Mass
d	$F_{ m w}$	D	L	В	W	D_1	h	h_1	θ	Standard type	Clearance adjustable type	Open type	Standard type	Clearanece adjustable type	Open type	$C_{\rm r}$	$C_{0\mathrm{r}}$	(g) Standard type
5	5	12	22	14.5	1.1	11.5		—	_	SDE5	—	—	3	—	—	108	183	10
6	6 6	12 12	19 19	13.5 13.5		11.5 11.5			_	SDM6 SDM6MG	SDM6AJ SDM6AJMG	_	3 4	3 4	_	108 108	186 186	7 6
8	8 8 8	15 15 15	17 17 24	11.5 11.5 17.5	1.1	14.3 14.3 14.3	1			SDM8S SDM8SMG SDM8	SDM8SAJ SDM8SAJMG SDM8AJ		3 4 3	3 4 3		96 96 122	160 160 223	10 9 14
	8 8 8	15 16 16	24 25 25	17.5 16.5 16.5	1.1	14.3 15.2 15.2	1		 	SDM8MG SDE8 SDE8MG	SDM8AJMG SDE8AJ SDE8AJMG	 	4 3 4	4 3 4		134 122 134	255 223 255	13 20 18
10	10 10 10 10	19 19 19 19	29 29 29 29	22 22 22 22 22	1.3 1.3 1.3 1.3	18 18 18 18	1 1 1	6.8 — 6.8	80° — 80°	SDM10 SDM10MG SDE10 SDE10MG	SDM10AJ SDM8AJMG SDE10AJ SDE10AJMG	SDM100P SDE100P	4 4 4 4	4 4 4	3 3	259 259 259 259	424 424 424 424	27 23 27 23
12	12 12 12 12 12	21 21 22 22	30 30 32 32	23 23 22.9 22.9	1.3 1.3 1.3	20 20 21 21	1.5 1.5 1.5 1.5	8 7.5	80° — 78°	SDM12 SDM12MG SDE12 SDE12MG	SDM12AJ SDM12AJMG SDE12AJ SDM12AJMG	SDM12OP SDE12OP 	4 4 4 4	4 4 4 4	3 3	260 260 289 289	431 431 503 503	31 27 42 37
13	13 13	23 23	32 32	23 23	1.3 1.3	22 22	1.5 1.5	9	80°	SDM13 SDM13MG	SDM13AJ SDM13AJMG	SDM130P	4 4	4 4	3	289 289	506 506	41 35
16	16 16 16 16	26 26 28 28	36 36 37 37	24.9 24.9 26.5 26.5	1.3 1.6	24.9 24.9 27 27	1.5 1.5 1.5 1.5	10 11	78° — 80° —	SDE16 SDE16MG SDM16 SDM16MG	SDE16AJ SDE16AJMG SDM16AJ SDM16AJMG	SDE160P SDM160P 	4 4 4 4	4 4 4 4	3 3	319 319 480 480	587 587 766 766	53 47 69 59
20	20 20	32 32	42 42	30.5 30.5	1.6		1.5	11 	60°	SDM20 SDM20MG	SDM20AJ SDM20AJMG	SDM200P	5 5	5 5	4	590 590	1 010 1 010	92 79

[Note] 1) JTEKT also manufactures sealed types, which are identified by U (one side sealed) or UU (both sides sealed) after ball complement bore diameter number.

Linear ball bearings -

Open type (...OP)

CDM	MD
50101	וווע

Koyo

Shaft dia. (mm)					nensio (mm)	ons					Bearing $No.^{1)}$		No	. of ball ro	ws	Basic loa		(Refer.) Mass
d	F_{w}	D	L	В	W	D_1	h	h_1	θ	Standard type	Clearance adjustable type	Open type	Standard type	Clearanece adjustable type	Open type	$C_{ m r}$	$C_{0\mathrm{r}}$	(g) Standard type
20	20 20	32 32	45 45	31.5 31.5		30.3 30.3	2 2	10	60° —	SDE20 SDE20MG	SDE20AJ SDE20AJMG	SDE200P	5 5	5 5	4	590 590	1 010 1 010	96 88
25	25 25 25 25	40 40 40 40	58 58 59 59	44.1 44.1 41 41	1.85 1.85 1.85 1.85	37.5 37.5 38 38	2 2 2 2	12.5 12 	60° — 60°	SDE25 SDE25MG SDM25 SDM25MG	SDE25AJ SDE25AJMG SDM25AJ SDM25AJMG	SDE250P SDM250P 	5 5 5 5	5 5 5 5	4	1 130 1 130 1 130 1 130 1 130	2 030 2 030 2 030 2 030 2 030	190 170 200 170
30	30 30 30 30	45 45 47 47	64 64 68 68	44.5 52.1	1.85 1.85 1.85 1.85	43 43 44.5 44.5	2.5 2.5 2 2	15 12.5	50° — 50°	SDM30 SDM30MG SDE30 SDE30MG	SDM30AJ SDM30AJMG SDE30AJ SDE30AJMG	SDM300P SDE300P 	6 6 6	6 6 6	5	1 470 1 470 1 470 1 470 1 470	2 770 2 770 2 770 2 770 2 770	250 220 340 320
35	35 35	52 52	70 70	49.5 49.5		49 49	2.5 2.5	17	50°	SDM35 SDM35MG	SDM35AJ SDM35AJMG	SDM35OP	6 6	6 6	5	1 580 1 580	3 070 3 070	370 330
38	38	57	76	58.5	2.1	54.5	3	18	50°	SDM38	SDM38AJ	SDM380P	6	6	5	2 020	3 600	490
40	40 40 40 40	60 60 62 62	80 80 80 80			57 57 59 59	3 3 3 3	20 16.8 	50° — 50°	SDM40 SDM40MG SDE40 SDE40MG	SDM40AJ SDM40AJMG SDE40AJ SDE40AJMG	SDM400P SDE400P 	6 6 6	6 6 6	5	2 180 2 180 2 180 2 180 2 180	4 010 4 010 4 010 4 010	590 530 710 650
50	50 50	75 80	100 100	77.6 74	2.65 2.6	72 76.5	3 3	21 25	50° 50°	SDE50 SDM50	SDE50AJ SDM50AJ	SDE500P SDM500P	6 6	6 6	5 5	4 020 4 420	7 110 7 150	1 050 1 500
60	60 60	90 90	110 125	85 101.7	3.15 3.15	86.5 86.5	3 3	30 27.2	50° 54°	SDM60 SDE60	SDM60AJ SDE60AJ	SDM600P SDE600P	6 6	6 6	5 5	5 170 6 470	9 030 11 100	1 850 1 900
80	80 80	120 120		105.5 133.7			3 3	40 36.3	50° 54°	SDM80 SDE80	SDM80AJ SDE80AJ	SDM800P SDE800P	6 6	6 6	5 5	8 180 8 890	12 800 14 500	4 200 4 800

[Note] 1) JTEKT also manufactures sealed types, which are identified by U (one side sealed) or UU (both sides sealed) after ball complement bore diameter number.

Linear ball bearings -

d **100** ~ **120** mm

SDMM	D
------	---

Koyo

	ft dia. nm)					nensio (mm)						Bearing No. ¹⁾		No	. of ball ro	WS	Basic loa	0	(Refer.) Mass
	d	$F_{ m w}$	D	L	В	W	D_1	h	h_1	θ	Standard type	Clearance adjustable type	Open type	Standard type	Clearanece adjustable type	Open type	$C_{ m r}$	$C_{0\mathrm{r}}$	(g) Standard type
10	00	100	150	175	125.5	4.15	145	3	50	50°	SDM100	SDM100AJ	SDM1000P	6	6	5	12 300	19 700	8 200
12	20	120	180	200	158.6	4.15	175	4	85	80°	SDM120	SDM120AJ	SDM1200P	8	8	6	22 300	39 100	15 500

[Note] 1) JTEKT also manufactures sealed types, which are identified by U (one side sealed) or UU (both sides sealed) after ball complement bore diameter number.

Linear ball bearings flanged type

d 6 ~ 50 mm

SDMF, SDMK

Round-flanged

Square-flanged

Round-flanged

Square-flanged

Shaft dia. (mm)				(mm)				Bolt size	Bearin Round-flanged	ng No. Square-flanged	No. of ball rows	Basic loa (N	1)	(Refer.) Mass (g)
d	$F_{ m w}$	D	L	D_{f}	Κ	t	Р		type	type	builtions	$C_{ m r}$	$C_{0\mathrm{r}}$	Round-flanged type
6	6 6	12 12	19 19	28 28	22 22	5 5	20 20	M3 M3	SDMF6 SDMF6MG	SDMK6 SDMK6MG	3 4	108 108	186 186	23 22
8	8 8	15 15	24 24	32 32	25 25	5 5	24 24	M3 M3	SDMF8 SDMF8MG	SDMK8 SDMK8MG	3 4	122 134	223 255	35 34
10	10 10	19 19	29 29	40 40	30 30	6 6	29 29	M4 M4	SDMF10 SDMF10MG	SDMK10 SDMK10MG	4 4	259 259	424 424	65 61
12	12 12	21 21	30 30	42 42	32 32	6 6	32 32	M4 M4	SDMF12 SDMF12MG	SDMK12 SDMK12MG	4 4	260 260	431 431	72 68
13	13 13	23 23	32 32	43 43	34 34	6 6	33 33	M4 M4	SDMF13 SDMF13MG	SDMK13 SDMK13MG	4 4	289 289	506 506	83 77
16	16 16	28 28	37 37	48 48	37 37	6 6	38 38	M4 M4	SDMF16 SDMF16MG	SDMK16 SDMK16MG	4 4	480 480	766 766	120 110
20	20 20	32 32	42 42	54 54	42 42	8 8	43 43	M5 M5	SDMF20 SDMF20MG	SDMK20 SDMK20MG	5 5	590 590	1 010 1 010	170 160
25	25 25	40 40	59 59	62 62	50 50	8 8	51 51	M5 M5	SDMF25 SDMF25MG	SDMK25 SDMK25MG	5 5	1 130 1 130	2 030 2 030	290 270
30	30 30	45 45	64 64	74 74	58 58	10 10	60 60	M6 M6	SDMF30 SDMF30MG	SDMK30 SDMK30MG	6 6	1 470 1 470	2 770 2 770	440 410
35	35 35	52 52	70 70	82 82	64 64	10 10	67 67	M6 M6	SDMF35 SDMF35MG	SDMK35 SDMK35MG	6 6	1 580 1 580	3 070 3 070	610 560
40	40 40	60 60	80 80	96 96	75 75	13 13	78 78	M8 M8	SDMF40 SDMF40MG	SDMK40 SDMK40MG	6 6	2 180 2 180	4 010 4 010	1 000 930
50	50	80	100	116	92	13	98	M8	SDMF50	SDMK50	6	4 420	7 150	2 000

Linear ball bearings flanged type

d **60** ~ **80 mm**

SDMF, SDMK

Round-flanged

Square-flanged

SDMF...MG SDMK...MG (Synthetic resin)

Round-flanged

Square-flanged

Shaft dia.			D	imensio	ns			Bolt	Beari	ng No.	No. of		ad ratings	(Refer.) Mass
(mm) d	$F_{ m w}$	D	L	(mm) $D_{\rm f}$	K	t	Р	size	Round-flanged type	Square-flanged type	ball rows	C_r	C_{0r}	(g) Round-flanged type
60	60	90	110	134	106	18	112	M10	SDMF60	SDMK60	6	5 170	9 030	2 800
80	80	120	140	164	136	18	142	M10	SDMF80	SDMK80	6	8 180	12 800	5 400

Locknuts, lockwashers & lock plates

Bearings are often fit to a shaft with an adapter sleeve, locknut, lockwasher or lock plate.

These accessories make it easy to attach and remove bearings.

They are standardized in JIS.

- Locknuts are standardized such that they can be used with either adapter sleeves, withdrawal sleeves or shafts.
- \bullet Lockwashers and lock plates are used as locks on locknuts.

Lockwashers are used with bearings of bore diameter number 40 or lower. Lock plates are used with those of bore diameter 44 or higher.

Locknuts for adapter sleeves and shafts AN02 ~ 25

Locknut

No.

AN 23

24

25

M115×2

M120×2

M125×2

30°

4				/							
Thread size $^{1)}$			Star	ndard d (m:		sions			(Refer.) Mass	adapter	Applicable ³⁾ lockwasher
G	d_2	d_1	g	d_6	b	h	В	r_1 max.	(kg)	sleeve (bore No.)	No.
M 15×1	25	21	21	15.5	4	2	5	0.4	0.010	_	AW 02
M 17×1	28	24	24	17.5	4	2	5	0.4	0.013		03
M 20×1	32	26	28	20.5	4	2	6	0.4	0.019	04	04
M 25×1.5	38	32	34	25.8	5	2	7	0.4	0.025	05	AW 05
M 30×1.5	45	38	41	30.8	5	2	7	0.4	0.043	06	06
M 35×1.5	52	44	48	35.8	5	2	8	0.4	0.053	07	07
M 40×1.5	58	50	53	40.8	6	2.5	9	0.5	0.085	08	AW 08
M 45×1.5	65	56	60	45.8	6	2.5	10	0.5	0.119	09	09
M 50×1.5	70	61	65	50.8	6	2.5	11	0.5	0.148	10	10
M 55×2	75	67	69	56	7	3	11	0.5	0.158	11	AW 11
M 60×2	80	73	74	61	7	3	11	0.5	0.174	12	12
M 65×2	85	79	79	66	7	3	12	0.5	0.203	13	13
M 70×2	92	85	85	71	8	3.5	12	0.5	0.242	14	AW 14
M 75×2	98	90	91	76	8	3.5	13	0.5	0.287	15	15
M 80×2	105	95	98	81	8	3.5	15	0.6	0.397	16	16
M 85×2	110	102	103	86	8	3.5	16	0.6	0.451	17	AW 17
M 90×2	120	108	112	91	10	4	16	0.6	0.556	18	18
M 95×2	125	113	117	96	10	4	17	0.6	0.658	19	19
M100×2	130	120	122	101	10	4	18	0.6	0.698	20	AW 20
M105×2	140	126	130	106	12	5	18	0.7	0.845	21	21
M110×2	145	133	135	111	12	5	19	0.7	0.965	22	22

AN $26 \sim 40$ ANL24 \sim 40

Locknut No.	Thread size ¹⁾			Star	ndard d		sions			(Refer.) Mass	Applicable ²⁾ adapter	lockwasher
110.	G	d_2	d_1	g	d_6	b	h	В	<i>r</i> 1 тах.	(kg)	sleeve (bore No.)	No.
AN 26	M130×2	165	149	155	131	12	5	21	0.7	1.25	26	AW 26
AN 27	M135×2	175	160	163	136	14	6	22	0.7	1.55	_	AW 27
28	M140×2	180	160	168	141	14	6	22	0.7	1.56	28	28
AN 29	M145×2	190	172	178	146	14	6	24	0.7	1.80	—	AW 29
30	M150×2	195	171	183	151	14	6	24	0.7	2.03	30	30
31	M155×3	200	182	186	156.5	16	7	25	0.7	2.30	—	_
AN 32	M160×3	210	182	196	161.5	16	7	25	0.7	2.59	32	AW 32
33	M165×3	210	193	196	166.5	16	7	26	0.7	2.70	_	—
34	M170×3	220	193	206	171.5	16	7	26	0.7	2.80	34	34
AN 36	M180×3	230	203	214	181.5	18	8	27	0.7	3.07	36	AW 36
38	M190×3	240	214	224	191.5	18	8	28	0.7	3.39	38	38
40	M200×3	250	226	234	201.5	18	8	29	0.7	3.69	40	40
ANL24	M120×2	145	133	135	121	12	5	20	0.7	0.78	24	AWL24
26	M130×2	155	143	145	131	12	5	21	0.7	0.88	26	26
28	M140×2	165	151	153	141	14	6	22	0.7	0.99	28	28
ANL30	M150×2	180	164	168	151	14	6	24	0.7	1.33	30	AWL30
32	M160×3	190	174	176	161.5	16	7	25	0.7	1.56	32	32
34	M170×3	200	184	186	171.5	16	7	26	0.7	1.72	34	34
ANL36	M180×3	210	192	194	181.5	18	8	27	0.7	1.95	36	AWL36
38	M190×3	220	202	204	191.5	18	8	28	0.7	2.08	38	38
40	M200×3	240	218	224	201.5	18	8	29	0.7	2.98	40	40

140 116

145 121

160 148 150 126

150 137

155 138

[Notes] 1) Basic profile and dimension of screw thread are in accordance with JIS B 0205.
2) Applicable to adapter sleeve series A31, A2, A3 and A23.
3) Applicable to lockwashers with flat inner tongue.
[Remark] Locknut series AN is used for adapter assembly series H2, H3, H23 and H31, while locknut series ANL is used for adapter assembly series H2, H3, H23 and H31, while locknut series ANL is used for adapter assembly series H2, H3, H23 and H31, while locknut series ANL is used for adapter assembly series H2, H3, H23 and H31, while locknut series ANL is used for adapter assembly series H2, H3, H23 and H31, while locknut series ANL is used for adapter assembly series H30.

12 5

12

12 5

5

0.7

0.7

0.7

19

20

21

1.01

1.08

1.19

24

AW 23

24

25

Locknuts for adapter sleeves and shafts

AN $44 \sim 100$

Locknut No.	Thread ¹⁾ size	_			dard di (mn	n)			r_1		Tapped hole (mm) S		(Refer.) Mass	Applicable adapter sleeve ³⁾	Applicable lock plate No.
	G	d_2	d_1	g	d_6	b	h	В	max.	l	Thread size	d_{p}	(kg)	(bore No.)	
AN 44	Tr220×4	280	250	260	222	20	10	32	0.8	15	M 8×1.25	238	5.16	44	AL 44
48 52	Tr240×4 Tr260×4	300	270 300	280 306	242 262	20 24	10 12	34 36	0.8 0.8	15	M 8×1.25 M10×1.5	258 281	5.91 7.99	48 52	44 52
52	1120U×4	330	300	306	202	24	12	30	0.8	18	IVI I U×1.5	201	7.99	52	52
AN 56	Tr280×4	350	320	326	282	24	12	38	0.8	18	M10×1.5	301	8.99	56	AL 52
60	Tr300×4	380	340	356	302 000 5	24	12	40	0.8	18	M10×1.5	326	11.7	60	60
64	Tr320×5	400	360	376	322.5	24	12	42	0.8	18	M10×1.5	345	13.0	64	64
AN 68	Tr340×5	440	400	410	342.5	28	15	55	1	21	M12×1.75	372	23.0	68	AL 68
72	Tr360×5	460	420	430	362.5	28	15	58	1	21	M12×1.75	392	25.0	72	68
76	Tr380×5	490	450	454	382.5	32	18	60	1	21	M12×1.75	414	30.8	76	76
AN 80	Tr400×5	520	470	484	402.5	32	18	62	1	27	M16×2	439	36.7	80	AL 80
84	Tr420×5	540	490	504	422.5	32	18	70	1	27	M16×2	459	43.3	84	80
88	Tr440×5	560	510	520	442.5	36	20	70	1	27	M16×2	477	45.1	88	88
AN 92	Tr460×5	580	540	540	462.5	36	20	75	1	27	M16×2	497	50.2	92	AL 88
96	Tr480×5	620	560	580	482.5	36	20	75	1	27	M16×2	527	62.0	96	96
100	Tr500×5	630	580	584	502.5	40	23	80	1	27	M16×2	539	63.1	/500	100
ANL44	Tr220×4	260	242	242	222	20	9	30	0.8	12	M 6×1	229	3.09	44	ALL44
48 52	Tr240×4 Tr260×4	290 310	270 290	270 290	242 262	20 20	10 10	34 34	0.8 0.8	15 15	M 8×1.25 M 8×1.25	253 273	5.16 5.67	48 52	48 48
JZ	11200×4	310	290	290	202	20	10	34	0.0	10	IVI 0×1.25	213	5.07	52	40
ANL56	Tr280×4	330	310	310	282	24	10	38	0.8	15	M 8×1.25	293	6.78	56	ALL56
60	Tr300×4	360	336	336	302	24	12	42	0.8	15	M 8×1.25	316	9.62	60	60
64	Tr320×5	380	356	356	322.5	24	12	42	0.8	15	M 8×1.25	335	9.94	64	64
ANL68	Tr340×5	400	376	376	342.5	24	12	45	1	15	M 8×1.25	355	11.7	68	ALL64
72	Tr360×5	420	394	394	362.5	28	13	45	1	15	M 8×1.25	374	12.0	72	72
76	Tr380×5	450	422	422	382.5	28	14	48	1	18	M10×1.5	398	14.9	76	76

[Notes] 1) Basic profile and dimension of screw thread are in accordance with JIS B 0216.
2) Basic profile and dimension of bore with internal thread are in accordance with JIS B 0205.
3) Applicable to adapter sleeve series A31, A32, A23 and A30.

ANL $80 \sim 100$

Locknut No.	$\begin{array}{c} \textbf{Thread}^{1)} \\ \textbf{size} \end{array}$			Stan	dard di (mn		sions		11.	-	Tapped hole ⁵ (mm) S	2)	Mass	Applicable adapter	Applicable lock plate No.
	G	d_2	d_1	g	d_6	b	h	В	<i>r</i> ₁ max.	l	Thread size	d_{p}	(kg)	sleeve ³⁾ (bore No.)	
ANL80	Tr400×5	470	442	442	402.5	28	14	52	1	18	M10×1.5	418	16.9	80	ALL76
84	Tr420×5	490	462	462	422.5	32	14	52	1	18	M10×1.5	438	17.4	84	84
88	Tr440×5	520	490	490	442.5	32	15	60	1	21	M12×1.75	462	26.2	88	88
ANL92	Tr460×5	540	510	510	462.5	32	15	60	1	21	M12×1.75	482	26.9	92	ALL88
96	Tr480×5	560	530	530	482.5	36	15	60	1	21	M12×1.75	502	28.3	96	96
100	Tr500×5	580	550	550	502.5	36	15	68	1	21	M12×1.75	522	33.6	/500	96

Locknuts ______ for withdrawal sleeves

HN 42 ~ 110 HNL 41 ~ 64 $\xrightarrow{g}{h}$ $\xrightarrow{h}{f_1}$ $\xrightarrow{g}{g}$ \xrightarrow{g} $\xrightarrow{g}{g}$ $\xrightarrow{g}{g}$ \xrightarrow{g} $\xrightarrow{g}{g}$ \xrightarrow{g} \xrightarrow{g}

$\begin{array}{c c} B \\ \hline & 30^{\circ} \\ \hline & \phi \\ \phi \\ d_6 \\ \phi \\ d_1 \\ \hline \end{array}$
--

Lockn No.		hread ¹⁾ size		S	tanda	ard din (mm)		ions			(Refer.) Mass	14	lithdrowal	sleeve No.	
		G	d_2	d_1	g	d_6	b	h	В	r_1 max.	(kg)	, vi	nunurawai	Sieeve Ivo.	
HN 4		r210×4	270	238	250	212	20	10	30	0.8	4.75	AH3138	AH2238	AH3238	AH2338
4		r220×4	280	250	260	222	20	10	32	0.8	5.35	3140	2240	3240	2340
4	8 T	r240×4	300	270	280	242	20	10	34	0.8	6.20	3144	2244	_	2344
HN 5	2 T	r260×4	330	300	306	262	24	12	36	0.8	8.55	AH3148	AH2248		AH2348
5	8 T	r290×4	370	330	346	292	24	12	40	0.8	11.8	3152	2252	—	2352
6	2 T	r310×5	390	350	366	312.5	24	12	42	0.8	13.4	3156	2256		2356
HN 6	6 T	r330×5	420	380	390	332.5	28	15	52	1	20.4	AH3160	AH2260	AH3260	_
7	' 0 T	r350×5	450	410	420	352.5	28	15	55	1	25.2	3164	2264	3264	—
7	4 T	r370×5	470	430	440	372.5	28	15	58	1	28.2	3168	_	3268	—
HN 8	0 Т	r400×5	520	470	484	402.5	32	18	62	1	40.0	AH3172	_	AH3272	
8	4 T	r420×5	540	490	504	422.5	32	18	70	1	46.9	3176	—	3276	
8	8 T	r440×5	560	510	520	442.5	36	20	70	1	48.5	3180	_	3280	—
HN 9	2 T	r460×5	580	540	540	462.5	36	20	75	1	55.0	AH3184	_	AH3284	_
9	6 T	r480×5	620	560	580	482.5	36	20	75	1	67.0	X3188	—	X3288	—
10	2 T	r510×6	650	590	604	513	40	23	80	1	75.0	X3192	_	X3292	_
HN 10	6 T	r530×6	670	610	624	533	40	23	80	1	78.0	AHX3196	_	AHX3296	_
11	0 T	r550×6	700	640	654	553	40	23	80	1	92.5	X31/500	—	X32/500	—
HNL 4		r205×4	250	232	234	207	18	8	30	0.8	3.43	AH3038	AH238	—	—
		r215×4	260	242	242	217	20	9	30	0.8	3.72	3040	240	—	—
4	7 T	r235×4	280	262	262	237	20	9	34	0.8	4.60	3044	244		
HNL 5		r260×4	310	290	290	262	20	10	34	0.8	5.80	AH3048	AH248		_
5		r280×4	330	310	310	282	24	10	38	0.8	6.72	3052	252	—	
6	0 T	r300×4	360	336	336	302	24	12	42	0.8	9.60	3056	256		
HNL 6	4 T	r320×5	380	356	356	322.5	24	12	42	1	10.3	AH3060	_		

[Note] 1) Basic profile and dimension of screw thread are in accordance with JIS B 0216. [Remark] Number of slots on nut may sometimes exceed that shown in the figure.

Locknut No.	Thread ¹⁾ size		S	Standa	ard din (mm)		ions			(Refer.) Mass		/ithdrawal	sleeve No.	
	G	d_2	d_1	g	d_6	b	h	В	<i>r</i> ₁ max.	(kg)				
HNL 69 73	Tr345×5 Tr365×5	410 430	384 404	384 404	347.5 367.5	28 28	13 13	45 48	1 1	11.5 14.2	3064 3068			_
HNL 77 82 86	Tr385×5 Tr410×5 Tr430×5	450 480 500	422 452 472	422 452 472	387.5 412.5 432.5	32	14 14 14	48 52 52	1 1 1	15.0 19.0 19.8	AH3072 3076 3080			
HNL 90 94 98	Tr450×5 Tr470×5 Tr490×5	520 540 580	490 510 550	490 510 550	452.5 472.5 492.5		15 15 15	60 60 60	1 1 1	23.8 25.0 34.0	AH3084 X3088 X3092			
HNL104 108	Tr520×6 Tr540×6	600 630	570 590	570 590	523 543	36 40	15 20	68 68	1 1	37.0 43.5	AHX3096 X30/500			

Koyo

C 169

Lockwashers

AW 00 \sim 24(X)

With bent inner tongue

With flat inner tongue

	Loc	kwas	sher N	0.			St	andar	d dim		ns			No. of	(Refer.) Mass	Applicable adapter	Applic lock	
	With b inner to		With inner t		d_3	М	f_1	B_1	f	d_4	d_5	r_2	B_2	tooth	(kg/100pcs.)	sleeve (bore No.)	No).
	AW (AW	00X	10	8.5	3	1	3	13	21	0.5	2	9	0.131	—	AN	00
		01		01X	12	10.5	3	1	3	17	25	0.5	2	9	0.192	_		01
	(02		02X	15	13.5	4	1	4	21	28	1	2.5	13	0.253			02
	AW (03	AW	03X	17	15.5	4	1	4	24	32	1	2.5	13	0.313	_	AN	03
	(04		04X	20	18.5	4	1	4	26	36	1	2.5	13	0.350	04		04
	(05		05X	25	23	5	1.2	5	32	42	1	2.5	13	0.640	05		05
ĺ	AW (06	AW	06X	30	27.5	5	1.2	5	38	49	1	2.5	13	0.780	06	AN	06
	(07		07X	35	32.5	6	1.2	5	44	57	1	2.5	15	1.04	07		07
	(80		08X	40	37.5	6	1.2	6	50	62	1	2.5	15	1.23	08		08
	AW (09	AW	09X	45	42.5	6	1.2	6	56	69	1	2.5	17	1.52	09	AN	09
		10		10X	50	47.5	6	1.2	6	61	74	1	2.5	17	1.60	10		10
		11		11X	55	52.5	8	1.2	7	67	81	1	4	17	1.96	11		11
	AW :	12	AW	12X	60	57.5	8	1.5	7	73	86	1.2	4	17	2.53	12	AN	12
	:	13		13X	65	62.5	8	1.5	7	79	92	1.2	4	19	2.90	13		13
		14		14X	70	66.5	8	1.5	8	85	98	1.2	4	19	3.34	14		14
	AW :	15	AW	15X	75	71.5	8	1.5	8	90	104	1.2	4	19	3.56	15	AN	15
	:	16		16X	80	76.5	10	1.8	8	95	112	1.2	4	19	4.64	16		16
	:	17		17X	85	81.5	10	1.8	8	102	119	1.2	4	19	5.24	17		17
	AW :	18	AW	18X	90	86.5	10	1.8	10	108	126	1.2	4	19	6.23	18	AN	18
	:	19		19X	95	91.5	10	1.8	10	113	133	1.2	4	19	6.70	19		19
	:	20		20X	100	96.5	12	1.8	10	120	142	1.2	6	19	7.65	20		20
	AW 2	21	AW	21X	105	100.5	12	1.8	12	126	145	1.2	6	19	8.26	21	AN	21
	:	22		22X	110	105.5	12	1.8	12	133	154	1.2	6	19	9.40	22		22
	:	23		23X	115	110.5	12	2	12	137	159	1.5	6	19	10.8			23
	AW 2	24	AW	24X	120	115	14	2	12	138	164	1.5	6	19	10.5	24	AN	24

[Remark] 1) AW00~AW40, AW00X~AW40X are applicable to adapter assembly series H31, H2, H3 and H23.
 2) AWL24~AWL40, AWL24X-AWL40X are applied to adapter assembly series H30.
 3) For adapter sleeves with narrow slits, lockwashers with flat inner tongue should be used. Either type of lockwasher can be used for adapter sleeves with wide slits.

AW $25 \sim 40(X)$ AWL24 \sim 40(X)

L	ockwas	sher No.			St	andar	d din (mm)		ns			No. of	(Refer.) Mass	Applicable adapter	Applicable locknut
	i bent tongue	With flat inner tongue	d_3	M	f_1	B_1	f	d_4	d_5	r_2	B_2		(kg/100pcs.)	sleeve (bore No.)	No.
AW	25	AW 25X	125	120	14	2	12	148	170	1.5	6	19	11.8	—	25
	26	26X	130	125	14	2	12	149	175	1.5	6	19	11.3	26	26
AW	27	AW 27X	135	130	14	2	14	160	185	1.5	6	19	14.4	_	AN 27
	28	28X	140	135	16	2	14	160	192	1.5	8	19	14.2	28	28
	29	29X	145	140	16	2	14	172	202	1.5	8	19	16.8	—	29
AW	30	AW 30X	150	145	16	2	14	171	205	1.5	8	19	15.5	30	AN 30
	31	31X	155	147.5	16	2.5	16	182	212	1.5	8	19	20.9	—	31
	32	32X	160	154	18	2.5	16	182	217	1.5	8	19	22.2	32	32
AW	33	AW 33X	165	157.5	18	2.5	16	193	222	1.5	8	19	24.1		AN 33
	34	34X	170	164	18	2.5	16	193	232	1.5	8	19	24.7	34	34
	36	36X	180	174	20	2.5	18	203	242	1.5	8	19	26.8	36	36
AW	38	AW 38X	190	184	20	2.5	18	214	252	1.5	8	19	27.8	38	AN 38
	40	40X	200	194	20	2.5	18	226	262	1.5	8	19	29.3	40	40
AW	L24	AWL24X	120	115	14	2	12	133	155	1.5	6	19	7.70	24	ANL24
	26	26X	130	125	14	2	12	143	165	1.5	6	19	8.70	26	26
	28	28X	140	135	16	2	14	151	175	1.5	8	19	10.9	28	28
AW	L30	AWL30X	150	145	16	2	14	164	190	1.5	8	19	11.3	30	ANL30
	32	32X	160	154	18	2.5	16	174	200	1.5	8	19	16.2	32	32
	34	34X	170	164	18	2.5	16	184	210	1.5	8	19	19.0	34	34
AW	L36	AWL36X	180	174	20	2.5	18	192	220	1.5	8	19	18.0	36	ANL36
	38	38X	190	184	20	2.5	18	202	230	1.5	8	19	20.5	38	38
	40	40X	200	194	20	2.5	18	218	250	1.5	8	19	21.4	40	40

C 172

Lock plates -

 $\begin{array}{ll} \text{AL} \ \ 44 \sim 100 \\ \text{ALL} 44 \sim 96 \end{array}$

 B_3 ϕ d_7 d_7 L_1 L_2 B_4

Lock plate		St		dimensio m)	ns		(Refer.) Mass	Applicable locknut
No.	B_3	B_4	L_2	d_7	L_1	L_3	(kg/100pcs.)	No.
AL 44	4	20	12	9	22.5	30.5	2.60	AN 44,48
52	4	24	12	12	25.5	33.5	3.39	52,56
60	4	24	12	12	30.5	38.5	3.79	60
AL 64	5	24	15	12	31	41	5.35	AN 64
68	5	28	15	14	38	48	6.65	68,72
76	5	32	15	14	40	50	7.96	76
AL 80	5	32	15	18	45	55	8.20	AN 80,84
88	5	36	15	18	43	53	9.00	88,92
96	5	36	15	18	53	63	10.4	96
100	5	40	15	18	45	55	10.5	100
ALL44	4	20	12	7	13.5	21.5	2.12	ANL44
48	4	20	12	9	17.5	25.5	2.29	48,52
56	4	24	12	9	17.5	25.5	2.92	56
ALL60	4	24	12	9	20.5	28.5	3.16	ANL60
64	5	24	15	9	21	31	4.56	64,68
72	5	28	15	9	20	30	5.03	72
ALL76	5	28	15	12	24	34	5.28	ANL76,80
84	5	32	15	12	24	34	6.11	84
	5	32	15	14	28	38	6.45	88,92
88	5	32	15	14	20	50	0.45	00,92

[Remark] Lock plate series AL are applicable to adapter assembly series H31, H32 and H23, while lock plate series ALL are applicable to H30.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
--

Unit : mm

Koyo

Supplementary table 2 Boundary dimensions of tapered roller bearings

		~ ~	ppro		uar j	table	-	200		-3 -									8-																					UII	It : mm
Tap rol bea	ered ler ring			32	29				320			33	30					33	81				30	2		32	22	:	332			303 , 3	03D		31	13	3	23			apered roller bearing
,			Dia	ameter	r serie	s 9				Dia	amete	er serie	s 0				Dia	meter	serie	s 1					Di	iamete	er serie	s 2						Diar	meter	series	3				
Bore dia. No	dia.	0	Di	mens	ion	Chamf	or a	0	Dime	noio	n	Dime	noion	Cha	mfer	0	Dir	nensi	on	Cha	mfor	n l	Dim	ensio	n	Dimor	naion	Dim	onoion	Chamfer	۵.	Dime	ension	Г	Dimor	nsion	Dimo	ension	Chan	ofor :	Bore dia. No.
a.	ē	Outside		series				E S	ser				ries			side a.		series				Outside dia.		eries	" "	Dimer seri			iension eries		side a.		ries	1	seri			ries	·		ja ja
p	Bore	nts	š	29	5	Inner ring Outer	Bu	dig	2			3		ing	ing	Outsic dia.	2	31	'	ing	Outer ring	G		02		22		50	32	Inner ring ring	dig)3		13			23	ring	ng	j D
ore						<u> </u>								5.5	0'E	0				5-	0'E							L		0											' lä
B	d	D	T	B	C	r mir	n. 📔	D	$T \mid I$	3	C	$T \mid I$	B C	r	min.	D	Т	B	C	rr	nin.	D	T	B = 0	$C \mid$	$T \mid I$	$B \mid C$	T	$B \mid C$	r min.	D	$T \mid B$	303 3	803D	$T \mid B$	3 C	T	$B \mid C$	r m	in. (l m
00	10)																				-	-	- ·	-			-			-		-	-			-		-	- 1	0 00
01	12	2																				_	_		-	- -	- -				_		_	-			-			- 1	2 01
02	15	5																				(35	11.75	11 1	0)	- -	_ _	_			42	14.25 13	11	_			_		1	1 1	5 02
03			-	-	-		-	-		_	-			-	-	-						•	13.25		-	7.25 16	3 14	_		1 1			12	-			20.25	19 16	3 1	1 1	7 03
04	20		12	12	9).3				2	_ _		0.6	0.6								15.25			9.25 18						16.25 15	1 1	_			22.25				20 04
/22	22			12	9).3				1.5			0.6	0.6							50	10.20		12 10	3.23 10	, 13			' '	56						22.25	21 10	, 1.5		2 /22
					-									-									-						00 10				-	-			-		-		-
05	25			12	9).3	47			-		7 14	0.6	0.6								16.25	15 1		9.25 18			22 18			18.25 17	15	13			25.25	24 20) 1.5		25 05
/28	28			12	9						2			1	1							58	-			0.25 19			24 19	1 1	68		-	-			-	- -	-		28 /28
06	30			12	9).3					20 2	0 16	1	1											1.25 20			25 19.5			20.75 19	16	14				27 23			06 06
/32	32			15	10		0.6	58	17 1		3	- -		1	1	-	-	-	-	-	-			17 1	`		1.5 17) ¹⁾		26 20.5		75		-	-					3 1.5	1.5 3	32 /32
07	35	5 5	5 14	14	11.5	0.6 0	0.6	62	18 1	18 1	4 2	21 2	1 17	1	1	-	-	-	-	-	-	72	18.25	17 1	15 24	4.25 23	3 19	28	28 22	1.5 1.5	80	22.75 21	18	15			32.75	31 25	5 2	1.5 3	85 07
08	40	6	2 15	15	12	0.6 0	0.6	68	19 1	19 1	4.5	22 2	2 18	1	1	75	26	26	20.5	1.5	1.5	80	19.75	18 1	16 24	4.75 23	3 19	32	32 25	1.5 1.5	90	25.25 23	20	17			35.25	33 27	7 2	1.5 4	80 0
09	45	5 6	3 15	15	12	0.6 0).6	75	20 2	20 1	5.5	24 2	4 19	1	1	80	26	26	20.5	1.5	1.5	85	20.75	19 1	16 24	4.75 23	3 19	32	32 25	1.5 1.5	100	27.25 25	22	18			38.25	36 30) 2	1.5 4	15 09
10	50	7	2 15	15	12	0.6 0	0.6	80	20 2	20 1	5.5	24 2	4 19	1	1	85	26	26	20	1.5	1.5	90	21.75	20 1	17 24	4.75 23	3 19 ⁻³⁾	32	32 24.5	1.5 1.5	110	29.25 27	23	19			42.25	40 33	3 2.5	2 5	0 10
11	55			17	14	1 1							7 21	1.5	1.5	95	30		23	1.5	1.5					6.75 25			35 27			31.5 29	1 1					43 35			5 11
12	60			17	14	1 1							7 21	1.5	1.5	100	30		23	1.5	1.5		23.75			9.75 28			38 29		130							46 37			50 12
				17	14					23 1					1				26.5	1.5						2.75 31		I I										48 39			
13														1.5	1.5	110	34				1.5							41			140		28								5 13
14	70			20	16	1 1				25 1			1 25.5	_	1.5	120	37		29	2	1.5					3.25 31			41 32		150		30					51 42	2 3		0 14
15				20	16	1 1						31 3			1.5	125	37		29	2	1.5					3.25 31		I I	41 31		160		31					55 45			75 15
16	80			20	16	1 1				29 2			6 29.5		1.5	130	37		29	2	1.5					5.25 33			46 35	2.5 2	170		1 1								30 16
17	85	5 12	23	23	18	1.5 1	.5	130	29 2	29 2	22 3	36 3	6 29.5	5 1.5	1.5	140	41	41	32	2.5	2	150	30.5	28 2	24 38	8.5 36	30	49	49 37	2.5 2	180	44.5 41	34	28			63.5	60 49	9 4	3 8	35 17
18	90) 12	5 23	23	18	1.5 1	.5	140	32 3	32 2	24 3	39 3	9 32.5	5 2	1.5	150	45	45	35	2.5	2	160	32.5	30 2	26 42	2.5 40	34	55	55 42	2.5 2	190	46.5 43	36	30		- -	67.5	64 53	3 4	3 9	0 18
19	95	5 13	23	23	18	1.5 1	.5	145	32 3	32 2	24 3	39 3	9 32.5	2	1.5	160	49	49	38	2.5	2	170	34.5	32 2	27 4	5.5 43	3 37	58	58 44	3 2.5	200	49.5 45	38	32	- -	- -	71.5	67 55	5 4	3 9	5 19
20	100	14	25	25	20	1.5 1	.5	150	32 3	32 2	4	39 3	9 32.5	2	1.5	165	52	52	40	2.5	2	180	37	34 2	29 49	9 46	3 39	63	63 48	3 2.5	215	51.5 47	39	- 56	6.5 51	1 35	77.5	73 60) 4	3 10	00 20
21	105		5 25	25	20					35 2			3 34	2.5	2	175	56		44	2.5		190	39	36 3	30 53	3 50) 43		68 52			53.5 49		- 58	8 53				3 4	3 10	05 21
22				25	20					38 2			7 37	2.5	2	180	56		43	2.5	2	200	41		32 56		3 46	_			240		1 1	- 6				80 65		3 1	10 22
24				29	23								8 38	2.5	2	200	62		48	2.5	2	215		40 3							260			- 68				86 69		-	20 24
26				32	25			200		45 3		55 5		2.5	2	200	02	02	40	-	2		43.75		_	7.75 64	_			4 3		63.75 58			2 66		30.5	00 00	_	-	30 26
			32										6 44			_	-	-	-		-							-				67.75 62	1 1	- 7			-	- -	5		
	140			32	25					45 3				2.5	2	-	-	-	-	-	-		45.75			1.75 68		-	- -								-		-		
30				38	30	2.5 2							9 46	3	2.5	-	-	-	-	-	-	270			38 7			-		4 3	320			82			-		-		50 30
			38	38	30	2.5 2				51 3		- -		3	2.5							290			10 84			-		4 3	340		58		- -	- -	-		-		60 32
34	170			38	30	2.5 2				57 4		- -		3	2.5							310			13 9 [.]			-		5 4	360	80 72	62	- -	- -	· -	-		5		70 34
36	180	25	45	45	34	2.5 2			64 6	64 4	8			3	2.5							320			13 9 [.]			-		5 4	-		-	_		- -	-		-	- 18	80 36
38	190	26) 45	45	34	2.5 2	2	290	64 6	64 4	8			3	2.5							340	60	55 4	16 97	7 92	2 75	-		5 4										1!	90 38
40	200	28	51	51	39	3 2	2.5	310	70 7	70 5	53			3	2.5							360	64	58 4	18 10	04 98	8 82	-		5 4										2	00 40
44	220	30	51	51	39	3 2	2.5	340	76 7	76 5	57			4	3							_	_		_	- -	- -	_	_ _	- -										2	20 44
	240			51	39					76 5				4	3																									2	40 48
		36		63.5						87 6				5	4																										60 52
			63.5		1					37 6				5	4																										80 56
	300	_		76	57	4 3				57 0 20 7			_	5	4										_		_						+								00 60
	320			76	57	4 3				7 00	4			5	4																										20 64
	340		76	76	57	4 3		-	- -	-	-			-	-																										40 68
72	360	48	76	76	57	4 3	3	-		-	-			-	-																									36	60 72
	I T) in																												

[Remark] In the new JIS, new dimension series (classified by contact angle) is also specified in accordance with ISO standards.

[Notes] 1) Bearing group with large contact angle

2) Outer ring width C of bearings with large contact angle is 15 mm.

3) Outer ring width C of bearings with large contact angle is 18 mm.

Spherical thrust roller bearings	ia.	Bore dia. N e Bore d	4 4 4 4 6 6 6 6 6 7 <th7< th=""></th7<>					15 75 16 80		· · · ·					44 220 48 240 50 260	56 280 60 300			84 420 88 420 88 440	92 460 96 480						/950 950				/1500 1500 /1600 1600 /1700 1700	000 1800 000 1900		60 2360
Spherical thrust roller bearings		bituO Jaia.	32 8 20 20 38 4 12 32 8 20 38 4 12 33 8 20 39 4 10				85 80	92 92	105	140						340	_		460	520	_	650	130	820	920	1030	· ·) 1630) 1730) 1840	0 1950 0 2060 2160		0 00
	Diameter series	Dimension series 70 90 10 Height T		_	9 ~ ~	~ ~	~ ~		~ ^ 6	თ თ c	იი	თთთ				14 1	_	9 9 9	0 6 6	8 8 8			5 2 2	8 8 8	8 8 8	36 36	_	45	1 1	1 1 1	1 1	1 1	1 1
	er sei	90 1 ght		_			1 1	1 1	1 1 1	1 1	1 1	1 1 1	1	1 1	1 1	1 22	-		24 24	24 24			2 2 8 8 8 8	_		6 8 <u>7</u>		67 6	1 1				
+	ries 0	H Chamfer	6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0				10 10 0		_			14 0 14 0 14 0	-	1 1 1	 2 2 2 2	8 8	 30 %	 8 8 8	30 30	30 30	38 3	• 8 8 8		_		2 63 2	2 5 5 80 5	85 2	95 3 95 3	105 4 105 4 112 4	120 4 130 5	140 50 50 50	2 2 2 20 2 80 2
+		ebiatuO .	0.3 0.3 0.3 0.3 0.3 0.3	_	0.3		0.3	0.3				0.6 2 2	-		 a m a		4 4 4	4 4	1 U U	ഗഗദ			- 1.5			-		-		13	51 20	25	23
		dia.	24 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· .	90 1 95 1	00 1 05 1	20 1 35 1	45 1 55 1 70 1								09 09 10 10 10 10 10 10 10 10 10 10 10 10 10	000 000 00 40 00 40	80 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				0 0 0 0 0		20 20 20 20 20 20 20 20 20 20 20 20 20 2			30	1750 - 1850 - 1970 -	80 80		
	Dian	Dime 71 91 Height		· · ·	ା ା ା ର ର ର				4 - 6 21	6 21 6 21	18 24	18 24 18 24 20 27			30 30	32 42 36 48	6 48 6 48 7 48	6 48 9	5 60 48	5 5 60 9 60 9 60	_	50 67	58 78 3	22 22 2 20 2 2	0 0 0	3 103 8 103 9 103	85 115 80 122 90 122	00 132	1 1	1 1 1		1 1	1
	heter	11		5 1 3	14 13	16	8 8	6 6 6	25 23				-		37 45 45		64 67	65	80 82 80	8 8 8	85	8 8 8	105	120	120	135 140	150	175	175	195 195 212	220 220	-	
	Diameter series	Dimension series71911111Height T $\frac{d_1}{m_{11}}$ $\frac{D_1}{m_{11}}$	24 ^{1 1 1} 35 33 33	42 47 52	60 65 70	78 85	95 90	105	120	145 155 170	178	188 198 213	222	237	 267 297	347 376	396 416 436	456	4,70 495 535	555 575 505	635 635	745	795	845 895	945 995	1115 1175	1245 1315	1395 1455	1535 1620	1740 1840 1960	2070 2170		
	-	es 1 ^{D1}		26 32 37	42 47 52	57 62	67 72	77 82 87	92 102	112 122	132	152 162 172	183	203	223 243	283 304	324 344 364	384	404 424 444	464 484 504	534	604 604	674	755	855 855	955 955	1065 1125	1185	1325 1410	1510 1610 1710	1810 1910 2010	2130 2250	2370 2510
		, ⊂Chamfer		0.6 0.6 0.6	0.6 0.6	0.6									 1.1	2 1.5	~ ~ ~	v ~v ~	2 7 V	2.1	i n d	~ ~ ~ ~	υ 4 ·	4 4 4	4 4 L	റഹ					7.5 7.5 7.5		
		o ^{dia.}	16 22 28 28 35 35 40	47 52 62	68 73 78	95	100	115	135	150	200	215 225 240	250	280	300 340	380 420	440 460	520	580 600	620 650	710	800	900 010	1000	1120	1250	1400 1460	1520 1610	1700				
	ā	Dimer 72 92 Height	999 <u>~~8</u> 80	12 10	13 13	16 16	16 16	16	23 20	5 5 5	27	33 73 73 35 73	8	8 8	36 45		2 Z Z	3 8 8	63 73 73	73 78 -	8 8 8	8 6 6	'		122 1	136 145 145	155	Т	I.				
292	iamet	92 1 ght					21 2	21 23	27 3 30 3 30 3			39 39 5 39 5 42 5	-		 60 7 60 7		73 (73 (85 11	85 1: 85 1:	95 1(95 1(95 1(95 10 103 10	109 12	122 16	140 18	145 15 150 15	150 21	180 23		206 -	528				+
1	er se	2 7 ma	8 9 9 1 1 1 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4				27 1	23 1			45 18 46 19	5 1 2 5 5 5 5	56 24		63 26 78 37		96 45	1 0 1 1 0 1	30 21 2	30 6. 35 6. 35		- 1- 0	0 00 00 0 00 00 0 00 00	022 00 022 00	11 0	236 122		1 I				-	\rightarrow
1	ries 2	Dimension series72921212Height T $\frac{d_1}{max}$ $\frac{D_1}{min}$	49 32 58 57 6	_			105			70 1		22 1 37 1 37	247 1		297 23 335 22	375 2	2 22 4 2 22 4	15 3	35 4 4 35 4	15 4 45 4 %	05 0		35 6 4	95 7	12 00 12 00 12 00	245 9. 245 9. 315 10	- +-	· ·					+
			4 6 0. 4 12 0 0. 11 12 0. 11 12 0. 11 12 13 0. 12 12		42 1 47 1 52 1	57 1 62 1	67 1 72 1	82 1				153 1. 163 1. 173 1.		0 44	224 2 244 2.		45 3 3	85 4 4	25 5 4 45 5	465 5 485 5 505 5	_	505 5 605 5	675 6 575 6	755 6 755 6 75	805 /. 855 7.	955 7.	_					-	_
	\square		0.3 0.3 0.6 0.6 0.6 0.6								1.5 2	1.5 2 2 1.5 2 1 1.5 2	2		2 5 7 3 3							, .			- 12 -	7.5 14 7.5 14	-	9.5 9.5	ъ.				
		D Outside	0 7 10 0 0 0 0 0	_		_	115	140	155 1	210 210	140					440		200 10 10 10 10 10 10 10 10 10 10 10 10 1	\$50 1 \$80 1	710 1 730 1 750 1			'	120 1	19 19 19 19 19 19 19 19 19 19 19 19 19 1	400 20 20 20 20 20 20 20 20 20 20 20 20 2	2						
Ň	ä	Dime 73 93 Height	10 0 0 0 8 4	_			2 52 52 53	57 53			45 42	5 2 2 20 2	_	8 28	 8 8 8		2 0 0 82	· · ·	1 1 1	12 15	_			165 2			N		-+			-	
293	amet∈	nens 13 1 ht 7			2 24 23				42 33 39				-			95 10 109 17				150 19 150 19				224 29		272 35	2	_	-+				
	er ser	Dimension series 3 93 13 13 13 Height $T \frac{d_1}{m_{at}}$	11 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	18 21 24	31 28 31 28				· ·				-		112		04 00 08 04 03 08		6 08 06 7 08 06	95 7 95 7						355 13		+	-+			-	
	ies 3	$\frac{t_1}{13}$	20 24 26 33 37 40 41	60 68	78 85 95	105	115 125	135		205 1		245 1 265 1 275 1	-	315 1 335 2		435 24435 24475 2475 2	535 535	595 C		705 4 725 4 775 4	_			115 7		395	1		\neg				
		<u>a</u> ie	22 15 12 8 6 4 22 13 23 8 6 4	32 37 37	42 52	57	67 72	82	93 103	113 123	1 4 1 34	154 164 174	184	205	225 245 265	305	325 345 365	385	425 425 445	465 485 505	_			755		955	1	+					
		reimfer ⊃ Chamfer				11	2 2	1.5	1.5	2.1 2		3 3.1 3 3		4 4	444		ى س مى		0 0 0	999	7.5	7.5 1	9 2 7 9 7 9 2 1		0	2 62 6							
+		butside dia.	1.1	80 70	90 110 110	120 130	140 150	160 170	190 210	250 250	270	300 320 340	360	380 400	420 440	520	580 620	670	730 780	800 850 870	_	1030		1280	300	0261	1770	1950					
		Dime 74 94 Height	1 1	16 20	25 25 27	32	36 36	8 1 4		5 58 5			-		6 6 6			2 62 4		155 165 165	-							1	\neg			1	\neg
294	iamet	94 ht	1 1	21 24 27	8 8 8	39	45 48	54 51	09 09	73 78	8 8					145 1 145	170	175 2	185 206 2		-			308 4 315 4 375 4		390	426 444	462				-	+
	er se	sion s 14 T		32 28	43 39 36	48 51	60 56	68 62	77 28	95	112	130	140	150	160	061	500	224	243 265	265 290	8 8 4			412 1	-		1 1 1	1					
	ries 4	series 14		80 70	1100 90	120	140 150	150	177 187 205	225 245 265	265 275		-		 415 435 475	515 535	6/5 615 635	665 70F	775	795 845 865	_		145				1 1 1	1					
		^I U		27 32 37	42 47 52	57	68 73	83 83	93 % 103 %	113	134	154 164 174	184	205	225 245 265	285 305	325 345 365		425 445	465 485 505				755									
		ja: ~ Chamfer	÷		1.1 1.1 1.1	1.5	~ ~	2.1 2.1	3 51 3	6 4 z	4 4	4 v v	ى م. ا	<u>م</u> ى	ى م م	999	0.7 7.5 7.5	7.5	7.5 9.5	9.5 9.5 7	9.5				0 12 L	ο τριτ	15	19					
	Diame	bistuO Udia.	* Dimension series Dimension series 52 21 1 - 52 21 1	73 85 100	110 120	150	170 180	190 200	225 250	270 300	320	360 380 400	-		500 540		750	820	950 950	086 000	_		1320										
	Diameter series 5	* 95 T	21 In Ser	33 34 29	45 51	60 58	63 67	69	8 8 8		115				170	206	243 243		290 308	315 315 315			88 8										
	s 5	j⊰ ∻ Chamfer		2 2 2	2 2 2	2.1	3.1		4 4		2 2	999	90	67.5	7.5	9.5	0.9 12 12	<u>a</u> 61 6	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	15 15	12	12 1	<u>0</u> 10 1	<u>0</u>									

		_
	YV	0
	7	

					522									523									524					
No.				Diam	eter se	ries 2							Diam	eter se	ries 3							Diame	eter se	ries 4			l	°.
dia.				Dimen	sion se	ries 22	2						Dimen	sion se	ries 23	3					l	Dimens	sion se	ries 24	1			dia.
Bore	Bore dia.	Out- side	Height	Centra race	d_3	D_1	r	r_1	(Refer.)	Bore dia.	Out- side	Height	Central race	d_3	D_1	r	r_1	(Refer.)	Bore dia.	Out- side	Height	Central race	d_3	D_1	r	r_1	(Refer.)	ore
8	d_2	dia. D	T_1	height B	max.	min.	min.	min.	$d^{(1)}$	d_2	dia. D	T_1	height B	max.	min.	min.	min.	d 1)	d_2	dia. D	T ₁	height B	max.	min.	min.	min.	<i>d</i> ¹⁾	<u>n</u>
02	10	32	22	5	32	17	0.6	0.3	15	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	02
04	15	40	26	6	40	22	0.6	0.3	20	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	04
05	20	47	28	7	47	27	0.6	0.3	25	20	52	34	8	52	27	1	0.3	25	15	60	45	11	60	27	1	0.6	25	05
06	25	52	29	7	52	32	0.6	0.3	30	25	60	38	9	60	32	1	0.3	30	20	70	52	12	70	32	1	0.6	30	06
07	30	62	34	8	62	37	1	0.3	35	30	68	44	10	68	37	1	0.3	35	25	80	59	14	80	37	1.1	0.6	35	07
08	30	68	36	9	68	42	1	0.6	40	30	78	49	12	78	42	1	0.6	40	30	90	65	15	90	42	1.1	0.6	40	08
09	35	73	37	9	73	47	1	0.6	45	35	85	52	12	85	47	1	0.6	45	35	100	72	17	100	47	1.1	0.6	45	09
10	40	78	39	9	78	52	1	0.6	50	40	95	58	14	95	52	1.1	0.6	50	40	110	78	18	110	52	1.5	0.6	50	10
11	45	90	45	10	90	57	1	0.6	55	45	105	64	15	105	57	1.1	0.6	55	45	120	87	20	120	57	1.5	0.6	55	11
12	50	95	46	10	95	62	1	0.6	60	50	110	64	15	110	62	1.1	0.6	60	50	130	93	21	130	62	1.5	0.6	60	12
13	55	100	47	10	100	67	1	0.6	65	55	115	65	15	115	67	1.1	0.6	65	50	140	101	23	140	68	2	1	65	13
14	55	105	47	10	105	72	1	1	70	55	125	72	16	125	72	1.1	1	70	55	150	107	24	150	73	2	1	70	14
15	60	110	47	10	110	77	1	1	75	60	135	79	18	135	77	1.5	1	75	60	160	115	26	160	78	2	1	75	15
16	65	115	48	10	115	82	1	1	80	65	140	79	18	140	82	1.5	1	80	65	170	120	27	170	83	2.1	1	80	16
17	70	125	55	12	125	88	1	1	85	70	150	87	19	150	88	1.5	1	85	65	180	128	29	179.5	88	2.1	1.1	85	17
18	75	135	62	14	135	93	1.1	1	90	75	155	88	19	155	93	1.5	1	90	70	190	135	30	189.5	93	2.1	1.1	90	18
20	85	150	67	15	150	103	1.1	1	100	85	170	97	21	170	103	1.5	1	100	80	210	150	33	209.5	103	3	1.1	100	20
22	95	160	67	15	160	113	1.1	1	110	95	190	110	24	189.5	113	2	1	110	90	230	166	37	229	113	3	1.1	110	22
24	100	170	68	15	170	123	1.1	1.1	120	100	210	123	27	209.5	123	2.1	1.1	120	95	250	177	40	249	123	4	1.5	120	24
26	110	190	80	18	189.5	133	1.5	1.1	130	110	225	130	30	224	134	2.1	1.1	130	100	270	192	42	269	134	4	2	130	26
28	120	200	81	18	199.5	143	1.5	1.1	140	120	240	140	31	239	144	2.1	1.1	140	110	280	196	44	279	144	4	2	140	28
30	130	215	89	20	214.5	153	1.5	1.1	150	130	250	140	31	249	154	2.1	1.1	150	120	300	209	46	299	154	4	2	150	30
32	140	225	90	20	224.5	163	1.5	1.1	160	140	270	153	33	269	164	3	1.1	160	130	320	226	50	319	164	5	2	160	32
34	150	240	97	21	239.5	173	1.5	1.1	170	150	280	153	33	279	174	3	1.1	170	135	340	236		339	174	5	2.1	170	34
36	150	250	98	21	249	183	1.5	2	180	150	300	165	37	299	184	3	2	180	140	360	245	52	359	184	5	3	180	36
38	160	270	109	24	269	194	2	2	190	160	320	183	40	319	195	4	2	190	-	-	-	-	-	-	-	-	-	38
40	170	280	109	24	279	204	2	2	200	170	340	192	42	339	205	4	2	200	-	-	-	-	-	-	-	-	-	40
44	190	300	110	24	299	224	2	2	220	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	44

Supplementary table 4 Boundary dimensios of double direction thrust ball bearings

(with flat back faces)

Unit : mm

[Note] 1) Nominal bore diameter of single direction bearings of the same diameter series and

with the same nominal outside diameter.

Supple	mentar	y table 5 ((1) DI	mensio	on or sn	ap ring	groove	s and lo	Deation	ig snap	rings	– diame	ter ser	ies 18, 19	-				Unit : mm	
Ар	plicable b	earing				Si	nap ring g	roove						Locat	ing snap	ring			Housing	
	e dia. d	Outside dia.	groov	o ring ve dia.	Po	sition of sr	ap ring gro a	oove	groov	ip ring ve width b	Fillet radius of snap ring groove	No.	Sect	ion height e	Thie	ckness f	Distance between	snap ring	Shoulder bore dia.	
Dimensi	on series	_ D	L	7 1	Dimensio	on series 18	Dimensio	n series 19		0	r_0						cut ends	O.D. D_2	D _x	a
18	19		max.	min.	max.	min.	max.	min.	max.	min.	max.		max.	min.	max.	min.	max.	max.	max.	<u> </u>
-	10	22	20.8	20.5	-	-	1.05	0.9	1.05	0.8	0.2	NR 1022	2.0	1.85	0.7	0.6	2	24.8	25.5	
-	12	24	22.8	22.5	-	-	1.05	0.9	1.05	0.8	0.2	NR 1024	2.0	1.85	0.7	0.6	2	26.8	27.5	-
-	15	28	26.7	26.4	-	-	1.3	1.15	1.2	0.95	0.25	NR 1028		-	0.85	0.75	3	30.8	31.5	. 1
-	17	30	28.7	28.4	-	-	1.3	1.15	1.2	0.95	0.25	NR 1030			0.85	0.75	3	32.8	33.5	
20	-	32	30.7	30.4	1.3	1.15	-	-	1.2	0.95	0.25	NR 1032			0.85	0.75	3	34.8	35.5	
22	-	34	32.7	32.4	1.3	1.15	-	-	1.2	0.95	0.25	NR 1034			0.85	0.75	3	36.8	37.5	
25	20	37	35.7	35.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR 1037	2.05		0.85	0.75	3	39.8	40.5	
-	22	39	37.7	37.4	-	-	1.7	1.55	1.2	0.95	0.25	NR 1039			0.85	0.75	3	41.8	42.5	ϕD
28	-	40	38.7	38.4	1.3	1.15	-	-	1.2	0.95	0.25	NR 1040			0.85	0.75	3	42.8	43.5	
30	25	42	40.7	40.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR 1042			0.85	0.75	3	44.8	45.5	
32	-	44	42.7	42.4	1.3	1.15	-	-	1.2	0.95	0.25	NR 1044			0.85	0.75	4	46.8	47.5	
-	28	45	43.7	43.4	-	-	1.7	1.55	1.2	0.95	0.25	NR 1045			0.85	0.75	4	47.8	48.5	
35	30	47	45.7	45.4	1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR 1047			0.85	0.75	4	49.8	50.5	0
40	32 35	52 55	50.7	50.4	1.3	1.15	1.7	1.55	1.2 1.2	0.95 0.95	0.25	NR 1052			0.85 0.85	0.75	4	54.8 57.8	55.5	Cov
45	35	55	53.7 56.7	53.4 56.4	- 1.3	1.15	1.7	1.55	1.2	0.95	0.25	NR 1055 NR 1058		-	0.85	0.75	4	60.8	58.5	
45	40	62	60.7	50.4 60.3	-	1.15	1.7	1.55	1.2	0.95	0.25	NR 1050			0.85	0.75	4	64.8	61.5 65.5	t t
50	40	65	63.7	63.3	1.3	1.15	-	-	1.2	0.95	0.25	NR 1062			0.85	0.75	4	67.8	68.5	
	45	68	66.7	66.3	-	-	1.7	1.55	1.2	0.95	0.25	NR 106			0.85	0.75	5	70.8	72	ϕD_x
55	50	72	70.7	70.3	1.7	1.55	1.7	1.55	1.2	0.95	0.25	NR 1072			0.85	0.75	5	74.8	76	
60		78	76.2	75.8	1.7	1.55	_	-	1.6	1.3	0.23	NR 1078			1.12	1.02	5	82.7	84	
_	55	80	77.9	77.5	-	-	2.1	1.9	1.6	1.3	0.4	NR 1080			1.12	1.02	5	84.4	86	
65	60	85	82.9	82.5	1.7	1.55	2.1	1.9	1.6	1.3	0.4	NR 108			1.12	1.02	5	89.4	91	
70	65	90	87.9	87.5	1.7	1.55	2.1	1.9	1.6	1.3	0.4	NR 1090			1.12	1.02	5	94.4	96	
75	-	95	92.9	92.5	1.7	1.55	-	-	1.6	1.3	0.4	NR 1095			1.12	1.02	5	99.4	101	
80	70	100	97.9	97.5	1.7	1.55	2.5	2.3	1.6	1.3	0.4	NR 1100	3.25		1.12	1.02	5	104.4	106	
_	75	105	102.6	102.1	-	-	2.5	2.3	1.6	1.3	0.4	NR 1105	4.04		1.12	1.02	5	110.7	112	
85	80	110	107.6	107.1	2.1	1.9	2.5	2.3	1.6	1.3	0.4	NR 1110	4.04	3.89	1.12	1.02	5	115.7	117	/
90	-	115	112.6	112.1	2.1	1.9	-	-	1.6	1.3	0.4	NR 1115	4.04	3.89	1.12	1.02	5	120.7	122	
95	85	120	117.6	117.1	2.1	1.9	3.3	3.1	1.6	1.3	0.4	NR 1120	4.04	3.89	1.12	1.02	7	125.7	127	- Li
100	90	125	122.6	122.1	2.1	1.9	3.3	3.1	1.6	1.3	0.4	NR 1125	4.04	3.89	1.12	1.02	7	130.7	132	(;
105	95	130	127.6	127.1	2.1	1.9	3.3	3.1	1.6	1.3	0.4	NR 1130	4.04	3.89	1.12	1.02	7	135.7	137	\setminus
110	100	140	137.6	137.1	2.5	2.3	3.3	3.1	2.2	1.9	0.6	NR 1140	4.04	3.89	1.7	1.6	7	145.7	147	
-	105	145	142.6	142.1	-	-	3.3	3.1	2.2	1.9	0.6	NR 1145	4.04	3.89	1.7	1.6	7	150.7	152	
120	110	150	147.6	147.1	2.5	2.3	3.3	3.1	2.2	1.9	0.6	NR 1150	4.04	3.89	1.7	1.6	7	155.7	157	
130	120	165	161.8	161.3	3.3	3.1	3.7	3.5	2.2	1.9	0.6	NR 1165	4.85		1.7	1.6	7	171.5	173	
140	-	175	171.8	171.3	3.3	3.1	-	-	2.2	1.9	0.6	NR 1175	4.85	4.7	1.7	1.6	10	181.5	183	
-	130	180	176.8	176.3	-	-	3.7	3.5	2.2	1.9	0.6	NR 1180	4.85		1.7	1.6	10	186.5	188	
150	140	190	186.8	186.3	3.3	3.1	3.7	3.5	2.2	1.9	0.6	NR 1190			1.7	1.6	10	196.5	198	
160	-	200	196.8	196.3	3.3	3.1	-	-	2.2	1.9	0.6	NR 1200	4.85	4.7	1.7	1.6	10	206.5	208	

Supplementary table 5 (1) Dimension of snap ring grooves and locationg snap rings

- diameter series 18, 19 -

Unit · mm

 ϕD_1 ϕd

Koyo

[Remark] Minimum chamfer dimension tolerances on snap ring groove-side outer ring are as follows : Bearings belonging to dimension series 18 : 0.3 mm for those with nominal outside diameter not more than 78 mm ; 0.5 mm for those with nominal diameter over 78 mm.

Bearings belonging to dimension series 19:0.3 mm for those with nominal outside diameter not more than 47 mm; 0.5 mm for those with nominal diameter over 47 mm.

D 11

30	-	-	-	55	52.6	52.35	2.08	1.88	-	-	1.65	1.35	0.4	NR 55	4.04	3.89	1.12
-	-	22	-	56	53.6	53.35	-	-	2.46	2.31	1.65	1.35	0.4	NR 56	4.04	3.89	1.12
32	28	-	_	58	55.6	55.35	2.08	1.88	2.46	2.31	1.65	1.35	0.4	NR 58	4.04	3.89	1.12
35	30	25	17	62	59.61	59.11	2.08	1.88	3.28	3.07	2.2	1.9	0.6	NR 62	4.04	3.89	1.7
-	32	-	-	65	62.6	62.1	-	-	3.28	3.07	2.2	1.9	0.6	NR 65	4.04	3.89	1.7
40	-	28	-	68	64.82	64.31	2.49	2.29	3.28	3.07	2.2	1.9	0.6	NR 68	4.85	4.7	1.7
-	35	30	20	72	68.81	68.3	-	-	3.28	3.07	2.2	1.9	0.6	NR 72	4.85	4.7	1.7
45	-	32	-	75	71.83	71.32	2.49	2.29	3.28	3.07	2.2	1.9	0.6	NR 75	4.85	4.7	1.7
50	40	35	25	80	76.81	76.3	2.49	2.29	3.28	3.07	2.2	1.9	0.6	NR 80	4.85	4.7	1.7
-	45	-	-	85	81.81	81.31	-	-	3.28	3.07	2.2	1.9	0.6	NR 85	4.85	4.7	1.7
55	50	40	30	90	86.79	86.28	2.87	2.67	3.28	3.07	3	2.7	0.6	NR 90	4.85	4.7	2.46
60	-	-	-	95	91.82	91.31	2.87	2.67	-	-	3	2.7	0.6	NR 95	4.85	4.7	2.46
65	55	45	35	100	96.8	96.29	2.87	2.67	3.28	3.07	3	2.7	0.6	NR100	4.85	4.7	2.46
70	60	50	40	110	106.81	106.3	2.87	2.67	3.28	3.07	3	2.7	0.6	NR110	4.85	4.7	2.46
75	-	-	-	115	111.81	111.3	2.87	2.67	-	-	3	2.7	0.6	NR115	4.85	4.7	2.46
-	65	55	45	120	115.21	114.71	-	-	4.06	3.86	3.4	3.1	0.6	NR120	7.21	7.06	2.82
80	70	-	-	125	120.22	119.71	2.87	2.67	4.06	3.86	3.4	3.1	0.6	NR125	7.21	7.06	2.82
85	75	60	50	130	125.22	124.71	2.87	2.67	4.06	3.86	3.4	3.1	0.6	NR130	7.21	7.06	2.82
90	80	65	55	140	135.23	134.72	3.71	3.45	4.9	4.65	3.4	3.1	0.6	NR140	7.21	7.06	2.82
95	-	-	-	145	140.23	139.73	3.71	3.45	-	-	3.4	3.1	0.6	NR145	7.21	7.06	2.82
100	85	70	60	150	145.24	144.73	3.71	3.45	4.9	4.65	3.4	3.1	0.6	NR150	7.21	7.06	2.82
105	90	75	65	160	155.22	154.71	3.71	3.45	4.9	4.65	3.4	3.1	0.6	NR160	7.21	7.06	2.82
110	95	80	-	170		163.14	3.71	3.45	5.69	5.44	3.8	3.5	0.6	NR170	9.6	9.45	3.1
120	100	85	70	180		173.15	3.71	3.45	5.69	5.44	3.8	3.5	0.6	NR180	9.6	9.45	3.1
-	105	90	75	190		183.13	-	-	5.69	5.44	3.8	3.5	0.6	NR190	9.6	9.45	3.1
130	110	95	80	200	193.65	193.14	5.69	5.44	5.69	5.44	3.8	3.5	0.6	NR200	9.6	9.45	3.1
[Remark	2. The	minimum	permiss	ension doe ible chami to diame	ier dimens	sion for si	nap ring minal ou	groove-si	de outer	ring is 0.8	5 mm, ex		nm				

Supplementary table 5 (2) Dimension of snap ring grooves and locationg snap rings

Snap ring

groove dia.

 D_1

min.

27.91

29.9

32.92

34.52

37.85

39.5

41.5

44.35

47.35

49.48

max.

28.17

30.15

33.17

34.77

38.1

39.75

41.75

44.6

47.6

49.73

Outside

dia.

D

30

32

35

37

40

42

44

47

50

52

4

8

9

_

10

_

12

_

_

15

Snap ring groove

max.

2.06

2.06

2.06

2.06

2.06

2.06

_

2.46

2.46

2.46

2.3.4

min.

1.9

1.9

1.9

1.9

1.9

1.9

_

2.31

2.31

2.31

Position of snap ring groove

a

Diameter series

0

max.

2.06

2.06

_

_

2.06

2.06

2.06

_

2.06

min.

1.9

1.9

_

_

1.9

1.9

1.9

1.9

Fillet

radius of

snap ring

groove

 r_0

max.

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Snap ring

groove width

b

min.

1.35

1.35

1.35

1.35

1.35

1.35

1.35

1.35

1.35

1.35

max.

1.65

1.65

1.65

1.65

1.65

1.65

1.65

1.65

1.65

1.65

Applicable bearing

3

9

_

10

12

_

15

_

17

20

Bore dia.

d

Diameter series

2

10

12

15

17

_

_

20

22

25

0

15

17

_

20

22

25

28

- diameter series 0, 2, 3, 4 -

max.

3.25

3.25

3.25

3.25

3.25

3.25

3.25

4.04

4.04

4.04

No.

NR 30

NR 32

NR 35

NR 37

NR 40

NR 42

NR 44

NR 47

NR 50

NR 52

Section height

e

min.

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.89

3.89

3.89

Locating snap ring

max.

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

1.12

Thickness

f

min.

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.6

1.6

1.6

1.6

1.6

1.6

1.6

2.36

2.36

2.36

2.36

2.36

2.72

2.72

2.72

2.72

2.72

2.72

2.72

3

3

3

3

$$\begin{array}{c} a \\ \hline \\ r_0 \\ \hline \\ \phi D \\ \phi D_1 \\ \phi d_2 \\ \phi d_1 \\$$

Unit : mm

Housing

Shoulder

bore dia.

 $D_{\rm x}$

max.

35.5

37.5

40.5

42

47

49

53.5

56.5

58.5

61.5

62.5

64.5

68.5

71.5

76

80

83

88

93

98

103

108

118

123

131.5

136.5

141.5

152

157

162

172

185

195

205

215

 ϕD

45.5

Mounted state

Locating

snap ring

Ó.D.

 D_2

max.

34.7

36.7

39.7

41.3

44.6

46.3

48.3

52.7

55.7

57.9

60.7

61.7

63.7

67.7

70.7

74.6

78.6

81.6

86.6

91.6

96.5

101.6

106.5

116.6

121.6

129.7

134.7

139.7

149.7

154.7

159.7

169.7

182.9

192.9

202.9

212.9

Distance

between

cut ends

g

max.

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

7 7

7

7

7

7

7

10

10

10

10

Koyo

Housina Cover ϕD ϕD_2

D 14

Unit : µm (Refer.)

Koyo

Nomin shaft di (mm)								Deviat	ion cla	asses	of sha	ft dia.																	Nom shaft	inal dia.	$\Delta_{dmp}^{(1)}$ of bearing
over up		d 6	e 6	f6	g 5	g 6	h 5	h 6	h 7	h 8	h 9	h 10	js 5	js 6	js 7	j 5	j 6	k 5	5 k 6	i k7	m 5	m 6	m 7	n 5	n 6	p 6	r 6	r 7	(mi over	up to	(class 0)
3	6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 -12	- 0 - 5	- 0 - 8	0 -12	0 - 18	0 - 30	0 - 48	± 2.5	± 4	± 6	+ 3 - 2	+ 6 - 2	+ 6			+ 9 + 4	+12 + 4	+ 16 + 4	+13 + 8	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6	- 8
6	10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 -14	- 0 - 6	- 0 - 9	0 -15	0 - 22	0 - 36	0 - 58	± 3	± 4.5	± 7.5	+ 4 - 2	+ 7 - 2	+			+12 + 6	+15 + 6	+ 21 + 6	+16 +10	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10	- 8
10	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 -17	- 0 - 8	0	0 -18	0 - 27	0 - 43	0 - 70	± 4	± 5.5	± 9	+ 5 - 3	+ 8 - 3	+ 9			+15 + 7	+18 + 7	+ 25 + 7	+20 +12	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18	- 8
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 -20	- 0 - 9	0 -13	0 21	0 - 33	0 - 52	0	± 4.5	± 6.5	±10.5	+ 5 - 4	+ 9 - 4	+1" + 2			+17 + 8	+21 + 8	+ 29 + 8	+24 +15	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30	0 - 10
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 -25	0 -11	0 -16	0 -25	0 - 39	0	0	± 5.5	± 8	±12.5	+ 6 - 5	+11 - 5	+10	13 +1	3 +27	+20 + 9	+25 + 9	+ 34 + 9	+28 +17	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50	0 - 12
		-100	- 60		_10	-10	0	0	0	0	0	0				+ 6	+12	+15			+24	+30	+ 41	+33	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65	0
50		-119	- 79			-29	-13	-19	-30	- 46		U U	± 6.5	± 9.5	±15	- 7	- 7	+ 2			+11	+11	+ 11	+20	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80	- 15
		100	70	26	10	10	0	0	0	0	0	0					.10		10 .0			. 25	+ 48	. 20	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100	0
80 1	20	–120 –142	- 72 - 94	- 36 - 58	-12 -27	-12 -34	-15	-22	-35	- 54	0 - 87		± 7.5	±11	±17.5	+ 6 - 9	+13 - 9	+18 + 3			+28 +13	+35 +13	+ 40 + 13	+38 +23	+ 45 + 23	+ 39 + 37	+ 76 + 54	+ 89 + 54	100	120	- 20
																											+ 34 + 88 + 63	+ 103 + 63	120	140	
120 1		-145 -170	- 85 -110	- 43 - 68		-14 -39	0 -18	0 25	0 40	0	0 -100	0 -160	± 9	±12.5	±20	+ 7	+14	+2*			+33 +15	+40 +15	+ 55 + 15	+45 +27	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160	0 - 25
		-170	-110	- 00	-52	-00	-10	-25	-40	- 00	-100	-100						+ v	5	5 - 5		+15	+ 13	721	+ 21	T 40	+ 93 + 68	+ 108 + 68	160	180	- 25
																											+ 08 +106 + 77	+ 08 +123 + 77	180	200	
180 2		-170		- 50		-15	0	0	0	0	0	0	±10	±14.5	±23	+ 7	+16	+24			+37	+46	+ 63	+51	+ 60		+109	+126	200	225	0 - 30
	-	-199	-129	- 79	-35	-44	-20	-29	-46	- 72	-115	-185				-13	-13	+ 4	4 +	4 + 4	+17	+17	+ 17	+31	+ 31	+ 50	+ 80 +113	+ 80 +130	225	250	- 30
																											+ 84 +126	+ 84 +146	250	280	
250 3	315	-190 -222	-110 -142			-17 -49	0 -23	0 -32	0 -52	0 - 81	0 -130	0 -210	±11.5	±16	±26	+ 7 -16	±16	+27 + 4			+43 +20	+52 +20	+ 72 + 20	+57 +34	+ 66 + 34	+ 88 + 56	+ 94 +130	+ 94 +150	280	315	0 - 35
																											+ 98	+ 98	315	355	
315 4		-210 -246	-125 -161	- 62 - 98	-18 -43	–18 –54	0 -25	0 -36	0 -57	0 - 89	0 -140	0 -230	±12.5	±18	±28.5	+ 7 -18	±18	+29 + 4			+46 +21	+57 +21	+ 78 + 21	+62 +37	+ 73 + 37	+ 98 + 62	+108	+108	355	400	0 - 40
																											+114 +166	+114 +189	400	450	
400 5		-230 -270	-135 -175	- 68 -108	-20 -47	-20 -60	0 -27	0 -40	0 63	0 - 97	0 -155	0 -250	±13.5	±20	±31.5	+ 7 -20	±20	+32 + {			+50 +23	+63 +23	+ 86 + 23	+67 +40	+ 80 + 40	+108 + 68	+126	+126	450	500	0 - 45
																											+132	+132 +220	500	560	
500 6		-260 -304	-145 -189	- 76 -120	-	-22 -66	-	0 -44	0 -70	0 -110	0 -175	0 -280	-	±22	±35	-	-	-	- +4		-	+70 +26	+ 96 + 26	-	+ 88 + 44	+122 + 78	+150 +199	+150	560	630	0 - 50
													<u> </u>								-						+155 +225	+155 +255	630	710	
630 8		–290 –340	-160 -210	- 80 -130	-	-24 -74	-	0 -50	0 80	0 -125	0 -200	0 -320	-	±25	±40	-	-	-	- +5		-	+80 +30	+110 + 30	-	+100 + 50	+138 + 88	+175 +235	+175 +265	710	800	0 - 75
																											+185 +266	+185 +300	800	900	
800 10	000	-320 -376	-170 -226	- 86 -142	-	-26 -82	-	0 -56	0 -90	0 -140	0 -230	0 -360	-	±28	±45	-	-	-	- +5		-	+90 +34	+124 + 34	-	+112 + 56	+156 +100	+210 +276	+210 +310	900	1000	0 -100
																											+220	+220	500	1000	

Supplementary table 6 Shaft tolerances (deviation from nominal dimensions)

[Note] 1) \varDelta_{dmp} : single plane mean bore diameter deviation

					ising ,						-	-																01	π: μm	
Nominal Bore dia. (mm)				_		Devi	iation o			-	oore														_			Nom Bore (mr	inal dia. m)	$\Delta_{Dmp}^{(1)}$ of bearing
over up to	E 6	F 6	F 7	G 6	G 7	H 6	H7	H 8	H 9	H 10	JS 5	JS 6	JS 7	J 6	J 7	K	(5 K 6	K 7	M 5	M 6	M 7	N 5	N 6	N 7	P 6	P 7	R 7	over	up to	(class 0)
10 1	3 + 43 + 32			+17 + 6	+ 24 + 6	+11 0	+ 18 0	+ 27 0	+ 43 0	+ 70 0	± 4	± 5.5	± 9	+ 6 - 5	+10 - 8	+ _	2 + 2 6 - 9			- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	- 16 - 34	10	18	- 8
18 3) + 53 + 40			+20 + 7	+ 28 + 7	+13 0	+ 21 0	+ 33 0	+ 52 0	+ 84 0	± 4.5	± 6.5	±10.5	+ 8 - 5	+12 - 9	+ _				- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	- 20 - 41	18	30	- 9
30 5) + 66 + 50		+ 50 + 25	+25 + 9	+ 34 + 9	+16 0	+ 25 0	+ 39 0	+ 62 0	+100 0	± 5.5	± 8	±12.5	+10 - 6	+14 -11	+ _				- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	- 25 - 50	30	50	0 - 11
50 8	+ 79			+29	+ 40	+19	+ 30	+ 46	+ 74	+120	1 6 5	± 9.5	+15	+13	+18	+	3 + 4			- 5	0	-15	- 14	- 9	- 26	- 21	- 30 - 60	50	65	0
50 6	+ 60	+ 30	+ 30	+10	+ 10	0	0	0	0	0	1 0.5	1 9.5	110	- 6	-12	-1	10 -15	- 21	-19	- 24	- 30	-28	- 33	- 39	- 45	- 51	- 32 - 62	65	80	- 13
80 12	+ 94	+ 58		+34	+ 47	+22	+ 35	+ 54	+ 87	+140	± 7.5	+11	±17.5	+16	+22	+				- 6	0	-18	- 16	- 10	- 30	- 24	- 38 - 73	80	100	0
	+ 72	+ 36	+ 36	+12	+ 12	0	0	0	0	0	- 7.0		-17.0	- 6	-13	_1	13 –18	- 25	-23	- 28	- 35	-33	- 38	- 45	- 52	- 59	- 41 - 76	100	120	– 15
																											- 48 - 88	120	140	(up to 150) 0
120 18) +110 + 85			+39 +14	+ 54 + 14	+25 0	+ 40	+ 63 0	+100 0	+160 0	± 9	±12.5	±20	+18 - 7	+26 -14	+ -1	3 + 4 15 -21			- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52		- 28 - 68	- 50 - 90	140	160	- 18 (over to 150) 0
																											- 53 - 93 - 60	160	180	- 25
	+129	+ 79	+ 96	+44	+ 61	+29	+ 46	+ 72	+115	+185				+22	+30	+	2 + 5	+ 13	-11	- 8	0	-25	- 22	- 14	- 41	- 33	-106 - 63	180	200	0
180 25	+123			+15	+ 15	0	0	0	0	0	±10	±14.5	±23	- 7	-16		18 -24			- 37		-45	- 51	- 60		- 79	-109 - 67	200	225	- 30
																											-113 - 74	225	250	·
250 31	+142 +110			+49 +17	+ 69 + 17	+32 0	+ 52	+ 81 0	+130 0	+210 0	±11.5	±16	±26	+25 - 7	+36 -16	+ -2	3 + 5 20 -27			- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66		- 36 - 88	-126 - 78	250 280	280 315	0 - 35
																											-130 - 87	315	355	
315 40) +161 +125			+54 +18	+ 75 + 18	+36 0	+ 57 0	+ 89 0	+140 0	+230 0	±12.5	±18	±28.5	+29 - 7	+39 -18	+ -2	$\begin{array}{c c} 3 & + 7 \\ 22 & -29 \end{array}$			- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73		- 41 - 98	-144 - 93	355	400	0 - 40
									455											10			07			45	-150 -103 -166	400	450	
400 50	+175 +135			+60 +20	+ 83 + 20	+40 0	+ 63	+ 97 0	+155 0	+250 0	±13.5	±20	±31.5	+33 - 7	+43 -20	+ -2	2 + 8 25 -32			- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80		- 45 -108	-109 -172	450	500	0 - 45
	+189	+120	+146	+66	+ 92	+44	+ 70	+110	+175	+280							0	0	1	- 26	- 26		- 44	- 44	- 78	- 78	-150 -220	500	560	0
500 63	+145			+22	+ 22	0	0	0	0	0	-	±22	±35	-	-	-	44		-	- 70	- 96	-	- 88	-114		-148	-155 -225	560	630	- 50
630 80	+210	+130	+160	+74	+104	+50	+ 80	+125	+200	+320	_	±25	±40	_	_		0	0		- 30	- 30		- 50	- 50	- 88	- 88	-175 -255	630	710	0
000 000	+160			+24	+ 24	0	0	0	0	0		120	<u>-</u> 40					- 80		- 80	-110		-100	-130	-138	-168	-185 -265	710	800	- 75
800 100	+226			+82	+116	+56	+ 90	+140	+230	+360	_	±28	±45	_	_		_ 0	0	_	- 34	- 34		- 56	- 56	-100	-100	-210 -300	800	900	0
	+170	+ 86	+ 86	+26	+ 26	0	0	0	0	0								- 90		- 90	-124		-112	-146	-156	-190	-220 -310	900	1000	-100
1000 125	+261			+94	+133	+66	+105	+165	+260	+420	_	±33	±52.5	_	_	_	_ 0	0	_	- 40	- 40	_	- 66	- 66	-120	-120	-250 -355	1000	1120	0
	+195	+ 98	+ 98	+28	+ 28	0	0	0	0	0							-66	-105		-106	-145		-132	-171	-186	-225	-260 -365	1120	1250	-125

Supplementary table 7 Housing bore tolerances (deviation from nominal dimensions)

[Note] 1) Δ_{Dmp} : single plane mean outside diameter deviation

Koyo

Unit : µm (Refer.)

Bas								Sta	ndard	tolera	ince g	rades	(IT)						
siz (mr		1	2	3	4	5	6	7	8	9	10	11	12	13	14 ¹⁾	15 ¹⁾	16 ¹⁾	17 ¹⁾	18 ¹⁾
over	up to					Tolera	ances	(µm)							Tolera	ances	(mm)		
-	3	0.8	1.2	2	3	4	6	10	14	25	40	60	0.10	0.14	0.26	0.40	0.60	1.00	1.40
3	6	1	1.5	2.5	4	5	8	12	18	30	48	75	0.12	0.18	0.30	0.48	0.75	1.20	1.80
6	10	1	1.5	2.5	4	6	9	15	22	36	58	90	0.15	0.22	0.36	0.58	0.90	1.50	2.20
10	18	1.2	2	3	5	8	11	18	27	43	70	110	0.18	0.27	0.43	0.70	1.10	1.80	2.70
18	30	1.5	2.5	4	6	9	13	21	33	52	84	130	0.21	0.33	0.52	0.84	1.30	2.10	3.30
30	50	1.5	2.5	4	7	11	16	25	39	62	100	160	0.25	0.39	0.62	1.00	1.60	2.50	3.90
50	80	2	3	5	8	13	19	30	46	74	120	190	0.30	0.46	0.74	1.20	1.90	3.00	4.60
80	120	2.5	4	6	10	15	22	35	54	87	140	220	0.35	0.54	0.87	1.40	2.20	3.50	5.40
120	180	3.5	5	8	12	18	25	40	63	100	160	250	0.40	0.63	1.00	1.60	2.50	4.00	6.30
180	250	4.5	7	10	14	20	29	46	72	115	185	290	0.46	0.72	1.15	1.85	2.90	4.60	7.20
250	315	6	8	12	16	23	32	52	81	130	210	320	0.52	0.81	1.30	2.10	3.20	5.20	8.10
315	400	7	9	13	18	25	36	57	89	140	230	360	0.57	0.89	1.40	2.30	3.60	5.70	8.90
400	500	8	10	15	20	27	40	63	97	155	250	400	0.63	0.97	1.55	2.50	4.00	6.30	9.70
500	630	-	-	-	-	-	44	70	110	175	280	440	0.70	1.10	1.75	2.80	4.40	7.00	11.00
630	800	-	-	-	-	-	50	80	125	200	320	500	0.80	1.25	2.00	3.20	5.00	8.00	12.50
800	1000	-	_	-	-	-	56	90	140	230	360	560	0.90	1.40	2.30	3.60	5.60	9.00	14.00
1000	1250	-	-	-	-	-	66	105	165	260	420	660	1.05	1.65	2.60	4.20	6.60	10.50	16.50
1250	1600	-	-	-	-	-	78	125	195	310	500	780	1.25	1.95	3.10	5.00	7.80	12.50	19.50
1600	2000	-	-	-	-	_	92	150	230	370	600	920	1.50	2.30	3.70	6.00	9.20	15.00	23.00
2000	2500	-	-	-	-	_	110	175	280	440	700	1100	1.75	2.80	4.40	7.00	11.00	17.50	28.00
2500	3150	-	_	-	-	_	135	210	330	540	860	1350	2.10	3.30	5.40	8.60	13.50	21.00	33.00

Supplementary table 8 Numerical values for standard tolerance grades IT (ISO 286-1:1988)

[Note] 1) Standard tolerance grades IT 14 to IT 18 (incl.) shall not be used for basic sizes less than or equal to 1 mm.

Supplementary table 9 Greek alphabet list

Name	Roman type	Italic	type	Name	Roman type	Italic	c type Lowercase ν ξ ο π ρ σ τ υ φ
	Capital	Capital	Lowercase		Capital	Capital	Lowercase
alpha	А	A	α	nu	N	N	v
beta	В	В	β	xi	Ξ	Ξ	ξ
gamma	Г	Г	γ	omicron	0	0	0
delta	Δ	Δ	δ	pi	П	П	π
epsilon	Е	Е	ε	rho	Р	Р	ρ
zeta	Z	Z	ζ	sigma	Σ	Σ	σ
eta	Н	Н	η	tau	Т	Т	τ
theta	Θ	Θ	θ	upsilon	Y	Y	υ
iota	I	Ι	ι	phi	Φ	Φ	φ
kappa	K	K	κ	chi	Х	X	x
lambda	Λ	Λ	λ	psi	Ψ	Ψ	ψ
mu	М	М	μ	omega	Ω	Ω	ω

Supplementary table 10 Prefixes used with SI units

Fastar	Pre	efix	Faster	Pre	efix
Factor	Name	Symbol	Factor	Name	Symbol
10 ¹⁸	exa	Е	10 ⁻¹	deci	d
10 ¹⁵	peta	Р	10 ⁻²	centi	с
10 ¹²	tera	Т	10 ⁻³	milli	m
10 ⁹	giga	G	10 ⁻⁶	micro	μ
10 ⁶	mega	М	10 ⁻⁹	nano	n
10 ³	kilo	k	10 ⁻¹²	pico	р
10 ²	hecto	h	10 ⁻¹⁵	femto	f
10	deka	da	10 ⁻¹⁸	atto	a

Supplementary table 11 (1) SI units and conversion factors

Mass	SI units	Other units 1)	Conversion into SI units	Conversion from SI units
Angle	rad [radian(s)]	° [degree(s)] * ' [minute(s)] * " [second(s)] *	$1^{\circ} = \pi / 180 \text{ rad}$ $1' = \pi / 10 800 \text{ rad}$ $1'' = \pi / 648 000 \text{ rad}$	1 rad = 57.295 78°
Length	m [meter(s)]	Å [Angstrom unit] μ [micron(s)] in [inch(es)] ft [foot(feet)] yd[yard(s)] mile [mile(s)]	$ \begin{split} 1 \dot{A} &= 10^{-10} m = 0.1 nm = 100 pm \\ 1 \mu &= 1 \ \mu m \\ 1 in &= 25.4 \ mm \\ 1 ft &= 12 \ in &= 0.304 \ 8 \ m \\ 1 yd &= 3 \ ft &= 0.914 \ 4 \ m \\ 1 mile &= 5 \ 280 \ ft &= 1 \ 609.344 \ m \end{split} $	$1m = 10^{10} \text{\AA}$ 1m = 39.37 in 1m = 3.280 8 ft 1m = 1.093 6 yd 1km = 0.621 4 mile
Area	m ²	a [are(s)] ha [hectare(s)] acre [acre(s)]	1a = 100 m2 1ha = 104 m2 1acre = 4 840 yd2 = 4 046.86 m2	$1 \text{km}^2 = 247.1 \text{ acre}$
Volume	m ³	<pre>ℓ, L [liter(s)] * cc [cubic centimeters] gal(US) [gallon(s)] floz(US) [fluid ounce(s)] barrel(US) [barrels(US)]</pre>	$\begin{array}{c} 1 \ \ell \ = \ 1 \ dm^3 = 10^{-3} \ m^3 \\ 1 \ cc \ = \ 1 \ cm^3 \ = \ 10^{-6} \ m^3 \\ 1 \ gal(US) = \ 231 \ in^3 \ = \ 3.785 \ 41 \ dm^3 \\ 1 \ floz(US) = \ 29.573 \ 5 \ cm^3 \\ 1 \ barrel(US) = \ 158.987 \ dm^3 \end{array}$	$\begin{array}{l} 1m^3 = 10^3 \ \ell \\ 1m^3 = 10^6 \ cc \\ 1m^3 = 264.17 \ gal \\ 1m^3 = 33 \ 814 \ floz \\ 1m^3 = 6.289 \ 8 \ barrel \end{array}$
Time	s [second(s)]	min [minute(s)] * h [hour(s)] * d [day(s)] *		
Angular velocity	rad/s			
Velocity	m/s	kn [knot(s)] m/h *	1kn = 1 852 m/h	1km/h = 0.539 96 kn
Acceleration	m/s ²	G	$1G = 9.806 65 \text{ m/s}^2$	$1m/s^2 = 0.101 \ 97 \ G$
Frequency	Hz [hertz]	c/s [cycle(s)/second]	$1c/s = 1s^{-1} = 1$ Hz	
Rotational frequency	s^{-1}	rpm [revolutions per minute] min ⁻¹ * r/min	1rpm = 1 / 60 s ⁻¹	$1s^{-1} = 60 \text{ rpm}$
Mass	kg [kilogram(s)]	t [ton(s)] * Ib [pound(s)] gr [grain(s)] oz [ounce(s)] ton (UK) [ton(s)(UK)] ton (US) [ton(s)(US)] car [carat(s)]	$\begin{array}{l} 1t = 10^3 \ \mathrm{kg} \\ 1\mathrm{lb} = 0.453 \ 592 \ 37 \ \mathrm{kg} \\ 1\mathrm{gr} = 64.798 \ 91 \ \mathrm{mg} \\ 1\mathrm{oz} = 1/16 \ \mathrm{lb} = 28.349 \ 5 \ \mathrm{g} \\ 1\mathrm{ton}(\mathrm{US}) = 1 \ 016.05 \ \mathrm{kg} \\ 1\mathrm{ton}(\mathrm{US}) = 907.185 \ \mathrm{kg} \\ 1\mathrm{car} = 200 \ \mathrm{mg} \end{array}$	$\begin{aligned} 1 & kg = 2.204 \ 6 \ lb \\ 1 & g = 15.432 \ 4 \ gr \\ 1 & kg = 35.274 \ 0 \ oz \\ 1 & t = 0.984 \ 2 \ ton(UK) \\ 1 & t = 1.102 \ 3 \ ton(US) \\ 1 & g = 5 \ car \end{aligned}$

[Note] * : Unit can be used as an SI unit.

No asterisk : Unit cannot be used.

Supplementary table 11 (2) SI units and conversion factors

Mass	SI units	Other units $^{1)}$	Conversion into SI units	Conversion from SI units
		Other units	Conversion into Si units	
Density	kg/m ³			
Linear density	kg/m			
Momentum	kg·m/s			
Moment of momentum, angular momentum	$\left. \right\} kg \cdot m^2 / s$			
Moment of inertia	kg·m ²			
Force	N [newton(s)]	dyn [dyne(s)] kgf [kilogram-force] gf [gram-force] tf [ton-force]		$1N = 10^5 dyn$ 1N = 0.101 97 kgf
		lbf [pound-force]	1lbf = 4.448 22 N	$1N = 0.224 \ 809 \ lbf$
Moment of force	N⋅m [Newton meter(s)]	gf-cm kgf-cm kgf-m tf-m lbf-ft	$\begin{array}{ll} 1gf\cdot cm &= 9.806\ 65{\times}10^{-5}\ N\cdot m \\ 1kgf\cdot cm &= 9.806\ 65{\times}10^{-2}\ N\cdot m \\ 1kgf\cdot m &= 9.806\ 65\ N\cdot m \\ 1tf\cdot m &= 9.806\ 65{\times}10^{3}\ N\cdot m \\ 1lbf\cdot ft &= 1.355\ 82\ N\cdot m \end{array}$	1N·m = 0.101 97 kgf·m 1N·m = 0.737 56 lbf·ft
Pressure, Normal stress	Pa [Pascal(s)] or N/m ² {1 Pa = 1 N/m ² }	$\begin{array}{c} gf/cm^2 \\ kgf/mn^2 \\ kgf/m^2 \\ lbf/in^2 \\ bar [bar(s)] \\ at [engineering air pressure] \\ mH_2O, mAq \\ [meter water column] \\ atm [atmosphere] \\ mHg [meter merury column] \\ Torr [torr] \end{array}$	$\begin{array}{l} 1gf/cm^2 &= 9.806\ 65{\times}10\ Pa\\ 1kgf/mm^2 &= 9.806\ 65{\times}10^6\ Pa\\ 1kgf/mm^2 &= 9.806\ 65\ Pa\\ 1bbf/m^2 &= 6\ 894.76\ Pa\\ 1bar &= 10^5\ Pa\\ 1at &= 1kgf/cm^2 &= 9.806\ 65{\times}10^4\ Pa\\ 1at &= 1kgf/cm^2 &= 9.806\ 65{\times}10^3\ Pa\\ 1at &= 101\ 325\ Pa\\ 1mHg &= \frac{101\ 325\ Pa}{0.76}\ Pa\\ 1Torr &= 1\ mmHg &= 133.322\ Pa\\ \end{array}$	$1MPa = 0.101 97 \text{ kgf/mm}^{2}$ $1Pa = 0.101 97 \text{ kgf/m}^{2}$ $1Pa = 0.145 \times 10^{-3} \text{ lbf/in}^{2}$ $1Pa = 10^{-2} \text{ mbar}$ $1Pa = 7.500 6 \times 10^{-3} \text{ Torr}$
Viscosity	Pa·s [pascal second]	P [poise] kgf·s/m²	$10^{-2} P = 1 cP = 1 mPa s$ 1kgf·s/m ² = 9.806 65 Pa·s	$1Pa \cdot s = 0.101 \ 97 \ kgf \cdot s / m^2$
Kinematic viscosity	m²/s	St [stokes]	10^{-2} St = 1 cSt = 1 mm ² /s	
Surface tension	N/m			

Supplementary table 11 (3) SI units and conversion factors

Mass	SI units	Other units 1)	Conversion into SI units	Conversion from SI units			
Work, energy	J [joule(s)] {1 J=1 N·m}	eV [electron volt(s)] * erg [erg(s)] kgf.m lbf.ft	$1eV = (1.602 \ 189 \ 2\pm 0.000 \ 004 \ 6) \times 10^{-19} \ J$ $1erg = 10^{-7} \ J$ $1 \ kgf m = 9.806 \ 65 \ J$ $1 \ lbf ft = 1.355 \ 82 \ J$	$\begin{array}{l} 1 \ J = 10^7 \ {\rm erg} \\ 1 \ J = 0.101 \ 97 \ {\rm kgf} \cdot {\rm m} \\ 1 \ J = 0.737 \ 56 \ {\rm lbf} \cdot {\rm ft} \end{array}$			
Power	W [watt(s)]	erg/s [ergs per second] kgf.m/s PS [French horse-power] HP [horse-power (British)] lbf.ft/s	$\label{eq:second} \begin{array}{l} 1 \ erg/s = 10^{-7} \ W \\ 1 \ kgf.m/s = 9.806 \ 65 \ W \\ 1 \ PS = 75 \ kgf.m/s = 735.5 \ W \\ 1 \ HP = 550 \ lbf.ft/s = 745.7 \ W \\ 1 \ lbf.ft/s = 1.355 \ 82 \ W \end{array}$	1 W = 0.101 97 kgf.m/s 1 W = 0.001 36 PS 1 W = 0.001 34 HP			
Thermo-dynamic temperature	K [kelvin(s)]						
Celsius temperature	℃ [Celsius(s)] {t℃ = (t+273.15)K}	°F [degree(s) Fahrenheit]	t °F = $\frac{5}{9}$ (t-32)°C	$t^{\circ}C = (\frac{9}{5}t+32)^{\circ}F$			
Linear expansion coefficient	K ⁻¹	$^{\circ}\!C^{-1}$ [per degree]					
Heat	J [joule(s)] {1 J=1 N·m}	erg [erg(s)] kgf·m cal _{IT} [l. T. calories]	$\label{eq:rescaled_response} \begin{array}{l} 1 \ erg = 10^{-7} \ J \\ 1 \ cal_{\rm TT} = 4.186 \ 8 \ J \\ 1 \ Mcal_{\rm TT} = 1.163 \ kW \cdot h \end{array}$	$\begin{array}{l} 1 \; J = 10^7 \; erg \\ \\ 1 \; J = 0.238 \; 85 \; cal_{IT} \\ 1 \; kW \cdot h = 0.86 \times 10^6 \; cal_{IT} \end{array}$			
Thermal conductivity	W∕(m·K)	W/(m·℃) cal/(s·m·℃)	$\begin{array}{l} 1 \ W/(m \cdot \mathbb{C}) = 1 \ W/(m \cdot K) \\ 1 \ cal/(s \cdot m \cdot \mathbb{C}) = \\ 4.186 \ 05 \ W/(m \cdot K) \end{array}$				
Coefficient of heat transfer	₩/(m ² ·K)	W/(m ² ·℃) cal/(s·m ² ·℃)	$\begin{array}{l} 1 \ W/(m^2 \cdot \mathbb{C}) = 1 \ W/(m^2 \cdot K) \\ 1 \ cal/(s \cdot m^2 \cdot \mathbb{C}) = \\ 4.186 \ 05 \ W/(m^2 \cdot K) \end{array}$				
Heat capacity	J/K	J/°C	1 J/℃ = 1 J/K				
Massic heat capacity	J/(kg·K)	J/(kg.℃)					

[Note]

] * : Unit can be used as an SI unit. No asterisk : Unit cannot be used. Supplementary table 11 (4) SI units and conversion factors

	ouppionion	itary table 11 (4)	SI units and conversio	
Mass	SI units	Other units 1)	Conversion into SI units	Conversion from SI units
Electric current	A [ampere(s)]			
Electric charge,	C [coulomb(s)]	A·h *	1 A·h = 3.6 kC	
quantity of electricity	$\{1 \text{ C} = 1 \text{ A} \cdot s\}$			
Tension, electric potential	V [volt(s)] {1 V = 1 W/A}			
Capacitance	F [farad(s)] {1 F = 1 C/V}			
Magnetic field strength	A/m	Oe [oersted(s)]	$1 \text{ Oe} = \frac{10^3}{4\pi} \text{ A/m}$	$1 \text{ A/m} = 4 \pi \times 10^{-3} \text{ Oe}$
Magnetic flux density	$ \begin{cases} T \\ [tesla(s)] \\ 1T=1N / (A \cdot m) \\ =1Wb / m^2 \\ =1V \cdot s / m^2 \end{cases} $	Gs [gauss(es)] γ [gamma(s)]	1 Gs = 10^{-4} T 1 $\gamma = 10^{-9}$ T	$\begin{array}{l} 1 \ T = 10^4 \ \mathrm{Gs} \\ 1 \ T = 10^9 \ \gamma \end{array}$
Magnetic flux	$\label{eq:wb} \begin{array}{l} Wb \\ [weber(s)] \\ \{1 \ Wb = 1 \ V{\cdot}s\} \end{array}$	Mx [maxwell(s)]	$1 \text{ Mx} = 10^{-8} \text{ Wb}$	$1 \ \mathrm{Wb} = 10^8 \ \mathrm{Mx}$
Self inductance	H [henry(-ries)] {1 H = 1 Wb/A}			
Resistance (to direct current)	$\label{eq:optimal_states} \begin{array}{c} \Omega \\ [ohm(s)] \\ \{1 \ \Omega = 1 \ V/A\} \end{array}$			
Conductance (to direct current)	$\begin{array}{c} S\\ [siemens]\\ \{1\;S=1\;A/V\} \end{array}$			
Active power	$\left\{ \begin{array}{c} W \\ 1 \ W=1 \ J/s \\ =1 \ A \cdot V \end{array} \right\}$			

Supplementary table 12 Inch/millimeter conversion

							Inches					
	Inch	0	1	2	3	4	5	6	7	8	9	10
							mm					
0	0	0	25.4000	50.8000	76.2000	101.6000	127.0000	152.4000	177.8000	203.2000	228.6000	254.0000
1/64	0.015625	0.3969	25.7969	51.1969	76.5969	101.9969	127.3969	152.7969	178.1969	203.5969	228.9969	254.3969
1/32	0.03125	0.7938	26.1938	51.5938	76.9938	102.3938	127.7938	153.1938	178.5938	203.9938	229.3938	254.7938
3/64	0.046875	1.1906 1.5875	26.5906	51.9906 52.3875	77.3906 77.7875	102.7906 103.1875	128.1906 128.5875	153.5906 153.9875	178.9906	204.3906 204.7875	229.7906 230.1875	255.1906
5/64	0.0625	1.9844	26.9875 27.3844	52.3875	78.1844	103.1875	128.9844	153.9875	179.3875 179.7844	204.7875	230.1875	255.5875 255.9844
3/32	0.09375	2.3812	27.7812	53.1812	78.5812	103.9812	129.3812	154.7812	180.1812	205.5812	230.9812	256.3812
7/64	0.109375	2.7781	28.1781	53.5781	78.9781	104.3781	129.7781	155.1781	180.5781	205.9781	231.3781	256.7781
1/8	0.125	3.1750	28.5750	53.9750	79.3750	104.7750	130.1750	155.5750	180.9750	206.3750	231.7750	257.1750
9/64	0.140625	3.5719	28.9719	54.3719	79.7719	105.1719	130.5719	155.9719	181.3719	206.7719	232.1719	257.5719
5/32	0.15625	3.9688	29.3688	54.7688	80.1688	105.5688	130.9688	156.3688	181.7688	207.1688	232.5688	257.9688
11/64	0.171875	4.3656	29.7656	55.1656	80.5656	105.9656	131.3656	156.7656	182.1656	207.5656	232.9656	258.3656
3/16	0.1875	4.7625	30.1625	55.5625	80.9625	106.3625	131.7625	157.1625	182.5625	207.9625	233.3625	258.7625
13/64	0.203125	5.1594	30.5594 30.9562	55.9594	81.3594 81.7562	106.7594 107.1562	132.1594	157.5594 157.9562	182.9594 183.3562	208.3594 208.7562	233.7594	259.1594
7/32 15/64	0.21875 0.234375	5.5562 5.9531	30.9562	56.3562 56.7531	81.7562	107.1562	132.5562 132.9531	157.9562	183.3562	208.7562	234.1562 234.5531	259.5562 259.9531
1/4	0.234375	6.3500	31.3531 31.7500	50.7531 57.1500	82.5500	107.5531	132.9531	158.7500	184.1500	209.1531 209.5500	234.5531 234.9500	260.3500
17/64	0.265625	6.7469	32.1469	57.5469	82.9469	108.3469	133.7469	159.1469	184.5469	209.9469	235.3469	260.7469
9/32	0.28125	7.1438	32.5438	57.9438	83.3438	108.7438	134.1438	159.5438	184.9438	210.3438	235.7438	261.1438
19/64	0.296875	7.5406	32.9406	58.3406	83.7406	109.1406	134.5406	159.9406	185.3406	210.7406	236.1406	261.5406
5/16	0.3125	7.9375	33.3375	58.7375	84.1375	109.5375	134.9375	160.3375	185.7375	211.1375	236.5375	261.9375
21/64	0.328125	8.3344	33.7344	59.1344	84.5344	109.9344	135.3344	160.7344	186.1344	211.5344	236.9344	262.3344
11/32	0.34375	8.7312	34.1312	59.5312	84.9312	110.3312	135.7312	161.1312	186.5312	211.9312	237.3312	262.7312
23/64	0.359375	9.1281	34.5281	59.9281	85.3281	110.7281	136.1281	161.5281	186.9281	212.3281	237.7281	263.1281
3/8 25/64	0.375 0.390625	9.5250 9.9219	34.9250 35.3219	60.3250 60.7219	85.7250 86.1219	111.1250 111.5219	136.5250 136.9219	161.9250 162.3219	187.3250 187.7219	212.7250 213.1219	238.1250 238.5219	263.5250 263.9219
13/32	0.390025	10.3188	35.7188	61.1188	86.5188	111.9188	137.3188	162.7188	188.1188	213.5188	238.9188	264.3188
27/64	0.421875	10.7156	36.1156	61.5156	86.9156	112.3156	137.7156	163.1156	188.5156	213.9156	239.3156	264.7156
7/16	0.4375	11.1125	36.5125	61.9125	87.3125	112.7125	138.1125	163.5125	188.9125	214.3125	239.7125	265.1125
29/64	0.453125	11.5094	36.9094	62.3094	87.7094	113.1094	138.5094	163.9094	189.3094	214.7094	240.1094	265.5094
15/32	0.46875	11.9062	37.3062	62.7062	88.1062	113.5062	138.9062	164.3062	189.7062	215.1062	240.5062	265.9062
31/64	0.484375	12.3031	37.7031	63.1031	88.5031	113.9031	139.3031	164.7031	190.1031	215.5031	240.9031	266.3031
1/2	0.5	12.7000	38.1000	63.5000	88.9000	114.3000	139.7000	165.1000	190.5000	215.9000	241.3000	266.7000
33/64	0.515625	13.0969	38.4969	63.8969	89.2969	114.6969	140.0969	165.4969	190.8969	216.2969	241.6969	267.0969
17/32 35/64	0.53125 0.546875	13.4938 13.8906	38.8938 39.2906	64.2938 64.6906	89.6938 90.0906	115.0938 115.4906	140.4938 140.8906	165.8938 166.2906	191.2938 191.6906	216.6938 217.0906	242.0938 242.4906	267.4938 267.8906
35/64 9/16	0.546875	13.8906	39.2906	65.0875	90.0906	115.4906	140.8906	166.6875	191.6906	217.0906	242.4906	267.8906
37/64	0.578125	14.6844	40.0844	65.4844	90.8844	116.2844	141.6844	167.0844	192.4844	217.8844	243.2844	268.6844
19/32	0.59375	15.0812	40.4812	65.8812	91.2812	116.6812	142.0812	167.4812	192.8812	218.2812	243.6812	269.0812
39/64	0.609375	15.4781	40.8781	66.2781	91.6781	117.0781	142.4781	167.8781	193.2781	218.6781	244.0781	269.4781
5/8	0.625	15.8750	41.2750	66.6750	92.0750	117.4750	142.8750	168.2750	193.6750	219.0750	244.4750	269.8750
41/64	0.640625	16.2719	41.6719	67.0719	92.4719	117.8719	143.2719	168.6719	194.0719	219.4719	244.8719	270.2719
21/32	0.65625	16.6688	42.0688	67.4688	92.8688	118.2688	143.6688	169.0688	194.4688	219.8688	245.2688	270.6688
43/64	0.671875	17.0656 17.4625	42.4656	67.8656	93.2656	118.6656 119.0625	144.0656 144.4625	169.4656 169.8625	194.8656 195.2625	220.2656 220.6625	245.6656 246.0625	271.0656 271.4625
45/64	0.6875	17.4625 17.8594	42.8625 43.2594	68.2625 68.6594	93.6625 94.0594	119.0625	144.4625 144.8594	169.8625	195.2625	220.6625	246.0625	271.4625
23/32	0.703125	17.6594	43.6562	69.0562	94.0594	119.4594	144.8594	170.2594	195.0594	221.0594	246.4594	271.6594
47/64	0.734375	18.6531	44.0531	69.4531	94.8531	120.2531	145.6531	171.0531	196.4531	221.8531	247.2531	272.6531
3/4	0.75	19.0500	44.4500	69.8500	95.2500	120.6500	146.0500	171.4500	196.8500	222.2500	247.6500	273.0500
49/64	0.765625	19.4469	44.8469	70.2469	95.6469	121.0469	146.4469	171.8469	197.2469	222.6469	248.0469	273.4469
25/32	0.78125	19.8438	45.2438	70.6438	96.0438	121.4438	146.8438	172.2438	197.6438	223.0438	248.4438	273.8438
51/64	0.796875	20.2406	45.6406	71.0406	96.4406	121.8406	147.2406	172.6406	198.0406	223.4406	248.8406	274.2406
13/16	0.8125	20.6375	46.0375	71.4375	96.8375	122.2375	147.6375	173.0375	198.4375	223.8375	249.2375	274.6375
53/64 27/32	0.828125 0.84375	21.0344 21.4312	46.4344 46.8312	71.8344 72.2312	97.2344 97.6312	122.6344 123.0312	148.0344 148.4312	173.4344 173.8312	198.8344 199.2312	224.2344 224.6312	249.6344 250.0312	275.0344 275.4312
55/64	0.84375	21.4312	46.8312 47.2281	72.2312	97.6312	123.0312	148.4312	173.8312	199.2312	224.6312	250.0312	275.4312
7/8	0.875	21.0201	47.6250	73.0250	98.4250	123.4201	149.2250	174.2201	200.0250	225.4250	250.4281	276.2250
57/64	0.890625	22.6219	48.0219	73.4219	98.8219	124.2219	149.6219	175.0219	200.4219	225.8219	251.2219	276.6219
29/32	0.90625	23.0188	48.4188	73.8188	99.2188	124.6188	150.0188	175.4188	200.8188	226.2188	251.6188	277.0188
59/64	0.921875	23.4156	48.8156	74.2156	99.6156	125.0156	150.4156	175.8156	201.2156	226.6156	252.0156	277.4156
15/16	0.9375	23.8125	49.2125	74.6125	100.0125	125.4125	150.8125	176.2125	201.6125	227.0125	252.4125	277.8125
61/64	0.953125	24.2094	49.6094	75.0094	100.4094	125.8094	151.2094	176.6094	202.0094	227.4094	252.8094	278.2094
31/32	0.96875	24.6062	50.0062	75.4062	100.8062	126.2062	151.6062	177.0062	202.4062	227.8062	253.2062	278.6062
63/64	0.984375	25.0031	50.4031	75.8031	101.2031	126.6031	152.0031	177.4031	202.8031	228.2031	253.6031	279.0031

Supplementary table 13 Steel hardness conversion

Rockwell		Bri	inell	Roc	kwell	
C-scale 1 471.0 N	Vicker's	Standard ball	Tungsten carbide ball	A-scale 588.4 N	B-scale 980.7 N	Shore
68	940			85.6		97
67	900			85.0		95
66	865			84.5		92
65	832		739	83.9		91
64	800		722	83.4		88
63	772		705	82.8		87
62	746		688	82.3		85
61	720		670	81.8		83
60	697		654	81.2		81
59	674		634	80.7		80
58	653		615	80.1		78
57	633		595	79.6		76
56	613		577	79.0		75
55	595	-	560	78.5		74
54	577	_	543	78.0		72
53	560		525	77.4		71
52	544	500	525	76.8		69
51	528	487	496	76.3		68
50	513	475	481	75.9		67
49	498	464	469	75.2		66
48	484	451	455	74.7		64
47	471	442	443	74.1		63
46	458	432	432	73.6		62
45	446		21	73.1		60
44	434		09	72.5		58
43	423	4	00	72.0		57
42	412	3	90	71.5		56
41	402	3	81	70.9		55
40	392	3	71	70.4	-	54
39	382	3	62	69.9	-	52
38	372	3	53	69.4	-	51
37	363	3	44	68.9	-	50
36	354	3	36	68.4	(109.0)	49
35	345	3	27	67.9	(108.5)	48
34	336	3	19	67.4	(108.0)	47
33	327	3	11	66.8	(107.5)	46
32	318		01	66.3	(107.0)	44
31	310		94	65.8	(106.0)	43
30	302		86	65.3	(105.5)	42
29	294		79	64.7	(104.5)	41
28	286		71	64.3	(104.0)	41
27	279		64	63.8	(103.0)	40
26	279		58	63.3	(103.0)	38
25	266		53	62.8	(102.5)	38
25	260		55 47	62.6	(101.0)	37
24 23	254		47 43	62.0	100.0	36
23	234		43 37	61.5	99.0	35
22	240		31	61.0	99.0	35
21	243		26	60.5		35
					97.8	34
(18)	230		19	-	96.7	
(16)	222		12	-	95.5	32
(14)	213		03	-	93.9	31
(12)	204		94	-	92.3	29
(10)	196		87		90.7	28
(8)	188		79		89.5	27
(6)	180		71		87.1	26
(4)	173		65		85.5	25
(2)	166		58		83.5	24
(0)	160	1 1	52		81.7	24

Supplementary table 14 Surface roughness comparison

Arithmetical mean deviation of the profile	Maximum height of the profile	Ten-point height of irregularities	Roughness grade numbers
R_a	R _{max}	Rz	N
0.013 a	0.05 S	0.05 Z	-
0.025 a	0.1 S	0.1 Z	N 1
0.05 a	0.2 S	0.2 Z	N 2
0.10 a	0.4 S	0.4 Z	N 3
0.20 a	0.8 S	0.8 Z	N 4
0.40 a	1.6 S	1.6 Z	N 5
0.80 a	3.2 S	3.2 Z	N 6
1.6 a	6.3 S	6.3 Z	N 7
3.2 a	12.5 S	12.5 Z	N 8
6.3 a	25 S	25 Z	N 9
12.5 a	50 S	50 Z	N 10
25 a	100 S	100 Z	N 11
50 a	200 S	200 Z	N 12
100 a	400 S	400 Z	-

[Note] Above table is applicable only when processed surface peaks are of equal height. Above table is roughly applicable to processed surface for general use. Numbers are combined only for convenience in deciding surface roughness.

Supplementary table 15 Visc	osity conversion
-----------------------------	------------------

Kinematic viscosity	Saybolt SUS (second)		Redwood R (second)		Engler	Kinematic viscosity	Saybolt SUS (second)		Redwood R (second)		Engler
$\rm mm^2/s$	100°F	210 °F	50℃	100℃	E (degree)	$\rm mm^2/s$	100°F	210 °F	50℃	100℃	E (degree)
2	32.6	32.8	30.8	31.2	1.14	35	163	164	144	147	4.70
3	36.0	36.3	33.3	33.7	1.22	36	168	170	148	151	4.83
4	39.1	39.4	35.9	36.5	1.31	37	172	173	153	155	4.96
5	42.3	42.6	38.5	39.1	1.40	38	177	178	156	159	5.08
6	45.5	45.8	41.1	41.7	1.48	39	181	183	160	164	5.21
7	48.7	49.0	43.7	44.3	1.56	40	186	187	164	168	5.34
8	52.0	52.4	46.3	47.0	1.65	41	190	192	168	172	5.47
9	55.4	55.8	49.1	50.0	1.75	42	195	196	172	176	5.59
10	58.8	59.2	52.1	52.9	1.84	43	199	201	176	180	5.72
11	62.3	62.7	55.1	56.0	1.93	44	204	205	180	185	5.85
12	65.9	66.4	58.2	59.1	2.02	45	208	210	184	189	5.98
13	69.6	70.1	61.4	62.3	2.12	46	213	215	188	193	6.11
14	73.4	73.9	64.7	65.6	2.22	47	218	219	193	197	6.24
15	77.2	77.7	68.0	69.1	2.32	48	222	224	197	202	6.37
16	81.1	81.7	71.5	72.6	2.43	49	227	228	201	206	6.50
17	85.1	85.7	75.0	76.1	2.54	50	231	233	205	210	6.63
18	89.2	89.8	78.6	79.7	2.64	55	254	256	225	231	7.24
19	93.3	94.0	82.1	83.6	2.76	60	277	279	245	252	7.90
20	97.5	98.2	85.8	87.4	2.87	65	300	302	266	273	8.55
21	102	102	89.5	91.3	2.98	70	323	326	286	294	9.21
22	106	107	93.3	95.1	3.10	75	346	349	306	315	9.89
23	110	111	97.1	98.9	3.22	80	371	373	326	336	10.5
24	115	115	101	103	3.34	85	394	397	347	357	11.2
25	119	120	105	107	3.46	90	417	420	367	378	11.8
26	123	124	109	111	3.58	95	440	443	387	399	12.5
27	128	129	112	115	3.70	100	464	467	408	420	13.2
28	132	133	116	119	3.82	120	556	560	490	504	15.8
29	137	138	120	123	3.95	140	649	653	571	588	18.4
30	141	142	124	127	4.07	160	742	747	653	672	21.1
31	145	146	128	131	4.20	180	834	840	734	757	23.7
32	150	150	132	135	4.32	200	927	933	816	841	26.3
33	154	155	136	139	4.45	250	1159	1167	1020	1051	32.9
34	159	160	140	143	4.57	300	1391	1400	1224	1241	39.5

[Remark] 1mm²/s=1 cSt (centi stokes)

____ MEMO ______

.

____ MEMO _____

GLOBAL NETWORK **BEARING BUSINESS OPERATIONS**

JTEKT CORPORATION NAGOYA HEAD OFFICE

No.7-1, Meieki 4-chome, Nakamura-ku, Nagoya, Aichi 450-8515, JAPAN TEL: 81-52-527-1900 FAX: 81-52-527-1911

JTEKT CORPORATION OSAKA HEAD OFFICE No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502, JAPAN TEL: 81-6-6271-8451 FAX: 81-6-6245-3712 Sales & Marketing Headquarters No.5-8, Minamisemba 3-chome, Chuo-ku, Osaka 542-8502. JAPAN TEL: 81-6-6245-6087

FAX: 81-6-6244-9007

OFFICES

KOYO CANADA INC. 5324 South Service Road, Burlington, Ontario L7L 5H5, CANADA TEL: 1-905-681-1121 EAX - 1-905-681-1392

KOYO CORPORATION OF U.S.A.

-Cleveland Office-29570 Clemens Road, P.O.Box 45028 Westlake, OH 44145, U.S.A. TEL : 1-440-835-1000 FAX : 1-440-835-9347

-Detroit Office-47771 Halyard Drive, Plymouth, MI 48170, U.S.A. TEL : 1-734-454-1500 FAX: 1-734-454-4076

KOYO MEXICANA, S.A. DE C.V. Rio Nazas No.171, 3er piso, Col. Cuauhtemoc, México, D.F. C.P 06500, MÉXICO TEL : 52-55-5207-3860 FAX : 52-55-5207-3873

KOYO LATIN AMERICA, S.A.

Edificio Banco del Pacifico Planta Baja, Calle Aguilino de la Guardia y Calle 52, Panama, REPUBLICA DE PANAMA TEL: 507-208-5900 FAX: 507-264-2782/507-269-7578

KOYO ROLAMENTOS DO BRASIL LTDA.

Rua Desembargador Eliseu Ghilherme 304, 7-Andar, Paraiso, CEP 04004-30, BRASIL TEL: 55-11-3887-9173 FAX: 55-11-3887-3039

JTEKT (THAILAND) Co., LTD.

172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180. THAILAND TEL : 66-38-533-310-7 FAX: 66-38-532-776

PT. JTEKT INDONESIA

MM2100 Industrial Town Block DD-3, Cikarang Barat, Bekasi 17520, INDONESIA TEL: 62-21-8998-3273 FAX: 62-21-8998-3274

KOYO SINGAPORE BEARING (PTE.) LTD.

27, Penjuru Lane, #09-01 C&P Logistics Hub 2, SINGAPORE 609195 TEL : 65-6274-2200 FAX: 65-6862-1623

-MIDDLE EAST (BRANCH)-

6EA312, Dubai Airport Free Zone, P.O. Box 54816, Dubai, U.A.E. TEL : 971-4-2993600 FAX · 971-4-2993700

PHILIPPINE KOYO BEARING CORPORATION

6th Floor One World Square Building, #10 Upper McKinley Road, McKinley Town Center, Fort Bonifacio, 1634 Taguig City. PHILIPPINES TEL: 63-2-856-5046/5047 FAX: 63-2-856-5045

JTEKT KOREA CO., LTD. Inwoo Building 6F, 539-11, Shinsa-Dong, Kangnam-Ku, Seoul, KOREA

TEL: 82-2-549-7922 FAX: 82-2-549-7923

JTEKT (CHINA) CO., LTD. Rm.1906, Aetna Tower, 107 Zunyi Road, Shanghai, 200051. CHINA TEL: 86-21-6237-5280 FAX: 86-21-6237-5277

KOYO (SHANGHAI) CO., LTD. Rm.1905, Aetna Tower, 107 Zunyi Road, Shanghai, 200051, CHINA TEL: 86-21-6237-5280 FAX : 86-21-6237-5277

KOYO AUSTRALIA PTY. LTD. Unit 2, 8 Hill Road , Homebush Bay, NSW 2127, AUSTRALIA TEL 61-2-8719-5300 FAX · 61-2-8719-5333

JTEKT EUROPE BEARINGS B.V. Markerkant 13-01, 1314 AN Almere, THE NETHERLANDS TEL 31-36-5383333 FAX: 31-36-5347212

KOYO KULLAGER SCANDINAVIA A.B. Johanneslundsvägen 4, 194 61 Upplands Väsby, SWEDEN TEL : 46-8-594-212-10 FAX: 46-8-594-212-29

KOYO (U.K.) LTD. Whitehall Avenue, Kingston, Milton Keynes MK10 OAX, UNITED KINGDOM TEL: 44-1908-289300 FAX : 44-1908-289333

KOYO ROMANIA REPRESENTATIVE OFFICE Str. Frederic Jolliot-Curie, Nr.3, Etaj 1, Ap.2, Sector 5

Bucharest, ROMANIA TEL : 40-21-410-4170/4182/0984 FAX: 40-21-410-1178

KOYO DEUTSCHLAND GMBH.

Bargkoppelweg 4, D-22145 Hamburg, GERMANY TEL: 49-40-67-9090-0 FAX: 49-40-67-9203-0

KOYO FRANCE S.A. 8 Rue Guy Moquet, B.P.189 Z.I., 95105 Argenteuil Cedex, FRANCE TEL : 33-1-3998-4202 FAX: 33-1-3998-4244/4249

KOYO IBERICA, S.L. Avda.da la Industria, 52-2 izda 28820 Coslada Madrid SPAIN TEL: 34-91-329-0818 FAX : 34-91-747-1194

KOYO ITALIA S.R.L.

Via Bronzino 9, 20133 Milano, ITALY TEL: 39-02-2951-0844 FAX: 39-02-2951-0954

BEARING PLANTS

KOYO CORPORATION OF U.S.A. (MANUFACTURING DIVISION) -Orangeburg Plant-2850 Magnolia Street, Orangeburg, SC 29115, U.S.A. TEL : 1-803-536-6200 FAX : 1-803-534-0599 -Richland Plant-1006 Northpoint Blvd., Blythewood, SC 29016, U.S.A. TEL : 1-803-691-4624/4633 FAX : 1-803-691-4655

JTEKT (THAILAND) Co., LTD.

172/1 Moo 12 Tambol Bangwua, Amphur Bangpakong, Chachoengsao 24180, THAILAND TEL: 66-38-531-988/993 FAX: 66-38-531-996

KOYO MANUFACTURING (PHILIPPINES) CORP.

Lima Technology Center, Municipality of Malvar, Batangas Province, 4233 PHILIPPINES TEL · 63-43-981-0088 FAX : 63-43-981-0001

KOYO JICO KOREA CO., LTD

28-12, Yulpo-Ri, Koduc-Myun, Pyung Teak-City, Kyungki-Do, KOREA TEL: 82-31-668-6381 FAX: 82-31-668-6384

KOYO BEARING DALIAN CO., LTD. No.II A-2 Dalian Export Processing Zone, 116600, CHINA TEL : 86-411-8731-0972/0974 FAX: 86-411-8731-0973

WUXI KOYO BEARING CO., LTD.

Wuxi Li Yuan Economic Development Zone, Wuxi, 214072, CHINA TEL: 86-510-85161901 FAX : 86-510-85161143

DALIAN KOYO WAZHOU AUTOMOBILE BEARING CO., LTD. No.96, Liaohe East Road, D.D Port, Dalian, 116620, CHINA TEL: 86-411-8740-7272 FAX · 86-411-8740-7373

KOYO LIOHO (FOSHAN) AUTOMOTIVE PARTS CO., LTD.

No.12, Wusha Section Of Shunpan Road, Daliang Town, Shunde Of Foshan, Guandong, Province, CHINA (SHUNDE INDUSTRIAL PARK) TEL: 86-757-22829589 FAX: 86-757-22829586

KOYO AUTOMOTIVE PARTS (WUXI) CO.,LTD.

B6-A New District, Wuxi, 214028, CHINA TEL: 86-510-8533-0909 FAX: 86-510-8533-0155

KOYO BEARINGS (EUROPE) LTD.

P.O.Box 101, Elmhirst Lane, Dodworth, Barnsley, South Yorkshire, S75 3TA, UNITED KINGDOM TEL: 44-1226-733200 FAX: 44-1226-204029

KOYO ROMANIA S.A.

Turnu Magurele Street No.1, 140003, ALEXANDRIA Teleorman County, ROMANIA TEL: 40-247-306-400 FAX: 40-247-306-421

TECHNICAL CENTERS

JTEKT CORPORATION NORTH AMERICAN TECHNICAL CENTER

47771 Halyard Drive, Plymouth, MI 48170, U.S.A. TEL : 1-734-454-1500 FAX : 1-734-454-4076

JTEKT (CHINA) CO., LTD. TECHNICAL CENTER Rm.1905, Aetna Tower, 107 Zunyi Road, Shanghai, 200051,

CHINA TEL : 86-21-6237-5280 FAX : 86-21-6237-5277

JTEKT CORPORATION EUROPEAN TECHNICAL

CENTRE Markerkant 13-02, 1314 AN Almere, THE NETHERLANDS TEL : 31-36-5383350 FAX : 31-36-5302656

This catalog has been printed on paper of recycled paper pulp using environmentally friendly soy ink.

CAT. NO. B2001E-3 Printed in Japan '09.09-3CDS ('06.1)

JTEKT CORPORATION