

BEARINGS CATALOGUE

Single row radial ball bearings Double row radial ball bearings Double row self-aligning ball bearings Single row separable ball bearings Single and double row angular contact ball bearings Single row duplex ball bearings Single and double direction thrust ball bearings Single row cylindrical roller bearings Double row spherical roller bearings Spherical roller thrust bearings RKB Bearings Catalogue © 2010 The contents of this catalogue are copyright of the publisher Every care has been taken to ensure the accuracy of the information in Taper roller the present catalogue but no liability can be accepted for any errors or omissions contained herein, or in case losses and/or damages (direct, indirect, bearings consequential) should occur. RKB Bearing Industries reserves the right to make amendments and withdraw bearings from production without prior notice.

The Alternative Power

The RKB Group is an international manufacturing organization operating in the bearing industry with headquarters in Switzerland. The experience gained in this sector provides **RKB** with the know-how and expertise necessary for the development and production of technological value-added bearings, particularly in the field of heavy duty machines and equipments. All RKB bearings are manufactured in conformity with the International Standards in owned plants that are ISO 9001 and ISO 14001 certified. Thanks to its pioneer business model, based on a vertically integrated system, **RKB** offers reliable cost-effective solutions in the long run, with extreme operational flexibility, leading-edge service and the quality typical of a consistent premiumclass bearing source. With a worldwide distribution network and exports to more than 50 Countries, **RKB** is globally recognized as "The Alternative Power" in the bearing industry.

Contents

Introduction	V
Roadmap for eligibility criteria	XII
Recommendations to customers	XIII
RKB Bearings Production Range	XV
RKB Bearings Catalogue	3
Materials, design and load ratings	5
Suffix system	10
Bearing tolerances definitions	11
Bearing tolerances definitions (Italian)	12
Bearing tolerances definitions (Spanish)	14
Bearing tolerances data	17
Snap ring and groove tolerances	22
Radial internal clearance	23
Single row radial ball bearings	31
Double row radial ball bearings	42
Double row self-aligning ball bearings	44
Adapter sleeves	48
Single row separable ball bearings	50
Single row angular contact ball bearings	51
Double row angular contact ball bearings	54
Single row duplex ball bearings	58
Single direction thrust ball bearings	62
Double direction thrust ball bearings Single direction thrust ball bearings with spherical housing washers	66
Double direction thrust ball bearings with spherical housing washers	68 72
Single row cylindrical roller bearings	76
Double row spherical roller bearings	92
Spherical roller thrust bearings	110
Taper roller bearings	114
Appendix	121
Dimensional tolerances of shaft	122
Dimensional tolerances of housing bore	123
Conversion tables	124
General conditions	127

Introduction

The present catalogue lists the types and technical specifications of the standard ball and roller bearings manufactured and offered by **RKB** Bearing Industries. All the bearings in this catalogue are produced in accordance with the standards of the International Organization for Standardization (ISO). The load ratings in this volume are principally based on ISO 281 and ISO 76, but are not calculated according to the latest available bearing design and execution. In order to get further background information on calculations please ask **RKB** Technical Department for related data. Unilaterally empowered factors, formulas and tables are not taken into consideration.

This catalogue is intended to be a critical information and advisory instrument for all technical issues regarding rolling bearings, and a guideline for machine and equipment designers.

The standard products described in this publication only partially cover the range of bearings manufactured by **RKB**. In fact, rolling bearing technology is in constant development and **RKB** Bearing Industries specializes most of all in technological, big size and application optimized bearings, both in through-hardened steel and case-hardened steel.

Therefore, due to the necessity of incessantly revising and optimizing products, **RKB** adopted the Technical Fiche method to offer the most accurate and up-to-date data in compliance with the latest available executions (examples on page VI, VII, VIII, IX, X, and XI). So, because of continuous redesign and technological progress, this catalogue cannot be considered exhaustive in terms of product range and executions. For this reason, for a more comprehensive knowledge of the bearing families manufactured by **RKB** please refer to the Bearings Production Range enclosed here and contact **RKB** Technical Department to request the most updated technical fiche of the products of your interest.

Then, although this catalogue is correct at the time of going to press, bearings supplied may be of a different design to that specified.

The listing of bearing types and sizes in this catalogue does not imply that they are always available and customers are advised to check with **RKB** Sales Department before committing themselves to any particular bearing.

A technical advisory service is available on a confidential basis. Any customer who wishes to take advantage of this service should submit a drawing or sketch and all details of the proposed application to **RKB** Technical Department.

RKB

GGC140410

F. 1 MIN

r₂ min

Deep groove ball bearings

618/750 MB

Main boundary dimensions (mm)			
n bour	750	920	78
Mai	р	۵	m

	<u>1</u>	chnic	Technical data
(IA) coniton bool cioco	Dyn.	ပ	525
Basic Ioad ratings (KIV)	Stat.	ပ္	1250
Mass (kg)			116
Cage material			Brass
		r,	5,0
(mm) dino olipo		ľ2	5,0
Nacional (IIIII)		ي.	5,0
		r	5,0
Precision class			P0
Ф			1
Radial clearance (mm)	Ē		CN
Configuration/Design	gn		618/MB

r₁min

 α

Technical notes

- Machined brass cage guided on inner ring (rivet-type)
 Speed rating oil lubrication 600 rpm
 29 balls dia 1-7/8"
 Outer ring raceway diameter 882,625
 Inner ring raceway diameter 787,375
 Raceways curvature R25

Sketch scale is free.

Load ratings are principally based on ISO 281 and ISO 76, but not calculated according to the latest bearing design and execution. For further background ask for related calculations.

Load ratings are principally based on ISO 281 and ISO 76, but not calculated according to the latest bear are not taken into consideration.

Also refer to RKB Affidant of Conformance (LJSA) for related compliance to International Standards.

Every care has been taken to ensure the accuracy of the information in the present drawing but no liability can be accepted for any errors or omissions contained herein, or in case losses and/or damages (direct, indirect, consequential) should occur. RKB Bearing Industries reserves the right of any amendment without notice.

Cylindrical roller bearings

Mair	Main boundary dimensions (mm)
p	160
D	240
В	48
F	180

r3 min

F 4 M -

	<u>1</u>	chnic	Technical data
(MJ) applied bool ciocal	Dyn.	ပ	410
Dasic load ratings (KIV)	Stat.	ပ္ခံ	029
Mass (kg)			8,0
Cage material			Brass
		r,	1,5
oniioo		ľ2	1,5
		r³	2,1
		r ₄	2,1
Precision class			P0
Ф			•
Radial clearance (mm)	Ē		C3
Configuration/Design	gn		NU/EMA

r m

 $\stackrel{\cdot}{\square}$

ທ
Φ
ټ
0
č
_
=
a
ပ
•=
⊑
_
$\overline{}$
×
,ω
_

- Optimized inner geometry E Type
 Machined brass cage guided on outer ring (rivet-type)
 ZB roller profile
 Max axial displacement +/-2 mm
 For general industry purpose

Sketch scale is free.
Load ratings are principally based on ISO 281 and ISO 76, but not calculated according to the latest bearing design and execution. For further background ask for related calculations.
Single-sided empowered factors, formulas and tables are not taken into consideration.
Also refer to RRB Affidawit of Conformance (LLSA) for frealized compliance to International Standards.
Every care has been taken to resurve the accuracy of the information in the present drawing but no liability can be accepted for any errors or omissions contained herein, or in case losses and/or damages (direct, indirect, consequential) should occur.
RRB Bearing industries reserves the right of any amendment without notice.

For reference only. Copyright © RKB Bearing Industries - Switzerland

RKB VII

RKB Bearings Technical Fiche

GGC260510

Spherical roller bearings 24192 CAC3W33X

Mair	Main boundary dimensions (mm)
σ	460
D	760
В	300

	ě	chnic	Technical data
(MJ) assistant bool ciocal	Dyn.	ပ	7300
Dasic Idau Falligs (NN)	Stat.	ပ်	14000
Mass (kg)			547,0
Cage material			Brass
		r,	7,5
Dadine min (mm)		ľ	7,5
		٦.	-
		r ₄	-
Precision class			P0
Ф			0,37/13°30'
Radial clearance (mm)	E		C3
Configuration/Design	gu		CAW33X

r₁min

Technical notes

- Annular groove and 6 lubrication holes in outer ring b;K (suffix W33X)
 Optimized cage design (integrated guiding slinger)
 For general industry purpose

Sketch scale is free.
Lord ratings are principally based on ISO 281 and ISO 76, but not calculated according to the latest bearing design and execution. For further background ask for related calculations.
Single-sided empowered factors, formulas and tables are not taken into consideration.
Also refer to RKB Affidavit of Conformance (LJSA) for related compliance to international Standards.
Also refer to RKB Affidavit of Conformance (LJSA) for related compliance to international Standards.
Every care has been taken to ensure the accuracy of the information in the present drawing but no liability can be accepted for any errors or omissions contained herein, or in case losses and/or damages (direct, indirect, consequential) should occur.
KKB Bearing industries reserves the right of any amendment without notice.

Cage material

ပ

Radius min (mm)

Mass (kg)

Basic load ratings (kN)

Double row taper roller bearings

TDO 331605 A3HA1ZBBT2B

Main boundary dimensions (mm)

498,475 634,873 177,800 142,875

ъ ۵

,	Sec	
	2	:
	2	
	S C	

- Double cup with annular groove and lubrication holes. One hole counter bored for locking pin (Ka 28,4;Kb 13,5)
 - Cone spacer with annular groove and lubrication holes
 - Case-hardened steel for rings 2x47 ZB rollers
 - · Cage max protusion 8,5
- Marked zones
 Q.C.C.D.S. certificate data sheet included

Sketch scale is free.
Load ratings are principally based on ISO 281 and ISO 76, but not calculated according to the latest bearing design and execution. For further background ask for related calculations.
Single-sided empowered factors, formulas and tables are not taken into consideration.
Also refer to RKB Affidawt of Conformance (LLSA) for the latent compliance to International Standards.
Every care has been taken to resurve the accuracy of the information in the present drawing but no liability can be accepted for any errors or omissions contained herein, or in case losses and/or damages (direct, indirect, consequential) should occur.
RKB Bearing industries reserves the right of any amendment without notice.

For reference only. Copyright © RKB Bearing Industries - Switzerland

RKB Bearings Technical Fiche

CC100510

NNCF 5036 VZB

Cylindrical roller bearings

Mair	Main boundary dimensions (mm)
р	180
D	280
В	136

r₁min

ramin

	ě	chnic	Technical data
(MJ) assistant bool ciocal	Dyn.	ပ	1300
Dasic load ratings (KIV)	Stat.	ပ်	2500
Mass (kg)			30,0
Cage material			•
		r,	2,1
Dadine min (mm)		.	2,1
		٦.	-
		r	-
Precision class			P0
Ф			•
Radial clearance (mm)	E		CN
Configuration/Design	gn		NNCF50/V

r₁min

Technical notes

- AWT Technology for rings and rollers (anti-wear surface treatment) Permissible axial displacement +/-8 mm Annular groove and 4 lubrication holes in outer ring (b;K)

Sketch scale is free.
Local ratings are principally based on ISO 281 and ISO 76, but not calculated according to the latest bearing design and execution. For further background ask for related calculations.
Single-sided empowered factors, formulas and tables are not taken into consideration.
Also refer to RKB Affidavit of Conformance (LJSA) for related compliance to International Standards.
Also refer to RKB Affidavit of Conformance (LJSA) for related compliance to International Standards.
Every care has been taken to ensure the accuracy of the information in the present drawing but no liability can be accepted for any errors or onlissions contained herein, or in case losses and/or damages (direct, indirect, consequential) should occur.
EXE Bearing industries reserves the right of any amendment without notice.

For reference only. Copyright © RKB Bearing Industries - Switzerland

Roadmap for eligibility criteria

Procurement compliance procedure for technological bearings

The knowledge and experience gained over the years, along with the close cooperation with international academic centers, have enabled **RKB** to establish the steps of the procurement compliance procedure for technological bearings. For reasons of responsibility and transparency, all customers are invited to read thoroughly and follow carefully the following roadmap:

- (1) Signing of non-disclosure agreement (where required).
- (2) Commercial evaluation (price, delivery terms and conditions).
- (3) Technical merit evaluation (application analysis and evaluation, project development, bearing size and type selection, bearing load calculations for verification, bearing engineering and design, bearing drawings, setting and tuning, guidelines and instructions, technical specifications and protocols, advanced software engineering, traceability validation).
- (4) Supplier evaluation: standing (including assets, liabilities, equity and capital expenditures), general information, essential background and qualifications.
- (5) Representations and warranties (certifications, affidavits, declarations and references).
- (6) Visits, audits and approval of operations and supply chain (level of integration).
- (7) Laboratory analyses and certifications.
- (8) Tests/trials on the application and certifications.
- (9) Homologation formalities (product meets regulatory standards and specifications).

This procedure is of paramount importance to ensure high levels of product reliability and quality, and to guarantee the correctness of the relationship with clients. In fact, by establishing the rights, obligations and responsibility in the procurement process of technological bearings, the compliance procedures have the objective of ensuring that:

- Products are in conformity with related International Standards and/or technical documentation.
- Expected characteristics, parameters and performance are accomplished.
- Deals are executed in transparency, without misleading or deceiving conduct with regard to corporate and product consistency and reliability, through an appropriate scoring model.

XII RKB

Recommendations to customers

As a matter of responsibility, **RKB** has also developed a series of recommendations in order to help customers choose after due consideration and keep away from unpleasant surprises:

(1) Homologation roadmap

Always follow the Roadmap for eligibility criteria in the procurement process of technological bearings.

(2) Representations and warranties

Always formally define representations and warranties to avoid incurring fraudulent cases, including misleading or deceiving conduct with regard to corporate consistency and reliability.

(3) Scientific background and conformity to International Standards

As a matter of transparency, always request suppliers to show the scientific background (quantitative and qualitative) and technical conformity to related International Standards of the data provided during the process of technical evaluation and compliance.

(4) Bearing mixing

Never mix **RKB** rolling bearings with not eligible products on the same equipment or machine.

(5) Big size and technological bearings

The manufacturing knowledge, technology, procedures and processes for big size (in particular heavy series and extra-thin series from 260 mm bore on) and technological bearings are extremely complex and critical compared to smaller sizes. In fact from designing and engineering to raw material selection, forging, heat-treatments, machinings, assembling and all related multilevel quality controls, it is state-of-the-art to manufacture a conventional qualified rolling bearing that meets performance requirements and International Standards. Once again **RKB** suggests, particularly in the procurement process of the above mentioned products, to strictly follow an efficient and reliable homologation roadmap.

(6) Spurious sources

Always investigate and formally define the level of integration (in-house operations) of bearing manufacturers to avoid the risk of selecting spurious sources.

RKB XIII

BEARINGS PRODUCTION RANGE

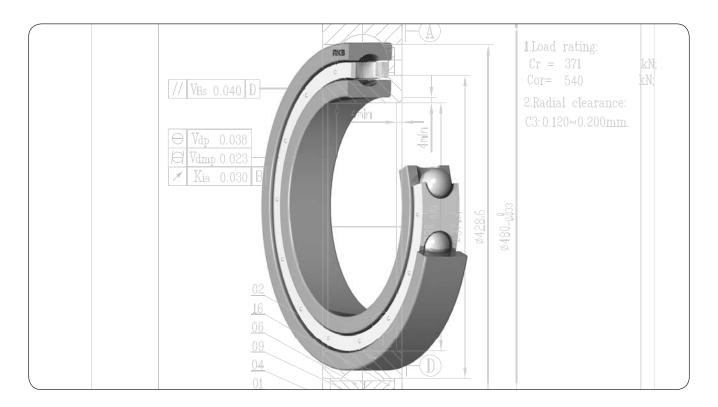
Deep groove ball bearings

Non-separable, for operations at high speeds, of simple design and little maintenance, RKB deep groove ball bearings are the most versatile and popular bearings in rolling applications.

The internal designs are the Conrad assembly (the majority of the production) and the filling slot assembly (for special applications with cage or with full ball complement).

The single row deep groove ball bearings can take radial and double direction axial loads.

They have limited abilities to compensate for errors of misalignment. Because of the values, in order to avoid inadmissible high additional loads and noise increase as a result of complex relationships among several influencing factors, the permissible misalignments are considered those between 2 to 10 minutes of arc depending on the bearing series.


The basic design of RKB deep groove ball bearings is open type either with boundary metric dimensions in accordance with ISO 15:1988 or with inch dimensions as per American AFBMA specifications.

The version with a snap ring groove on the outer ring (suffix N) for the easy axial location in the housing is in accordance with ISO 464.

When required by the application, these ball bearings are also produced in the sealed and shielded versions that have the seal recesses in the outer rings (suffix 2RS and ZZ). In case of bearings with shields, there is a small interstice between the shield and the rib of the inner ring; in case of bearings with seals, the oil resistant elastic rubber lip runs on the groove on the side of the inner ring or directly on the outside surface of the inner ring. Bearings sealed and shielded on both sides manufactured in series are delivered filled with normal lithium base grease of consistency NLGI 2 or with special grease suitable for specific applications.

RKB single row deep groove ball bearings are produced as standard to normal tolerances P0. Higher precision bearings in accordance with ISO 492:2002 can be considered.

The radial clearance, according to ISO 5753, can be normal or in different classes as per international specifications.

XVI RKB

The axial clearance is generally not standardized and depends on the values of the radial clearance, ball size and raceway radius.

The cage depends on the bearing series and size; RKB single row deep groove ball bearings are supplied with one of the following designs: ribbon type cage of steel or brass sheet, riveted type of steel or brass sheet and machined brass type centered on balls, inner ring or outer ring.

Large size bearings are also available in special executions such as lubrication grooves in the guiding surfaces of machined brass cage (suffix MAS or MBS) and/or one notch in the outer ring side face to prevent ring from rotating (suffix N1).

Non ISO standard dimensions (including special part numbers) can be manufactured on request.

Highlights

Part number:	6236 MP63A
Bore:	180 mm
Outside diameter:	320 mm
Width:	52 mm
Mass:	18,9 kg
Dynamic load carrying capacity:	225 kN
Static load carrying capacity:	238 kN
Application:	Traction Motors

Single row angular contact ball bearings

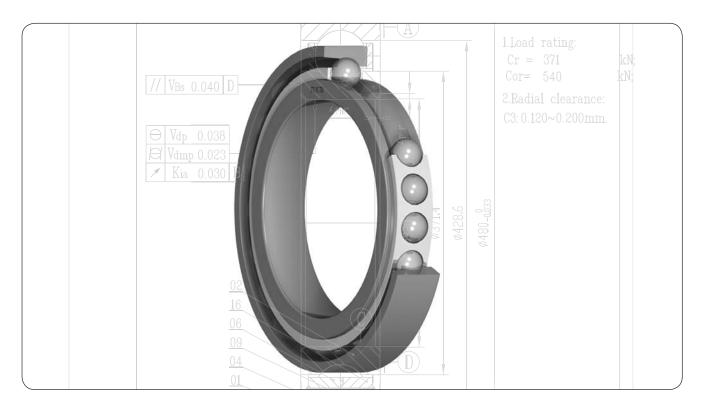
RKB single row angular contact ball bearings are designed to accommodate combined loads acting in radial and axial direction. They can take axial loads in one direction only.

When radially loaded, in the bearing occurs an axially acting load which has to be compensated. For this reason one bearing or paired bearings are mounted on each shaft end.

These bearings are not separable and their use at relatively high speed is allowed.

Manufactured in various constructive versions, they can be with different contact angles, depending on the application (suffix AC, A and B).

RKB produces two types of single row angular contact ball bearings: those of normal design and those intended for paired mounting (used respectively for tandem arrangement, DB and DF arrangements when axial loads have to be taken in both directions).


In the case of single row angular contact ball bearings the efforts between rings and rolling elements are transmitted at an angle to a plane perpendicular to the bearing axis. The value of this angle depends on the magnitude of the raceway radius, ball diameter and radial clearance in the bearing when the curvature centers of the raceway are in the same plane.

The main dimensions are in accordance with ISO/R 15. The values for the tolerance of the normal, P6 and P5 classes conform to ISO 492.

Internal axial clearance or preload is obtained only when the bearings are mounted in the assembly and depends on the location of the second bearing which assures the shaft axial guiding.

RKB single row angular contact ball bearings are fitted with a cage type depending on series and size: pressed steel sheet cage, machined brass cage guided on balls or on the inner ring and machined steel cage.

Large size paired 718 and 719 series bearings in DF and DB configuration for power transmission equipment are included in RKB production program.

XVIII RKB

Four-point angular contact ball bearings (single row duplex ball bearings)

RKB four-point angular contact ball bearings are single row bearings where the raceway is designed to accommodate significant axial loads in both directions.

Generally they have contact angle of either 35° or 45°.

They need less axial space than double row or paired angular contact ball bearings.

The four-point contact ball bearings have a split two-part inner (bearing designation QJ) or outer (bearing designation Q) ring, allowing a large number of balls to be incorporated, thus providing a high load carrying capacity.

The bearings are of separable design of the parts.

To prevent rotation of the outer ring (when split inner ring) all the bearings with outside diameter over 160 mm are provided with locating slots (suffix N).

The main boundary dimensions are in accordance to ISO 15.

The tolerances have values conform to ISO 492 and the normal class is for RKB standard production.

The fitted cage is machined brass centered on outer ring for the standard common type QJ with split inner ring. RKB produces these bearings with normal axial internal clearance measured before mounting under zero measuring loads, but most sizes can also be supplied with greater or smaller clearance to special order.

Highlights

Part number:	719/600 AMBP6DFA250-300
Bore:	600 mm
Outside diameter:	800 mm
Width:	180 mm
Mass:	250 kg
Dynamic load carrying capacity:	1170 kN
Static load carrying capacity:	3450 kN
Application:	Steel Industry

Double row angular contact ball bearings

RKB double row angular contact ball bearings are equivalent to two single row paired angular contact ball bearings in the arrangement back-to-back or face-to-face. So they can accept radial loads together with axial loads acting in both directions.

The width is narrower than the two equivalent single row bearings in pair.

The large double row angular contact ball bearings of RKB production range include bearings specially designed for rolling mills (bearing designation series 305 followed by three numbers).

The standardized items of the series ISO 32 and 33 have the filling slot and are non-separable, thus single direction axial loads should be applied.

The special bearings with drawing number of series 305 can have either split two-part inner ring or split two-part outer ring. They are non-separable and usually are mounted with radial play in the housing. In the bearings with split two-part inner ring the load lines refer to the back-to-back arrangement. The load lines of the bearings with split two-part outer ring are in the face-to-face arrangement.

The main dimensions of bearing series 32 and 33 are as per ISO 15 specifications.

The dimensions of bearing series 305 do not follow any standards, but are internationally accepted and recognized in the rolling mill applications.

The manufacturing tolerances conform to ISO 492 for normal class specification, but running accuracy grade is in accordance with P6 at least.

These bearings are generally produced with a uniform axial internal clearance, but special values suitable for specific applications can be supplied on request.

The double row angular contact ball bearings in RKB production program are normally filled with two machined brass cage (one for each ball row).

Highlights

Part number:	305269 DP6
Bore:	280 mm
Outside diameter:	389,5 mm
Width:	92 mm
Mass:	34,1 kg
Dynamic load carrying capacity:	400 kN
Static load carrying capacity:	750 kN
Application:	Rolling Mill Stands/Steel Industry

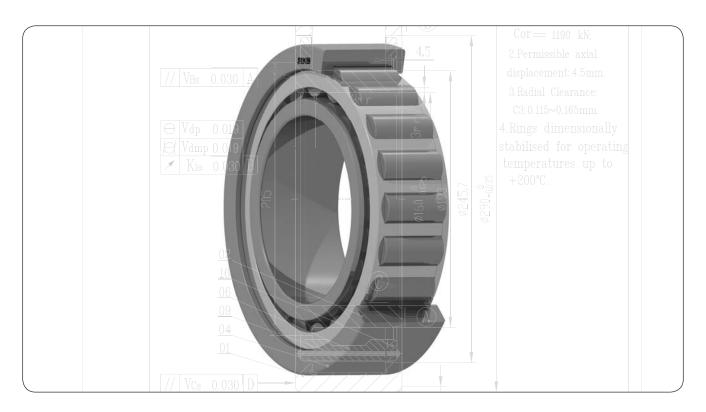
RKB XXI

Cylindrical roller bearings

RKB produces cylindrical roller bearings in various design styles, sizes and dimension series.

RKB heavy duty radial cylindrical roller bearings are designed to provide the highest possible radial capacity for the given cross section and to perform under heavy radial loads. These bearings incorporate improved internal proportions developed through computer assisted optimization studies, to make the maximum use of the total available cross-sectional area. The rollers have controlled contour to redistribute end stress concentration and provide more uniform distribution of the applied loads (suffix ZB). Their surface finishing maximizes lubricant film formation and optimizes rolling motion.

The standard ISO assortment of RKB production program includes single and double row bearings with a cage that can accommodate heavy radial loads and operation at high speeds.


A complete range in various executions of full complement of rollers suitable for more heavy loads at moderate speeds is also available.

Large size bearings can be supplied with surface treated rollers (suffix B).

In addition to the standard assortment, RKB cylindrical roller bearing range is comprehensive of open and sealed multi row for rolling mills in many executions and designes, backing bearings for cold rolling mills and indexing roller units for continuous furnace.

Besides to the inch dimension series as per AFBMA specifications, RKB offers the American style series 5200 and 5300 metric cylindrical roller bearings with enhanced radial capacity due to its internal design proportions, with double ribbed outer ring and with manufacturing tolerances established for the interchangeable components.

The single row cylindrical roller bearings are manufactured in various constructive versions, depending on the position of the ribs on the rings (e.g. bearing designation NU, NJ, NUP and N).

XXII RK

Depending on size and design, the bearings are equipped as standard with one of the following cages: unhardened pressed steel roller centered, one-piece window type brass inner or outer ring centered, two-piece machined brass roller centered (suffix M) or outer ring centered (suffix MA) or inner ring centered (suffix MB) and steel pin-type for pierced rollers.

Lubrication grooves in the guiding surfaces of machined brass cages are also available (suffix MAS and MBS).

RKB cylindrical roller bearings undergo a special heat treatment of stress relieving which allows them to be operated up to a temperature of +150 °C.

The tolerances are in accordance with ISO 492:2002.

The radial internal clearance, even smaller or greater than normal, is in accordance with the range class of ISO 5753 measured for unmounted bearings under zero measuring loads.

The axial internal clearance for fixed design bearings, which can locate the shaft axially in both directions, is specified as per experienced rule.

Bearings with no standard radial clearance or with special stated values required by specific applications can be supplied to special order.

Bearings made of case hardened carburizing alloy steels can be produced for particular applications, where required (suffix HA1, HA2, HA3 and HA4).

Besides, special treatments for rings and rollers are available (e.g. bainite quenching hardened for rings - suffix HB1 -, anti-wear surface treatment etc.).

Highlights

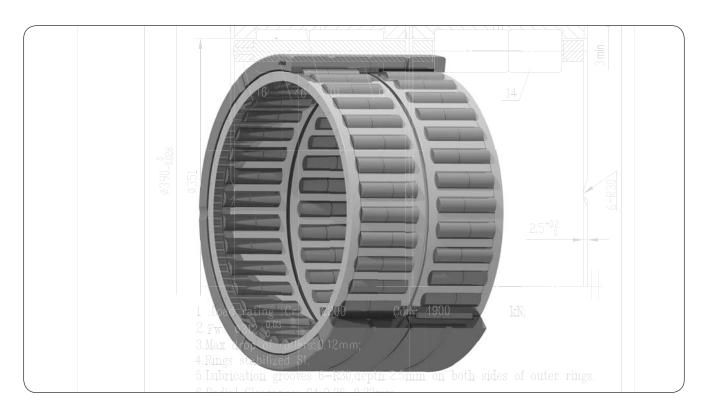
Part number:	NU 18/900 MASP6ZBS1AVH
Bore:	900 mm
Outside diameter:	1090 mm
Width:	85 mm
Mass:	168 kg
Dynamic load carrying capacity:	2320 kN
Static load carrying capacity:	5950 kN
Application:	Azimuthal Retractable Thruster/Shipyard Industry

RKB xxIII

Multi row cylindrical roller bearings

RKB cylindrical roller bearings with four or six rows have low cross section, high load carrying capacity and stiffness, and are particularly used for metal rolling equipment in mills, where the equipment has been scaled down and jet loads remain high.

These bearings are only able to accommodate radial loads, therefore they are mounted together with deep groove or angular contact ball bearings or with taper roller bearings which take up the axial loads. The four-row cylindrical roller bearings are of separable design, which considerably simplifies mounting, maintenance and inspection.


RKB cylindrical roller bearings can tolerate moderate to high shaft speeds. The rollers and outer races are carefully matched to ensure the best load distribution.

Inner rings (designation L) are interchangeable with other assemblies (designation R). Moreover, RKB multi row bearings allow direct interchange with main premium competitor products.

RKB has a flexible manufacturing program of different styles (also special) and sizes for multi row bearings. They have cylindrical bore and some sizes are also available with tapered bore as required by the application or by maintenance request.

The use of multi row cylindrical roller bearings in metal rolling mills exposes them to very heavy stresses, sometimes to impact loadings. The rings and rollers can be manufactured with very high quality case hardened carburizing alloy steels. Deep case depth and special heat treatment ensure superior size stability, fracture toughness and reliability.

Where the bearings are mounted with a loose fit on the roll neck, RKB multi row cylindrical roller bearings have C2 internal radial clearance and are supplied with a helical groove in the bore and/or lubrication grooves in the side faces of the bearing rings for the efficient lubrication of the mating parts (e.g. suffix AC).

XXIV RKE

To match the applications in the proper way, RKB produces the multi row cylindrical roller bearings in several construction designs within given geometric series.

The various designs differ basically in the number of inner and outer rings, in the number of loose or integral flanges on the outer ring, in the cage type, in the number of rollers in the cage pocket etc.

Furthermore, on order RKB can produce the four-row cylindrical roller bearings sealed at both sides by radial

rubbing seals or with wider inner ring with concentric shoulder.

The boundary dimensions of these bearings are not standardized. However most of them have bore and outside diameter corresponding to ISO 15 series 9 and series 0. They are produced with the normal precision grade for roll neck bearings, which means tolerances conform to class P6 for dimensional and running accuracy with values as per ISO 492.

Highlights

Part number:	313822 GB2DXS1
Bore:	280 mm
Outside diameter:	390 mm
Width:	220 mm
Mass:	88 kg
Dynamic load carrying capacity:	2200 kN
Static load carrying capacity:	4900 kN
Application:	Rolling Mill Stands/Steel Industry

RKB XXV

Double row spherical roller bearings

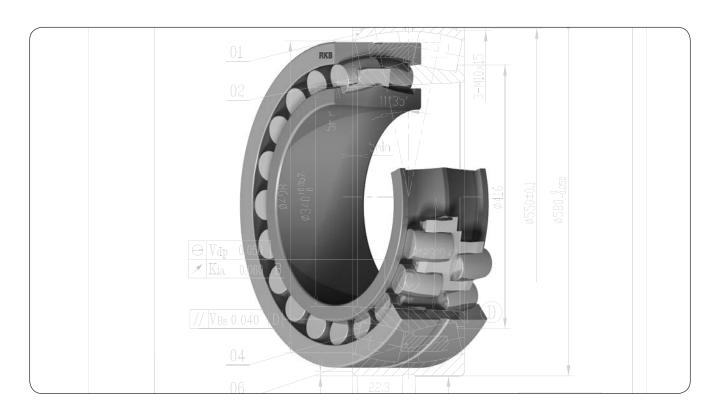
RKB spherical roller bearings are self-aligning and consequently insensitive to the misalignment of the shaft relative to the housing and insensitive to shaft deflection or bending. The permissible value is up to 3.5° approximately depending on bearing series and size.

These bearings have two rows of rollers with sphered raceway in the outer ring and two inner ring raceways inclined at the proper angle to the bearing axis.

Used to operate in arduous conditions, leading in design, RKB spherical roller bearings can accommodate, in addition to high radial loads, axial loads acting in both directions.

The production range of RKB spherical roller bearings comprises open bearings, sealed bearings (suffix 2CZ1) and bearings for vibratory applications (suffix ROVS).

Besides, RKB offers spherical roller bearings customized for specific applications, as, for instance, bearings with split outer ring for higher permissible misalignment (suffix WOR) or with increased width dimension and consequent larger rollers for milling applications (project designation SRB) or for the support of the rolls of cold rolling Pilger mills for tubes.


RKB program includes the spherical roller bearings with both cylindrical and tapered bore (1:12 or 1:30 depending on series). Tapered bore bearings can either be mounted on tapered shaft seats or with sleeve on cylindrical shafts.

Limiting load may result in lubrication problems, specially in the case of large bearings. So such bearings are provided with annular groove and lubrication holes in the outer and/or in the inner ring (suffix W33, W33X, W20, W26 etc.).

Depending on the bearing series, size and/or application, RKB spherical roller bearings are manufactured in different constructive internal design versions (e.g. CA, MB, MF, CC etc.).

RKB small and medium size spherical roller bearings are usually fitted with pressed steel cage or one-piece machined brass cage where the bearings have a central guide rib on the inner ring and symmetrical rollers with large dimensions for increased carrying capacity.

The bearings of normal design, with a central fixed rib, are fitted with machined brass or steel cage guided on the rollers or on the inner ring or outer ring raceway.

xxvi RKI

The main dimensions are in accordance with ISO 15.

The radial clearance can be normal, larger than normal (suffix C3, C4 and C5) or smaller than normal (suffix C2), measured on unloaded bearing in accordance with ISO 5753.

RKB spherical roller bearings of all series and sizes are stress relieved. They undergo a special heat treatment so that they can be used up to an operating temperature of +150 °C for long periods without inadmissible dimensional changes occurring.

Some of RKB spherical roller bearings are also manufactured in the sealed version with contact seal on both sides. The seals are reinforced with steel sheet and made of an oil and wear resistant rubber (as nitrile butadiene for universal usage - suffix 2CZ1 - or fluoro base - suffix 2CZ - to withstand operating temperature up to about +200 °C).

In order to locate the spherical roller bearings with the tapered bore onto a cylindrical seating, the adapter (designation H) or withdrawal (designation AH) sleeves are the most commonly used components with large shafts with h9 and h10 tolerance. They are easy-to-mount on smooth or stepped shafts and require no additional location.

Adapter sleeves are supplied along with lock nut and locking device (washer or clip).

For large sized bearings, both adapter and withdrawal sleeves are provided with oil grooves and oil duct at the threaded side to enable the oil injection method to be used for easy mounting and dismounting (designation OH and AOH).

All ISO series (also the outmoded series, such as 202 and 203) are in RKB manufacturing program with both straight bore (no suffix) and tapered bore (suffix K).

Highlights

Part number:	232/750 KCAC3W33XS1
Bore:	750 mm
Outside diameter:	1360 mm
Width:	475 mm
Mass:	2956 kg
Dynamic load carrying capacity:	19000 kN
Static load carrying capacity:	36000 kN
Application:	Mines and Minerals Industry

Single row taper roller bearings and matched paired sets

RKB taper roller bearings have the rolling elements under the form of frustum of cone. They roll on tapered surface which, if extended, converges towards a single point on the bearing axis.

The rollers are guided tangentially by the cage and axially by the big rib of the inner ring, on which they have contact. As between rollers and raceways there is linear contact, they can take heavy radial loads. They can also take heavy axial or combined loads, depending on the contact angle caused by the tapered elements. The contact angle is the one of the outer raceway generatrix.

The single row taper roller bearings are of separable design, which means the outer ring/cup and the inner ring/cone with rollers and cage assembly can be separately mounted.

RKB taper roller bearings are manufactured both in standardized (metric and inch sizes) and in non-standardized constructive version.

The metric single bearings have standardized dimensions as listed in ISO 355:1977 and those designated with prefix J conform to American AFBMA 19.1/1987.

The inch size bearings conform to American AFBMA 19/1974.

The taper roller bearings can carry only single direction axial loads. Under pure radial loads, an axial force is induced within the bearings so that they cannot be used singly and a second bearing is required.

A correct operational clearance or preload has to be identified for the correct performance and reliability of the application.

RKB taper roller bearings have pressed steel cage as standard. For large size and/or heavy engineering applications, the steel pin-type cage and case hardened carburizing alloy steels can be considered.

RKB single row taper roller bearings can also be produced with a rib on the outer cup as a flange to be used when the housing cannot be manufactured with shoulder, but only with a passed through hole so that, in this case, axial location can be provided by the bearing cup.

XXVIII RKB

When the load carrying capacity of a single row is inadequate or where the load has to be located in both directions, RKB produces the single row taper roller bearings as ready-to-mount matched pairs.

The matched pairs, generally metric sized, in "O" back-to-back (designation DB) or "X" face-to-face (designation DF) arrangements, locate the shaft in both axial directions and the optimum axial play in the two bearings is adjusted and guaranteed after mounting.

In case of taper roller bearings, clearance should be in radial direction, but it is measured and adjusted in axial direction.

RKB paired matching sets are made to normal and CLN class tolerances as standard corresponding to ISO 492:1986.

The tolerances of the total width of the pair are not standardized, but an international common specification is applied.

The matched pairs of taper roller bearings incorporate pressed steel cages guided on rollers.

Highlights

Part number:	LL 788349/310 HA1ZB
Bore:	1066,800 mm
Outside diameter:	1219,200 mm
Width:	65,088 mm
Mass:	106,5 kg
Dynamic load carrying capacity:	1550 kN
Static load carrying capacity:	4800 kN
Application:	Power Transmission Equipment for the Maltese Falcon Sailing Yacht (Dynarig Concept)

RKB xxix

Double row taper roller bearings

RKB double row taper roller bearings can take up heavy loads and are stiff.

Suitable for combined radial and axial loads, they locate axially the shaft in both directions with the stated axial end play (also defined as BEP - Bench End Play) or given preload.

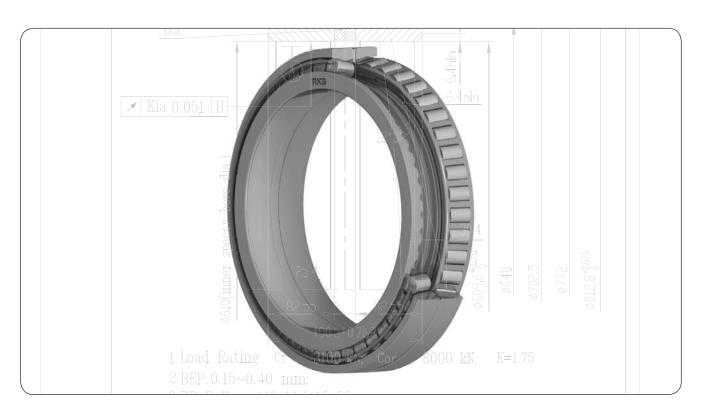
The basic styles are two-row converging TDI configuration and two-row diverging TDO configuration.

Rings and rollers are made of high chrome through hardening steels or case hardened carburizing alloy steels depending on the application.

Cages for RKB double row taper roller bearings are stamped pressed steel. A steel pin-type cage, which allows a larger complement of rollers for higher capacity, is also available.

This style of bearing set simplifies design and reduces the danger of bearing clearance changes due to axial shaft expansion.

It is important the definition of the proper internal play related to the application.


RKB bearings in TDI configuration have a double cone assembly and two single cups and they are generally supplied with a cup spacer.

The cup spacer of each bearing is face ground after accurate measurement of the distance between adjacent cup faces to obtain a predetermined internal play. Consequently, spacers or components may not be interchanged. An annular groove and lubrication holes are included in the spacer. The contact angle converges, so the use of these bearings will not appreciably increase the rigidity of the shaft mounting.

RKB also produces the taper roller steep contact angle TDIS version with higher thrust capacity (while the radial one is reduced) than the TDI type, normally used as back-up thrust bearings in rolling mills.

These TDIS bearings have combination of face slots (e.g. N, N1, N2 etc.) and bore key-way for locking the cone on the shaft.

Also helical groove in the bore and lubrication grooves in side faces of double cone and/or retention sleeve with annular groove and lubrication holes can be provided.

RKB bearings in TDO configuration have a double cup, two single cone assemblies and can be supplied with a shaft supported cone spacer.

The spacer for individual cones is face ground to obtain the desired internal play for the assembly.

So, also in this case, spacers and components may not be interchanged. An annular groove and oil holes are included in the cone spacer.

The TDO style bearings are mainly used in a floating cup mounting. So the counterbored hole in the cup is for a drilled dowel pin which prevents rotation of the loosely fitted double cup. Additional features of a lubrication groove and oil holes in the double cup for simplified lubrication through the outer ring are included (suffix CD). However, this style of bearings are usually lubricated through the shaft by use of oil holes and a groove in the cone spacer.

In the TDO type the contact angle diverges, so the rigidity of the shaft mounting is increased to resist overturning moments.

Bearing sets with steep contact angle and intermediate ring, pierced rollers and steel pin-type cage (TDOS design), bearing sets with extended inner rings which abut each other (TDONA and TDONASW designs), bearing sets with heavy wall cup (TNASWH design) and bearing sets with shields of pressed steel (TDO 4422 design) are also in RKB manufacturing program.

Most of TDI and TDO double row taper roller bearings are produced with inch dimensions as per American AFBMA 19/1974 and as per RKB standard practice, dimensional and running accuracy grade is in accordance with class 2 or 4.

Highlights

Part number:	TDO 331554 A7HA1ZBBT2B
Bore:	723,900 mm
Outside diameter:	914,400 mm
Width:	187,325 mm
Mass:	267 kg
Dynamic load carrying capacity:	3800 kN
Static load carrying capacity:	9650 kN
Application:	PowerTransmission Industry

Four-row taper roller bearings

RKB four-row taper roller bearings are installed as complete assemblies and take axial loads in addition to heavy radial loads, so that generally it is not requested separate thrust bearings in such arrangements.

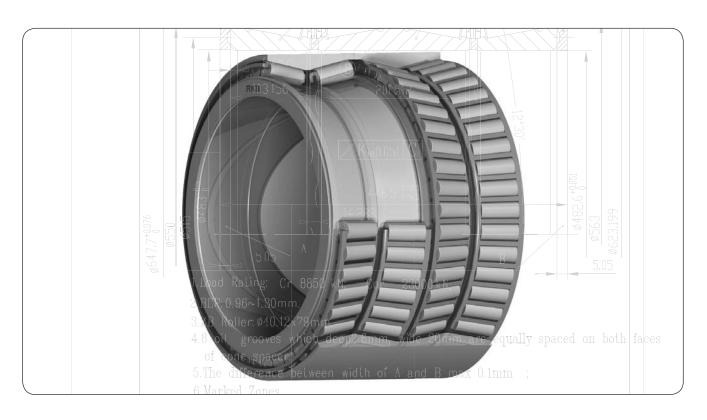
They are commonly used in rolling mill applications.

For quick roll changes, the bearings have a loose fit on the roll necks, but there is the disadvantage that the inner rings wander on their seatings causing wear. To reduce these negative effects, RKB bearings have a helical groove in the bore and lubrication grooves in the side faces of the inner rings. These grooves enable lubricant to be supplied to the contact surfaces of the inner ring and seating.

Since wear and shock resistance under heavy rolling loads is a requirement for roll neck bearings, highest quality carburizing grade bearing alloy steels are normally used in RKB four-row taper roller bearings.

Besides, for large size bearings, pierced rollers and steel pin-type cage for maximum load ratings possible are applied.

The induced thrust resulting from radial loading is cancelled within the double cones and it eliminates excessive loads on clamping and spacing members.


RKB produces this style of bearings in two base designs, TQO and TQI configuration, where the main difference is the mutual arrangement of the roller complements and the number of inner and outer rings dictated by this.

The TQO type is composed in its standard configuration of two double cone assemblies, one central double cup, two single cups and factory adjusted cup and cone spacers.

The spacers of each bearing are face ground after accurate measurement of the distance between adjacent cups and cones to obtain the asked initial play (also defined as BEP - Bench End Play). So the bearing parts cannot be interchanged and they are individually marked for proper assembly.

Lubrication grooves and oil holes are provided in the cup spacers and in the double cup. Furthermore, lubricant slots in the cones side faces and cone spacer permit the lubricant to go through the bearing to the roll neck. These bearings can be provided with lateral extension of the double cones used as sealing surface. This sealing feature offers better protection against hostile environment.

For high speed rolling mill requirements, the TQO bearing sets may have tapered bore with features of high capacity, compactness and a mounting system that guarantees a positive interference fit on the roll neck.

XXXII RKB

The TQI type is composed in its standard configuration of one double cone assembly, two single cone assemblies and two double cups.

A four-separated individual single cup configuration is also available. This design facilitates the reworking of the bearing.

These bearings are fitted with pressed steel cage or with pierced rollers and steel pin-type cage. The fact that contact angles diverge makes the bearings well suited to resist to warping and misalignment.

The version with tapered bore that, with its three-cone design, assures easy assembly and disassembly (designation TQIT and TQITE) is also available.

In RKB sealed TQOS type sets, four-row taper roller bearings have been developed to improve the lubrication in service. The incorporation of this type of bearing simplifies design, reduces grease consumption and routine maintenance requirements and attains longer service life.

The seals, fitted on both sides of the bearing set, are produced in several designs depending on bearing size and application needs; the most common ones are the integrated lateral unitized seals (European version), the integrated lateral narrow seals (compact seal concept) and the loose flange lateral unitized seals (Japanese version).

So the basic design with the garter seal, made by reinforced fluoro rubber and steel spring, is located in the integral external cups.

Alternatively, the separate seal carrier flanges are matched to the cups and a chock type seal runs on extended surface of inner rings.

Furthermore, RKB seals have been redesigned in new type to increase seal durability and efficiency: while maintaining an overall narrow profile, these seals optimize the available space by utilizing the area directly adjacent to or underneath the cage bore, with the result of the usage of longer rollers with consequent increased bearing capacity similar to open type version.

RKB sealed four-row taper roller bearings are usually provided also with O-rings in the outboard cup outside diameter to seal contaminants from the bearing outer diameter and/or with a cone seal set designed to accommodate relative motion between inner rings and to prevent build-up of negative pressure (anti-vortex system technology for longer bearing life and less lubricant deterioration).

Phosphate treatment for rings, rollers and spacers (suffix PT4) for anti-rust and anti-corrosion properties under water, alkalescent and acidescent working conditions is also available.

RKB produces special executions of TQO made of four single cups and two double cone assemblies (design without spacers).

Most of TQO and TQI four-row taper roller bearings are manufactured with inch dimensions as per American AFBMA 19/1974 and as per RKB standard practice, dimensional and running accuracy grade is in accordance with class 2 or 4.

Highlights

Part number:	TQO 331925 A2AHA1ZBBT4B
Bore:	609,600 mm
Outside diameter:	813,562 mm
Width:	479,425 mm
Mass:	695 kg
Dynamic load carrying capacity:	10500 kN
Static load carrying capacity:	30000 kN
Application:	Rolling Mill/Steel Industry

Thrust ball and cylindrical roller bearings

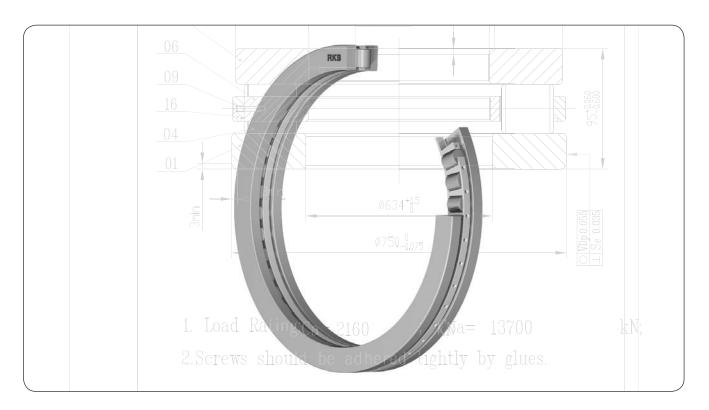
RKB thrust ball bearings are manufactured in two versions: single and double direction. They can carry heavy axial loads, but they cannot take radial loads.

The single direction bearings consist of shaft washer, housing washer with flat support surface and ball cage assembly. The bearings are of separable design for a simple mounting of the parts.

The double direction thrust ball bearings can take axial loads in both directions. Such a bearing consists of a shaft central washer, two housing washers and two ball cage assemblies. The bearings are of separable design and ball cage assemblies are interchangeable with the corresponding single direction bearings.

Thrust ball bearings with sphered housing washer can be used with sphered seating housing to compensate the misalignment between the support surface in the housing and in the shaft.

The boundary dimensions of RKB thrust ball bearings in metric size conform to ISO 104:1979 with several dimensional series.


They are produced to normal tolerance class in accordance with ISO 199:1997.

RKB big size thrust ball bearings are normally fitted with machined brass cage (suffix M). Machined steel cage (suffix F) is also available.

RKB cylindrical roller thrust bearings are generally used to take over heavy pure axial loads, to carry shock loads and to be stiff into a little axial space with simple design.

They are manufactured for the axial support of a shaft in one direction and are available as single or multi rows of rollers.

Double direction cylindrical roller thrust bearings can be easily obtained with assembly of the standard roller cage and washers together with an appropriately designed intermediate washer. If the support shaft shoulder is heat treated and ground, it can be used as a raceway for the roller cage assembly.

XXXIV RKB

In case of more rows, the rollers have various lengths and are alternatively mounted. To avoid side friction, one of the side of the roller can be crown profiled.

The boundary dimensions of RKB cylindrical roller thrust bearings conform to ISO 104:1979.

Angular misalignment between shaft and housing is not permitted.

In order to guarantee a proper arrangement of the rolling parts for the satisfactory operation, the cylindrical roller thrust bearings have always to be submitted to a given minimum load, specially when high speeds, high accelerations or rapid changes of load directions are involved.

Both machined brass and steel cages are available as standard.

RKB production range also includes inch size cylindrical roller thrust bearings, engineered up to 50 inches outside diameter in conformance with RBEC accuracy specifications.

Executions requiring antirotation devices on the plates and lifting holes are also available.

There are standard design variations of RKB inch series thrust bearings. Each design is based on a standard single acting with addition of special components to modify its function: the AT aligning type with sphered housing plate for a possible initial static misalignment up to 3°; the crane hook thrust type with the weather shed pressed on the rotating plate; the DT double acting thrust bearing and the DAT aligning style combination of DT and AT types; the SDT simplified double acting thrust with only one roller assembly and two thrust plates.

Highlights

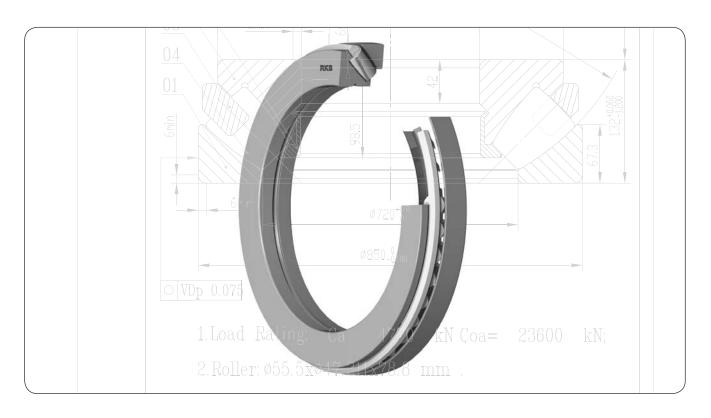
Part number:	TCRB 431M2203A
Bore:	419,500 mm
Outside diameter:	571,400 mm
Height:	89,000 mm
Mass:	66,3 kg
Dynamic load carrying capacity:	1860 kN
Static load carrying capacity:	11200 kN
Application:	Mines and Minerals Industry

RKB xxxv

Spherical roller thrust bearings

In RKB spherical roller thrust bearings the load is transmitted from one raceway to the other under an angle of about 50° related to the bearing axis.

They can take over heavy axial loads and simultaneously they can accommodate radial loads with values of up to 55% of the axial load magnitude.


An important feature of spherical roller thrust bearings is their self-aligning capability, thanks to the design of the housing and shaft washer raceways with a large number of asymmetrical rollers and the proper conformity with the paths.

RKB spherical thrust bearings have a machined brass cage guided by a sleeve clamped in the shaft washer bore (suffix EM). The shaft washer and the cage with rollers form a non-separable unit.

The overall dimensions of the spherical roller thrust bearings are in accordance with ISO 104:1979, so that they are interchangeable with different designs, even the earlier ones (suffix B).

Where the cage guiding sleeve also serves as a spacer sleeve, the spacer sleeve needed between the shaft washer and the shaft shoulder has to be checked and, if necessary, remachined when substituted with different bearing designs.

These RKB bearings as standard are manufactured to normal tolerance class as specified in ISO 199:1997. However the tolerance for the total height is tighter than that specified by ISO.

XXXVI RKB

Highlights

Part number:	294/670 EMN1EBEVO
Bore:	670 mm
Outside diameter:	1150 mm
Height:	290 mm
Mass:	1160 kg
Dynamic load carrying capacity:	16000 kN
Static load carrying capacity:	68000 kN
Application:	Plastic Industry

Taper roller thrust bearings

RKB taper roller thrust bearings have the following separable parts: shaft washer, housing washer and rolling element assembly.

RKB manufacturing program includes the single direction type, the double direction type and the screw-down special type.

RKB single direction taper roller thrust bearings are manufactured in two constructive versions, with tapered raceway on both washers or on only one.

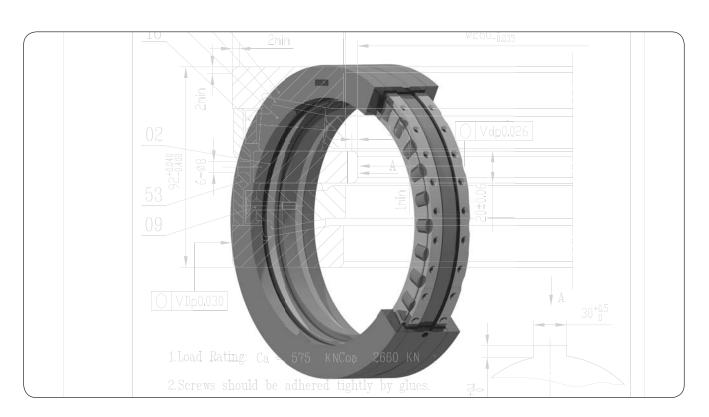
The rollers are radially guided by the rib of one washer. They have controlled contour to redistribute end stress concentration and provide more uniform distribution of the applied loads (suffix ZB).

These bearings can also be produced in the version without the cage to obtain the maximum axial load carrying capacity (suffix V).

The most common series are T type, TK type and 351 type.

Bearings made of case hardened carburizing alloy steels can be produced for particular applications where required.

RKB double direction taper roller thrust bearings are normally used in the rolling mill applications associated with a multi row cylindrical roller bearing.


RKB produces this type of bearing in two constructive versions, either with central plane shaft washer and taper raceways in both housing washers or with both plane housing washers and taper raceways in the central shaft washer.

A special sleeve is arranged between the two housing washers, so that, when mounting, no special adjustment of the bearing is required.

As the double direction taper roller bearings are usually mounted with loose fit on the roll neck, the shaft washer is normally provided with one or two locating slots that, engaged with key-way or similar devices, prevent the shaft washer from rotating on the seating.

If the load carrying capacity is not adequate to the expected life, TDIS type can be used in alternative.

The most common series are 350 type, 351 type, 353 type and TTK type.

XXXVIII RKI

RKB screw-down bearings are a special design of the single direction taper roller thrust bearings used for rolling mill arrangements.

They are generally produced with case hardened carburizing alloy steels and with full complement of long rollers of large diameter to accommodate very heavy axial loads and shocks.

In order to accept the angular movements of the screw spindle with respect to the support without detrimental effects on bearing performance, the bearings have one sphered washer that could be either the shaft or the housing washer. An additional concave sphered pressure plate can be supplied with the bearing. Usually screw-down bearings are custom-made to meet the specific requirements of different applications.

The dimensions of taper roller thrust bearings are not standardized.

The main boundary dimensions are produced with normal tolerances according to ISO 199:1979.

Highlights

Part number:	350981 C
Bore:	260 mm
Outside diameter:	360 mm
Height:	92 mm
Mass:	25,8 kg
Dynamic load carrying capacity:	575 kN
Static load carrying capacity:	2660 kN
Application:	Rolling Mill/Steel Industry

BEARINGS CATALOGUE

Bearing steels

RKB makes use of SAE 52100 steel to manufacture rolling bearings for common applications. Under certain circumstances and most of all for medium and large size bearings, SAE 52100/A is adopted. Regarding critical applications, a special bearing steel (SAE A485 or RKB Type.RAV), with higher cleanliness and specific mechanical properties, is used. This steel, obtained through the Vacuum Degassed Electroslag Remelting process (VAC-ESR), has lower levels of non-metallic inclusions (according to ASTM E3 and ASTM E45) and ensures premium product reliability and performance. As for the manufacture of rollers, RKB can use SAE 52100/A.F forged steel (Tough Roller Technology) to guarantee better resistance to corrosion, wear, fatigue and stationary loads, especially in harsh conditions.

All **RKB** bearing steels are hardened and heat treated to obtain optimum mechanical properties. In addition to the conventional thermal cycles, **RKB** can perform two special heat treatments on its products: **RKB** Bainite Treatment (HB) for decreasing ring crack incidence and **RKB** Dimensional Stabilization Treatment (S) for ring dimensional stability up to an operating temperature of 350 °C. Finally, two thermo-chemical surface treatments are available: **RKB** Anti-Wear Treatment (AWT), essential to reduce the metal-on-metal friction between contact surfaces, and **RKB** Phosphate Treatment (PT), suitable for bearings operating in highly corrosive

Design

environments.

Metric bearings conform to the International Standard ISO 15 general plan for boundary dimensions (DIN 616), whereas inch bearings conform to the dimensions given in BS 292 (pt. 2). Bearing internal dimensions are not standardised and **RKB** designs are optimised for load capacity to incorporate the maximum size and number of rolling elements that are consistent with reasonable ring proportions and cage design requirements. Popular bearings have a wide variety of cage types including pressed steel cages centred on the rolling elements.

RKB manufactures many cages moulded in polyamide and other machined from brass. Bearings fitted with synthetic rubber seals are suitable for a normal temperature range of -20 °C to +100 °C, and when two seals are fitted the bearings are prelubricated with a lithium grease which is suitable for this temperature range. The same temperature limitation also applies to metal shielded bearings when the standard lithium grease is used.

Separable rings of single row duplex ball bearings and cylindrical roller bearings with matched rings must not be interchanged from one bearing to another. The components are individually matched to give correct tracking/clearance and any mixing could promote early failure.

Higher load ratings for RKB bearings

Dynamic load ratings

The dynamic load ratings in this catalogue have been increased to reflect the improved performance associated with the **RKB** use of cleaner bearing steels. The life adjustment factor (a_2) given in previous **RKB** publications for improved materials, as permitted in International Standard 281/1, has now been incorporated in the up-rated load capacities. The calculation of Equivalent Load (P) and Rating Life (L_{10}) remains unchanged. The previous life adjustment factors have been appropriately amended.

Rating Life (L₁₀) may be adjusted to take account of:

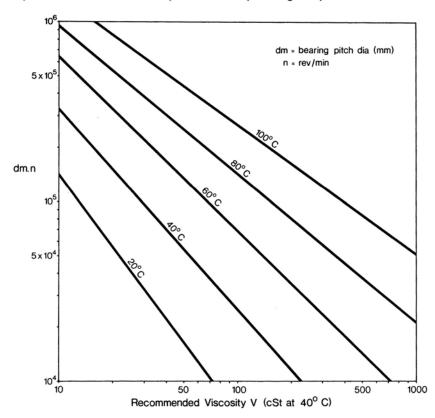
- Increased reliability requirements (factor a₁ from table 9-1, page 9).
- Reduction of material hardness due to temperature (factor a₂ from table 9-2, page 9).
- · Lubrication effectiveness (factor a₃ from graph 4, page 8).

The adjusted life $L_{10}a = a_1 \cdot a_2 \cdot a_3 \cdot L_{10}$.

Limitations

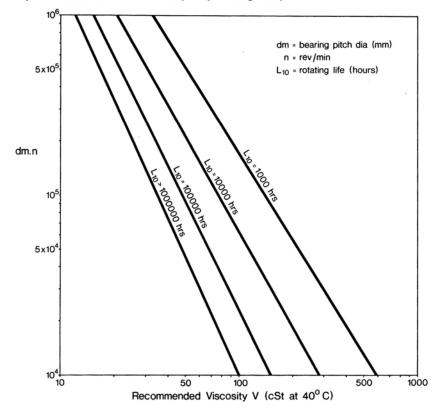
The basic relationship between load and life is valid only for properly mounted, conventionally loaded and adequately lubricated bearings protected from foreign matter and not subjected to extreme operating conditions such as excessive misalignment, speed or temperature. When the equivalent load exceeds 40% of the dynamic or 100% of the static rating, or when bearings with interrupted raceways are used (i.e. those with filling slots) the life calculation must be regarded more as means of comparison with other similarly loaded applications rather than an accurate assessment of fatigue life. The performance of sealed and shielded bearings may be limited by the life of the lubricant rather than by bearing fatigue. Please refer to **RKB** Technical Department for advice.

Static load ratings

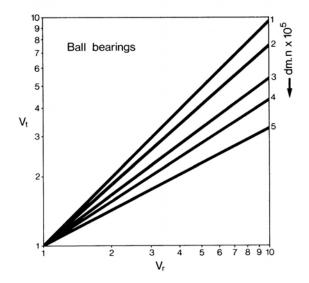

The basis for ball bearing ratings is unchanged. Roller bearing ratings are increased having been re-calculated on the basis of a nominal permissible contact stress at the heaviest loaded roller of 4000 MPa. The new values permit greater loading that will give acceptable performance for most applications; however, previously permitted overload factors will have to be reduced.

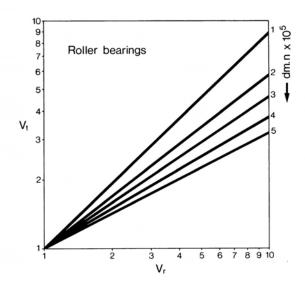
RKB premium brand bearings - Victory Line

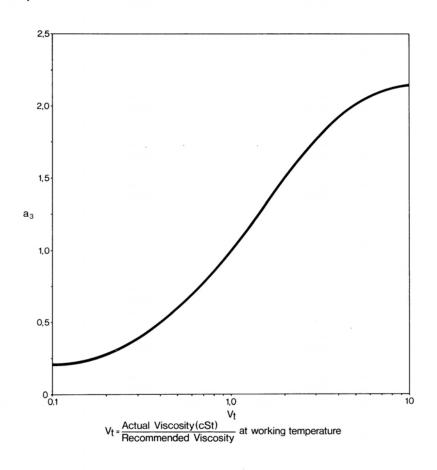
Victory Line is the premium brand of **RKB**created for all those critical applications requiring new design opportunities. The bearings of Victory Line capitalize on the latest knowledge of micro-geometry and surface topography, and on the best improved steels and manufacturing technologies. These products are endowed with the highest possible level of innovation, performance and reliability.



Graph 1 Minimum oil viscosity for known operating temperature


The temperature relates to the actual temperature that the bearing achieves, or is estimated to achieve, in service when taking into account all environmental and operating conditions.


Graph 2 Minimum oil viscosity - operating temperature not known


This graph is valid for normal ambient temperature conditions and where there is reasonable heat dissipation.

 $Graph \ 3 \quad Conversion \ of \ lubricant \ viscosity \ ratio \ at \ 40^{\circ}C \ (V_r) \ to \ viscosity \ ratio \ at \ the \ operating \ temperature \ (V_t)$

Graph 4 Lubrication factor a₃

Reliability factor a₁

Critical applications may require reliabilities greater than 90%, and in such cases the L_{10} life should be multiplied by the factor a_1 given in the following table.

Table 9-1

Reliability %	Ln	Life factor a ₁
90	L ₁₀	1,0
95	L ₅	0,62
96	L ₄	0,53
97	L_3	0,44
98	L ₂	0,33
99	L ₁	0,21

Temperature factor a₂

The effect of temperatures of 150 °C and higher is to reduce the bearing material hardness. The factor a₂ given in the following table allows for this reduction but assumes that effective lubrication is maintained at the operating temperature.

Table 9-2

Operating °C	temperature	Life fac	tor a ₂	
over incl.		Ball	Roller	
150 175 200	150 175 200 225	1,0 0,86 0,72 0,58	1,0 0,85 0,70 0,54	-

It should be noted that standard bearings are stabilised for operating temperatures up to 125 °C.

Lubrication factor a₃

Satisfactory bearing performance is dependent on there being an adequate lubricant film at the rolling element and raceway contacts. The value of a₃ is therefore related to speed and lubricant viscosity at the operating temperature.

The procedure for obtaining the factor a₃ for specific bearings and operating conditions is as follows:

- (1) Obtain the **RKB** recommended lubricant viscosity (V) at 40 °C using graphs 1 and 2 on page 7.
- (2) Determine the actual lubricant viscosity (cSt) at 40°C.
- (3) Divide the viscosity obtained in (2) above by the viscosity obtained in (1) to obtain the viscosity ratio (V_r) at 40°C.
- (4) Use graph 3, page 8 to find V_t which is the viscosity ratio at the operating temperature. For speeds less than dm.n of 10⁵ or for a V_r ratio less than 1, it is reasonable to take V_t=V_r.
- (5) Using the value for V_t obtained in (4) the lubrication factor a₃ is obtained from graph 4, page 8.

Suffix system

Variations of standard bearing designs may be indicated by suffixes to the basic bearing reference, and a list of those most commonly in use is given below.

use is given below.

Special bearings will normally have a numerical prefix to the basic bearing reference if they can be reasonably associated with a standard bearing. In other cases special designations are used.

Suffix Definition

A */*	Special manufacturing tolerance for axial clearance where */* gives the min/max values in micrometres
В	40° contact angle
CN	Normal grade of radial internal clearance (not marked)
C2	Internal clearance less than normal
СЗ	Internal clearance greater than normal
C4	Internal clearance greater than C3
C5	Internal clearance greater than C4
E	Inch series bearings over 4" bore – whole number bore sizes only
K	Tapered bore
LOC	Location bearing having reduced outside diameter
M	Machined brass cage located on rolling elements
MA	Machined brass cage located in the outer ring bore
MB	Machined brass cage located on the inner ring outside diameter
MNA	MA cage riveted type
MNB	MB cage riveted type
N	Snap ring groove on outer ring outside diameter
NR	N type with locating snap ring
P*/*	Special manufacturing tolerance for axial interference where */* gives the min/max values in micrometres
Q**	Special feature where ** is the specification number
R*/*	Special manufacturing tolerance for radial internal clearance where */* gives the min/max values in micrometres
RS	Bearing fitted with one synthetic rubber seal
-2RS	Bearing fitted with two synthetic rubber seals
RSN	Bearing with seal fitted on opposite side to the snap ring groove
RSNR	RSN bearing with locating snap ring
RSZ	Bearing fitted with one seal and one shield
RSZN	RSZ bearing with snap ring groove on same side as shield
S*	Special heat stabilised bearing where * gives the specification number
U	Universally faced angular contact ball bearing
W 33	Spherical roller bearing with lubricating holes and groove
Z	Bearing fitted with one metal shield
-2Z	Bearing fitted with two metal shields
ZN	Z bearing with snap ring groove on the opposite side to the shield
ZNB	Z bearing with snap ring groove on the same side as the shield

For other suffixes refer to RKB.

Definitions

The symbols used in this section are in accordance with ISO recommendations and they are defined as

Inner rings

d = the nominal bore diameter

 d_{mp} = the arithmetical mean of the largest and smallest actual single diameters

of a bore in a single radial plane

d_s = a single diameter of a bore

 $\Delta_{ extsf{dmp}}$ = the deviation of the mean bore diameter in a single plane

 $= d_{mp} - d$

 Δ_{ds} = the deviation of a single bore diameter

 $= d_s - d$

K_{ia} = the radial runout of an assembled bearing inner ring relative to a fixed

point on the bearing outer ring, both inner and outer raceways being in contact with the rolling elements at the relevant angular position of

measurement

Outer rings

D = the nominal outside diameter

 D_{mp} = the arithmetical mean of the largest and smallest actual single outside

diameters in a single radial plane

 D_s = a single outside diameter

 Δ_{Dmp} = the deviation of the mean outside diameter in a single plane

 $= D_{mp} - D$

 Δ_{Ds} = the deviation of a single outside diameter

 $= D_s - D$

K_{ea} = the radial runout of an assembled bearing outer ring relative to a fixed

point on the bearing inner ring, both inner and outer raceways being in contact with the rolling elements at the relevant angular position of

measurement

Ring widths - radial and angular contact bearings

B = the nominal inner ring width
C = the nominal outer ring width
B_s = a single inner ring width
C_s = a single outer ring width

 Δ_{Bs} = the deviation of a single inner ring width

 $= B_s - B$

 Δ_{Cs} = the deviation of a single outer ring width

 $= C_s - C$

 V_{Bs} = the inner ring width variation

the difference between the largest and smallest actual single widths of

an inner ring

 V_{Cs} = the outer ring width variation

Thrust ball bearings

 T_m = the nominal height of an assembled bearing T_m = the actual height of an assembled bearing

 Δ_{Tm} = the bearing height deviation

 $= T_m-T$

S_i = the shaft washer raceway runout relative to the flat seat face S_e = the housing washer raceway runout relative to the flat seat face

Nomenclatura

I simboli usati in questa sezione sono quelli delle specifiche ISO e sono definiti come segue:

Anello interno

d = diametro nominale del foro

d_{mp} = media aritmetica tra il massimo ed il minimo diametro del foro

effettivamente misurabili in un solo piano radiale
d = misura effettiva del diametro del foro

 $\begin{array}{lll} {\rm d_s} & = & {\rm misura~effettiva~del~diametro~del~foro} \\ {\rm \Delta_{dmp}} & = & {\rm scostamento~in~uno~stesso~piano~del~diametro~medio} \end{array}$

 $= d_{mp} - d$

 Δ_{ds} = scostamento del diametro effettivo del foro

 $= d_a - d$

K_{ia} = difetto radiale di rotazione dell'anello interno assemblato riferito a un punto fisso sull'anello esterno del cuscinetto, con entrambe le piste

interna ed esterna a contatto con gli elementi rotolanti nella posizione

angolare di misurazione

Anello esterno

D = diametro esterno nominale

 D_{mp} = media aritmetica tra il massimo e il minimo diametro esterno

effettivamente misurabili in un solo piano radiale

D = misura effettiva del diametro esterno

 Δ_{Dmn} = scostamento in uno stesso piano del diametro esterno medio

 $= D_{mp} - D$

 Δ_{De} = scostamento del diametro effettivo del diametro esterno

 $= D_s - D$

K_{ea} = difetto radiale di rotazione dell'anello esterno assemblato riferito a un

punto fisso sull'anello interno del cuscinetto, con entrambe le piste interna ed esterna a contatto con gli elementi di rotolamento nella

posizione angolare di misurazione

Tolleranze dei cuscinetti

Larghezza degli anelli – cuscinetti radiali e obliqui

 $B = Iarghezza nominale dell'anello interno <math>C = Iarghezza nominale dell'anello esterno <math>B_s = Iarghezza effettiva dell'anello interno <math>C_s = Iarghezza effettiva dell'anello esterno$

 Δ_{Bs} = scostamento della larghezza effettiva dell'anello interno

 $= B_s - B$

 Δ_{c_0} = scostamento della lunghezza effettiva dell'anello esterno

 $= C_s - C$

V_{Be} = variazione di larghezza dell'anello interno

= la differenza fra la lunghezza massima e minima effettivamente

misurabili su un anello interno

 V_{c_s} = variazione di larghezza dell'anello esterno

Cuscinetti reggispinta a sfere

 $\begin{array}{lll} T & = & \text{altezza nominale di un cuscinetto assemblato} \\ T_{_{\text{m}}} & = & \text{altezza effettiva di un cuscinetto assemblato} \\ \Delta_{\tau_{_{\text{m}}}} & = & \text{scostamento dell'altezza del cuscinetto} \end{array}$

 $= T_m - T$

S_i = difetto di rotazione della pista della ralla centrata sull'albero rispetto alla facciata di appoggio

 $S_{_{\rm e}}$ = difetto di rotazione della pista della ralla destinata all'alloggiamento rispetto alla facciata di appoggio

Definiciones

Los símbolos empleados en ésta sección están de acuerdo con las recomendaciones ISO y se definen de la siguiente manera:

Aros interiores

d = el diámetro interior nominal

d_{mp} = la media aritmética de los diámetros interiores mayor y menor reales,

dentro de un solo plano radial
d = un diámetro interior único

 $\Delta_{
m dmn}^{
m dmn}$ = la desviación del diámetro interior medio en un solo plano

 $= d_{mp} - d$

 Δ_{ds} = la desviación de un solo diámetro interior

 $= d_s - d$

K_{ia} = el salto radial del aro interior de un rodamiento ensamblado, relativo a un punto fijo en el aro exterior del rodamiento. Tanto la pista interior

a un punto fijo en el aro exterior del rodamiento. Ianto la pista interior como la exterior estando en contacto con los elementos rodantes en la

posición angular precisa de medición

Aros exteriores

D = el diámetro exterior nominal

D_{mp} = la media aritmética de los diámetros exteriores mayor y menor reales,

dentro de un solo plano radial = un diámetro exterior único

 D_s = un diámetro exterior único $\Delta_{n_{min}}$ = la desviación del diámetro exterior medio en un solo plano

 $= D_{mn} - D$

 Δ_{Ds} = la desviación de un solo diámetro exterior

 $= D_s - D$

K_{ea} = el salto radial del aro exterior de un rodamiento ensamblado, relativo

a un punto fijo en el aro interior del rodamiento. Tanto la pista interior como la exterior estando en contacto con los elementos rodantes en la

posición angular precisa de medición

Tolerancias de los rodamientos

Ancho del aro - rodamientos radiales y de contacto angular

B = ancho nominal del aro interior
C = ancho nominal del aro exterior
B_s = un solo ancho del aro interior
C = un solo ancho del aro exterior

 Δ_{Rs} = la desviación de un solo ancho del aro interior

 $= B_0 - B$

 Δ_{c_0} = la desviación de un solo ancho del aro exterior

 $= C_s - C$

V_{Bs} = la variación en el ancho del aro interior

= la diferencia entre el ancho mayor y menor de un aro interior

 V_{Cs} = la variación en el ancho del aro exterior

Rodamientos de bolas de empuje axial

 $\begin{array}{ll} T & = & \text{la altura nominal de un rodamiento ensamblado} \\ T_{\text{m}} & = & \text{la altura real de un rodamiento ensamblado} \\ \Delta_{\text{Tm}} & = & \text{la desviación de la altura de un rodamiento} \end{array}$

 $= T_m - T$

S_i = el salto en la pista de la arandela del eje, relativo al plano del alojamiento
S_e = el salto en la pista de la arandela del alojamiento, relativo al plano del alojamento

Metric bearings

RKB limits of accuracy for standard metric bearings are given in tables 18-1 and 18-2. The bore, outside diameter, and width tolerances are comparable with ABEC 1 and conform to the ISO 'Normal Class'. The **RKB** tolerances for running accuracy are generally closer than both the ABEC 1 and ISO Normal Class requirements.

Metric taper roller bearings

RKB limits of accuracy for standard metric taper roller bearing are given in tables 21-1, 21-2 and 21-3. These dimensions conform to the ISO 355.

Thrust ball bearings

RKB limits of accuracy for metric thrust ball bearings are given in tables 20-1 and 20-2.

Sealed and shielded bearings

The tolerances for the outer rings of bearings fitted with seals or shields differ from those for the open bearings in that the outside diameter deviation Δ_{Ds} is greater to allow for the effects of fitting the seals or shields. See table 18-2.

Note

The cylindrical bore diameter and outside diameter tolerances do not necessarily apply within a distance of three times the ring corner radius from the ring face.

Inner ring tolerances - metric radial and angular contact ball bearings 0,001 mm units Table 18-1

d r	mm	Δ_d	mp	Δ	ds	K _{la}	Δ	Bs	V_{Bs}
over	incl	high	low	high	low	max	high	low	max
2,5	10	0	- 8	+ 2	10	7,5	0	-120	15
10	18	0	- 8	+ 3	-11	10	0	-120	20
18	30	0	-10	+ 3	-13	10	0	-120	20
30	50	0	-12	+ 3	−15	13	0	-120	20
50	80	0	-15	+ 4	-19	15	0	-150	25
80	120	0	-20	+ 5	-25	20	0	-200	25
20	180	0	-25	+ 6	-31	25	0	-250	30
80	250	0	-30	+ 8	-38	30	0	300	30
250	315	0	35	+ 9	-44	40	0	-350	35
315	400	0	-40	+10	-50	50	Ö	-400	40

 Δ_{ds} applies to : ISO diameter series 4 and 3, all sizes.

ISO diameter series 2, up to and including d = 180mm

ISO diameter series 0, up to and including d = 40 mm

 K_{ia} does not apply to double row spherical roller bearings which are made to comply with ISO normal class tolerances.

Outer ring tolerances – metric radial and angular contact ball bearings 0,001 mm units Table 18-2

D m	m	Δι	Omp	Δ_{Ds}		Kea
over	inel	high	low	high	low	max
18 30 50 80	30 50 80 120	0 0 0	- 9 -11 -13 -15	+ 2 + 3 + 4 + 5	-11 14 17 20	10 13 15 18
120 150 180 250	150 180 250 315	0 0 0	-18 -25 -30 -35	+ 6 + 7 + 8 + 9	-24 -32 -38 -44	20 23 25 30
315	400	0	-40	+10	-50	35

 $\Delta_{\,Ds}$ applies to : ISO diameter series 4 and 3, all sizes.

ISO diameter series 2, up to and including D = 315 mm

ISO diameter series 0, up to and including D = 80 mm

 K_{ea} does not apply to double row spherical roller bearings which are made to comply with ISO normal class tolerances.

The width deviation (Δ_{Cs}) and variation (V_{Cs}) for an outer ring is the same as that of the inner ring (Δ_{Bs} and V_{Bs}) of the same bearing.

Inner ring tolerances – magneto bearings – metric single row separable ball bearings

0,001 mm units

Table 19-1

d mm		Δ,	Δ_{dmp}		$\Delta_{\sf ds}$		A _{ds} K _{ia}	
over	incl	high	low	high	low	max		
2,5 9	9	0	- 8	+2	-10	8		
9	18	0	- 8	+2	-10	10		
18	30	0	-10	+2	-13	13		

Outer ring tolerances – magneto bearings – metric single row separable ball bearings 0,001 mm units Table 19-2

D	D mm		D mm Δ _{Dmp} Δ		Δι	Os	K _{ea}
over	incl	high	low	high	low	max	
10 30	30 50	+10 +10	0 0	+13 +18	-2 -5	15 20	

Width tolerances – magneto bearings – metric single row separable ball bearings 0,001 mm units

Table 19-3

Sizes	Width tolerances apply to	high	low
All sizes	Individual rings (Δ_{Bs} and Δ_{Cs})	0	-120
All sizes	Across assembled bearing	+120	-120

Shaft washer bore and assembled bearing height tolerancesmetric thrust ball bearings

0,001 mm units

Table 20-1

d mm		Δ_{d}	mp	Si	$S_i \hspace{1cm} \Delta_{Tm}$		
over	incl	high	low	max	high	low	
9 18 30 50	18 30 50 80	0 0 0	- 8 -10 -12 -15	10 10 10	0 0 0	- 75 - 75 -100 -125	
80 120 180	120 180 250	0 0 0	-20 -25 -30	15 15 20	0 0 0	-150 -175 -200	

The above tolerances do not apply to the housing washers which are made to clear the shaft.

 $\begin{array}{ll} \mbox{Housing washer O/D tolerances} & - \\ \mbox{metric thrust ball bearings} \end{array}$

0,001 mm units

Table 20-2

	O mm	Δ_{D}	mp
over	incl	high	low
10 18 30 50	18 30 50 80	0 0 0	-11 -13 -16 -19
80 120 180 250	120 180 250 315	0 0 0	-22 -25 -30 -35
315	400	0	-40.

These tolerances apply to both shaft and housing washers up to 170 mm outside diameter, they do not apply to shaft washers above this size which are made to clear the housing. The raceway runout of the housing washer (S_e) is

the same as that of the shaft washer of the same bearing.

Inner ring tolerances – tapered roller bearings 0,001 mm units

Table 21-1

d	mm	∆dn	np	Vdp	Vdmp	Kia
over	incl	high	low	max	max	max
10 1)	18	0	-12	12	9	15
18	30	0	-12	12	9	18
30	50	0	-12	12	9	20
50	80	0	-15	15	11	25
80	120	0	-20	20	15	30
120	180	0	-25	25	19	35
180	250	0	-30	30	23	50
250	315	0	-35	35	26	60
315	400	0	-40	40	30	70

Outer ring tolerances – tapered roller bearings 0,001 mm units

Table 21-2

D m	ım	ΔD	mp	VDp	VDmp	Kea
over	incl	high	low	max	max	max
18 1)	30	0	-12	12	9	18
30	50	0	-14	14	11	20
50	80	0	-16	16	12	25
80	120	0	-18	18	14	35
120	150	0	-20	20	15	40
150	180	0	-25	25	19	45
180	250	0	-30	30	23	50
250	315	0	-35	35	26	60
315	400	0	-40	40	30	70
400	500	0	-45	45	34	80
500	630	0	-50	50	38	100

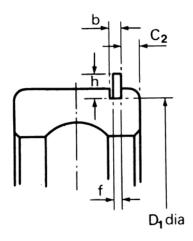

Inner and outer ring tolerances – tapered roller bearings 0,001 mm units

Table 21-3

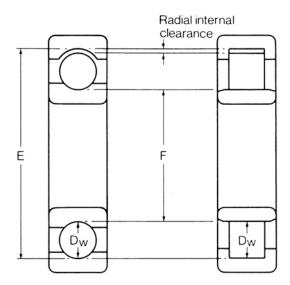
d mm		∆Bs DCs		Δ Ts		ΔT	1s	∆ T2 s		
over	incl	high	low	high	low	high	low	high	low	
10 1)	18	0	-120	+200	0	+100	0	+100	0	
18	30	0	-120	+200	0	+100	0	+100	0	
30	50	0	-120	+200	0	+100	0	+100	0	
50	80	0	-150	+200	0	+100	0	+100	0	
80	120	0	-200	+200	-200	+100	-100	+100	-100	
120	180	0	-250	+350	-250	+150	-150	+200	-100	
180	250	0	-300	+350	-250	+150	-150	+200	-100	
250	315	0	-350	+350	-250	+150	-150	+200	-100	
315	400	0	-400	+400	-400	+200	-200	+200	-200	

¹⁾ This value included

Snap ring and groove tolerances

Snap ring and groove tolerances – metric bearings 0,001 mm units $\,$

Table 22-1


D	mm	b		f	f		h		C_2		1
over	incl	high	low	high	low	high	low	high	low	high	low
28 52 55 130	52 55 130 250	+220 +220 +220 +220	-80 -80	+50 +50 +50 +50	-50 -50 -50 -50	+75 +75 +75 +75	- 75 - 75 - 75 - 75	+100 +100	- 80 -100 -100 -120	0 0 0	-250 -250 -500 -500

Snap ring and groove tolerances – inch bearings 0,0001 inch units

Table 22-2

D	inch	b		f		h		C_2		D ₁	
over	incl	high	low	high	low	high	low	high	low	high	low
2 2,25 5	2,25 5 5,5	+90 +90 +90	-30 -30 -30	+20 +20 +20	-20 -20 -20	+30 +30 +30	-30 -30 -30	+30 +40 +50	-30 -40 -50	0 0 0	-200 -200 -200

Radial internal clearance

Bearing radial internal clearance relates to the total clearance between the raceways and rolling elements measured normal to the bearing axis.

In single row radial ball and cylindrical roller bearings this may be simply defined as being equal to the difference between the mean outer raceway diameter (E) and the sum of the mean inner raceway diameter (F) and twice the mean diameter of the rolling elements (2 Dw)

i.e. Radial internal clearance = E - (F + 2 Dw)

This feature is not easily checked in assembled bearings, particularly ball bearings where the rolling elements should be central to the raceways. Allowance must also be made for the elastic deformation of rolling elements and raceways under gauging load.

Bearings are made to four standard groups of internal clearance

C2 0 (one dot) smallest clearance - please check availability

CN 00 (two dot) normal clearance

C3 000 (three dot) larger clearance than normal

C4 0000 (four dot) larger clearance than C3 - please check

availability

C5 larger clearance than C4 - please check

availability

Standard bearings are supplied normal clearance (CN) unless ordered differently. Normal clearance bearings are not marked with the internal clearance code. Radial ball bearings and spherical roller bearings have some axial clearance and this depends on rolling element size, raceway curvature, and radial internal clearance.

Values of radial internal clearance for the various bearing types are given in the following tables.

RKB

23

Radial internal clearance

Radial internal clearance – single row radial ball bearings 0,001 mm units

Table 24-1

		d		Radia	al intern	al clear	ance gr	oups					
mm		inch	1	C2 CN (normal)				С3		C4	:4		
over	incl	ove	r incl	low	high	low	high	low	high	low	high		
2,5	10	1 8 3 8	3 8	0	7	2	13	8	23				
10	18	38	11 16	0	9	3	18	11	25	18	33		
18	24	11	15 16	0	10	5 5	20	13	28	20	36		
24	30	11 16 15 16	1 18	0	11	5	20	13	28	23	41		
30	40	1 18	1 9	0	11	6	20	15	33	28	46		
40	50	1 9 16	1 15	0	11	6	23	18	36	30	51		
50	65	1 15	21	Ō	15	8	28	23	43	38	61		
65	80	21/2	2½ 3½	0	15	10	30	25	51	46	71		
80	100	3 1	3 7	0	18	12	36	30	58	53	84		
100	120	3 7	4 11 4 11	2,5	20	15	41	36	66	61	97		
120	140	$4\frac{11}{16}$	5½	2,5	23	18	48	41	81	71	114		
140	160	5½	61/4	2,5	23	18	53	46	91	81	130		
160	180	61/4	7	2,5	25	20	61	53	102	91	147		
180	200	7	72	2,5	30	25	71	63	117	107	163		
200	225	7 7품	7 ⁷ / ₈ 8 ⁷ / ₈ 9 ⁷ / ₈	2,5	35	28	86	76	137	127	193		
225	250	7 g 0 7	0 8	2,5	38	30	97	86	157	147	221		
225	250	878	ਤ ਜ਼ੁ	2,5	30	30	37	80	157	147	221		
250	280	9종	11	2,5	41	33	102	91	168	157	241		
280	315	11	12 3 8	2,5	64	46	114	104	185	175	264		
315	355	12골	14	2,5	64	46	124	115	206	196	295		
355	400	14	15¾	2,5	74	56	145	135	236	226	335		

Radial internal clearance – single row radial ball bearings 0,0001 inch units

Table 24-2

		d		Radial internal clearance groups									
mm		inc	h	C2		CN (nor	mal)	C3		C4			
over	incl	ove	r incl	low	high	low	high	low	high	low	high		
2,5	10	18	38 11 16 15 16	0	3	1	5	3	9	_	_		
10	18	1 8 3 8 11 16 15 16	11	0	3,5	1	7	4,5	10	7	13		
18	24	11	15 16	0	4	2	8	5	11	8	14		
24	30	15 16	1 18	0	4,5	2	8	5	11	9	16		
30	40	1 1/8	1 9 16	0	4,5	2,5	8	6	13	11	18		
40	50	$1\frac{9}{16}$	1 15	0	4,5	2,5	9	7	14	12	20		
50	65	1 9 16 15 16	21/2	0	6	3	11	9	17	15	24		
65	80	21/2	1 15 1 16 2 1/2 3 1/8	0	6	4	12	10	20	18	28		
80	100	31/8	3 7 4 11	0	7	5	14	12	23	21	33		
100	120	3 7 8	411	0	8	6	16	14	26	24	38		
120	140	$4\frac{11}{16}$	51/2	1	9 9	7	19	16	32	28	45		
140	160	5½	5½ 6¼	1	9	7	21	18,	36	32	51		
160	180	61/4	7	1	10	8	24	21	40	36	58		
180	200	7	7류	1	12	10	28	25	46	42	64		
200	225	7종	8류	1	14	11	34	30	54	50	76		
225	250	878	7	1	15	12	38	34	62	58	87		
250	280	9 7	11	1	16	13	40	36	66	62	95		
280	315	11	12흫	1	25	18	45	41	73	69	104		
315	355	12콯	14	1	25	18	49	45	81	77	116		
355	400	14	15≩	1	29	22	57	53	93	89	132		

These inch values are rounded conversions. Exact values for both inch and metric bearings are as listed in the metric units given in table 24-1.

Radial internal clearance – cylindrical roller bearings with matched rings 0,001 mm units Table 25-1

		d			ı	Radial i	nternal o	elearanc	e group	3	
mm		inch		C2		CN (nor	mal)	C3		C4	
over	incl	over	incl	low	high	low	high	low	high	low	high
6	24	14	<u>15</u> 16	10	20	20	30	35	45	45	55
24	30	15 16	1 %	10	25	25	35	40	50	50	60
30	40	1급	1 9	12	25	25	40	45	55	55	70
40	50	1 ¹ / ₈ 1 ⁹ / ₁₆	1	15	30	30	45	50	65	65	80
50	65	1 15	21/2	15	35	35	50	55	75	75	90
65	80	21/2	3 ¹ / ₈	20	40	40	60	70	90	90	110
80	100	31/8	3 7	25	45	45	70	80	105	105	125
100	120	2½ 3½ 3½ 3%	$2\frac{1}{2}$ $3\frac{1}{8}$ $3\frac{7}{8}$ $4\frac{11}{16}$	25	50	50	80	95	120	120	145
120	140	411	51/2	30	60	60	90	105	135	135	160
140	160	5월	5½ 6¼	35	65	65	100	115	150	150	180
160	180	64	7	35	75	75	110	125	165	165	200
180	200	7	778	40	80	80	120	140	180	180	220
200	225	7류	878	45	90	90	135	155	200	200	240
225	250	7급 8급	9 7 8	50	100	100	150	170	215	215	265
250	280	9류	11	55	110	110	165	185	240	240	295
280	315	11	12흫	60	120	120	180	205	265	265	325
315	355	12흚	14	65	135	135	200	225	295	295	360
355	400	14	15≩	75	150	150	225	255	330	330	405

Radial internal clearance – cylindrical roller bearings with matched rings 0,0001 inch units

Table 25-2

		d		Radial internal clearance groups									
mm		inch		C2 CN (normal)				СЗ		C4	C4		
over	incl	over	incl	low	high	low	high	low	high	low	high		
6	24	14	15 16	4	8	8	12	14	18	18	22		
24	30	15 16	1 ½ 1 9 1 6	4	10	10	14	16	20	20	24		
30	40	1	1 9 1 6	5	10	10	16	18	22	22	28		
40	50	1 9 16	1 15	6	12	12	18	20	26	26	31		
50	65	1 15	21/2	6	14	14	20	22	30	30	35		
65	80	21/2	31/8	8	16	16	24	28	35	35	43		
80	100	31/8	3 7	10	18	18	28	31	41	41	49		
100	120	2½ 3½ 3½ 3½	$2\frac{1}{2}$ $3\frac{1}{8}$ $3\frac{7}{8}$ $4\frac{11}{16}$	10	20	20	31	37	47	47	57		
120	140	4 11	53	12	24	24	35	41	53	53	63		
140	160	51	5½ 6¼	14	26	26	39	45	59	59	71		
160	180	5½ 6¼	7	14	30	30	43	49	65	65	79		
180	200	7	7종	16	31	31	47	55	71	71	87		
200	225	7공	83	18	35	35	53	61	79	79	94		
225	250	87	8 경 9중	20	39	39	59	67	85	85	104		
250	280	7종 8종 9종	11	22	43	43	65	73	94	94	116		
280	315	11	12≩	24	47	47	71	81	104	104	128		
315	355	12흫	14	26	53	53	79	89	116	116	142		
355	400	14	15¾	30	59	59	89	100	130	130	159		

These inch values are rounded conversions. Exact values for both inch and metric bearings are listed in the metric units given in table 25-1.

Radial internal clearance

Radial internal clearance – double row self-aligning ball bearings 0,001 mm units

Table 26-1

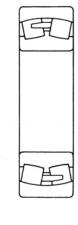
	d			Radial internal clearance groups								
mm		inch		C2 CN (normal)				C3			C4	
over	incl	over	incl	low	high	low	high	low	high	low	high	
2,5	6	18	7 32	1	5	5	10	10	15	15	21	
6	10	732	38	2	6	6	12	12	19	19	27	
10	14	38	9	2 2 3	6	6	13	13	21	21	30	
14	18	18 732 38 916	7 32 3 8 9 16 11	3	8	8	15	15	23	23	32	
18	24	11	15 16	4	10	10	17	17	25	25	34	
24	30	11 16 15 16	11	5	11	11	19	19	29	29	40	
30	40	1計	1 3	6	13	13	23	23	34	34	46	
40	50	1 9 1 6	1 9 1 6 1 1 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	6	14	14	25	25	37	37	50	
50	65	1 15	2½	7	16	16	30	30	45	45	65	
65	80	21/2	31	8	18	18	35	35	54	54	76	
80	100	31	3 ¹ / ₈ 3 ⁷ / ₈	9	22	22	42	42	64	64	89	
100	120	2½ 3½ 3½ 378	411	10	25	25	50	50	75	75	105	
120	140	411	5 <u>1</u>	10	30	30	60	60	90	90	130	
140	160	51/2	61/4	15	35	35	70	70	110	110	150	

Radial internal clearance – double row self-aligning ball bearings 0,0001 inch units

Table 26-2

	d	l		Radial internal clearance groups								
mm		inch		C2 CN (normal)				C3		C4		
over	incl	over	incl	low	high	low	high	low	high	low	high	
2,5 6	6 10	18 7 32	7 32 3	0,5 1	2 2,5	2 2,5	4 5	4 5	6 7,5	6 7,5	8 11	
10 14	14 18	18 7 32 38 9	7 32 3 9 16 11 16	1 1	2,5 3	2,5 3	5 5 6	5 6	8 9	8 9	12 13	
18 24 30 40	24 30 40 50	116 156 118 1 9 16	15/16 11/8 19/16 11/5/16	1,5 2 2,5 2,5	4 4,5 5 5,5	4 4,5 5 5,5	6,5 7,5 9 10	6,5 7,5 9 10	10 11 13 15	10 11 13 15	13 16 18 20	
50 65 80 100	65 80 100 120	1 15 212 318 378	2½ 3½ 3½ 4½ 4½ 16	3 3 3,5 4	6,5 7 9 10	6,5 7 9 10	12 14 17 20	12 14 17 20	18 21 25 30	18 21 25 30	26 30 35 41	
120 140	140 160	4 11 5½	5½ 6¼	4 6	12 14	12 14	24 28	24 28	35 43	35 43	51 59	

These inch values are rounded conversions. Exact values for both inch and metric bearings are listed in the metric units, given in table 26-1.

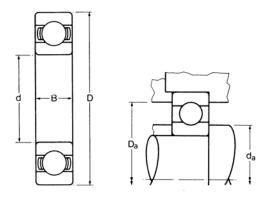


26

Radial internal clearance

Radial internal clearance – double row spherical roller bearings with cylindrical bores 0,001 mm units Table 27-1

d mm Radial internal clearance groups C2 CN C4 (normal) incl low over low high high high low high low 30


Radial internal clearance – double row spherical roller bearings with tapered bores
0,001 mm units
Table 27-2

d mm		Radial internal clearance groups										
		C2	CN (normal)			С3		C4				
over	incl	low	high	low	high	low	high	low	high			
24	30	20	30	30	40	40	55	55	75			
30	40	25	35	35	50	50	65	65	85			
40	50	30	45	45	60	60	80	80	100			
50	65	40	55	55	75	75	95	95	120			
65	80	50	70	70	95	95	120	120	150			
80	100	55	80	80	110	110	140	140	180			
00	120	65	100	100	135	135	170	170	220			
20	140	80	120	120	160	160	200	200	260			
40	160	90	130	130	180	180	230	230	300			
60	180	100	140	140	200	200	260	260	340			
180	200	110	160	160	220	220	290	290	370			
200	225	120	180	180	250	250	320	320	410			
225	250	140	200	200	270	270	350	350	450			

Single row radial ball bearings

Single row radial ball bearings

160 EXTRA LIGHT NARROW SERIES METRIC SIZES

ISO DIMENSION SERIES 00

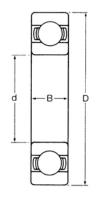
RKB designation		ensior metre		RKB load	RKB load ratings †		limiting	Weight		Shaft and housing dimensions			
designation				newtons		speeds rev/min		kg	millim				
			dynamic	static	grease	oil	approx	max fillet	da	Da			
	d	D	В	C _r	Cor				radius	min	max		
16002	15	32	8	5 350	2 200	23 000	29 000	0,025	0,3	16,8	30,2		
16003	17	35	8	5 800	2 500	20 000	25 000	0,032	0,3	18,8	33,2		
16004	20	42	8	9 750	3 200	16 500	21 000	0,050	0,3	21,8	40,2		
16005	25	47	8	7 550	3 750	14 000	18 000	0,060	0,3	26,8	45,2		
16006	30	55	9	11 700	6 000	12 000	15 000	0,085	0,3	31,8	53,2		
16007	35	62	9	12 700	7 100	10 500	13 000	0,110	0,3	36,8	60,2		
16008	40	68	9	13 700	8 000	9 500	12 000	0,125	0,3	41,8	66,2		
16009	45	75	10	16 200	9 500	8 500	10 500	0,170	0,6	48,2	71,8		
16010	50	80	10	16 700	10 200	8 000	10 000	0,180	0,6	53,2	76,8		
16013	65	100	11	22 000	15 000	6 300	7 500	0,300	0,6	68,2	96,8		
16020	100	150	16	45 600	33 500	4 100	4 900	0,910	1,0	104,6	145,4		
16022	110	170	19	59 500	43 000	3 700	4 400	1,46	1,0	114,6	165,4		

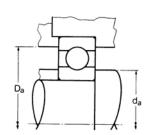
161 EXTRA LIGHT NARROW SERIES

METRIC SIZES

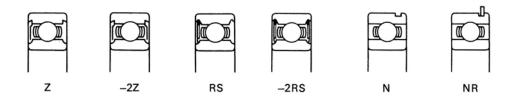
ISO DIMENSION SERIES 00

	10 12		_					0.022 0.023	0.3 0.3		
16101	12	30	8	5 0/0	2 300	26 000	32 000	0.023	0.3	14	20


Larger sizes, sealed and shielded types are available on request

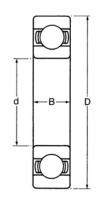

Single row radial ball bearings

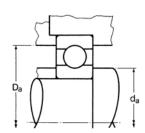
60 EXTRA LIGHT SERIES


METRIC SIZES

ISO DIMENSION SERIES 10

RKB des	ignations		Dimensions			RKB load ratings†					
basic	with one	with two	with one	with two	with snap ring	with groove and	mil	limetı	res	newton	s
bearing	shield	shields	seal	seals	groove	snap ring				dynamic	c static
	Z	-2Z	RS	-2RS	N	NR	d	D	В	Cr	Cor
6000 6001 6002 6003	6000Z 6001Z 6002Z 6003Z	6000-2Z 6001-2Z 6002-2Z 6003-2Z	6000RS 6001RS 6002RS 6003RS	6000-2RS 6001-2RS 6002-2RS 6003-2RS	6002N 6003N	6002NR 6003NR	10 12 15 17	26 28 32 35	8 8 9 10	4 750 5 300 5 800 7 050	1 950 2 230 2 510 3 030
6004 6005 6006 6007	6004Z 6005Z 6006Z 6007Z	6004–2Z 6005–2Z 6006–2Z 6007–2Z	6004RS 6005RS 6006RS 6007RS	6004-2RS 6005-2RS 6006-2RS 6007-2RS	6004N 6005N 6006N 6007N	6004NR 6005NR 6006NR 6007NR	20 25 30 35	42 47 55 62	12 12 13 14	9 750 10 500 15 700 16 600	4 450 4 950 7 750 8 500
6008 6009 6010 6011	6008Z 6009Z 6010Z 6011Z	6008-2Z 6009-2Z 6010-2Z 6011-2Z	6008RS 6009RS 6010RS 6011RS	6008-2RS 6009-2RS 6010-2RS 6011-2RS	6008N 6009N 6010N 6011N	6008NR 6009NR 6010NR 6011NR	40 45 50 55	68 75 80 90	15 16 16 18	19 700 24 400 22 700 29 400	10 300 13 400 13 100 17 000
6012 6013 6014 6015	6012Z 6013Z 6014Z	6012-2Z 6013-2Z 6014-2Z	6012RS 6013RS 6014RS 6015RS	6012-2RS 6013-2RS 6014-2RS 6015-2RS	6012N 6013N 6014N 6015N	6012NR 6013NR 6014NR 6015NR	60 65 70 75	95 100 110 115	18 18 20 20	33 600 31 800 42 700 41 100	19 700 19 600 25 700 26 100
6016 6017 6018 6019			6016RS 6017RS 6019RS	6016–2RS 6017–2RS 6019–2RS	6016N 6017N 6018N	6016NR 6017NR 6018NR	80 85 90 95	125 130 140 145	22 22 24 24	49 600 51 500 60 500 63 000	31 300 33 500 39 100 41 900
6020 6021 6022 6024							100 105 110 120	150 160 170 180	24 26 28 28	62 500 75 500 85 500 86 000	42 500 51 000 57 500 62 000
6026 6028 6030 6032							130 140 150 160	200 210 225 240	33 33 35 38	109 000 113 000 134 000 145 000	80 000 85 000 97 500 104 000
6034 6036							170 180	260 280	42 46	175 000 181 000	137 000 140 000



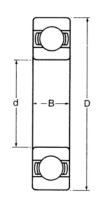

Normal	Normal limiting speeds		Weight	Shaf	ft and ho	using di	mension	าร	RKB
rev/mir	1		kg	milli	metres				designation
grease	oil	types RS and –2RS	approx (basic bearing)	max fillet radiu		a max	D _a min	a max	(basic bearing)
25 500	34 500	18 000	0,020	0,3	12,0	12,7	23,1	24,0	6000
23 500	32 000	16 500	0,023	0,3	13,2	14,7	25,1	26,8	6001
21 000	28 000	14 600	0,030	0,3	16,2	18,3	28,7	30,8	6002
19 000	26 000	13 500	0,038	0,3	18,2	20,3	31,5	33,8	6003
16 500	22 500	11 600	0,069	0,6	22,4	24,6	37,3	39,6	6004
14 600	19 500	10 200	0,080	0,6	27,4	29,7	42,4	44,6	6005
12 600	17 000	8 800	0,116	1,0	34,0	34,5	50,5	51,0	6006
11 200	15 000	7 800	0,156	1,0	39,0	40,6	56,4	58,0	6007
10 100	13 600	7 100	0,191	1,0	44,0	45,2	62,7	64,0	6008
9 100	12 300	6 400	0,245	1,0	49,0	50,5	69,6	71,0	6009
8 300	11 200	5 800	0,264	1,0	54,0	57,4	74,7	76,0	6010
7 600	10 300	5 300	0,394	1,0	59,0	62,2	82,8	86,0	6011
7 100	9 600	5 000	0,419	1,0	64,0	66,5	88,6	91,0	6012
6 700	9 000	4 700	0,449	1,0	69,0	72,1	92,7	96,0	6013
6 100	8 200	4 300	0,608	1,0	74,0	77,2	102,6	106,0	6014
5 800	7 800	4 050	0,680	1,0	79,0	83,6	107,2	111,0	6015
5 300 5 000 4 600 4 400	7 200 6 800 6 300 6 000	3 700 3 500 3 100	0,907 0,907 1,16 1,21	1,0 1,0 1,5 1,5	84,0 89,0 96,0 101,0	88,9 94,5 100,8 105,7	116,1 121,4 131,1 135,6	121,0 126,0 134,0 139,0	6016 6017 6018 6019
4 100	4 900		1,26	1,5	106,0	109,2	141,0	144,0	6020
2 000	4 000		1,62	2,0	113,0	115,8	148,3	152,0	6021
3 800	5 100		1,97	2,0	118,0	121,7	158,2	162,0	6022
3 400	4 000		2,53	2,0	128,0	131,8	168,1	172,0	6024
3 100	3 700		3,81	2,0	138,0	144,3	185,7	192,0	6026
2 800	3 300		4,02	2,0	148,0	155,7	196,8	202,0	6028
1 300	2 700		4,94	2,0	158,0	164,6	210,6	217,0	6030
1 200	2 400		5,95	2,0	168,0	174,5	225,5	232,0	6032
2 200	2 600		8,07	2,0	178,0	187,2	242,8	252,0	6034
1 000	2 000		10,7	2,0	188,0	204,2	261,4	272,0	6036

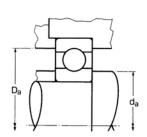
Single row radial ball bearings

62 LIGHT SERIES

METRIC SIZES

RKB des	ignations						Din	nensio	ns	RKB load	l ratings†
basic	with	with	with	with	with .	with .	mil	limetı	es	newtons	i
bearing	one shield	two shields	one seal	two seals	snap ring groove	groove and snap ring				dynamic	static
	z	–2Z	RS	-2RS	N	NR	d	D	В	Cr	Cor
6200 6201 6202 6203	6200Z 6201Z 6202Z 6203Z	6200-2Z 6201-2Z 6202-2Z 6203-2Z	6200RS 6201RS 6202RS 6203RS	6200-2RS 6201-2RS 6202-2RS 6203-2RS	6200N 6201 N 6202N 6203N	6200NR 6201NR 6202NR 6203NR	10 12 15 17	30 32 35 40	9 10 11 12	6 200 7 050 8 050 9 950	2 650 3 040 3 530 4 470
6204 6205 6206 6207	6204Z 6205Z 6206Z 6207Z	6204–2Z 6205–2Z 6206–2Z 6207–2Z	6204RS 6205RS 6206RS 6207RS	6204-2RS 6205-2RS 6206-2RS 6207-2RS	6204N 6205N 6206N 6207N	6204NR 6205NR 6206NR 6207NR	20 25 30 35	47 52 62 72	14 15 16 17	13 300 14 500 20 200 26 700	6 200 6 950 10 000 13 600
6208 6209 6210 6211	6208Z 6209Z 6210Z 6211Z	6208-2Z 6209-2Z 6210-2Z 6211-2Z	6208RS 6209RS 6210RS 6211RS	6208-2RS 6209-2RS 6210-2RS 6211-2RS	6208N 6209N 6210N 6211N	6208NR 6209NR 6210NR 6211NR	40 45 50 55	80 85 90 100	18 19 20 21	34 000 34 000 36 500 45 100	17 800 17 800 19 800 25 100
6212 6213 6214 6215	6212Z 6213Z 6214Z 6215Z	6212-2Z 6213-2Z 6214-2Z 6215-2Z	6212RS 6213RS 6214RS 6215RS	6212-2RS 6213-2RS 6214-2RS 6215-2RS	6212N 6213N 6214N 6215N	6212NR 6213NR 6214NR 6215NR	60 65 70 75	110 120 125 130	22 23 24 25	54 500 59 500 64 500 69 000	30 900 34 100 37 400 41 200
6216 6217 6218 6219	6216Z 6217Z 6218Z	6216-2Z 6217-2Z 6218-2Z	6216RS 6217RS 6218RS	6216-2RS 6217-2RS 6218-2RS	6216N 6217N 6218N 6219N	6216NR 6217NR 6218NR 6219NR	80 85 90 95	140 150 160 170	26 28 30 32	80 500 87 500 93 000 106 000	49 000 52 500 57 500 66 500
6220 6221 6222 6224					6220N	6220NR	100 105 110 120	180 190 200 215	34 36 38 40	120 000 135 000 147 000 150 000	74 500 87 000 98 500 102 000
6226 6228 6230 6232							130 140 150 160	230 250 270 290	40 42 45 48	184 000 183 000	123 000 136 000 138 000 196 000
6234 6236 6238 6240							170 180 190 200	310 320 340 360	52 52 55 58	266 000 281 000	196 000 230 000 248 000 265 000
6244							220	400	65	356 000	348 000



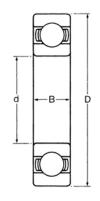

Normal	limiting	speeds	Weight	Shaft	and ho	using di	mensior	ns	RKB
rev/min			kg	millim	etres				designation
grease	oil	types RS and –2RS	approx (basic bearing)	max fillet radius		l _a max	min) _a max	(basic bearing)
23 500 22 000 19 500 18 000	32 000 29 500 26 500 24 000	16 500 15 500 13 800 12 500	0,031 0,034 0,043 0,062	0,6 0,6 0,6 0,6	14,0 14,4 17,4 19,4	14,0 15,9 19,1 21,8	25,0 28,6 31,3 36,1	26,0 29,6 32,6 37,6	6200 6201 6202 6203
15 500 14 000 11 700 10 100	21 000 19 000 15 500 13 600	10 800 9 800 8 200 7 100	0,099 0,123 0,198 0,276	1,0 1,0 1,0 1,0	24,0 29,0 36,0 42,0	25,1 30,1 36,0 43,0	42,5 47,6 55,0 63,0	43,0 48,0 56,0 65,0	6204 6205 6206 6207
9 000 8 400 7 800 7 100	12 200 11 400 10 600 9 500	6 300 5 900 5 500 4 900	0,351 0,397 0,446 0,590	1,0 1,0 1,0 1,5	44,0 49,0 54,0 61,0	48,3 52,7 57,7 63,8	73,7 78,1 83,2 92,2	76,0 81,0 86,0 94,0	6208 6209 6210 6211
6 400 5 900 5 600 5 300	8 700 7 900 7 500 7 100	4 500 4 100 3 900 3 700	0,771 0,966 1,05 1,13	1,5 1,5 1,5 1,5	66,0 71,0 76.0 81,0	69,1 76,2 80,5 84,8	100,9 109,7 115,6 120,4	104,0 114,0 119,0 124,0	6212 6213 6214 6215
4 900 4 500 4 300 4 000	6 600 6 100 5 800 5 400	3 400 3 100 3 000	1,37 1,71 2,57 2,72	2,0 2,0 2,0 2,0	88,0 93,0 98,0 103,0	92,5 97,5 105,2 111,8	130,6 138,7 146,6 156,2	132,0 142,0 152,0 162,0	6216 6217 6218 6219
3 800 3 500 3 300 2 500	5 100 4 700 4 400 3 200		3,12 4,42 5,17 5,15	2,0 2,0	108,0 113,0 118,0 132,0	116,8 122,9 129,0 138,2	166,1 173,7 182,9 198,6	172,0 182,0 192,0 203,0	6220 6221 6222 6224
2 700 2 500 2 300 2 100	3 700 3 400 3 100 2 800		7,08 8,98 9,41 13,7	2,5 2,5	140,0 150,0 164,0 170,0	152,4 163,3 178,6 189,5	212,6 226,8 248,4 265,7	220,0 240,0 256,0 280,0	6226 6228 6230 6232
1 000 1 800 1 700 1 600	2 000 2 500 2 300 1 900		16,7 17,2 21,7 27,0	3,0	182,0 192,0 202,0 212,0	201,9 210,7 219,4 236,5	278,1 293,2 311,8 328,6	298,0 308,0 328,0 348,0	6234 6236 6238 6240
700	1 400		36,4	3,0	232,0	259,1	360,7	388,0	6244

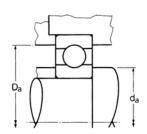
Single row radial ball bearings

63 MEDIUM SERIES

METRIC SIZES

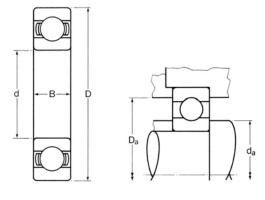
RKB des	ignations						Din	nensi	ons	RKB load	ratings†
basic	with one	with two	with one	with two	with snap ring	with groove and	mil	limet	res	newtons	
bearing	shield	shields	seal	seals	groove	snap ring				dynamic	
	Z	–2Z	RS	–2RS	N	NR	d	D	В	Cr	Cor
6300 6301 6302 6303	6300Z 6301Z 6302Z 6303Z	6300-2Z 6301-2Z 6302-2Z 6303-2Z	6300RS 6301RS 6302RS 6303RS	6300-2RS 6301-2RS 6302-2RS 6303-2RS	6300N 6301 N 6302N 6303N	6300NR 6301NR 6302NR 6303NR	10 12 15 17	35 37 42 47	11 12 13 14	8 400 10 100 12 300 14 500	3 760 4 640 5 600 6 700
6304 6305 6306 6307	6304Z 6305Z 6306Z 6307Z	6304–2Z 6305–2Z 6306–2Z 6307–2Z	6304RS 6305RS 6306RS 6307RS	6304-2RS 6305-2RS 6306-2RS 6307-2RS	6304N 6305N 6306N 6307N	6304NR 6305NR 6306NR 6307NR	20 25 30 35	52 62 72 80	15 17 19 21	16 500 22 100 30 800 34 600	7 800 10 600 15 800 17 900
6308 6309 6310 6311	6308Z 6309Z 6310Z 6311Z	6308-2Z 6309-2Z 6310-2Z 6311-2Z	6308RS 6309RS 6310RS 6311RS	6308-2RS 6309-2RS 6310-2RS 6311-2RS	6308N 6309N 6310N 6311N	6308NR 6309NR 6310NR 6311NR	40 45 50 55	90 100 110 120	23 25 27 29	46 200 54 900 64 500 74 500	24 700 29 900 35 600 41 800
6312 6313 6314 6315	6312Z 6313Z 6314Z 6315Z	6312-2Z 6313-2Z 6314-2Z 6315-2Z	6312RS 6313RS 6314RS 6315RS	6312-2RS 6313-2RS 6314-2RS 6315-2RS	6312N 6313N 6314N 6315N	6312NR 6313NR 6314NR 6315NR	60 65 70 75	130 140 150 160	31 33 35 37	85 000 96 500 108 000 118 000	48 500 55 500 63 500 71 500
6316 6317 6318 6319	6316Z	6316–2Z			6316N 6317N 6318N 6319N	6316NR 6317NR 6318NR 6319NR	80 85 90 95	170 180 190 200	39 41 43 45	128 000 138 000 148 000 149 000	80 000 89 500 99 000 99 000
6320 6321 6322 6324					6320N	6320NR	100 105 110 120	215 225 240 260	47 49 50 55	191 000 203 000	120 000 143 000 155 000 180 000
6326 6328 6330 6332							130 140 150 160	280 300 320 340	58 62 65 68	263 000 288 000	208 000 223 000 253 000 286 000
6334 6336 6338							170 180 190	360 380 400	72 75 78	352 000	321 000 357 000 402 000



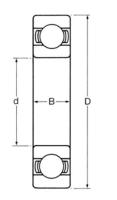

Normal	limiting	speeds	Weight	Shaft	and ho	using di	mension	ns	RKB	
rev/min			kg	millim	etres				designation	
grease	oil	types	approx	max						
3		RS and –2RS	(basic bearing)	fillet radius		d _a max	min) _a max	(basic bearing)	
21 500	29 000	15 000	0,049	0,6	12,4	15,5	30,0	32,6	6300	
20 000	27 000	14 000	0,061	1,0	16,0	16,5	32,5	33,0	6301	
17 500	24 000	12 400	0,081	1,0	19,0	20,1	37,6	38,0	6302	
16 000	21 500	11 200	0,109	1,0	21,0	22,9	41,9	43,0	6303	
14 700	20 000	10.300	0,144	1,0	24,0	26,2	45,2	48,0	6304	
12 200	16 500	8 500	0,220	1,0	29,0	33,0	55,1	58,0	6305	
10 600	14 300	7 400	0,331	1,0	34,0	39,1	64,5	68,0	6306	
9 400	12 700	6 600	0,446	1,5	41,0	43,9	71,1	74,0	6307	
8 400	11 300	5 900	0,590	1,5	46,0	49,5	81,3	84,0	6308	
7 500	10 200	5 300	0,794	1,5	51,0	55,1	89,9	94,0	6309	
6 800	9 200	4 800	1,06	2,0	58,0	61,0	99,1	102,0	6310	
6 200	8 400	4 400	1,35	2,0	63,0	66,8	108,2	112,0	6311	
5 700	7 700	4 000	1,69	2,0	68,0	73,4	117,9	122,0	6312	
5 300	7 100	3 700	2,07	2,0	73,0	79,2	128,3	132,0	6313	
4 900	6 600	3 400	2,49	2,0	78,0	85,3	136,1	142,0	6314	
4 600	6 200	3 200	2,98	2,0	83,0	90,7	144,5	152,0	6315	
4 200	5 700		3,58	2,0	88,0	97,3	154,4	162,0	6316	
4 000	5 400		4,25	2,5	95,0	102,1	162,3	170,0	6317	
3 700	5 000	•	5,85	2,5	100,0	109,2	172,7	180,0	6318	
3 500	4 700		6,80	2,5	105,0	116,8	180,3	190,0	6319	
3 200	4 400		7,03	2,5	110.0	124.2	194,1	205,0	6320	
3 100	4 200		9,53	2,5	115,0	128,0	204,2	215,0	6321	
2 900	3 900		9,70		120,0	136,4	215,6	230,0	6322	
2 600	3 500		15,4	2,5	130,0	148,3	233,9	250,0	6324	
2 400	3 200		18,4	3,0	142,0	159,0	251,0	268,0	6326	
2 200	2 900		22,4	3,0	152,0	172,5	267,7	288,0	6328	
2 000	2 700		24,9	3,0	162,0	184,2	285,8	308,0	6330	
1 900	2 500		32,1	3,0	172,0	196,0	304,0	328,0	6332	
1 700	2 300		37,4	3,0	182,0	208,0	322,0	348,0	6334	
800	1 600		40,8	3,0	192,0	220,0	340,0	368,0	6336	
750	1 500		49,8	4,0	206,0	233,0	357,0	384,0	6338	

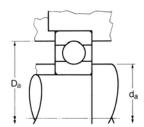
Single row radial ball bearings

64 HEAVY SERIES


METRIC SIZES

RKB	Dir	nensi	ons	RKB load	l ratings†	Normal speeds	limiting	Weight	Shaft	and ho	using di	mension	ıs
designation	mil	limet	res	newtons	:	rev/min	1	kg	millim	etres			
				dynamic	static	grease	oil	approx	max fillet		la) _a
	d	D	В	Cr	Cor				radius		max	min	max
6403	17	62	17	22 100	10 600	12 200	16 500	0,255	1,0	21,0	33,0	55,1	58,0
6404	20	72	19	30 700	15 600	10 600	14 300	0,390	1,0	24,0	35,1	62,2	68,0
6405	25	80	21	34 700	17 900	9 400	12 700	0,526	1,5	31,0	45,0	71,9	74,0
6406	30	90	23	42 200	21 700	8 400	11 300	0,689	1,5	36,0	49,5	81,3	84,0
6407	35	100	25	55 000	29 900	7 500	10 200	0,916	1,5	41,0	55,6	90,7	94,0
6408	40	110	27	64 500	35 600	6 800	9 200	1,21	2,0	48,0	61,4	99,6	102,0
6409	45	120	29	74 500	41 800	6 200	8 400	1,53	2,0	53,0	67,6	108,7	112,0
6410	50	130	31	85 000	48 500	5 700	7 700	1,90	2,0	58,0	73,4	117,9	122,0
6411	55	140	33	96 500	55 500	5 300	7 100	2,31	2,0	63,0	79,2	128,3	132,0
6412	60	150	35	108 000	63 500	4 900	6 600	2,80	2,0	68,0	85,3	136,1	142,0
6413	65	160	37	118 000	71 500	4 600	6 200	3,25	2,0	73,0	90,7	144,5	152,0
6414	70	180	42	138 000	89 500	4 000	5 400	5,03	2,5	80,0	102,1	162,3	170,0
6415	75	190	45	148 000	89 500	1 900	3 900	7,03	2,5	85,0	106,4	166,6	180,0
6416	80	200	48	170 000	125 000	1 900	3 700	8,30	2,5	90,0	102,9	179,1	190,0
6417	85	210	52	159 000	109 000	1 700	3 400	9,84	3,0	97,0	117,6	184,2	198,0
6418	90	225	54	170 000	120 000	1 600	3 200	12,4	3,0	102,0	124,0	193,8	213,0
6420	100	250	58	214 000	170 000	1 400	2 900	16,2	3,0	112,0	130,6	219,5	238,0


618 SUPER LIGHT
METRIC SIZES

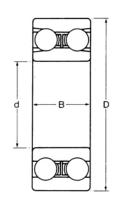

RKB designation		ensior metre		RKB loa	d ratings†	Normal speeds rev/min	Ü	Weight kg	Shaft a dimens millime	ions	using
				dynamic	static	grease	oil	approx	max	da	Da
	d	D	В	C _r	C _{or}				fillet radius	min	max
61800	10	19	5	1 380	585	36 000	43 000	0.0055	0.3	12	17
61801	12	21	5	1 430	670	32 000	38 000	0.0063	0.3	14	19
61802	15	24	5	1 560	800	28 000	34 000	0.0074	0.3	17	22
61803	17	26	5	1 680	930	24 000	30 000	0.0082	0.3	19	24
61804	20	32	7	2 700	1 500	19 000	24 000	0.018	0.3	22	30
61805	25	37	7	4 360	2 600	17 000	20 000	0.022	0.3	27	35
61806	30	42	7	4 490	2 900	15 000	18 000	0.027	0.3	32	40
61807	35	47	7	4 750	3 200	13 000	16 000	0.03	0.3	37	45
61808	40	52	7	4 940	3 450	11 000	14 000	0.034	0.3	42	50
61809	45	58	7	6 050	4 300	9 500	12 000	0.04	0.3	47	56
61810	50	65	7	6 240	4 750	9 000	11 000	0.052	0.3	52	63
61811	55	72	9	8 320	6 200	8 500	10 000	0.083	0.3	57	70
61812	60	78	10	8 710	6 700	7 500	9 000	0.11	0.3	62	76
61813	65	85	10	11 700	9 150	7 000	8 500	0.13	0.6	69	81
61814	70	90	10	12 100	10 000	6 700	8 000	0.14	0.6	74	86
61815	75	95	10	12 500	10 800	6 300	7 500	0.15	0.6	79	91
61816	80	100	10	12 400	10 800	6 000	7 000	0.15	0.6	84	96
61817	85	110	13	19 500	16 600	5 300	6 300	0.27	1	90	105
61818	90	115	13	19 500	17 000	5 300	6 300	0.28	1	95	110
61819	95	120	13	19 900	17 600	5 000	6 000	0.3	1	100	115
61820	100	125	13	19 900	18 300	4 800	5 600	0.31	1	105	120
61821	105	130	13	20 800	19 600	4 500	5 300	0.32	1	110	125
61822	110	140	16	28 100	26 000	4 300	5 000	0.6	1	115	135
61824	120	150	16	29 100	28 000	3 800	4 500	0.65	1	125	145
61826	130	165	18	37 700	43 000	3 600	4 300	0.93	1.1	136.5	158.5
61828	140	175	18	39 000	46 500	3 400	4 000	0.99	1.1	146.5	168.5
61830	150	190	20	48 800	61 000	3 000	3 600	1.40	1.1	156.5	183.5
61832	160	200	20	49 400	64 000	2 800	3 400	1.45	1.1	166.5	193.5
61834	170	215	22	61 800	78 000	2 600	3 200	1.9	1.1	176.5	208.5
61836	180	225	22	62 400	81 500	2 400	3 000	2	1.1	186.5	218.5
61838	190	240	24	76 100	98 000	2 200	2 800	2.6	1.5	195	232
61840	200	250	24	76 100	102 000	2 200	2 800	2.7	1.5	208	242

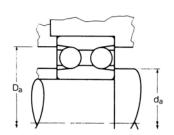
Single row radial ball bearings

619 SUPER LIGHT

METRIC SIZES

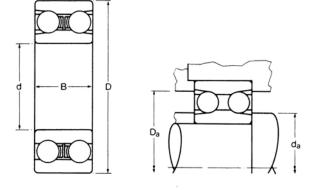
RKB designation		ensioi metre		RKB loa	d ratings†	Normal speeds rev/min	limiting	Weight kg	Shaft a dimens millim	sions	using
				dynamic	static	grease	oil	approx	max fillet	da	Da
	d	D	В	C _r	C _{or}				radius	min	max
61900 61901	10 12	22 24	6 6	1 950 2 250	750 980	34 000 30 000	40 000 36 000	0.010 0.011	0.3 0.3	12 14	20 22
61902	15	28	7	4 030	2 040	24 000	30 000	0.016	0.3	17	26
61903	17	30	7	4 360	2 320	22 000	28 000	0.018	0.3	19	28
61904	20	37	9	6 370	3 650	18 000	22 000	0.038	0.3	22	35
61905 61906	25 30	42 42	9 9	6 630 4 490	4 000 2 900	16 000 15 000	19 000 18 000	0.045 0.027	0.3 0.3	27 32	40 45
61907	35	55	10	9 560	6 200	11 000	14 000	0.08	0.6	39	51
61908	40	62	12	13 800	9 300	10 000	13 000	0.12	0.6	44	58
61909 61910	45 50	68 72	12 12	14 000 14 600	9 800	9 000 8 500	11 000 10 000	0.14 0.14	0.6 0.6	49 54	64 68
61911	55 55	80	13	15 900	10 400 11 400	8 000	9 500	0.14	1	60	75
61912	60	85	13	16 500	12 000	7 500	9 000	0.20	1	65	80
61913	65	90	13	17 400	13 400	6 700	8 000	0.22	1	70	85
61914 61915	70 75	100 105	16 16	23 800 24 200	18 300 19 300	6 300 6 000	7 500 7 000	0.35 0.37	1 1	75 80	95 100
									•		
61916 61917	80 85	110 120	16 18	25 100 31 900	20 400 30 000	5 600 5 300	6 700 6 300	0.40 0.55	1 1.1	85 91.5	105 113.5
61918	90	125	18	33 200	31 500	5 000	6 000	0.59	1.1	96.5	118.5
61919	95	130	18	33 800	33 500	4 800	5 600	0.61	1.1	101.5	123.5
61920	100	140	20	42 300	41 500	4 500	5 300	0.83	1.1	106.5	133.5
61921 61922	105 110	145 150	20 20	44 200 43 600	44 000 45 000	4 300 4 000	5 000 4 800	0.87 0.9	1.1 1.1	111.5 116.5	138.5 143.5
61924	120	165	22	55 300	57 000	3 600	4 300	1.2	1.1	126.5	158.5
61926	130	180	24	65 000	67 000	3 400	4 000	1.6	1.5	138	172
61928	140	190	24	66 300	72 000	3 200	3 800	1.7	1.5	148	182
61930 61932	150 160	210 220	28 28	88 400 92 300	93 000 98 000	2 800 2 600	3 400 3 200	3.05 3.25	2 2	159 169	201 211
01332	100	220	20	32 300	30 000	2 000	3 200	3.23	2	103	4 11


Double row radial ball bearings Double row self-aligning ball bearings



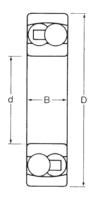
Double row radial ball bearings

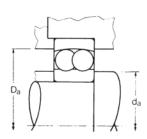
42 LIGHT SERIES


METRIC SIZES

RKB	Din	nensio	ns	RKB lo	ad ratings†	Normal speeds	limiting	Weight	Shaft a	nd hou	sing dim	ensions	6
designation	mil	limet	res	newto	ns	rev/min		kg	millime	etres			
				dynam	ic static	grease	oil	approx	max fillet		1		
	d	D	В	Cr	Cor				radius	min d	a max	min	D _a max
4200	10	30	14	10 500	6 050	9 500	19 000	0,054	0,6	12,4	14,7	25,7	27,6
4201	12	32	14	10 700	6 050	8 800	17 500	0,059	0,6	14,4	16,8	27,7	29,6
4202	15	35	14	12 600	7 600	7 900	16 000	0,064	0,6	17,4	19,6	30,5	32,6
4203	17	40	16	17 100	10 900	7 100	14 200	0,100	0,6	19,4	22,1	34,8	37,6
4204	20	47	18	25 400	17 000	6 200	12 400	0,159	1,0	24,0	25,7	41,7	43,0
4205	25	52	18	25 700	17 000	5 500	11 000	0,181	1,0	29,0	31,0	47,0	48,0
4206	30	62	20	34 200	24 300	4 700	9 500	0,277	1,0	34,0	37,6	55,1	58,0
4207	35	72	23	32 600	24 700	4 100	8 200	0,463	1,0	39,0	46,0	62,0	68,0
4208	40	80	23	50 500	39 200	3 700	7 300	0,553	1,0	44,0	50,3	70,9	76,0
4209	45	85	23	52 500	41 800	3 400	6 800	0,621	1,0	49,0	55,1	75,9	81,0
4210	50	90	23	54 500	44 400	3 100	6 300	0,635	1,0	54,0	61,2	81,8	86,0
4211	55	100	25	57 000	45 500	2 800	5 600	0,870	1,5	61,0	66,8	89,2	94,0
4212	60	110	28	79 000	67 500	2 500	5 100	1,19	1,5	66,0	73,9	99,3	104,0

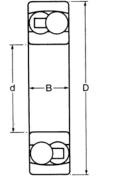
Double row radial ball bearings

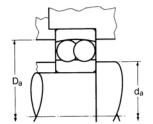



MEDIUM SERIES 43
METRIC SIZES

RKB	Din	nensio	ons	RKB load	d ratings†	Normal	limiting	Weight	Shaft a	and ho	using di	mension	ıs
designation	mil	limeti	res	newtons	3	speeds rev/min		kg	millim	etres			
				dynamic	static	grease	oil	approx	max fillet			-	
	d	D	В	Cr	Cor				radius	min	d _a max	min	max
4300	10	35	17	14 300	8 900	8 600	17 500	0,091	0,6	12,4	16,3	29,0	32,6
4301	12	37	17	14 700	8 900	8 100	16 000	0,100	1,0	16,0	18,5	31,2	33,0
4302	15	42	17	18 200	11 300	7 100	14 200	0,127	1,0	19,0	21,6	36,1	38,0
4303	17	47	19	22 000	13 900	6 500	12 900	0,172	1,0	21,0	24,1	39,9	43,0
4304	20	52	21	30 100	20 600	5 800	11 700	0,240	1,0	24,0	28,2	45,7	48,0
4305	25	62	24	40 700	28 700	4 900	9 900	0,376	1,0	29,0	33,5	54,4	58,0
4306	30	72	27	49 700	36 400	4 300	8 500	0,576	1,0	34,0	40,1	62,2	68,0
4307	35	80	31	52 500	39 400	3 800	7 600	0,771	1,5	41,0	47,8	69,8	74,0
4308	40	90	33	74 500	58 000	3 400	6 800	1,07	1,5	46,0	52,1	79,0	84,0
4309	45	100	36	91 000	72 500	3 000	6 1 0 0	1,45	1,5	51,0	58,2	88,1	94,0
4310	50	110	40	109 000	88 500	2 800	5 500	1,93	2,0	58,0	63,8	97,0	102,0
4311	55	120	43	138 000	116 000	2 500	5 000	2,44	2,0	63,0	68,8	106,9	112,0
4312	60	130	46	139 000	116 000	2 300	4 600	3,05	2,0	68,0	76,2	114,3	122,0

12 LIGHT SERIES


METRIC SIZES



RKB	D	imens	ions	RKB loa	d ratings†	Normal speeds	limiting	Weight	Shaft a	and ho	using di	mensior	าร
designation	m	illime	tres	newton	s	rev/min		kg	millim	etres			
				dynamic	c static	grease	oil	approx	max fillet				
	d	D	В	Cr	Cor				radius		d _a max	min	max
126	6	19	6	2 600	520	32 000	40 000	0,009	0,3	8,0	9,4	16,0	17,0
127	7	22	7	2 750	655	29 500	40 000	0,014	0,3	8,2	11,7	18,3	20,8
129	9	26	8	4 000	925	28 000	36 000	0,022	0,6	13,0	13,5	21,8	22,0
1200	10	30	9	4 250	995	23 500	32 000	0,027	0,6	12,4	15,7	24,9	27,6
1201	12	32	10	5 650	1 480	22 000	29 500	0,041	0,6	14,4	17,8	27,9	29,6
1202	15	35	11	7 700	2 020	20 000	27 000	0,054	0,6	17,4	19,3	31,0	32,6
1203	17	40	12	8 250	2 420	18 000	24 000	0,073	0,6	19,4	22,1	33,8	37,6
1204	20	47	14	10 800	3 150	15 500	21 000	0,122	1,0	26,0	28,7	37,9	41,0
1205	25	52	15	13 100	4 350	13 800	18 500	0,150	1,0	29,0	31,2	46,2	48,0
*1206	30	62	16	16 300	5 800	11 700	16 000	0,231	1,0	34,0	37,3	53,8	58,0
*1207	35	72	17	16 400	6 650	10 200	13 800	0,318	1,0	39,0	45,0	61,2	68,0
*1208	40	80	18	20 000	8 500	9 100	12 300	0,417	1,0	47,0	54,3	66,6	73,0
*1209	45	85	19	22 700	9 600	8 500	11 400	0,481	1,0	49,0	54,9	74,4	81,0
*1210	50	90	20	23 600	10 800	7 900	10 600	0,531	1,0	54,0	59,9	79,5	86,0
*1211	55	100	21	27 800	13 400	7 100	9 600	0,703	1,5	61,0	67,3	88,6	94,0
1212	60	110	22	31 500	15 500	3 200	6 500	0,998	1,5	66,0	73,9	96,8	104,0
*1213	65	120	23	32 300	17 200	3 000	5 900	1,22	1,5	71,0	81,3	104,4	114,0
1214	70	125	24	36 900	19 700	2 800	5 600	1,32	1,5	76,0	85,6	110,0	119,0
*1215	75	130	25	40 400	21 400	2 700	5 300	1,46	1,5	81,0	89,9	115,8	124,0
1216	80	140	26	41 600	23 500	2 500	4 900	1,76	2,0	88,0	97,3	123,4	132,0
*1217	85	150	28	51 000	28 400	2 300	4 600	2,19		93,0	103,1	132,6	142,0
1218	90	160	30	59 000	31 800	2 100	4 300	2,58		98,0	109,2	141,7	152,0
1219	95	170	32	68 500	38 700	2 000	4 000	3,23		103,0	115,8	150,1	162,0
*1220	100	180	34	74 500	42 500	1 900	3 800	3,88		108,0	122,4	158,5	172,0
1221	105	190	36	82 500	48 600	1 700	3 500	4,66		113,0	129,3	166,6	182,0
*1222	110	200	38	89 000	53 000	1 600	3 300	5,67		118,0	135,9	175,3	192,0

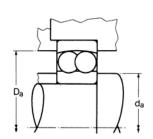
^{*}These sizes are also available with bores having a taper of 1:12 and are denoted by suffix K. Adapter sleeves are also available for these sizes - see page 48

MEDIUM SERIES 13

METRIC SIZES

ISO DIMENSION SERIES 03

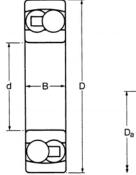
RKB	Dime	ensior	าร	RKB loa	ad ratings†	Normal speeds	limiting	Weight	Shaft a	and ho	using di	mension	ıs
designation	milli	metre	s	newtor	าร	rev/min		kg	millim	etres			
				dynami	c static	grease	oil	approx	max fillet	d	la) _{a.}
	d	D	В	Cr	Cor				radius		max	min	max
135	5	19	6	2 360	460	33 500	45 500	0,009	0,3	6,2	9,4	16,0	17,8
1300	10	35	11	6 750	1 730	10 800	21 500	0,059	0,6	12,4	17,5	28,4	32,6
1301	12	37	12	8 450	2 070	10 100	20 000	0,073	1,0	16,0	18,5	31,2	33,0
1302	15	42	13	9 750	2 630	8 900	18 000	0,091	1,0	19,0	22,1	35,6	38,0
1303	17	47	14	12 900	3 670	8 100	16 000	0,136	1,0	21,0	24,9	39,9	43,0
1304	20	52	15	12 900	4 010	14 600	19 500	0,177	1,0	24,0	29,0	43,9	48,0
1305	25	62	17	18 700	6 000	12 300	16 500	0,263	1,0	29,0	34,8	53,1	58,0
1306	30	72	19	22 200	7 750	10 700	14 400	0,395	1,0	34,0	41,4	61,5	68,0
1307	35	80	21	26 100	9 800	9 500	12 900	0,517	1,5	41,0	48,5	70,1	74,0
1308	40	90	23	30 700	12 200	8 500	11 400	0,717	1,5	46,0	53,8	77,2	84,0
1309	45	100	25	38 100	15 800	3 800	7 600	0,971	1,5	54,0	62,7	83,1	91,0
1310	50	110	27	42 800	16 200	3 400	6 900	1,27	2,0	58,0	65,8	95,2	102,0
1311	55	120	29	53 500	22 500	3 100	6 300	1,61	2,0	63,0	72,4	103,6	112,0
1312	60	130	31	60 500	26 600	2 900	5 800	2,03	2,0	68,0	79,2	112,3	122,0
1313	65	140	33	68 000	31 100	2 700	5 300	2,50	2,0	73,0	85,9	120,4	132,0
1314	70	150	35	74 500	33 000	2 500	4 900	3,03	2,0	78,0	91,7	129,6	142,0
1315	75	160	37	82 500	38 300	2 300	4 600	3,62	2,0	83,0	98,3	137,9	152,0
1316	80	170	39	92 500	42 200	2 100	4 300	4,31	2,0	88,0	104,4	147,1	162,0
1317	85	180	41	102 000	48 500	2 000	4 000	4,76	2,5	95,0	110,0	155,2	170,0
1318	90	190	43	144 000	62 500	1 900	3 800	6,08	2,5	100,0	113,0	168,9	180,0
1319	95	200	45	162 000	76 000	1 800	3 500	7,21	2,5	105,0	119,9	177,8	190,0
1320	100	215	47	159 000	75 500	1 600	3 300	9,30	2,5	110,0	129,0	188,2	205,0

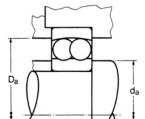

The balls may protrude slightly beyond the width of the rings on bearings of 90 mm bore diameter and over.

22 LIGHT WIDE SERIES

METRIC SIZES

ISO DIMENSION SERIES 22

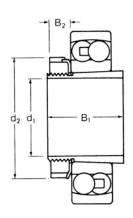




RKB	Dir	nensi	ons	RKB loa	d ratings†	Normal	limiting	Weight	Shaft a	and hou	ısing di	mensior	ıs
designation	mil	limet	res	newton	s	speeds rev/min		kg	millim	etres			
				dynami	c static	grease	oil	approx	max fillet	d			D _a
	d	D	В	Cr	Cor				radius	min	a max	min	max
2200	10	30	14	7 500	1 680	25 000	32 000	0,054	0,6	14,0	14,0	26,0	26,0
2201	12	32	14	6 700	1 670	22 000	29 500	0,059	0,6	14,4	16,2	27,8	29,6
2202	15	35	14	7 950	2 160	20 000	27 000	0,064	0,6	17,4	19,5	30,7	32,6
2203	17	40	16	10 200	2 800	18 000	24 000	0,100	0,6	19,4	21,5	34,5	37,6
2204	20	47	18	12 500	3 610	15 500	21 000	0,159	1,0	24,0	25,9	41,4	43,0
2205	25	52	18	13 000	4 250	13 800	18 500	0,181	1,0	29,0	31,0	46,3	48,0
2206	30	62	20	19 100	6 450	11 700	16 000	0,277	1,0	34,0	36,9	55,4	58,0
2207	35	72	23	23 700	8 900	10 200	13 800	0,431	1,0	39,0	43,6	63,8	68,0
2208	40	80	23	26 800	10 500	9 100	12 300	0,526	1,0	44,0	50,2	71,8	76,0
*2209	45	85	23	23 200	10 000	8 500	11 400	0,572	1,0	49,0	54,7	76,2	81,0
2210	50	90	23	27 200	12 000	7 900	10 600	0,621	1,0	54,0	59,5	80,9	86,0
*2211	55	100	25	27 300	13 300	5 600	7 100	0,810	1,5	64,0	70,0	85,0	91,0
2212	60	110	28	35 100	16 200	5 000	6 300	1,09	1,5	69,0	75,0	95,0	101,0
*2213	65	120	31	45 000	21 400	4 500	5 600	1,46	1,5	74,0	80,0	105,0	111,0

Larger sizes are available on request

^{*}These sizes are also available with bores having a taper of 1:12 and are denoted by suffix K. Adapter sleeves are also available for these sizes - see page 48



MEDIUM WIDE SERIES 23

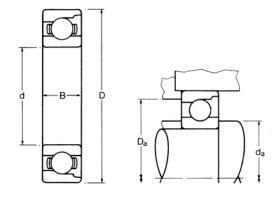
METRIC SIZES

RKB	Dimensions		RKB los	ad ratings†	Normal I	imiting	Weight	Shaft a	and hou	ising di	mension	ıs	
designation	mil	limet	res	newtor	ns	rev/min		kg	millime	etres			
				dynami	c static	grease	oil	approx	max fillet				_
	d	D	В	Cr	C _r C _{or}				radius	d _i min	max	min	D _a max
2300	10	35	17	10 500	2 180	21 500	29 000	0.091	0,6	12,4	14,2	30,5	32,6
2301	12	37	17	11 300	2 540	20 000	27 000	0,100	1,0	16,0	17,0	33,0	33,0
2302	15	42	17	12 500	3 230	18 000	24 000	0,127	1,0	19,0	20,9	36,6	38,0
2303	17	47	19	15 200	4 050	16 000	22 000	0,172	1,0	21,0	24,1	41,2	43,0
2304	20	52	21	16 000	4 840	14 600	19 500	0,218	1,0	24,0	28,0	45,5	48,0
2305	25	62	24	22 400	7 050	12 300	16 500	0,367	1,0	29,0	34,0	54,5	58,0
2306	30	72	27	27 600	8 600	10 700	14 400	0,549	1,0	34,0	40,1	64,2	68,0
2307	35	80	31	34 200	11 800	9 500	12 900	0,748	1,5	41,0	44,2	70,6	74,0
2308	40	90	33	43 200	13 900	8 500	11 400	0,998	1,5	46,0	50,0	79,6	84,0
2309	45	100	36	52 500	19 100	7 600	10 300	1,34	1,5	51,0	58,1	90,5	94,0
2310	50	110	40	63 000	23 300	6 900	9 300	1,78	2,0	58,0	63,6	99,7	102,0
2311	55	120	43	71 000	27 700	6 300	8 500	2,28	2,0	63,0	70,0	107,3	112,0
2312	60	130	46	83 000	32 900	5 800	7 800	2,83	2,0	68,0	76,0	116,9	122,0
2313	65	140	48	88 000	35 700	5 300	7 200	3,50	2,0	73,0	81,0	123,8	132,0
2314	70	150	51	97 500	44 700	3 600	4 500	3,90	2,0	82,0	92,0	128,0	138,0

Adapter sleeves

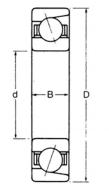
RKB desig	nations	Dimensi	ions			
basic	adapter	inches	millimet	res		
bearing	sleeve	d ₁	d ₁	d ₂	В1	approx B ₂
1206 K	H206- 78	78	22,225	45	27	8
	H206 H206–1	1	25 25,400			
1207 K	H207-118 H207	1 1 8	28,575 30	52	29	9
1208 K	H208–1⅓ H208–1⅓ H208	1 <u>1</u> 1 <u>3</u> 1 <u>8</u>	31,750 34,925 35	58	31	10
1209 K	H209-1½ H209	1½	38,100 40	65	33	11
1210 K	H210–15 H210–13 H210	15 13 14	41,275 44,450 45	70	35	12
1211 K	H211-1 7 H211	178	47,625 50	75	37	12
	H211-2	2	50,800			
1213 K	H213-2 1 H213	21/4	57,150 60	85	40	14
	H213-23	2 3 8	60,325			
1215 K	H215-2½ H215	2 <u>1</u>	63,500 65	98	43	15
	H215-25/8	2 5 8	66,675			
1217 K	H217 H217–3	3	75 76,200	110	50	18
1220 K	H220-3½ H220	3 <u>1</u>	88,900 90	130	58	20
1222 K	H222 H222–4	4	100 101,600	145	63	21
2209 K	H309-1½ H309	1½	38,100 40	65	39	11 ,
2211 K	H311–1 ក្ខ H311	1 78	47,625 50	75	45	12
	H311-2	2	50,8			
2213K	H313-21 H313	21/4	57,150 60	85	50	14
	H313-2흫	2 3 8	60,325			

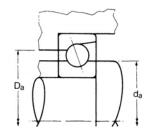
Please enquire regarding the availability of other sizes.


Single row separable ball bearings (magneto type)
Single row angular contact ball bearings
Double row angular contact ball bearings

Single row separable ball bearings (magneto type)

E SERIES


METRIC SIZES

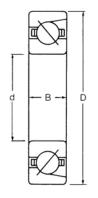


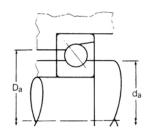
RKB	Dir	nensi	ons	RKB load	ratings†	Normal	limiting	Weight	Shaft a	and hou	ısing dir	nension	s
designation	mi	llimet	tres	newtons		speeds rev/min		kg	millim	etres			
				dynamic	static	grease	oil	approx	max fillet		1	D	
	d	D	В	Cr	Cor				radius	min d	a max	min	a max
E 3	3	16	5	1 620	245	33 000	41 200	0,005	0,1	4,2	7,8	13,0	14,8
E 4	4	16	5	1 620	245	33 000	41 200	0,005	0,1	5,2	7,8	13,0	14,8
E 5	5	16	5	1 620	245	33 000	41 200	0,005	0,1	6,2	7,8	13,0	14,8
E 6	6	21	7	2 960	390	30 000	37 500	0,011	0,3	7,8	9,6	16,7	19,2
E 7	7	22	7	3 180	465	29 000	36 200	0,013	0,3	8,8	10,6	17,7	20,2
E 8	8	24	7	3 370	530	28 000	35 000	0,016	0,3	9,8	11,9	19,0	22,2
E 9	9	28	8	4 430	720	26 000	32 500	0,023	0,3	10,8	14,4	22,6	26,2
E 10	10	28	8	4 430	720	26 000	32 500	0,022	0,3	11,8	14,4	22,6	26,2
E 11	11	32	7	3 570	735	23 000	28 700	0,029	0,3	12,8	17,5	24,9	30,2
E 12	12	32	7	3 570	735	23 000	28 700	0,028	0,3	13,8	17,5	24,9	30,2
E 13	13	30	7	3 570	735	25 000	31 200	0,022	0,3	14,8	17,5	24,9	28,2
E 15	15	35	8	4 700	1 000	20 000	25 000	0,034	0,3	16,8	20,5	29,0	33,2
E 17	17	44	11	5 800	1 350	16 200	20 200	0,079	0,6	20,6	24,5	35,1	40,4
E 19	19	40	9	3 570	930	17 000	21 200	0,048	0,4	21,4	24,2	32,8	37,6
E 20	20	47	12	9 200	2 040	14 000	17 500	0,089	1,0	24,6	27,1	38,9	42,4

^{*}The tolerance on the outside diameter is 0 to +0,010 mm which differs slightly from the series EN bearings

Single row angular contact ball bearings

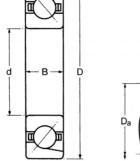
EXTRA LIGHT SERIES 70

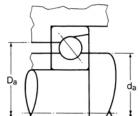

METRIC SIZES 20° contact angle


RKB		RKB lo	ad ratings†	Normal speeds	limiting	Weight	Shaft a	nd ho	using di	mension	s		
designation	mil	limet	res	newto	ns	rev/min		kg	millime	etres			
				dynam	ic static	grease	oil	approx	max fillet		da		D _a
	d	D	В	Cr	Cor				radius	min	max	min	max
7000	10	26	8	5 450	2 350	12 900	25 500	0,014	0,3	11,2	14,2	20,8	24,8
7001	12	28	8	5 950	2 620	11 900	23 500	0,018	0,3	13,2	17,0	23,6	26,8
7002	15	32	9	6 750	3 140	10 400	21 000	0,027	0,3	16,2	20,3	26,9	30,8
7003	17	35	10	7 100	3 400	9 600	19 000	0,036	0,3	18,2	23,1	29,5	33,8
7004	20	42	12	10 700	5 100	8 300	16 500	0,059	0,6	22,4	26,7	35,6	39,6
7005	25	47	12	12 500	6 500	7 300	14 600	0,073	0,6	27,4	32,5	41,4	44,6
7006	30	55	13	16 100	8 850	6 300	12 600	0,104	1,0	34,0	38,4	46,5	51,0
7007	35	62	14	19 500	10 900	5 600	11 200	0,168	1,0	39,0	44,4	53,1	58,0
7008	40	68	15	20 900	12 400	5 100	10 100	0,209	1,0	44,0	49,8	58,4	64,0
7009	45	75	16	25 700	15 900	4 600	9 1 0 0	0,263	1,0	49,0	55,4	64,8	71,0
7010	50	80	16	25 500	15 800	4 200	8 500	0,286	1,0	54,0	60,5	69,8	76,0
7011	55	90	18	34 700	22 100	3 800	7 600	0,417	1,0	59,0	67,3	78,5	86,0
7012	60	95	18	36 800	24 600	3 600	7 100	0,449	1,0	64,0	71,1	83,3	91,0
7013	65	100	18	36 500	24 600	3 300	6 700	0,472	1,0	69,0	77,2	88,4	96,0
7014	70	110	20	47 600	32 700	3 000	6 1 0 0	0,658	1,0	74,0	83,8	96,5	106,0
7015	75	115	20	48 700	34 300	2 900	5 800	0,694	1,0	79,0	89,2	101,9	111,0
7016	80	125	22	59 500	42 100	2 700	5 300	0,925	1,0	84,0	95,5	109,7	121,0
7017	85	130	22	61 000	44 100	2 500	5 000	0,962	1,0	89,0	101,1	115,3	126,0
7018	90	140	24	72 500	52 500	2 300	4 700	1,26	1,5	96,0	108,0	123,7	134,0

Single row angular contact ball bearings

72 B LIGHT SERIES


METRIC SIZES 40° contact angle

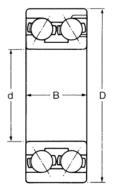


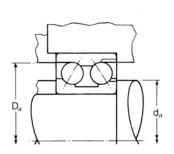
RKB designation		Dimensions millimetres		RKB lo	ad ratings†	Normal speeds rev/min	limiting	Shaft a		sing dim	ensions	
				dynam	ic static	grease	oil	max fillet		l _a) _a
	d	D	В	Cr	Cor			radius	min	max	min	max
7200 B	10	30	9	6 350	2 610	11 900	23 500	0,6	12,4	18,9	22,8	27,6
7201 B	12	32 35	10	8 350	3 800	20 000	25 000	0,6	14,4 19,0	22,8	27,5	29,6 31,0
7202 B 7203 B	15 17	35 40	11 12	10 300	3 800 4 700	16 000	20 000	0,6 0,6	21,0	26,5	31,8	36,0
7203 B	17	40	12	10 300	4 700	10 000	20 000	0,0	21,0	20,5	31,0	30,0
7204 B	20	47	14	13 800	6 500	7 800	15 500	1,0	24,0	30,7	36,6	43,0
7205 B	25	52	15	17 400	8 600	6 900	13 800	1,0	29,0	35,9	42,2	48,0
7206 B	30	62	16	21 400	10 900	10 000	12 000	1,0	36,0	41,1	51,8	56,0
7207 B	35	72	17	30 400	16 000	5 1 0 0	10 200	1,0	39,0	49,7	58,3	68,0
7000 B	40	-00	40	05.000	40.700	4.000	0.100	1.0	44.0	FF 6	64.0	76.0
7208 B	40	80 85	18	35 900	19 700	4 600 4 200	9 100 8 500	1,0	44,0	55,6 60,6	64,8 69,8	81,0
7209 B	45 50	90	19	37 500	21 200 22 700	6 300	8 000	1,0	49,0 57,0	65,6	74,8	83,0
7210 B 7211 B	55	100	20 21	38 900 48 200	28 800	3 600	7 100	1,0 1,5	61,0	72,6	82,7	94,0
/211 B	55	100	21	46 200	28 800	3 000	7 100	1,0	01,0	12,0	02,7	34,0
7212 B	60	110	22	55 500	33 200	3 200	6 500	1,5	66,0	79,5	90,9	104,0
7213 B	65	120	23	66 000	41 400	4 500	5 600	1,5	74,0	87,0	99,5	111,0
7214 B	70	125	24	72 000	45 900	2 200	4 500	1,5	76,0	91,5	103,9	119,0
7215 B	75	130	25	74 500	48 700	2 100	4 200	1,5	81,0	97,4	109,8	124,0
			•		54.500	0.000	0.000	2.0	00.0	405.0	440.5	1000
7216 B	80	140	26	83 500	54 500	2 000	3 900	2,0	88,0 93,0	105,0 110,6	118,5 124,5	132,0 142,0
7217 B	85 90	150 160	28 30	90 000	59 000 74 500	2 300 2 100	4 600 4 300	2,0 2,0	98,0	118.3	134,0	152,0
7218 B 7219 B	95	170	32	111 000 120 000	80 000	2 000	4 000	2,0	103,0	125,0	141,7	162,0
7219 B	95	170	32	120 000	80 000	2 000	4 000	2,0	103,0	125,0	141,7	102,0
7220 B	100	180	34	135 000	91 000	1 900	3 800	2,0	108,0	131,3	149,3	172,0
7221 B	105	190	36	148 000	103 000	1 800	3 500	2,0	113,0	138,4	157,5	182,0
7222 B	110	200	38	160 000	115 000	1 700	3 300	2,0	118,0	146,2	166,4	192,0
7224 B	120	215	40	157 000	116 000	1 500	3 000	2,0	128,0	159,0	178,1	207,0
7000 D	100	220	40	400.000	152,000	1 100	2 200	2.5	1400	169.1	191,5	220,0
7226 B	130	230	40	193 000	152 000	1 100	2 200 2 500	2,5	140,0		207,1	240,0
7228 B	140 150	250	42 45	205 000	167 000 201 000	1 300 1 200	2 300	2,5 2,5	150,0 160,0	183,6 197,5	207,1	260,0
7230 B	150	270	45	234 000	201 000	1 200	2 300	2,5	100,0	197,3	223,2	200,0

Single row angular contact ball bearings

MEDIUM SERIES 73 B

METRIC SIZES 40° contact angle

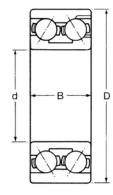

RKB	Din	nensio	ons	RKBIO	ad ratings†	Normal speeds	limiting	Shaft a	nd hous	ing dime	ensions	
designation	mil	limet	res	newto	ns	rev/mir	1	millime	tres			
				dynam	ic static	grease	oil	max fillet		da	r) _a
	d	D	В	Cr	Cor			radius	min	max	min	max
7300 B	10	35	11	9 150	3 840	10 800	21 500	0,6	12,4	20,5	26,0	32,6
7301 B	12	37	12	10 000	4 150	10 100	20 000	1,0	16,0	21,7	27,6	33,0
7302 B	15	42	13	12 100	5 350	8 900	18 000	1,0	19,0	25,7	31,6	38,0
7303 B	17	47	14					1,0	21,0			43,0
7304 B	20	52	15	18 000	8 500	13 000	17 000	1,0	27,0	31,8	39,2	45,0
7305 B	25	62	17	25 400	12 800	10 000	13 000	1,0	32,0	40,1	48,7	55,0
7306 B	30	72	19	33 800	17 100	9 000	11 500	1,0	37,0	47,1	56,7	65,0
7307 B	35	80	21	38 100	20 600	8 000	10 400	1,5	44,0	52,6	62,8	71,0
7308 B	40	90	23	51 000	28 400	8 400	11 300	1,5	46,0	59,8	71,0	84,0
7309 B	45	100	25	57 500	31 500	3 000	6 100	1,5	51,0	66,5	78,7	94,0
7310 B	50	110	27	72 000	40 800	3 400	6 900	2,0	58,0	73,5	86,8	102,0
7311 B	55	120	29	82 000	48 000	4 500	5 600	2,0	66,0	80,4	95,2	109,0
7312 B	60	130	31	93 500	55 500	2 900	5 800	2,0	68,0	88,0	103,5	122,0
7313 B	65	140	33	106 000	64 000	5 300	7 100	2,0	73,0	95,9	112,5	132,0
7314 B	70	150	35	119 000	73 000	2 500	4 900	2,0	78,0	101,3	119,3	142,0
7315 B	75	160	37	130 000	82 000	2 300	4 600	2,0	83,0	108,2	127,0	152,0
7316 B	80	170	39	140 000	92 000	2 100	4 300	2,0	88,0	116,2	136,4	162,0
7317 B	85	180	41	151 000	103 000	2 000	4 000	2,5	95,0	122,1	143,5	170,0
7318 B	90	190	43	163 000	114 000	1 900	3 800	2,5	100,0	129,1	151,6	180,0
7319 B	95	200	45	171 000	123 000	1 800	3 500	2,5	105,0	137,7	160,1	190,0
7320 B	100	215	47	198 000	150 000	1 300	2 600	2,5	110,0	146,8	172,6	205,0
7321 B	105	225	49	210 000	164 000	1 500	3 100	2,5	115,0	152,1	178,8	215,0
7322 B	110	240	50	235 000	192 000	1 400	2 900	2,5	120,0	162,2	191,4	230,0
7324 B	120	260	55	247 000	208 000	1 300	2 600	2,5	130,0	175,8	204,7	250,0
7326 B	130	280	58	287 000	256 000	1 200	2 400	3,0	142,0	188,7	222,2	268,0
7328 B	140	300	62	302 000	277 000	1 100	2 200	3,0	152,0	203,6	237,1	288,0
7330 B	150	320	65	331 000	319 000	800	1 600	3.0	162,0	220.1	254,7	308,0

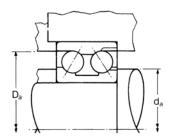

Double row angular contact ball bearings

32 LIGHT SERIES

METRIC SIZES 32° contact angle

ISO DIMENSION SERIES 32




RKB designation	Din	nensio	ns	RKB loa	ad ratings†		limiting	Weight	Shaft a	nd ho	using di	mensior	ıs
designation	mill	imetr	es	newton	ıs	speeds rev/min		kg	millime	etres			
				dynami	c static	grease	oil	approx	max fillet		la)a
	d	D	В	Cr	Cor				radius	min	max	min	max
3200	10	30	14	9 900	5 200	16 000	22 000	0,052	0,6	14	17	25	26
3201	12	32	15,9	11 800	6 450	15 000	20 000	0,063	0,6	16	19	27	28 36
3203	17	40 47	17,5	17 100 21 100	10 100 12 800	11 000 9 500	15 000 13 000	0,103 0,168	0,6 1,0	21 26	25 29	34 40	41
3204	20	47	20,6	21 100	12 800	9 500	13 000	0,100	1,0	20	23	40	71
3205	25	52	20,6	23 300	14 900	8 500	11 000	0,194	1,0	31	34	45	46
3206	30	62	23,8	33 400	22 300	7 000	9 500	0,316	1,0	36	41	55	56
3207	35	72	27	42 600	29 200	6 000	8 000	0,484	1,0	42	48	63	65
3208	40	80	30,2	51 500	36 100	5 400	7 500	0,654	1,0	47	53	70	73
3209	45	85	30,2	56 000	41 200	5 000	6 700	0,709	1,0	52	58	75	78
3210	50	90	30,2	63 000	47 300	4 600	6 200	0,764	1,0	57	63	81	83
3211	55	100	33,3	70 500	54 000	4 200	5 600	1,05	1,5	64	70	89	91
3212	60	110	36,5	87 500	68 000	3 800	5 000	1,40	1,5	69	77	98	101
3213	65	120	38,1	96 500	76 000	3 600	4 700	1,75	1,5	74	84	106	111

The **RKB** double-row angular contact bearings are also available on request with the inverted angle and in the sealed version and/or in the shielded version.

Larger sizes are available on request

Double row angular contact ball bearings

MEDIUM SERIES 33


METRIC SIZES 32° contact angle

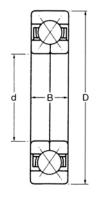
ISO DIMENSION SERIES 33

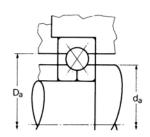
RKB	Din	nensio	ns	RKB loa	d ratings†		limiting	Weight	Shaft a	and ho	using d	imensio	ns
designation	mill	limetr	es	newton	s	speeds rev/min	ı	kg	millime	etres			
				dynamic	static	grease	oil	approx	max fillet		la	-)a
	d	D	В	Cr	Cor				radius	min	max	min	max
3304	20	52	22,2	25 500	15 800	8 500	12 000	0,230	1,0	27	31	44	45
3305 3306	25 30	62 72	25,4 30,2	35 500 46 800	22 700 30 900	7 000 6 000	10 000 8 500	0,369 0,585	1,0 1,0	32 37	38 44	52 61	55 65
3307	35	80	34,9	59 500	40 400	5 300	7 400	0,816	1,5	44	51	69	71
3308	40	90	36,5	73 500	51 000	4 800	6 700	1,07	1,5	49	57	78	81
3309 3310	45 50	100 110	39,7 44,4	89 000 107 000	63 000 81 000	4 300 3 700	6 000 5 200	1,42 1,93	1,5 2,0	54 61	63 72	87 97	91 99
3312	60	130	54	136 000	106 000	3 200	4 400	3,24	2,0	72	86	114	118
3313	65	140	58,7	158 000	124 000	3 000	4 200	4,08	2,0	77	90	122	128
3314 3316	70 80	150 170	63,5 68,3	180 000 229 000	144 000 188 000	2 700 2 400	3 700 3 300	5,04 6,93	2,0 2,0	82 92	99 111	133 150	138 158

The **RKB** double-row angular contact bearings are also available on request with the inverted angle and in the sealed version and/or in the shielded version.

Larger sizes are available on request

Single row duplex ball bearings

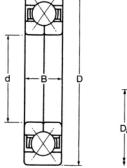


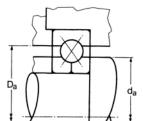

Single row duplex ball bearings

QJ 2 LIGHT SERIES

METRIC SIZES 35° contact angle

ISO DIMENSION SERIES 02


RKB	Din	nensi	ons	RKB loa	ad ratings†		limiting	Weight	Shaft a	and ho	using di	mensior	ıs
designation	mil	limet	res	newtor	ns	speeds rev/min	ı	kg	millim	etres			
				dynami	c static	grease	oil	approx	max fillet		l _a		O _a
	d	D	В	Cr	Cor				radius	min	max	min	max
QJ 204	20	47	14	11 400	6 350	7 800	15 500	0,136	1,0	24,0	30,7	36,6	43,0
QJ 205	25	52	15	12 800	7 600	6 900	13 800	0,168	1,0	29,0	35,8	41,7	48,0
QJ 206	30	62	16	24 600	12 900	5 800	11 600	0,254	1,0	34,0	42,9	49,3	58,0
QJ 207	35	72	17	31 800	17 100	5 000	9 900	0,345	1,0	39,0	50,3	57,2	68,0
QJ 208	40	80	18	37 700	21 100	4 500	9 000	0,454	1,0	44,0	56,4	64,3	76,0
QJ 209	45	85	19	31 800	19 900	4 200	8 500	0,499	1,0	49,0	60,9	69,1	81,0
QJ 210	50	90	20	36 900	22 800	3 900	7 900	0,576	1,0	54,0	65,8	74,2	86,0
QJ 211	55	100	21	50 500	30 900	3 500	7 000	0,744	1,5	61,0	72,9	82,3	94,0
QJ 212	60	110	22	52 500	32 800	3 200	6 500	0,957	1,5	66,0	80,0	90,2	104,0
QJ 213	65	120	23	73 000	46 100	3 000	5 900	1,22	1,5	71,0	87,1	98,3	114,0
QJ 214	70	125	24	69 500	44 700	2 800	5 600	1,29	1,5	76,0	91,7	103,6	119,0
QJ 215	75	130	25	72 000	47 500	2 700	5 300	1,47	1,5	81,0	96,7	108,5	124,0
QJ 216	80	140	26	81 500	53 500	2 400	4 800	1,70	2,0	88,0	103,6	116,6	132,0
QJ 217	85	150	28	91 500	62 000	2 300	4 600	2,28	2,0	93,0	110,7	124,5	142,0
QJ 218	90	160	30	106 000	79 000	2 100	4 300	2,79	2,0	98,0	117,6	132,3	152,0
QJ 219	95	170	32	116 000	79 500	2 000	4 000	3,27	2,0	103,0	123,7	140,0	162,0
QJ 220	100	180	34	132 000	91 000	1 900	3 700	3,97	2,0	108,0	131,8	148,3	172,0


Duplex bearings are also available in the model series Q2 with split outer ring with same data.

Larger sizes are available on request

These bearings are also supplied with reduced O/D for location duties – add suffix 'LOC' to the basic designation.

Single row duplex ball bearings

MEDIUM SERIES QJ 3

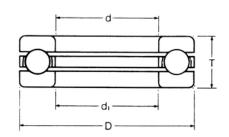
METRIC SIZES 35° contact angle

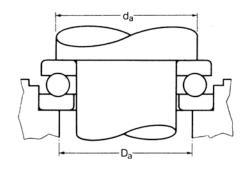
ISO DIMENSION SERIES 03

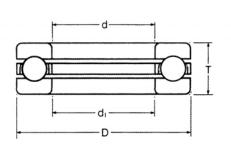
RKB	Dim	ensio	าร	RKB loa	d ratings†	Normal speeds	limiting	Weight	Shaft	and ho	using di	mensior	ns
designation	milli	metre	s	newton	s	rev/min		kg	millim	etres			
				dynamic	static	grease	oil	approx	max fillet		la		n.
	d	D	В	Cr	Cor				radius		max	min	D _a max
QJ 304	20	52	15	14 000	7 650	7 300	14 600	0,191	1,0	24,0	33,0	39,1	48,0
QJ 305	25	62	17	28 000	14 300	6 200	12 300	0,281	1,0	29,0	41,1	48,0	58,0
QJ 306	30	72	19	35 200	18 300	5 300	10 700	0,449	1,0	34,0	46,5	55,6	68,0
QJ 307	35	80	21	36 500	18 500	4 800	9 500	0,544	1,5	41,0	53,3	62,0	74,0
QJ 308	40	90	23	50 500	27 900	4 200	8 500	0,771	1,5	46,0	59,4	70,6	84,0
QJ 309	45	100	25	64 500	36 900	3 800	7 600	1,03	1,5	51,0	66,8	78,2	94,0
QJ 310	50	110	27	75 500	43 600	3 300	6 700	1,41	2,0	58,0	73,9	86,4	102,0
QJ 311	55	120	29	80 000	47 500	3 100	6 300	1,75	2,0	63,0	79,2	95,5	112,0
QJ 312	60	130	31	98 000	59 500	2 900	5 800	2,16	2,0	68,0	85,9	105.2	122,0
QJ 313	65	140	33	111 000	68 500	2 700	5 300	2,66	2,0	73,0	94,2	111,0	132,0
QJ 314	70	150	35	118 000	73 000	2 400	4 800	3,18	2,0	78,0	101,6	118,6	142,0
QJ 315	75	160	37	130 000	83 000	2 300	4 600	3,86	2,0	83,0	108,5	126,7	152,0
QJ 316	80	170	39	143 000	95 000	2 100	4 300	4,63	2,0	88.0	115,5	134,4	162,0
QJ 317	85	180	41	149 000	101 000	2 000	4 000	5,40	2,5	95.0	122.9	142.3	170,0
QJ 318	90	190	43	170 000	119 000	1 900	3 800	6,40	2,5	100,0	129,8	150,6	180,0
QJ 319	95	200	45	180 000	132 000	1 800	3 500	7,67	2,5	105,0	136,6	158,8	190,0
QJ 320	100	215	47	195 000	148 000	1 600	3 300	9,53	2,5	110,0	145,8	169,2	205,0
QJ 321	105	225	49	205 000	159 000	1 500	3 100	10,9	2,5	115,0	153,2	177,3	215,0
QJ 322	110	240	50	232 000	189 000	1 400	2 900	12,6	2,5	120,0	162,3	188,0	230,0

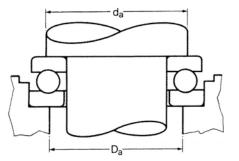
Duplex bearings are also available in the model series Q3 with split outer ring with same data.

Larger sizes are available on request

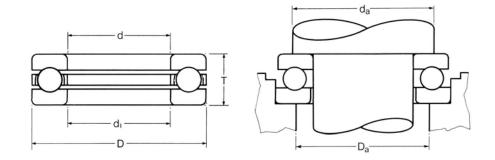

These bearings are also supplied with reduced O/D for location duties – add suffix 'LOC' to the basic designation.


Single and double direction thrust ball bearings

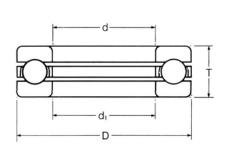

511 EXTRA LIGHT SERIES

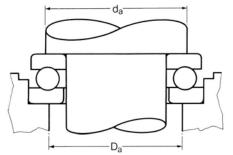

METRIC SIZES

RKB	Dim	ension	s		RKB load	ratings†	Normal speeds	limiting	Weight	Shaft a	nd housi	ng
designation	mill	imetre	s		newtons		rev/min		kg	millime	tres	
					dynamic	static	grease	oil	approx	max fillet	da	Da
	d	d ₁	D	т	Ca	Coa				radius	min	max
51100	10	11	24	9	10 300	11 200	8 000	11 000	0,020	0,3	18	16
51101	12	13	26	9	10 800	12 200	7 100	10 000	0,022	0,3	20	18
51102	15	16	28	9	11 000	13 500	7 100	10 000	0,024	0,3	23	20
51103	17	18	30	9	11 800	15 500	7 100	10 000	0,028	0,3	25	22
51104	20	21	35	10	15 700	21 200	5 600	8 000	0,040	0,3	29	26
51105	25	26	42	11	18 900	28 500	4 500	6 300	0,059	0,6	35	32
51106	30	32	47	11	19 300	31 900	3 600	5 000	0,068	0,6	40	37
51107	35	37	52	12	20 500	37 500	3 200	4 500	0,085	0,6	45	42
51108	40	42	60	13	27 900	49 900	2 800	4 000	0,120	0,6	52	48
51109	45	47	65	14	29 000	54 500	2 500	3 600	0,150	0,6	57	53
51110	50	52	70	14	29 600	59 500	2 200	3 200	0,160	0,6	62	58
51111	55	57	78	16	35 900	72 000	2 000	2 800	0,240	0,6	69	64
51112	60	62	85	17	43 100	89 500	1 800	2 500	0,290	1,0	75	70
51113	65	67	90	18	45 100	94 500	1 800	2 500	0,340	1,0	80	75
51114	70	72	95	18	45 100	100 000	1 600	2 200	0,360	1,0	85	80
51115	75	77	100	19	50 500	112 000	1 600	2 200	0,420	1,0	90	85
51116	80	82	105	19	52 000	120 000	1 400	2 000	0,430	1,0	95	90
51117	85	87	110	19	53 000	125 000	1 400	2 000	0,460	1,0	100	95
51118	90	92	120	22	61 500	150 000	1 200	1 800	0,680	1,0	108	102
51120	100	102	135	25	88 500	212 000	1 100	1 600	0,990	1,0	121	114



512 LIGHT SERIES METRIC SIZES

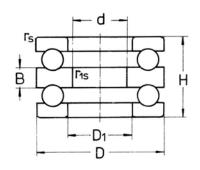

RKB designation		ension imetre			RKB load	RKB load ratings†		Normal limiting speeds rev/min		Shaft and housing dimensions millimetres			
					dynamic		grease	oil	kg approx	max		_	
	d	d ₁	D	т	Ca	Coa				fillet radius	d _a min	D _a max	
51200	10	12	26	11	13 200	13 700	7 100	10 000	0,030	0,6	20	16	
51201	12	14	28	11	13 800	15 000	7 100	10 000	0,034	0,6	22	18	
51202	15	17	32	12	17 100	19 600	6 300	9 000	0,046	0,6	25	22	
51203	17	19	35	12	17 800	21 500	5 600	8 000	0,053	0,6	28	24	
51204	20	22	40	14	23 100	29 900	4 500	6 300	0,082	0,6	32	28	
1205	25	27	47	15	29 000	39 900	3 600	5 000	0,120	0,6	38	34	
1206	30	32	52	16	30 100	46 400	3 200	4 500	0,144	0,6	43	39	
51207	35	37	62	18	40 400	62 500	2 800	4 000	0,220	1,0	51	46	
1208	40	42	68	19	48 600	78 500	2 500	3 600	0,270	1,0	57	51	
1209	45	47	73	20	52 000	86 000	2 200	3 200	0,320	1,0	62	56	
51210	50	52	78	22	56 000	96 000	2 000	2 800	0,390	1,0	67	61	
51211	55	57	90	25	77 000	134 000	1 800	2 500	0,610	1,0	76	69	
1212	60	62	95	26	74 000	134 000	1 600	2 200	0,690	1,0	81	74	
1213	65	67	100	27	81 500	153 000	1 600	2 200	0,770	1,0	86	79	
51214	70	72	105	27	83 000	160 000	1 400	2 000	0,810	1,0	91	84	
51215	75	77	110	27	84 500	170 000	1 400	2 000	0,860	1,0	96	89	
51216	80	82	115	28	86 500	179 000	1 400	2 000	0,950	1,0	101	94	
1217	85	88	125	31	110 000	223 000	1 200	1 800	1,29	1,0	109	101	
51218	90	93	135	35	135 000	270 000	1 100	1 600	1,77	1,0	117	108	
51220	100	103	150	38	155 000	318 000	1 000	1 400	2,36	1,0	130	120	


513 MEDIUM SERIES

METRIC SIZES

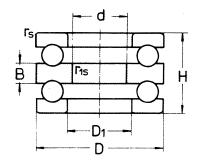
RKB	Dimen	sions			RKB load	d ratings†	Normal I	limiting	Weight		and ho	using
designation	millim	etres			newtons		rev/min		kg approx		netres	
					dynamic	static	grease	oil		r _a	d _a	D_{a}
	d	d ₁	D	Н	C _a	C _{oa}				max	min	max
51305	25	27	52	18	34 500	55 000	3 400	4 500	0.17	1	41	36
51306	30	32	60	21	37 700	65 500	2 800	3 800	0.26	1	48	42
51307	35	37	68	24	49 400	88 000	2 400	3 400	0.38	1	55	48
51308	40	42	78	26	61 800	112 000	2 000	3 000	0.53	1	63	55
51309	45	47	85	28	76 100	140 000	1 900	2 800	0.66	1	69	61
51310	50	52	95	31	88 400	173 000	1 800	2 600	0.94	1	77	68
51311	55	57	105	35	104 000	208 000	1 600	2 200	1.30	1	85	75
51312	60	62	110	35	101 000	208 000	1 600	2 200	1.35	1	90	80
51313	65	67	115	36	106 000	220 000	1 500	2 000	1.50	1	95	85
51314	70	72	125	40	135 000	300 000	1 400	1 900	2.00	1	103	92
51315	75	77	135	44	163 000	360 000	1 200	1 700	2.60	1.5	111	99
51316	80	82	140	44	159 000	360 000	1 200	1 700	2.70	1.5	116	104
51317	85	88	150	49	190 000	425 000	1 100	1 600	3.55	1.5	124	111
51318	90	93	155	50	195 000	465 000	1 000	1 500	3.8	1.5	129	116
51320	100	103	170	55	229 000	560 000	950	1 400	4.95	1.5	142	128
51322	110	113	190	63	276 000	720 000	850	1 200	7.85	2	158	142
51324	120	123	210	70	325 000	915 000	800	1 100	11.0	2	173	157
51326	130	134	225	75	358 000	1 060 000	750	1 000	13.0	2	186	169
51328	140	144	240	80	397 000	1 220 000	700	950	15.5	2	199	181
51330	150	154	250	80	410 000	1 290 000	670	900	6.5	2	209	191
51332	160	164	270	87	449 000	1 500 000	630	850	21.0	2.5	225	205
51334	170	174	280	87	468 000	1 600 000	600	800	22.0	2.5	235	215
51336	180	184	300	95	520 000	1 830 000	560	750	28.5	2.5	251	229
51340	200	205	340	110	624 000	2 400 000	80	630	44.5	3	283	257

514 HEAVY SERIES METRIC SIZES


ISO DIMENSION SERIES 14

RKB	Dimer	nsions			RKB load	d ratings†	Normal	limiting	Weight	Shaft a	and hous	ing
designation	millim	etres			newtons		rev/min		Kg	millim		
					dynamic	static	grease	oil	approx		ч	D_a
	d	d ₁	D	н	C _a	C _{oa}				r _a max	d _a min	max
51405	25	27	60	24	55 300	90 000	2 600	3 600	0.34	1	46	39
51406	30	32	70	28	72 800	125 000	2 000	3 000	0.52		54	46
51407	35	37	80	32	87 100	156 000	1 800	2 600	0.76	1	62	53
51408	40	42	90	36	112 000	204 000	1 700	2 400	1.10		70	60
51409	45	47	100	39	130 000	240 000	1 600	2 200	1.40	1	78	67
51410	50	52	110	43	159 000	310 000	1 500	2 000	2.00	1.5	86	74
51411	55	57	120	48	178 000	360 000	1 300	1 800	2.55	1.5	94	81
51412	60	62	130	51	199 000	400 000	1 100	1 600	3.10	1.5	102	88
51413	65	68	140	56	216 000	450 000	1 000	1 500	4.00	2	110	95
51414	70	73	150	60	234 000	500 000	950	1 400	5.00	2	118	402
51415	75	78	160	65	251 000	560 000	900	1 300	6.75	2	126	109
51416	80	83	170	68	270 000	620 000	850	1 200	7.95	2	133	117
51417	85	88	180	72	286 000	680 000	850	1 200	9.45	2	141	124
51418	90	93	190	77	307 000	750 000	800	1 100	11.0	2	149	131
51420	100	103	210	85	371 000	965 000	700	950	15.0	2.5	165	145
51422	110	113	230	95	410 000	1 140 000	630	850	20.0	2.5	181	159
51424	120	123	250	102	423 000	1 220 000	600	800	25.5	3	197	173
51426	130	134	270	110	520 000	1 600 000	560	750	32.0	3	213	187
51428	140	144	280	112	520 000	1 600 000	530	700	34.5	3	223	197
51430	150	154	300	120	559 000	1 800 000	500	670	42.5	3	239	211

Double direction thrust ball bearings


522 LIGHT SERIES

METRIC SIZES

RKB	Dim	ensior	าร					RKB loa	d ratings†	Factor	Normal speeds	limiting	Weight
designation	milli	imetre	s					newtons			rev/min		
								dynamic	static		grease	oil	Kg approx
	d	D	Н	rs/min	r1s/min	D ₁	В	C _a	C _{oa}	M			
52202 52204 52205 52206	10 15 20 25	32 40 47 52	22 26 28 29	0.6 0.6 0.6 0.6	0.3 0.3 0.3	17 22 27 32	5 6 7 7	16 600 22 300 27 700 28 100	24 800 37 700 50 400 54 300	0.004 0.008 0.014 0.014	5 000 4 300 3 800 3 600	6 700 5 600 5 000 4 800	0.085 0.150 0.230 0.272
52207 52208 52209 52210	30 30 35 40	62 68 73 78	34 36 37 39	1 1 1 1	0.3 0.6 0.6 0.6	37 42 47 52	8 9 9	40 700 46 900 47 700 48 500	83 800 98 300 105 000 111 000	0.029 0.05 0.044 0.07	3 000 2 800 2 600 2 400	4 000 3 800 3 600 3 400	0.402 0.540 0.620 0.710
52211 52212 52213 52214	45 50 55 55	90 95 100 105	45 46 47 47	1 1 1 1	0.6 0.6 0.6 1	57 62 67 72	10 10 10 10	69 400 73 600 74 800 73 600	159 000 179 000 189 000 189 000	0.12 0.12 0.14 0.16	1 900 1 900 1 800 1 800	2 800 2 800 2 600 2 600	1.12 1.25 1.36 1.48
52215 52216 52217 52218	60 65 70 75	110 115 125 135	47 48 55 62	1 1 1 1.1	1 1 1	77 82 88 93	10 10 12 14	77 400 78 500 92 300 117 000	209 000 218 000 251 000 326 000	0.18 0.22 0.38 0.55	1 700 1 700 1 600 1 500	2 400 2 400 2 200 2 000	1.57 1.69 2.34 3.22
52220 52222 52224 52226	85 95 100 110	150 160 170 190	67 67 68 80	1.1 1.1 1.1 1.5	1 1 1.1 1.1	103 113 123 133	15 15 15 18	147 000 148 000 154 000 203 000	410 000 431 000 472 000 622 000	0.7 0.8 1 1.7	1 300 1 200 1 100 950	1 800 1 700 1 600 1 400	4.29 4.68 5.24 7.74
52228 52230 52232 52234	120 130 140 150	200 215 225 240	81 89 90 97	1.5 1.5 1.5 1.5	1.1 1.1 1.1 1.1	143 153 163 173	18 20 20 21	215 000 244 000 247 000 269 000	669 000 768 000 803 000 874 000	2 2.8 3.2 4.5	950 900 850 800	1 400 1 300 1 200 1 100	8.95 10.6 12.2 15.2

Double direction thrust ball bearings

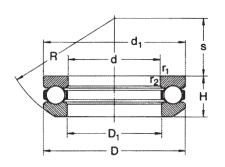
523 MEDIUM SERIES METRIC SIZES

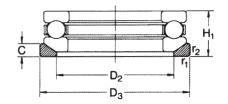
ISO DIMENSION SERIES 23

RKB designation		ension metre						RKB load newtons	ratings†	Factor	Normal limiting speeds rev/min		Weight
								dynamic	static		grease	oil	Kg approx
	d	D	Н	rs/min	r1s/min	D ₁	В	Са	Coa	M			
52305	20	52	34	1	0.3	27	8	35 700	61 400	0.02	3 200	4 300	0.033
52306	25	60	38	1	0.3	32	9	42 800	78 700	0.029	2 800	3 800	0.490
52307	30	68	44	1	0.3	37	10	55 500	105 000	0.05	2 400	3 400	0.710
52308	30	78	49	1	0.6	42	12	69 300	135 000	0.08	2 000	3 000	1.06
52309	35	85	52	1	0.6	47	12	80 800	163 000	0.12	1 900	2 800	1.29
52310	40	95	58	1.1	0.6	52	14	91 600	186 000	0.18	1 800	2 600	1.86
52311	45	105	64	1.1	0.6	57	15	119 000	246 000	0.26	1 600	2 200	2.51
52312	50	110	64	1.1	0.6	62	15	124 000	267 000	0.28	1 600	2 200	2.68
52313	55	115	65	1.1	0.6	67	15	128 000	287 000	0.32	1 500	2 000	2.90
52314	55	125	72	1.1	1	72	16	148 000	339 000	0.53	1 400	1 900	3.90
52315	60	135	79	1.5	1	77	18	171 000	396 000	0.75	1 200	1 700	4.83
52316	65	140	79	1.5	1	82	18	176 000	424 000	0.8	1 200	1 700	5.06
52317	70	150	87	1.5	1	88	19	206 000	489 000	1.1	1 100	1 600	6.43
52318	75	155	88	1.5	1	93	19	213 000	524 000	1.2	1 000	1 500	6.60
52320	85	170	97	1.5	1	103	21	236 000	596 000	1.8	950	1 400	8.90
52322	95	190	110	2	1	113	24	280 000	754 000	2.8	850	1 200	13.8
52324	100	210	123	2.1	1.1	123	27	325 000	931 000	4.5	800	1 100	17.2
52330	130	250	140	2.1	1.1	154	31	370 000	1 200 000	9	670	900	27.4
52332	140	270	140	2.1	1.1	164	31	470 000	1 570 000	12	630	850	26.2

524 HEAVY SERIES METRIC SIZES

ISO DIMENSION SERIES 24

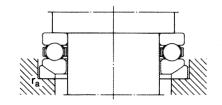

52405	15	60	45	1	0.3	27	11	55 600	89 400	0.044	2 600	3 600	0.630
52406	20	70	52	1	0.6	32	12	72 800	126 000	0.08	2 000	3 000	1.00
52407	25	80	59	1.1	0.6	37	14	87 100	155 000	0.13	1 800	2 600	1.44
52408	30	90	65	1.1	0.6	42	15	113 000	205 000	0.23	1 700	2 400	2.08
52409	35	100	72	1.1	0.6	47	17	130 000	242 000	0.32	1 600	2 200	2.71
52410	40	110	78	1.5	0.6	52	18	148 000	283 000	0.48	1 500	2 000	3.56
52411	45	120	87	1.5	0.6	57	20	178 000	359 000	0.67	1 300	1 800	4.70
52412	50	130	93	1.5	0.6	62	21	201 000	397 000	0.85	1 100	1 600	6.33
52413	50	140	101	2	1	68	23	232 000	493 000	1.1	1 000	1 500	8.03
52420	80	210	150	2	1	103	33	368 000	983 000	5.3	700	950	26.6


Larger sizes are available on request

Single direction thrust ball bearings with spherical housing washers

532 LIGHT SERIES

METRIC SIZES

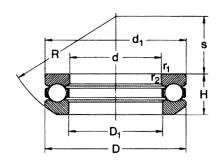


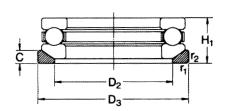
RKB designation basic bearing	washer		Dimensions millimetres		RKB load newtons	9			imiting	Weight washer basic bearing	
Journing .		d	D	н	dynamic C _a	static C _{oa}	Α	grease	oil	Kg	approx
53201	U 201	12	28	11.4	13 300	19 000	1.9	6 000	8 000	0.033	0.012
53202	U 202	15	32	13.3	16 500	25 000	3.3	5 300	7 000	0.049	0.014
53203	U 203	17	35	13.2	17 200	27 500	3.9	5 000	6 700	0.056	0.015
53204	U 204	20	40	14.7	22 500	37 500	7.3	4 500	6 000	0.082	0.020
53205	U 205	25	47	16.7	27 600	50 000	13	4 000	5 300	0.12	0.032
53206	U 206	30	52	17.8	25 500	47 500	11	3 600	4 800	0.14	0.038
53207	U 207	35	62	19.9	35 100	67 000	23	3 000	4 000	0.22	0.057
53208	U 208	40	68	20.3	46 800	98 000	49	2 800	3 800	0.28	0.070
53209	U 209	45	73	21.3	39 000	80 000	33	2 600	3 600	0.30	0.087
53210	U 210	50	78	23.5	49 400	106 000	58	2 400	3 400	0.37	0.10
53211	U 211	55	90	27.3	61 800	134 000	93	1 900	2 800	0.60	0.15
53212	U 212	60	95	28	62 400	140 000	100	1 900	2 800	0.66	0.16
53213	U 213	65	100	28.7	63 700	150 000	120	1 800	2 600	0.73	0.18
53214	U 214	70	105	28.8	65 000	160 000	130	1 800	2 600	0.78	0.19
53215	U 215	75	110	28.3	67 600	170 000	150	1 700	2 400	0.81	0.21
53216	U 216	80	115	29.5	76 100	190 000	190	1 700	2 400	0.90	0.22
53217	U 217	85	125	33.1	97 500	250 000	330	1 600	2 200	1.20	0.29
53218	U 218	90	135	38.5	119 000	300 000	470	1 500	2 000	1.70	0.42
53220	U 220	100	150	40.9	124 000	320 000	530	1 300	1 800	2.20	0.50
53222	U 222	110	160	40.2	130 000	360 000	670	1 200	1 700	2.35	0.56
53224	U 224	120	170	40.8	140 000	400 000	830	1 100	1 600	2.55	0.65
53226	U 226	130	190	47.9	186 000	540 000	1 500	950	1 400	3.95	0.90
53228	U 228	140	200	48.6	190 000	570 000	1 700	950	1 400	4.25	1.20

Single direction thrust ball bearings with spherical housing washers

Dimensions millimetres

Shaft and housing dimensions millimetres

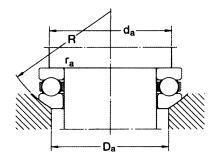

d	d ₁	D_1	D_2	D_3	С	H ₁	R	S	r1 2 min	d _a min	D _a max	r _a max
12	28	14	20	30	3.5	13	25	11.5	0.6	22	20	0.6
15 17	32	17	24	35	4	15	28	12	0.6	25	24	0.6
17	35	19	26	38	4	15	32	16	0.6	28	26	0.6
20	40	22	30	42	5	17	36	18	0.6	32	30	0.6
25	47	27	36	50	5.5	19	40	19	0.6	38	36	0.6
30	52	32	42	55	5.5	20	45	22	0.6	43	42	0.6
35	62	37	48	65	7	22	50	24	1	51	48	1
40	68	42	55	72	7	23	56	28.5	1	57	55	1
45	73	47	60	78	7.5	24	56	26	1	62	60	1
50	78	52	62	82	7.5	26	64	32.5	1	67	62	1
55	90	57	72	95	9	30	72	35	1	76	72	1
60	95	62	78	100	9	31	72	32.5	1	81	78	1
65	100	67	82	105	9	32	.80	40	1	86	82	1
70	105	72	88	110	9	32	80	38	1	91	88	1
75	110	77	92	115	9.5	32	90	49	1	96	92	1
80	115	82	98	120	10	33	90	46	1	101	98	1
85	125	88	105	130	11	37	100	52	1	109	105	1
90	135	93	110	140	13.5	42	100	45	1.1	117	110	1
100	150	103	125	155	14	45	112	52	1.1	130	125	1
110	160	113	135	165	14	45	125	65	1.1	140	135	1
120	170	123	145	175	15	46	125	61	1.1	150	145	1
130	187	133	160	195	17	53	140	67	1.5	166	160	1.5
140	197	143	170	210	17	55	160	87	1.5	176	170	1.5

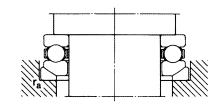

Single direction thrust ball bearings with spherical housing washers

533 MEDIUM SERIES

METRIC SIZES

ISO DIMENSION SERIES 13


RKB designat basic bearing	tion washer		nsions netres		RKB load r newtons	atings†	Factor	Normal li speeds rev/min	miting	Weight washer basic bearing	
Dearing		d	D	н	dynamic C _a	static C _{oa}	Α	grease	oil	Kg	approx
53306	U 306	30	60	22.6	37 700	65 500	22	2 800	3 800	0.27	0.056
53307	U 307	35	6 8	25.6	49 400	88 000	40	2 400	3 400	0.38	0.084
53308	U 308	40	78	28.5	61 800	112 000	65	2 000	3 000	0.55	0.12
53309	U 309	45	85	30.1	76 100	140 000	100	1 900	2 800	0.66	0.17
53310	U 310	50	95	34.4	88 400	173 000	160	1 800	2 600	0.97	0.23
53311	U 311	55	105	39.3	104 000	208 000	220	1 600	2 200	1.40	0.28
53312	U 312	60	110	38.3	101 000	208 000	220	1 600	2 200	1.40	0.31
53313	U 313	65	115	39.4	106 000	220 000	250	1 500	2 000	1.55	0.34
53314	U 314	70	125	44.2	135 000	300 000	470	1 400	1 900	2.10	0.41
53315	U 315	75	135	48.1	163 000	360 000	670	1 200	1 700	2.65	0.55
53316	U 316	80	140	47.6	159 000	360 000	670	1 200	1 700	2.75	0.57
53317	U 317	85	150	53.1	190 000	425 000	940	1 100	1 600	3.55	0.81
53318	U 318	90	155	54.6	195 000	465 000	1 100	1 000	1 500	3.85	0.84
53320	U 320	100	170	59.2	229 000	560 000	1 600	950	1 400	5.00	0.95
53322	U 322	110	190	67.2	276 000	720 000	2 700	850	1 200	7.80	1.30
53324	U 324	120	210	74.1	325 000	915 000	4 400	800	1 100	10.5	2.00


534 HEAVY SERIES

METRIC SIZES

53408	U 408	40	90	38.2	112 000	204 000	220	1 700	2 400	1.10	0.25
53409	U 409	45	100	42.4	130 000	240 000	300	1 600	2 000	1.45	0.32
53410	U 410	50	110	45.6	159 000	310 000	500	1 500	2 000	1.90	0.41
53412	U 412	60	130	54	199 000	400 000	830	1 100	1 600	3.10	0.71
53414	U 141	70	150	63.6	234 000	500 000	1 300	950	1 400	5.50	1.00
53415	U 415	75	160	69	251 000	560 000	1 600	900	1 300	6.85	1.25
53416	U 416	80	170	72.2	270 000	620 000	2 000	850	1 200	8.00	1.40
53418	U 418	90	190	81.2	307 000	750 000	2 900	800	1 100	11.0	1.90
53420	U 420	100	210	90	371 000	965 000	4 800	700	950	15.0	2.90

Single direction thrust ball bearings with spherical housing washers

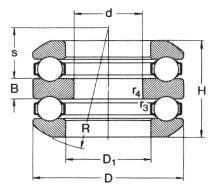
Dimensions millimetres

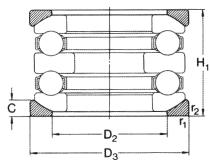
Shaft and housing dimensions millimetres

d 	d ₁	D ₁	D ₂	D ₃	С	H ₁	R	s	r1 2 min	d _a min	D _a max	r _a max	
30 35 40 45	60 68 78 85	32 37 42 47	45 52 60 65	62 72 82 90	7 7.5 8.5 10	25 28 31 33	50 56 64 64	22 24 28 25	1 1 1 1	48 55 63 69	45 52 60 65	1 1 1	
50	95	52	72	100	11	37	72	28	1.1	77	72	1	
55	105	57	80	110	11.5	42	80	30	1.1	85	80	1	
60	110	62	85	115	11.5	42	90	41	1.1	90	85	1	
65	115	67	90	120	12.5	43	90	38.5	1.1	95	90	1	
70	125	72	98	130	13	48	100	43	1.1	103	98	1	
75	135	77	105	140	15	52	100	37	1.5	111	105	1.5	
80	140	82	110	145	15	52	112	50	1.5	116	110	1.5	
85	150	88	115	155	17.5	58	112	43	1.5	124	115	1.5	
90	155	93	120	160	18	59	112	40	1.5	129	120	1.5	
100	170	103	135	175	18	64	125	46	1.5	142	135	1.5	
110	187	113	150	195	20.5	72	140	51	2	158	150	2	
120	205	123	165	220	22	80	160	63	2.1	173	165	2	

40	90	42	65	95	12	42	72	26	1.1	70	65	1
45	100	47	72	105	12.5	46	80	29	1.1	78	72	1
50	110	52	80	115	14	50	90	35	1.5	86	80	1.5
60	130	62	95	135	16	58	100	34	1.5	102	95	1.5
70	150	73	110	155	19.5	69	112	34	2	118	110	2
75	160	78	115	165	21	75	125	42	2	126	115	2
80	170	83	125	175	22	78	125	36	2.1	133	125	2
90	187	93	140	195	25.5	88	140	40	2.1	149	140	2
100	205	103	155	220	27	98	160	50	3	165	155	2.5

Larger sizes are available on request


RKB 71


Double direction thrust ball bearings with spherical housing washers

542 LIGHT SERIES

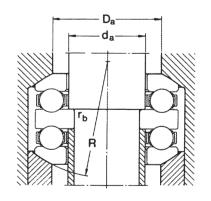
METRIC SIZES

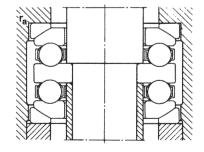
ISO DIMENSION SERIES 22

RKB designates basic bearing	tion washer		ensions metres		RKB load r newtons	atings†	Factor	Normal li speeds rev/min	miting	Weight washer basic bearing	
bearing		d	D	н	dynamic C _a	static C _{oa}	Α	grease	oil	Kg	approx
54207 54208	U 207 U 208	30 30	62 68	37.8 38.6	35 100 46 800	67 000 98 000	23 49	3 000 2 800	4 000 3 800	0.42 0.56	0.057 0.070
54211	U 211	45	90	49.6	61 800	134 000	93	1 900	2 800	1.15	0.15

543 MEDIUM SERIES

METRIC SIZES


ISO DIMENSION SERIES 23


54306	U 306	25	60	41.3	37 700	65 500	22	2 800	3 800	0.47	0.056
54307	U 307	30	68	47.2	49 400	88 000	40	2 400	3 400	0.68	0.084
54308	U 308	30	78	54.1	61 800	112 000	65	2 000	3 000	1.05	0.12
54309	U 309	35	85	56.3	76 100	140 000	100	1 900	2 800	1.25	0.17
54310	U 310	40	95	64.7	88 400	173 000	160	1 800	2 600	1.85	0.23
54312	U 312	50	110	70.7	101 000	208 000	220	1 600	2 200	2.60	0.31
54316	U 316	65	140	86.1	159 000	360 000	670	1 200	1 700	5.05	0.57
54317	U 317	70	150	92.5	190 000	425 000	940	1 100	1 600	6.35	0.813

544 HEAVY SERIES

METRIC SIZES

54409	U 409	35	100	78.9	130 000	240 000	300	1 600	2 200	2.70	0.32	
54410	U 410	40	110	83.2	159 000	310 000	500	1 500	2 000	3.55	0.46	
54416	U 416	65	170	128.5	270 000	620 000	2 000	850	1 200	14.0	1.40	
54420	U 420	80	210	159.9	371 000	965 000	4 800	700	950	26.0	2.90	

Dimensions millimetres

Shaft and housing dimensions millimetres

d	D ₁	D ₂	D ₃	В	С	H ₁	R	s	r1 2 min	r3 4 min	d _a max	D _a max	r _a max	r _b min
30 30	37 42	48 55	65 72	8 9	7	42 44	50 56	21 25	1 1	0.3 0.6	35 40	48 55	1 1	0.3 0.6
45	57	72	95	10	9	55	72	32.5	1	0.6	55	72	1	0.6
25 30	32 37	45 52	62 72	9 10	7 7.5	46 52	50 56	19.5 21	1 1	0.3 0.3	30 35	45 52	1 1	0.3 0.3
30 35	42 47	60 65	82 90	12 12	8.5 10	59 62	64 64	23.5 21	1 1	0.6 0.6	40 45	60 65	1 1	0.6 0.6
40 50 65 70	52 62	72 85	100 115 145	14 15	11 11.5	70 78 95	72 90 112	23 36.5 45.5	1.1 1.1 1.5	0.6 0.6 1	50 60 80	72 85 110	1 1 1.5	0.6 0.6
70	82 88	110 115	155	18 19	15 17.5	105	112	39	1.5	1	85	115	1.5	1

176 160 43.5 3 1.1 100 155 2.5 1

0.6

23.5 30.5 1.1 1.5

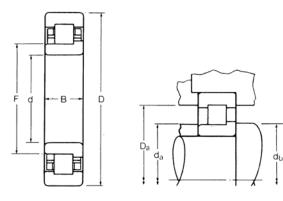

2.1

12.5

RKB 73

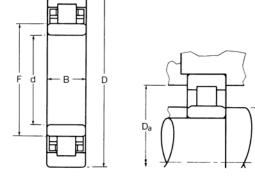
 1.5

0.6



RKB 75

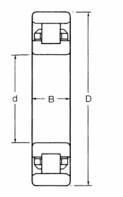
NJ 2 LIGHT SERIES

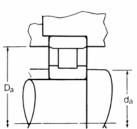

METRIC SIZES

ISO DIMENSION SERIES 02

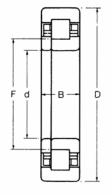
RKB	Din	nensio	ons		RKB lo	ad ratings†	Norma speeds	_	Weight	Sha	ft and h	ousing d	limensio	ns	
designation	mil	limetı	res		newto	ns	rev/mi		kg	mill	imetres				
					dynam	ic static	grease	oil	approx	max					
	d	D	В	F	Cr	Cor				fille radi	t d us min	l _a max	d _b max	min	D _a max
NJ 200	10	30	9	14,4	9 650	6 650	23 500	32 000	0.038	0,6	12,4	14,2	15,8	24,1	27,6
NJ 201	12	32	10	17,2	8 400	6 150	12 100	24 000	0,045	0,6	14,4	17,0	18,3	25,9	29,6
NJ 202	15	35	11	20,2	9 800	7 750	10 900	22 000	0,055	0,6	17,4	20,1	21,3	28,7	32,6
NJ 203	17	40	12	22,9	11 600	9 050	18 000	24 000	0,073	0,6	19,4	22,8	24,2	32,8	37,6
NJ 204	20	47	14	27,0	22 800	19 400	15 500	20 500	0,116	1,0	24,0	26,9	28,3	39,7	43,0
NJ 205	25	52	15	32,0	24 500	22 100	13 600	18 500	0,141	1,0	29,0	31,9	33,3	44,7	48,0
NJ 206	30	62	16	38,5	33 100	31 300	11 600	15 500	0,220	1,0	34,0	38,4	40,0	53,0	58,0
NJ 207	35	72	17	43,8	42 100	38 300	10 100	13 700	0,305	1,0	39,0	43,7	45,7	61,9	68,0
NJ 208	40	80	18	50,0	47 700	46 300	9 100	12 300	0,406	1,0	44,0	49,9	51,9	68,1	76,0
NJ 209	45	85	19	55,0	54 000	56 000	8 500	11 400	0,463	1,0	49,0	54,9	57,4	73,1	81,0
NJ 210	50	90	20	60,4	56 500	60 500	7 800	10 600	0,531	1,0	54,0	60,3	62,3	78,5	86,0
NJ 211	55	100	21	66,5	72 000	79 000	7 100	9 600	0,699	1,5	61,0	66,4	68,6	86,4	94,0
NJ 212	60	110	22	73,5	81 000	85 500	6 300	8 600	0,866	1,5	66,0	73,4	76,0	97,0	104,0
NJ 213	65	120	23	79,6	92 000	98 000	5 800	7 900	1,17	1,5	71,0	79,2	82,6	104,8	114,0
NJ 214	70	125	24	84,5	102 000	114 000	5 500	7 500	1,32	1,5	76,0	84,3	87,4	109,5	119,0
NJ 215	75	130	25	88,5	107 000	122 000	5 300	7 200	1,44	1,5	81,0	88,4	91,4	113,3	124,0
NJ 216	80	140	26	95,3	108 000	121 000	4 200	5 200	1,75	2,0	88,0	95,0	98,6	120,4	132,0
NJ 217	85	150	28	101,8	122 000	137 000	3 900	4 800	2,15	2,0	93,0	101,6	105,4	129,8	142,0
NJ 218	90	160	30		168 000	189 000	4 200	5 700	2,41	2,0	98,0	106,9	110,7	141,3	152,0
NJ 219	95	170	32	113,5	185 000	217 000	4 000	5 400	3,23	2,0	103,0	113,3	118,1	146,8	162,0
NJ 220	100	180	34	120,0	191 000	231 000	3 800	5 100	3,88	2,0	108,0	119,8	124,7	153,3	172,0
	110	200	38	132,5	266 000	311 000	3 300	4 500	4,91	2,0	118,0	131,1	136,9	173,0	192,0
	120	215	40	143,5	290 000	358 000	2 000	3 300	6,80	2,0	128,0	143,2	149,4	185,1	207,0
NJ 226	130	230	40	156,0	299 000	381 000	1 800	3 100	7,44	2,5	140,0	155,7	161,8	198,9	220,0
	140	250	42	172,3	334 000	413 000	1 600	2 800	9,30	2,5	150,0	172,1	175,5	221,2	240,0
NJ 230	150	270	45	182,0	404 000	518 000	2 300	3 100	11,9	2,5	160,0	181,8	189,0	232,2	260,0
	160	290	48		445 000	578 000	1 400		14,8	2,5	170,0	194,8	202,4	249,2	280,0
NJ 234	170	310	52	208,0	508 000	675 000	1 300	2 100	18,2	3,0	182,0	207,7	215,9	263,3	298,0
NJ 236	180	320	52	218,0	525 000	713 000	1 200	2 000	18,9	3,0	192,0	217,9	225,8	273,8	308,0
NJ 238	190	340	55	231,0	713 000	955 000	1 100	1 900	23,4	3,0	202,0	230,8	239,5	292,3	328,0
NJ 240	200	360	58	244,0	681 000	939 000	1 000	1 800	27,2	3,0	212,0	243,8	253,0	306,1	348,0

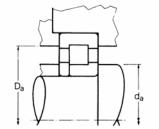
Larger sizes are available on request


LIGHT SERIES NU 2


METRIC SIZES

RKB	Din	nensio	ons		RKB Io	ad ratings†	Norma speeds	l limiting	Weight	Shaft	and ho	using di	mensior	ns
designation	mil	limetı	res		newto	ns	rev/mi	n	kg	millim	etres			
					dynam	ic static	grease	oil	approx	max fillet	d	l_) _a
	d	D	В	F	Cr	Cor				radius		max	min	max
NU 200	10	30	9	14,4	9 650	6 650	23 500		0,037	0,6	12,4	14,2	24,1	27,6
NU 201	12	32	10 11	17,2	8 400 9 800	6 150 7 750		24 000	0,044	0,6	14,4	17,0	25,9	29,6
NU 202 NU 203	15 17	35 40	12	20,2 22,9	11 600	9 050		22 000 24 000	0,054 0,071	0,6 0,6	17,4 19,4	20,1 22,8	28,7 32,8	32,6 37,6
140 200	17	40	12	22,0	11 000	3 000	10 000	24 000	0,071	0,0	13,4	22,0	32,0	37,0
NU 204	20	47	14	27,0	22 800	19 400	15 500	20 500	0,113	1,0	24,0	26,9	39,7	43,0
NU 205	25	52	15	32,0	24 500	22 100		18 500	0,137	1,0	29,0	31,9	44,7	48,0
NU 206	30	62	16	38,5	33 100	31 300		15 500	0,215	1,0	34,0	38,4	53,0	58,0
NU 207	35	72	17	43,8	42 100	38 300	10 100	13 700	0,299	1,0	39,0	43,7	61,9	68,0
NU ₁ 208	40	80	18	50.0	47 700	46 300	9 100	12 300	0,397	1,0	44,0	49,9	68,1	76,0
NU 209	45	85	19	55.0	54 000	56 000		11 400	0.454	1,0	49.0	54,9	73.1	81.0
NU 210	50	90	20	60,4	56 500	60 500		10 600	0,517	1,0	54,0	60,3	78,5	86,0
NU 211	55	100	21	66,5	72 000	79 000	7 100	9 600	0,685	1,5	61,0	66,4	86,4	94,0
NUL 04.0	-	440		70.5	04 000	05 500		0.000	0.044	4.5	00.0	70.4	07.0	4040
NU 212 NU 213	60 65	110 120	22 23	73,5 79,6	81 000 92 000	85 500 98 000	6 300 5 800	8 600 7 900	0,844 1,13	1,5	66,0	73,4	97,0 104,8	104,0 114,0
NU 213 NU 214	70	125	24	79,6 84,5	102 000	114 000	5 500	7 500	1,13	1,5 1,5	71,0 76,0	79,2 84,3	104,8	119,0
NU 215	75	130	25	88,5	102 000	122 000	5 300	7 200	1,40	1,5	81,0	88,4	113,3	124,0
110 210	,,	100	20	00,0	107 000	122 000	3 300	, 200	1,40	1,0	01,0	00,4	110,0	124,0
NU 216	80	140	26	95,3	108 000	121 000	4 200	5 200	1,70	2,0	88,0	95,0	120,4	132,0
NU 217	85	150	28	101,8	122 000	137 000	3 900	4 800	2,10	2,0	93,0	101,6	129,8	142,0
NU 218	90	160	30	107,0	168 000	189 000	4 200	5 700	2,36	2,0	98,0	106,9	141,3	152,0
NU 219	95	170	32	113,5	185 000	217 000	4 000	5 400	3,14	2,0	103,0	113,3	146,8	162,0
NU 220	100	180	34	120,0	191 000	231 000	3 800	5 100	3,78	2,0	108,0	119,8	153,3	172,0
NU 222	110	200	38	132,5	266 000	311 000	3 300	4 500	4,81		118,0	132,4	173,0	192,0
NU 224	120	215	40	143,5	290 000	358 000	2 000	3 300	6 35		128,0	143,2	185,1	207,0
NŲ 226	130	230	40	156,0	299 000	381 000	1 800	3 100	7,26		140,0	155,7	198,9	220,0
NU 228	140	250	42	172,3	334 000	413 000	1 600	2 800	9,07	2,5	150,0	172,1	221,2	240,0
NU 230	150	270	45	182,0	404 000	518 000	2 300	3 100	11.6		160.0	181.8	232,2	260.0
NU 232	160	290	48	195,0	445 000	578 000	1 400	2 300	14,5		170,0	194,8	249,2	280,0
NU 234	170	310	52	208,0	508 000	675 000	1 300	2 100	17,8		182,0	207,7	263,3	298,0
NU 236	180	320	52	218,0	525 000	713 000	1 200	2 000	18,4		192,0	217,9	273,8	308,0
NU 238	190	340	55	231,0	713 000	955 000	1 100	1 900	22,8		202,0	230,8	292,3	328,0
NU 240	200	360	58	244,0	681 000	939 000	1 000	1 800	26,6	3,0	212,0	243,8	306,1	348,0


N 2 LIGHT SERIES

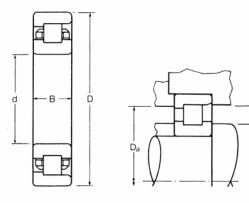

METRIC SIZES

RKB	Dir	nensi	ons	RKB loa	d ratings†		limiting	Weight	Shaft	and ho	using di	imensio	ns
designation	mil	limet	res	newton	s	speeds rev/mir	1	kg	millim	netres			
				dynamic	static	grease	oil	approx	max				
	d	D	В	Cr	Cor				fillet radius		d _a max	min) _a max
N 200	10	30	9	8 300	6 000	14 200	23 500	0,029	0,6	12,4	16,5	25,1	27,6
N 201	12	32	10	8 400	6 150	13 200	22 000	0,030	0,6	14,4	18,3	26,9	29,6
N 202	15	35	11	9 800	7 750	11 900	20 000	0,035	0,6	17,4	21,3	30,0	32,6
N 203	17	40	12	11 600	9 050	18 000	24 000	0,070	0,6	19,4	24,2	34,0	37,6
N 204	20	47	14	22 800	19 400	15 500	20 500	0,112	1,0	24,0	28,3	41,1	43,0
N 205	25	52	15	24 500	22 100	13 600	18 500	0,135	1,0	29,0	33,3	46,1	48,0
N 206	30	62	16	33 100	31 300	11 600	15 500	0,212	1,0	34,0	40,0	54,6	58,0
N 207	35	72	17	42 100	38 300	10 100	13 700	0,294	1,0	39,0	45,7	63,9	68,0
N 208	40	80	18	47 700	46 300	9 100	12 300	0,391	1,0	44,0	51,9	70,1	76,0
N 209	45	85	19	54 000	56 000	8 500	11 400	0,450	1,0	49,0	57,4	75,1	81,0
N 210	50	90	20	56 500	60 500	7 800	10 600	0,513	1,0	54,0	62,3	80,5	86,0
N 211	55	100	21	72 000	79 000	7 100	9 600	0,676	1,5	61,0	68,6	88,6	94,0
N 212	60	110	22	81 000	85 500	6 300	8 600	0,835	1,5	66,0	76,0	99,6	104,0
N 213	65	120	23	92 000	98 000	3 500	5 900	1,08	1,5	71,0	81,8	106,9	114,0
N 214	70	125	24	102 000	114 000	3 400	5 600	1,19	1,5	76,0	86,4	112,0	119,0
N 215	75	130	25	107 000	122 000	3 200	5 300	1,28	1,5	81,0	91,7	116,8	124,0
N 216	80	140	26	126 000	143 000	2 900	4 900	1,53	2,0	88,0	99,8	128,0	132,0
N 217	85	150	28	142 000	167 000	2 700	4 600	2,15	2,0	93,0	104,4	135,1	142,0
N 218	90	160	30	168 000	189 000	4 200	5 700	2,33	2,0	98,0	110,7	145,1	152,0
N 219	95	170	32	185 000	217 000	2 400	4 000	2,93	2,0	103,0	118,1	151,6	162,0
N 220	100	180	34	191 000	231 000	2 300	3 800	3,56	2,0	108,0	124,7	158,2	172,0
N 221	105	190	36	246 000	293 000	2 100	3 500	4,25	2,0	113,0	132,1	171,5	182,0
N 222	110	200	38	266 000	311 000	3 300	4 500	4,76	2,0	118,0	136,9	178,8	192,0
N 224	120	215	40	290 000	358 000	1 800	3 000	6,26	2,0	128,0	149,4	191,3	207,0
N 226	130	230	40	299 000	381 000	1 700	2 800	7,17	2,5	140,0	161,8	203,7	220,0
N 228	140	250	42	364 000	461 000	1 500	2 500	8,98	2,5	150,0	175,5	226,6	240,0
N 230	150	270	45	404 000	518 000	1 400	2 300	11,3	2,5	160,0	189,0	239,3	260,0
N 232	160	290	48	445 000	578 000	1 300	2 100	14,0	2,5	170,0	202,4	255,5	280,0
N 234	170	310	52	508 000	675 000	1 200	2 000	17,4	3,0	182,0	215,9	271,5	298,0
N 236	180	320	52	525 000	713 000	1 100	1 900	18,1	3,0	192,0	225,8	281,7	308,0
N 238	190	340	55	605 000	817 000	1 000	1 700	21,8	3,0	202,0	239,5	301,0	328,0
N 240	200	360	58	681 000	939 000	950	1 600	25,9	3,0	212,0	253,0	317,3	348,0

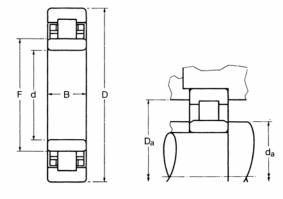
LIGHT SERIES NUP 2

METRIC SIZES

ISO DIMENSION SERIES 02


RKB	Din	nensio	ons		RKB lo	ad ratings†	Norma speeds	l limiting	Weight	Shaft	and ho	using di	mension	s
designation	mil	limetr	res		newtor	าร	rev/mi		kg	millim	etres			
					dynami	c static	grease	oil	approx	max				
	d	D	В	F	Cr	Cor				fillet radius		l _a max	min	a max
NUP 200	10	30	9	14,4	9 650	6 650	23 500	32 000	0,039	0,6	12,4	15,8	24,1	27,6
NUP 201	12	32	10	17,2	8 400	6 150		24 000	0,046	0,6	14,4	18,3	25,9	29,6
NUP 202 NUP 203	15 17	35 40	11 12	20,2 22,9	9 800 11 600	7 750 9 050		22 000 24 000	0,058 0,075	0,6 0,6	17,4 19,4	21,3 24,2	28,7 32,8	32,6 37,6
NOP 203	17	40	12	22,9	11 600	9 000	18 000	24 000	0,075	0,0	13,4	24,2	32,6	37,0
NUP 204	20	47	14	27,0	22 800	19 400	15 500	20 500	0,118	1,0	24,0	28,3	39,7	43,0
NUP 205	25	52	15	32,0	24 500	22 100		18 500	0,144	1,0	29,0	33,3	44,7	48,0
NUP 206	30	62	16	38,5	33 100	31 300		15 500	0,225	1,0	34,0	40,0	53,0	58,0
NUP 207	35	72	17	43,8	42 100	38 300	10 100	13 700	0,312	1,0	39,0	45,7	61,9	68,0
NUP 208	40	80	18	50,0	47 700	46 300	9 100	12 300	0,415	1,0	44,0	51,9	68,1	76,0
NUP 209	45	85	19	55,0	54 000	56 000	8 500	11 400	0,475	1,0	49,0	57,4	73,1	81,0
NUP 210	50	90	20	60,4	56 500	60 500	7 800	10 600	0,540	1,0	54,0	62,3	78,5	86,0
NUP 211	55	100	21	66,5	72 000	79 000	7 100	9 600	0,712	1,5	61,0	68,6	86,4	94,0
NUP 212	60	110	22	73.5	81 000	85 500	6 300	8 600	0.885	1,5	66,0	76,0	97.0	104,0
NUP 213	65	120	23	79,6	92 000	98 000	3 800	6 500	1,20	1,5	71,0	82,6	102,6	114,0
NUP 214	70	125	24	84,5	102 000	114 000	5 600	7 600	1,36	1,5	76,0	87,4	106,9	119,0
NUP 215	75	130	25	88,5	107 000	122 000	5 400	7 300	1,48	1,5	81,0	91,4	111,0	124,0
NUP 216	80	140	26	95,3	108 000	121 000	4 900	6 700	1,80	2.0	88.0	98.6	120,4	132,0
NUP 217	85	150	28	101.8	122 000	137 000	4 600	6 200	2,22	2,0	93.0	105,4	129,8	142.0
NUP 218	90	160	30	107,0	168 000	189 000	4 200	5 700	2,46	2,0	98,0	110,7	141,3	152,0
NUP 219	95	170	32	113,5	185 000	217 000	4 000	5 400	3,31	2,0	103,0	118,1	146,8	162,0
NUP 220	100	180	34	120.0	191 000	231 000	3 800	5 100	3.99	2,0	108.0	124,7	153.3	172,0
NUP 222	110	200	38	132,5	266 000	311 000	3 300	4 500	5,01	2,0	118,0	136,9	173,0	192,0
NUP 224	120	215	40	143,5	290 000	358 000	2 000	3.300	6,67	2,0	128,0	149,4	185,1	207,0
NUP 226	130	230	40	156,0	299 000	381 000	1 800	3 100	7,62	2,5	140,0	161,8	198,9	220,0
NUP 228	140	250	42	172.3	334 000	413 000	1 600	2 800	9,48	2,5	150,0	175,5	221,2	240,0
NUP 230	150	270	45	182,0	404 000	518 000	2 300	3 100	12,2	2,5	160,0	189,0	232,2	260,0
NUP 232	160	290	48	195.0	445 000	578 000	1 400	2 300	15,2	2,5	170,0	202,4	249,2	280,0
NUP 234	170	310	52	208,0	508 000	675 000	1 300	2 100	18,6	3,0	182,0	215,9	263,3	298,0
NUP 236	180	320	52	218,0	E3E 000	712 000	1 200	2 000	19,3	3,0	192,0	225,8	273,8	308,0
NUP 236 NUP 238	190	340	52 55	218,0	525 000 713 000	713 000 955 000	1 100	1 900	23,8	3,0	202,0	225,8	273,6	328,0
NUP 240	200	360	58	244,0	681 000	939 000	1 000	1 800	27,7	3,0	212,0	253,0	306,1	348,0
		000	00	,0	301 000	000 000	. 550	. 000	,,	0,0	,		,.	2.2,3

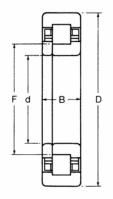
Larger sizes are available on request

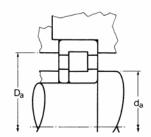

^{*}Does not apply to the loose rib.

NF 2 LIGHT SERIES

METRIC SIZES

RKB	Din	nensio	ons	RKB load	l ratings†	Normal speeds	limiting	Weight	Shaft	and hou	ısing di	mension	ns	
designation	mil	limetı	res	newtons		rev/min	ı	kg	millim	etres				
				dynamic	static	grease	oil	approx	max fillet					
	d	D	В	Cr	Cor				radius	min	max	min	D _a max	D _b min
NF 200	10	30	9	8 300	6 000	14 200	23 500	0,035	0,6	12,4	16,5	24,1	27,6	25,1
NF 201	12	32	10	8 400	6 150	13 200	22 000	0,042	0,6	14,4	18,3	25,9	29,6	26,9
NF 202	15	35	11	9 800	7 750	11 900	20 000	0,050	0,6	17,4	21,3	28,7	32,6	30,0
NF 203	17	40	12	11 600	9 050	18 000	24 000	0,077	0,6	19,4	24,2	32,8	37,6	34,0
NF 204	20	47	14	22 800	19 400	15 500	20 500	0,114	1,0	24,0	28,3	39,7	43,0	41,1
NF 205	25	52	15	24 500	22 100	13 600	18 500	0,140	1,0	29,0	33,3	44,7	48,0	46,1
NF 206	30	62	16	33 100	31 300	11 600	15 500	0,218	1,0	34,0	40,0	53,0	58,0	54,6
NF 207	35	72	17	42 100	38 300	10 100	13 700	0,302	1,0	39,0	45,7	61,9	68,0	63,9
NF 208	40	80	18	47 700	46 300	9 100	12 300	0,402	1,0	44,0	51,9	68,1	76,0	70,1
NF 209	45	85	19	54 000	56 000	8 500	11 400	0,461	1,0	49,0	57,4	73,1	81,0	75,1
NF 210	50	90	20	56 500	60 500	7 800	10 600	0,525	1,0	54,0	62,3	78,5	86,0	80,5
NF 211	55	100	21	72 000	79 000	7 100	9 600	0,693	1,5	61,0	68,6	86,4	94,0	88,6
NF 212	60	110	22	81 000	85 500	6 300	8 600	0,858	1,5	66,0	76,0	97,0	104,0	99,6
NF 213	65	120	23	92 000	98 000	3 500	5 900	1,13	1,5	71,0	81,8	103,4	114,0	106,9
NF 214	70	125	24		114 000	3 400	5 600	1,24	1,5	76,0	86,4	108,5	119,0	112,0
NF 215	75	130	25	107 000	122 000	3 200	5 300	1,36	1,5	81,0	91,7	113,5	124,0	116,8
NF 216	80	140	26		143 000	2 900	4 900	1,61	2,0	88,0	99,8	124,2	132,0	128,0
NF 217	85	150	28		167 000	2 700	4 600	2,04	2,0	93,0	104,4	130,8	142,0	135,1
NF 218	90	160	30		189 000	4 200	5 700	2,40	2,0	98,0	110,7	141,3	152,0	145,1
NF 219	95	170	32	185 000	217 000	2 400	4 000	3,01	2,0	103,0	118,1	146,8	162,0	151,6
	100	180	34		231 000	2 300	3 800	3,74	2,0	108,0	124,7	153,3	172,0	158,2
	105	190	36		293 000	2 100	3 500	4,34	2,0	113,0	132,1	166,1	182,0	171,5
	110	200	38		311 000	3 300	4 500	4,88	2,0	118,0	136,9	173,0	192,0	178,8
NF 224	120	215	40	290 000	358 000	1 800	3 000	6,53	2,0	128,0	149,4	185,1	207,0	191,3
NF 226	130	230	40	299 000	381 000	1 700	2 800	7,12	2,5	140,0	161,8	198,9	220,0	203,7
	140	250	42		461 000	1 500	2 500	8,98	2,5	150,0	175,5	221,2	240,0	226,6
	150	270	45		518 000	1 400	2 300	11,3	2,5	160,0	189,0	232,2	260,0	239,3
NF 232	160	290	48	445 000	578 000	1 300	2 100	14,1	2,5	170,0	202,4	249,2	280,0	255,5
NF 234	170	310	52	508 000	675 000	1 200	2 000	18,6	3,0	182,0	215,9	263,3	298,0	271,5
	180	320	52	525 000	713 000	1 100	1 900	18,4	3,0	192,0	225,8	273,8	308,0	281,7
	190	340	55		817 000	1 000	1 700	22,2	3,0	202,0	239,5	292,3	328,0	301,0
NF 240	200	360	58	681 000	939 000	950	1 600	26,3	3,0	212,0	253,0	306,1	348,0	317,3

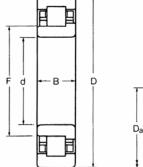

NU 3 MEDIUM SERIES METRIC SIZES

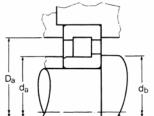

RKB	Din	nensio	ons		RKB	oad ratings		limiting	Weight	Shaft a	and ho	using di	mension	ns
designation	mil	limet	res		newt	ons	speeds rev/min	1	kg	millim	etres			
					dynar	nic static	grease	oil	approx	max			_	
	d	D	В	F	Cr	Cor				fillet radius		d _a max	min) _a max
					Or .	Oor .				radius		·····		
NU 300	10	35	11	16,9	10 700	7 800	11 900	24 000	0.063	0,6	12,4	16,7	26,9	32,6
NU 301	12	37	12	18,9	11 700	8 850	20 000	27 000	0,075	1,0	16,0	18,7	28,7	33,0
NU 302	15	42	13	22,1	14 200	10 700	18 000	24 000	0,099	1,0	19,0	22,1	33,5	38,0
NU 303	17	47	14	24,9	18 800	14 800	16 000	22 000	0,130	1,0	21,0	24,9	37,6	43,0
NU 304	20	52	15	28,5	26 600	22 100	14 400	19 500	0,158	1,0	24,0	28,4	43,0	48,0
NU 305	25	62	17	35,0	35 000	30 600	12 200	16 500	0,250	1,0	29,0	34,9	51,3	58,0
NU 306	30	72	19	42,0	45 500	41 900	10 500	14 100	0,378	1,0	34,0	41,9	60,1	68,0
NU 307	35	80	21	46,2	58 000	52 500	9 400	12 700	0,485	1,5	41,0	46,1	67,9	74,0
NU 308	40	90	23	53.5	72 500	68 500	8 300	11 200	0.676	1,5	46,0	53,4	77,0	84,0
NU 309	45	100	25	58,5	82 000	78 500	7 600	10 300	0,912	1,5	51,0	58,4	83,8	94,0
NU 310	50	110	27	65,0	98 500	94 500	6 800	9 200	1,16	2,0	58,0	64,9	93,9	102,0
NU 311	55	120	29	70,5	111 000	108 000	6 200	8 400	1,62	2,0	63,0	70,3	102,9	112,0
NU 312	60	130	31	77,0	136 000	138 000	5 800	7 800	1,89	2,0	68,0	76,9	109,5	122,0
NU 313	65	140	33	83,5	164 000	167 000	5 200	7 100	2,31	2,0	73,0	83,4	119,6	132,0
NU 314	70	150	35	90,0	154 000	163 000	4 900	6 600	2,93	2,0	78,0	89,6	127,8	142,0
NU 315	75	160	37	95,5	209 000	217 000	4 500	6 100	3,52	2,0	83,0	95,2	136,9	152,0
NU 316	80	170	39	103,0	234 000	248 000	4 200	5 700	3,97	2,0	88,0	102,9	146,3	162,0
NU 317	85	180	41	108,0	259 000	273 000	3 300	4 000	4,99	2,5	95,0	107,7	149,9	170,0
NU 318	90	190	43	115,0	245 000	273 000	3 800	5 100	5,81		100,0	114,8	157,0	180,0
NU 319	95	200	45	120,8	309 000	345 000	3 500	4 800	6,94	2,5	105,0	120,6	169,4	190,0
NU 320	100	215	47	129,5	324 000	372 000	3 300	4 500	8,57	2,5	110,0	129,2	177,0	205,0
NU 321	105	225	49	135,0	343 000	390 000	3 100	4 200	9,84	2,5	115,0	134,8	185,2	215,0
NU 322	110	240	50	143,0	379 000	435 000	2 900	.3 900	11,2		120,0	142,9	196,1	230,0
NU 324	120	260	55	154,0	395 000	451 000	2 700	3 600	14,7	2,5	130,0	153,9	209,8	250,0
NU 326	130	280	58	167,0	540 000	633 000	2 400	3 200	18,1		142,0	166,8	231,1	268,0
NU 328	140	300	62	180,0	584 000	693 000	2 200	3 000	22,0		152,0	179,8	246,9	288,0
NU 330	150	320	65	193,0	683 000	820 000	1 200	2 000	27,1		162,0	192,8	265,2	308,0
NU 332	160	340	68	208,0	870 000	1 040 000	1 100	1 900	32,7	3,0	172,0	203,7	290,3	328,0
NU 334	170	360	72	220,0	901 000	1 100 000	1 000	1 700	37,9	3,0	182,0	217,1	300,7	348,0

NUP 3 MEDIUM SERIES

METRIC SIZES

ISO DIMENSION SERIES 03

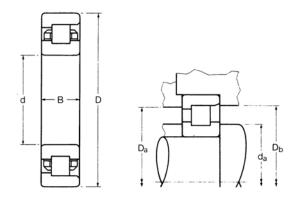




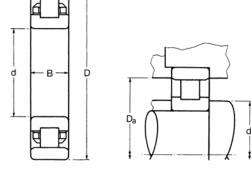
RKB	Dir	nensio	ons		RKB lo	ad ratings†		l limiting	Weight	Shaft	and ho	using di	mensior	าร
designation	mil	limet	res		newto	ns	speeds rev/mi		kg	millin	netres			
					dynam	ic static	grease	oil	approx	max fillet				n
	d	D	В	F	Cr	Cor					s* min	d _a max	min	D _a max
NUP 300	10	35	11	16,9	10 700	7 800	11 900	24 000	0,066	0,6	12,4	18,3	26,9	32,6
NUP 301	12	37	12	18,9	11 700	8 850	20 000		0,078	1,0	16,0	20,2	28,7	33,0
NUP 302	15	42	13	22,1	14 200	10 700		24 000	0,105	1,0	19,0	23,6	33,5	38,0
NUP 303	17	47	14	24,9	18 800	14 800	16 000	22 000	0,137	1,0	21,0	26,7	37,6	43,0
NUP 304	20	52	15	28,5	26 600	22 100		19 500	0,164	1,0	24,0	30,0	43,0	48,0
NUP 305	25	62	17	35,0	35 000	30 600	12 200		0,260	1,0	29,0	36,7	51,3	58,0
NUP 306 NUP 307	30 35	72 80	19 21	42,0 46,2	45 500 58 000	41 900 52 500		14 100 12 700	0,393 0,508	1,0 1,5	34,0 41,0	43,9 48,5	60,1 67,9	68,0 74,0
NOP 307	35	80	21	40,2	38 000	52 500	3 400	12 700	0,508	1,5	41,0	40,5	07,3	74,0
NUP. 308	40	90	23	53,5	72 500	68 500	8 300	11 200	0,703	1,5	46,0	56,0	77,0	84,0
NUP 309	45	100	25	58,5	82 000	78 500	7 600		0,953	1,5	51,0	61,2	83,8	94,0
NUP 310	50	110	27	65,0	98 500	94 500	6 800	9 200	1,21	2,0	58,0	68,1	93,9	102,0
NUP 311	55	120	29	70,5	111 000	108 000	6 400	8 600	1,73	2,0	63,0	74,0	98,6	112,0
NUP 312	60	130	31	77,0	136 000	138 000	5 800	7 800	1,97	2,0	68,0	80,5	109,5	122,0
NUP 313	65	140	33	83,5	164 000	167 000	5 200	7 100	2,40	2,0	73,0	87,4	119,6	132,0
NUP 314	70	150	35	90,0	154 000	163 000	3 200	5 500	3,13	2,0	78,0	94,5	123,4	142,0
NUP 315	75	160	37	95,5	209 000	217 000	4 600	6 300	3,85	2,0	83,0	100,8	133,4	152,0
NUP 316	80	170	39	103,0	234 000	248 000	4 200	5 700	4,12	2,0	88,0	107,7	146,3	162,0
NUP 317	85	180	41	108,0	259 000	273 000	4 000	5 400	5,31	2,5	95,0	113,8	149,9	170,0
NUP 318	90	190	43	115,0	245 000	273 000	3 800	5 100	6,21	2,5	100,0	120,9	157,0	180,0
NUP 319	95	200	45	120,8	309 000	345 000	3 500	4 800	7,48	2,5	105,0	127,5	169,4	190,0
NUP 320	100	215	47	129,5	324 000	372 000	3 300	4 500	9,03	2,5	110,0	136,1	177,0	205,0
NUP 321	105	225	49	135,0	343 000	390 000	3 100	4 200	10,3	2,5	115,0	140,9	185,2	215,0
NUP 322	110	240	50	143,0	379 000	435 000	2 900	3 900	12,0	2,5	120,0	150,3	196,1	230,0
NUP 324	120	260	55	154,0	395 000	451 000	2 700	3 600	15,3	2,5	130,0	161,8	209,8	250,0
NUP 326	130	280	58	167,0	540 000	633 000	2 400	3 200	19,0	3,0	142,0	174,5	231,1	268,0
NUP 328	140	300	62	180,0	584 000	693 000	2 200	3 000	23,2	3,0	152,0	189,4	246,9	288,0
NUP 330	150	320	65	193,0	683 000	820 000	1 200	2 000	28,5	3,0	162,0	203,2	265,2	308,0
NUP 332	160	340	68	208,0	870 000	1 040 000	1 100	1 900	33,0	3,0	172,0	213,6	290,3	328,0
NUP 334	170	360	72	220,0	901 000	1 100 000	1 000	1 700	39,5	3,0	182,0	229,1	300,7	348,0

Larger sizes are available on request

^{*}Does not apply to the loose rib.


MEDIUM SERIES NJ 3

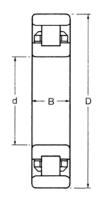
METRIC SIZES

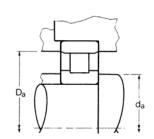

RKB designation		nensio Iimeti			RKB i	oad ratings	† Norma speeds rev/mi	`	g Weight kg		ft and ho	ousing d	limensio	ons	
-					dynan	nic static	grease	oil	approx	max					
	d	D	В	F	Cr	Cor				fille radii	t d us min	a max	d _b max	min	D _a max
NJ 300	10	35	11	16,9	10 700	7 800	11 900	24 000	0.065	0,6	12,4	16,7	18,3	26,9	32,6
NJ 301	12	37	12	18,9	11 700	8 850	20 000	27 000	0,000	1,0	16,0	18,7	20,2	28,7	33,0
NJ 302	15	42	13	22,1	14 200	10 700	18 000	24 000	0,102	1,0	19,0	22,1	23,6	33,5	38,0
NJ 303	17	47	14	24,9	18 800	14 800	16 000	22 000	0,134	1,0	21,0	24,9	26,7	37,6	43,0
NJ 304	20	52	15	28,5	26 600	22 100	14 400		0,161	1,0	24,0	28,4	30,0	43,0	48,0
NJ 305	25	62	17	35,0	35 000	30 600	12 200		0,255	1,0	29,0	34,9	36,7	51,3	58,0
NJ 306	30	72	19	42,0	45 500	41 900		14 100	0,386	1,0	34,0	41,9	43,9	60,1	68,0
NJ 307	35	80	21	46,2	58 000	52 500	9 400	12 700	0,494	1,5	41,0	46,1	48,5	67,9	74,0
NJ 308	40	90	23	53,5	72 500	68 500	8 300	11 200	0,689	1,5	46,0	53,4	56,0	77,0	84,0
NJ 309	45	100	25	58,5	82 000	78 500	7 600	10 300	0,934	1,5	51,0	58,4	61,2	83,8	94,0
NJ 310	50	110	27	65,0	98 500	94 500	6 800	9 200	1,18	2,0	58,0	64,9	68,1	93,9	102,0
NJ 311	55	120	29	70,5	111 000	108 000	6 200	8 400	1,68	2,0	63,0	70,3	74,1	102,9	112,0
NJ 312	60	130	31	77,0	136 000	138 000	5 800	7 800	1,93	2,0	68,0	76,9	80,5	109,5	122,0
NJ 313	65	140	33	83,5	164 000	167 000	5 200	7 100	2,36	2,0	73,0	83,4	87,4	119,6	132,0
NJ 314	70	150	35	90,0	154 000	163 000	3 200	5 500	3,01	2,0	78,0	89,6	94,5	123,4	142,0
NJ 315	75	160	37	95,5	209 000	217 000	4 500	6 100	3,74	2,0	83,0	95,2	100,8	136,9	152,0
NJ 316	80	170	39	103,0	234 000	248 000	4 200	5 700	4,05	2,0	88,0	102,9	107,7	146,3	162,0
NJ 317	85	180	41	108,0	259 000	273 000	3 300	4 000	5,17	2,5	95,0	107,7	113,8	149,9	170,0
NJ 318	90	190	43	115,0	245 000	273 000	3 800	5 100	6,08	2,5	100,0	114,8	120,9	157,0	180,0
NJ 319	95	200	45	120,8	309 000	345 000	3 500	4 800	7,03	2,5	105,0	120,6	127,5	169,4	190,0
	100	215	47	129,5	324 000	372 000	3 300	4 500	8,80	2,5	110,0	129,2	136,1	177,0	205,0
	105	225	49	135,0	343 000	390 000	3 100		10,1	2,5	115,0	134,8	140,9	185,2	215,0
	110	240	50	143,0	379 000	435 000	2 900		11,7	2,5	120,0	142,9	150,3	196,1	230,0
NJ 324	120	260	55	154,0	395 000	451 000	2 700	3 600	15,0	2,5	130,0	153,9	161,8	209,8	250,0
	130	280	58	167,0	540 000	633 000	2 400		18,5	3,0	142,0	166,8	174,5	231,1	268,0
NJ 328	140	300	62	180,0	584 000	693 000	2 200		22,6	3,0	152,0	179,8	189,4	246,9	288,0
	150	320	65	193,0		820 000	1 200		27,9	3,0	162,0	192,8	203,2	265,2	308,0
NJ 332	160	340	68	208,0	870 000	1 040 000	1 100	1 900	32,3	3,0	172,0	203,7	213,6	290,3	328,0
NJ 334	170	360	72	220,0	901 000	1 100 000	1 000	1 700	38,6	3,0	182,0	217,1	229,1	300,7	348,0

NF 3 MEDIUM SERIES

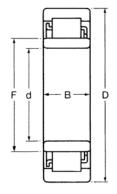
METRIC SIZES

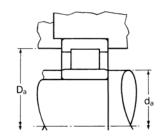
RKB	Din	nensio	ons	RKB load	l ratings†	Normal speeds	limiting	Weight	Shaft	and ho	using di	mensior	ns	
designation	mil	limetı	res	newtons		rev/min	1	kg	millin	netres				
				dynamic	static	grease	oil	approx	max fillet			-		
	d	D	В	Cr	Cor					s min	l _a max	min) _a max	D _b min
NF 300	10	35	11	10 700	7 800	13 000	21 500	0,062	0,6	12,4	18,3	26,9	32,6	28,2
NF 301	12	37	12	11 700	8 850	12 100	20 000	0,072	1,0	16,0	20,3	29,0	33,0	30,2
NF 302	15	42	13	14 200	10 700	10 700	18 000	0,097	1,0	19,0	23,6	33,5	38,0	35,1
NF 303	17	47	14	18 800	14 800	9 700	16 000	0,131	1,0	21,0	26,7	37,6	43,0	39,4
NF 304	20	52	15	26 600	22 100	14 400	19 500	0,159	1,0	24,0	30,0	43,0	48,0	44,6
NF 305	25	62	17	35 000	30 600	12 200	16 500	0,254	1,0	29,0	36,7	51,3	58,0	53,1
NF 306	30	72	19	45 500	41 900	10 500	14 100	0,383	1,0	34,0	43,9	60,1	68,0	62,1
NF 307	35	80	21	58 000	52 500	9 400	12 700	0,494	1,5	41,0	48,5	67,9	74,0	70,3
NF 308	40	90	23	72 500	68 500	8 300	11 200	0,685	1,5	46.0	56.0	77.0	84.0	79.6
NF 309	45	100	25	82 000	78 500	7 600	10 300	0,925	1,5	51,0	61,2	83,8	94,0	86,6
NF 310	50	110	27	98 500	94 500	6 800	9 200	1,17	2,0	58,0	68,1	93,9	102,0	97,1
NF 311	55	120	29	111 000	108 000	3 800	6 300	1,60	2,0	63,0	75,9	100,1	112,0	103,9
NF 312	60	130	31	136 000	138 000	5 800	7 800	1,91	2,0	68,0	80,5	109,5	122,0	113,1
NF 313	65	140	33		167 000	5 200	7 100	2,34	2,0	73,0	87,4	119,6	132,0	123,6
NF 314	70	150	35	151 000	153 000	2 900	4 900	2,92	2,0	78,0	94,5	123,2	142,0	130,8
NF 315	75	160	37	209 000	217 000	2 700	4 600	3,55	2,0	83,0	100,8	133,4	152,0	139,7
NF 316	80	170	39	234 000	248 000	4 200	5 700	4,02	2,0	88,0	107,7	146,3	162,0	151,1
NF 317	85	180	41	259 000	273 000	2 400	4 000	4,99	2,5	95,0	113,5	151,4	170,0	158,0
NF 318	90	190	43		308 000	2 300	3 800	5,90	2,5	100,0	121,2	158,7	180,0	165,6
NF 319	95	200	45	296 000	318 000	2 100	3 500	7,25	2,5	105,0	127,5	169,4	190,0	174,8
NF 320	100	215	47	296 000	323 000	2 000	3 300	8,48	2,5	110.0	136,1	177,0	205.0	183,6
	105	225	49		390 000	1 900	3 100	9,62	2,5	115,0	140,9	185,2	215,0	192,3
	110	240	50	380 000	420 000	1 700	2 900	11,5	2,5	120,0	149,4	199,5	230,0	208,0
NF 324	120	260	55	444 000	485 000	1 600	2 600	15,3	2,5	130,0	162,3	212,3	250,0	220,7
NF 326	130	280	58	540 000	633 000	1 400	2 400	17,9	3,0	142,0	174,5	231,1	268,0	240,0
	140	300	62		693 000	1 300	2 200	21,9	3,0	152,0	189,4	246,9	288,0	256,3
	150	320	65		820 000	2 000	2 700	27,9	3,0	162,0	203,2	265,2	308,0	275,6
NF 332	160	340	68	870 000 1	040 000	1 800	2 500	33,1	3,0	172,0	213,6	290,3	328,0	300,2
NF 334	170	360	72	901 000 1	100 000	1 000	1 700	36,7	3,0	182,0	229,1	300,7	348,0	312,7


MEDIUM SERIES N 3

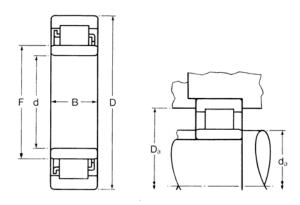

METRIC SIZES

RKB designation		ensio		RKB load	d ratings†	Normal speeds rev/min	limiting	Weight kg	Shaft a		using di	mension	ıs
designation						164/111111		Kg .					
				dynamic	static	grease	oil	approx.	max fillet		l _a		D _a
	d	D	В	Cr	Cor				radius		max	min	max
N 300	10	35	11	10 700	7 800	13 000	21 500	0,059	0,6	12,4	18,3	28,2	32,6
N 301	12	37	12	11 700	8 850	12 100	20 000	0,064	1,0	16,0	20,3	30,2	33,0
N 302	15	42	13	14 200	10 700	10 700	18 000	0,086	1,0	19,0	23,6	35,1	38,0
N 303	17	47	14	18 800	14 800	9 700	16 000	0,127	1,0	21,0	26,7	39,4	43,0
N 304	20	52	15	26 600	22 100	14 400	19 500	0,154	1,0	24,0	30,0	44,6	48,0
N 305	25	62	17	35 000	30 600	12 200	16 500	0,245	1,0	29,0	36,7	53,1	58,0
N 306	30	72	19	45 500	41 900	10 500	14 100	0,372	1,0	34,0	43,9	62,1	68,0
N 307	35	80	21	58 000	52 500	9 400	12 700	0,476	1,5	41,0	48,5	70,3	74,0
N 308	40	90	23	72 500	68 500	8 300	11 200	0,662	1,5	46,0	56,0	79,6	84,0
N 309	45	100	25	82 000	78 500	7 600	10 300	0,898	1,5	51,0	61,2	86,6	94,0
N 310	50	110	27	98 500	94 500	6 800	9 200	1,13	2,0	58,0	68,1	97,1	102,0
N 311	55	120	29	111 000	108 000	3 800	6 300	1,52	2,0	63,0	75,9	103,9	112,0
N 312	60	130	31	136 000	138 000	5 800	7 800	1,86	2,0	68,0	80,5	113,1	122,0
N 313	65	140	33	164 000	167 000	5 200	7 100	2,28	2,0	73,0	87,4	123,6	132,0
N 314	70	150	35	151 000	153 000	2 900	4 900	2,82	2,0	78,0	94,5	130,8	142,0
N 315	75	160	37	209 000	217 000	2 700	4 600	3,44	2,0	83,0.	100,8	139,7	152,0
N 316	80	170	39	234 000	248 000	4 200	5 700	3,92	2,0	88,0	107,7	151.1	162.0
N 317	85	180	41	259 000	273 000	2 400	4 000	4,81	2,5	95,0	113,5	158,0	170,0
N 318	90	190	43	287 000	308 000	2 300	3 800	5,72		100,0	121,2	165,6	180,0
N 319	95	200	45	296 000	318 000	2 100	3 500	7,08	2,5	105,0	127,5	174,8	190,0
N 320	100	215	47	296 000	323 000	2 000	3 300	8,21	2,5	110,0	136,1	183,6	205,0
N 321	105	225	49	343 000	390 000	1 900	3 100	10,1		115,0	140,9	192,3	215,0
N 322	110	240	50	380 000	420 000	1 700	2 900	11,1		120,0	149,4	208,0	230,0
N 324	120	260	55	444 000	485 000	1 600	2 600	14,7	2,5	130,0	162,3	220,7	250,0
N 326	130	280	58	540 000	633 000	1 400	2 400	17,9	3,0	142,0	174,5	240,0	268,0
N 328	140	300	62	584 000	693 000	1 300	2 200	21,9		152,0	189,4	256,3	288,0
N 330	150	320	65	683 000	820 000	2 000	2 700	26,0	3,0	162,0	203,2	275,6	308,0
N 332	160	340	68	870 000 1	040 000	1 800	2 500	30,7	3,0	172,0	213,6	300,2	328,0
N 334	170	360	72	901 000 1	100 000	1 000	1 700	36,5	3,0	182,0	229,1	312,7	348,0


N 10 EXTRA LIGHT SERIES


METRIC SIZES

RKB	Din	nensio	ons	RKB load	ratings†	Normal speeds	limiting	Weight	Shaft a	and ho	using di	mension	s
designation	mil	limetr	es	newtons		rev/min		kg	millim	etres			
				dynamic	static	grease	oil	approx	max fillet		da) _a
	d	D	В	Cr	Cor				radius	min	max	min	max
N 1004	20	42	12	13 600	11 300	10 000	16 500	0,067	0,6	22,4	26,9	36,8	39,6
N 1005	25	47	12	15 200	13 600	8 800	14 600	0,080	0,6	27,4	31,8	41,7	44,6
N 1006	30	55	13	24 800	24 300	7 600	12 600	0,113	1,0	34,0	37,8	49,3	51,0
N 1007	35	62	14	26 700	26 100	6 700	11 200	0,170	1,0	39,0	43,7	56,4	58,0
N 1008	40	68	15	27 700	28 200	6 100	10 100	0,191	1,0	44,0	48,7	61,5	64,0
N 1009	45	75	16	34 200	35 500	9 100	12 200	0,255	1,0	49,0	54,0	68,5	71,0
N 1010	50	80	16	35 400	38 000	5 100	8 500	0,284	1,0	54,0	59,4	73,4	76,0
N 1011	55	90	18	43 400	48 000	4 600	7 600	0,404	1,0	59,0	66,5	82,0	86,0
N 1012	60	95	18	44 700	51 000	4 300	7 100	0,446	1,0	64,0	71,6	87,1	91,0
N 1013	65	100	18	47 600	56 500	4 000	6 700	0,454	1,0	69,0	76,7	92,2	96,0
N 1014	70	110	20	64 500	76 500	3 700	6 100	0,680	1,0	74,0	82,5	100,8	106,0
N 1015	75	115	20	66 500	80 500	3 500	5 800	0,708	1,0	79,0	87,3	105,7	111,0
N 1016	80	125	22	77 000	94 500	3 200	5 300	0,939	1,0	84,0	94,2	113,8	121,0
N 1017	85	130	22	81 500	104 000	3 000	5 000	0,998	1,0	89,0	99,1	118,9	126,0
N 1018	90	140	24	98 500	123 000	2 800	4 700	1,25	1,5	96,0	106,2	128,5	134,0
N 1019	95	145	24	101 000	129 000	2 700	4 500	1,41	1,5	101,0	111,0	133,6	139,0
N 1020	100	150	24	104 000	135 000	2 600	4 300	1,59	1,5	106,0	116,0	138,4	144,0

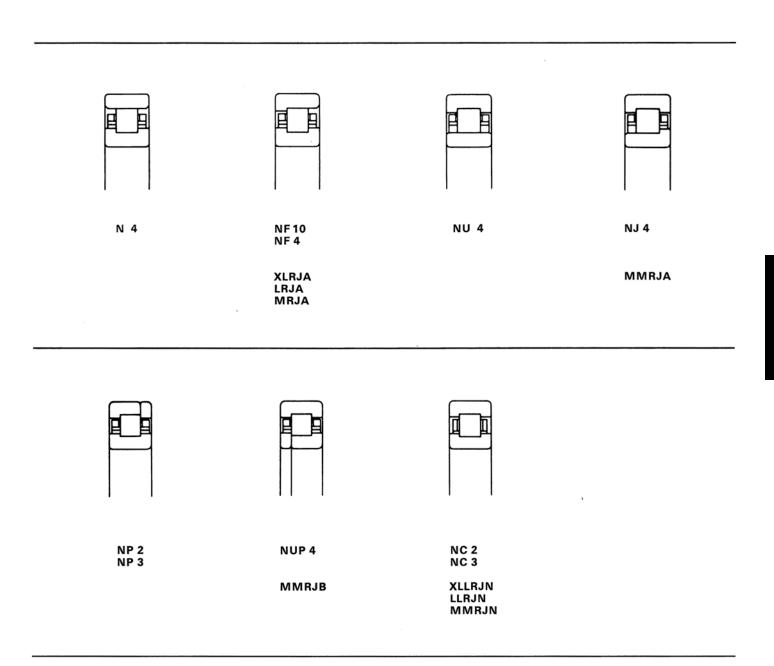

LIGHT WIDE SERIES NU 22

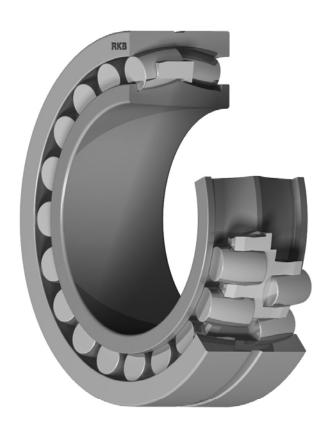
METRIC SIZES

RKB	Din	nensio	ons		RKB lo	ad ratings†	Norma speeds	l limiting	Weight	Shaft	and h	ousing	dimens	sions	
designation	mil	limetı	res		newto	ns	rev/mii	n	kg	millin	netres				
					dynami	ic static	grease	oil	approx		illet ra				
	d	D	В	F	Cr	Cor				inner ring	outer ring	min	l _a max	min	max
NU 2205	25	52	18	32	24 800	23 400	11 500	14 000	0,163	0,6	1,0	29,2	31,0	43,5	46,4
NU 2206	30	62	20	38,5	34 200	33 800	9 500	12 000	0,262	0,6	1,0	34,2	37,0	51,9	56,4
NU 2207	35	72	23	43,8	50 500	51 000	8 300	10 000	0,402	0,6	1,0	39,2	43,0	59,9	65,0
NU 2208	40	80	23	50	60 000	62 000	7 300	9 000	0,490	1,0	1,0	45,6	49,0	67,9	73,0
NU 2209	45	85	23	55	63 000	68 000	7 000	8 500	0,536	1,0	1,0	50,6	54,0	73,0	78,0
NU 2210	50	90	23	60,4	66 000	73 500	6 300	7 600	0,580	1,0	1,0	55,6	58,0	78,3	83,0
NU 2211	55	100	25	66,5	77 500	87 000	5 700	7 000	0,780	1,0	1,5	60,6	65,0	86,4	91,0
NU 2212	60	110	28	73,5	98 500	116 000	5 100	6 200	1,07	1,5	1,5	69,0	71,0	95,1	101,0
NU 2215	75	130	31	88,5	132 000	160 000	4 300	5 200	1,57	1,5	1,5	84,0	87,0	113,8	121,0
NU 2216	80	140	33	95,3	154 000	190 000	4 000	4 800	1,96	2,0	2,0	91,0	94,0	122,5	129,0

NU 23 MEDIUM WIDE SERIES

METRIC SIZES

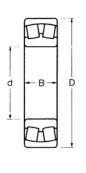


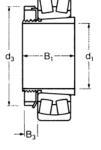

RKB	Din	nensio	ons		RKB lo	ad ratings†		al limiting	Weight	Shaft	and ho	using	dimens	ions	
designation	mil	limetr	es		newto	ns	speeds rev/mi		kg	millin	netres				
					dynam	ic static	grease	oil	approx		illet rad				_
	d	D	В	F	Cr	Cor				inner ring	outer ring	min	d _a max	min	D _a max
NU 2305	25	62	24	35	43 800	41 000	9 500	11 500	0,340	1,0	1,0	32,0	33,0	51,0	55,0
NU 2306	30	72	27	42	53 000	51 000	8 000	9 500	0,500	1,0	1,0	37,0	40,0	59,9	65,0
NU 2307	35	80	31	46,2	62 000	60 000	7 100	8 500	0,696	1,0	1,5	42,0	45,0	65,9	71,0
NU 2308	40	90	33	53,5	84 500	88 000	6 300	7 600	0,956	1,5	1,5	49,0	51,0	75,1	81,0
NU 2309	45	100	36	58,5	101 000	103 000	5 600	6 700	1,25	1,5	1,5	54,0	57,0	83,8	91,0
NU 2310	50	110	40	65	126 000	134 000	5 000	6 000	1,69	2,0	2,0	61,0	63,0	92,0	99,0
NU 2312	60	130	46	77	174 000	189 000	4 200	5 000	2,69	2,0	2,0	72,0	75,0	109,4	118,0
NU 2314	70	150	51	90	219 000	247 000	3 700	4 500	3,97	2,0	2,0	82,0	87,0	126,0	138,0
NU 2316 NU 2317	80 85	170 180	58 60	103 108	284 000 308 000	336 000 357 000	3 200 3 000	3 800 3 600	5,83 6 62	2,0 2,5	2,0 2,5	92,0 97,0	99,0 106,0	142,6 151,3	158,0 168,0
	100	215	73	129,5	450 000	553 000	2 500	3 000	11,9	2,5	2,5	112,0	125,0	180,0	203,0

Cylindrical roller bearings are made with the following alternative rib arrangements for the series indicated.

Imperial sizes with inch dimensions are also available on request BSI references and standards.

Please enquire regarding availability of particular sizes.





RKB 91

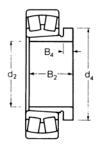
230 EXTRA LIGHT SERIES

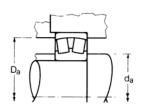
METRIC SIZES

Bearing with cylindrical bore

Bearing with adapter sleeve

RKB designati	ions			Dim	ensio	ns								
basic bearing with	adapter sleeve		withdrawal sleeve	milli	metre	es								
cylindrical bore*	metric bore	inch bore	metric bore	d	d ₁	d ₂	D	В	d ₃	d4	В1	B ₂	В3	В4
230 22				110			170	45						
230 24	H3024	H3024-41	AHX3024	120	110	115	180	46	145	130	72	60	22	13
230 26	H3026	$H3026-4\frac{7}{2}$	AHX3026	130	115	125	200	52	155	140	80	67	23	14
230 28	H3028	H3028-5	AHX3028	140	125	135	210	53	165	150	82	68	24	14
230 30	H3030	H3030-51	AHX3030	150	135	145	225	56	180	160	87	72	26	15
230 32	H3032	H3032-5½	AH 3032	160	140	150	240	60	190	170	93	77	28	16
230 34	H3034	H3034-6	AH 3034	170	150	160	260	67	200	180	101	85	29	17
230 36	H3036		AH 3036	180	160	170	280	74	210	190	109	92	30	17
230 38	H3038		AH 3038	190	170	180	290	75	220	205	112	96	31	18
230 40	H3040		AH 3040	200	180	190	310	82	240	215	120	102	32	19
230 44	H3044		AH 3044	220	200	200	340	90	260	235	126	111	41	20
230 48	H3048		AH 3048	240	220	220	360	92	290	260	133	116	46	21
230 52	H3052		AH 3052	260	240	240	400	104	310	280	145	128	46	23

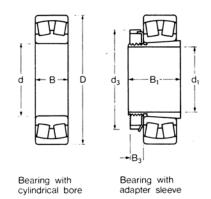

^{*}For bearings with 1:12 tapered bore add suffix 'K', e.g. 230 24K.


If bearings are required with a radial groove and three lubrication holes add suffix 'W33', e.g. 230 48 W33.

When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 230 30K + H3030.

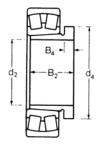
For $d_1 \leqslant 180$ mm the adapter sleeves are provided with a lock washer.

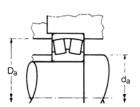
For d₁ > 180 mm the adapter sleeves have a locking clamp and dimension B₃ includes the width of the locking screw.



Bearing with withdrawal sleeve

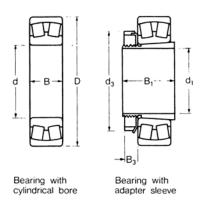
RKB load	ratings†		limiting	Weight	s		Shaft a	and ho	ousing	dime	nsions	RKB
newtons		speeds rev/min	ı	kg appr	ox		millim	etres				designation
dynamic	static	grease	oil	basic	with	with withdrawal	max fillet		da) _a	(basic
Cr	Cor			bearing	adapter sleeve	sleeve	radius		max		-	bearing)
285 000	455 000	1 700	2 200	4,00			2,0	119	125	153	161	230 22
275 000	460 000	1 600	2 100	4,35	6,03	4,85	2,0	129	135	163	171	230 24
350 000	580 000	1 500	1 900	6,35	9,07	7,12	2,0	139	147	180	191	230 26
360 000	620 000	1 400	1 800	6,85	9,84	7,67	2,0	149	157	190	201	230 28
405 000	700 000	1 300	1 700	8,26	11,9	9,16	2,0	161	168	204	214	230 30
460 000	810 000	1 200	1 600	10,2	15,1	12,0	2,0	171	180	218	229	230 32
630 000	1 100 000	1 100	1 400	13,4	19,0	15,4	2,0	181	192	235	249	230 34
750 000	1 340 000	1 000	1 300	17,6	23,9	19,9	2,0	191	206	252	269	230 36
720 000	1 260 000	900	1 200	18,8	25,7	21,6	2,0	200	213	262	280	230 38
915 000	1 630 000	900	1 200	24,1	32,6	27,2	2,0	211	227	279	299	230 40
1 060 000	1 930 000	800	1 000	31,5	40,9	38,0	2,5	232	247	306	328	230 44
1 120 000	2 120 000	700	900	34,9	47,0	42,6	2,5	252	268	327	348	230 48
1 460 000	2 650 000	630	800	50,7	64,5	59,9	3,0	275	291	361	385	230 52


231 EXTRA LIGHT WIDE SERIES


METRIC SIZES

RKB designation	ons			Dim	ensio	ns									
basic bearing with	adapter sleeve		withdrawal sleeve	milli	metre	es									
cylindrical bore*	metric bore	inch bore	metric bore	d	d ₁	d ₂	D	В	d ₃	d4	В1	B ₂	В3	В4	
231 20	H3120	H3120–3½	AHX3120	100	90	95	165	52	130	110	76	64	20	11	
231 22	H3122	H3122-4	AHX3122	110	100	105	180	56	145	120	81	68	21	11	
231 24	H3124	H3124-41	AHX3124	120	110	115	200	62	155	130	88	75	22	12	
231 26	H3126	H3126-41	AHX3126	130	115	125	210	64	165	140	92	78	23	12	
231 28	H3128	H3128-5	AHX3128	140	125	135	225	68	180	150	97	83	24	14	
231 30	H3130	H3130-54	AHX3130	150	135	145	250	80	195	165	111	96	26	15	
231 32	H3132	H3132-5½	AH 3132	160	140	150	270	86	210	180	119	103	28	16	
231 34	H3134	H3134–6	AH 3134	170	150	160	280	88	220	190	122	104	29	16	
231 36	H3136		AH 3136	180	160	170	300	96	230	200	131	116	30	19	
231 38	H3138		AH 3138	190	170	180	320	104	240	210	141	125	31	20	
231 40	H3140		AH 3140	200	180	190	340	112	250	220	150	134	32	21	
231 44	H3144X		AH 3144	220	200	200	370	120	280	240	161	145	35	23	
231 48	H3148X		AH 3148	240	220	220	400	128	300	260	172	154	37	25	
231 52	H3152X		AH 3152	260	240	240	440	144	330	290	190	172	39	26	

^{*}For bearings with 1:12 tapered bore add suffix 'K', e.g. 231 30K.
If bearings are required with a radial groove and three lubrication holes add suffix 'W33', e.g. 231 48 W33.
When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 231 26K + H3126.

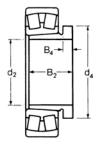


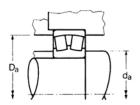
Bearing with withdrawal sleeve

RKB load i	atings†		limiting	Weight	s		Shaft a	nd hou	using dir	nensions	RKB
newtons		speeds rev/min	ı	kg appr	ox		millime	etres			designation
dynamic	static	grease	oil	basic	with adapter	with withdrawal	max fillet	4	la	Da	(basic
Cr	Cor			bearing		sleeve	radius		max	max	bearing)
315 000	490 000	1 600	2 000	4,53	6,18	5,05	2,0	111	115	154	231 20
350 000	560 000	1 600	2 000	5,76	7,84	6,35	2,0	121	127	169	231 22
460 000	750 000	1 400	1 800	8,33	10,7	9,03	2,0	131	142	189	231 24
460 000	770 000	1 400	1 800	9,10	12,5	9,91	2,0	141	149	199	231 26
560 000	930 000	1 300	1 700	10,8	14,8	11,8	2,0	153	162	212	231 28
690 000	1 210 000	1 000	1 200	16,4	21,4	17,7	2,0	162	176	238	231 30
800 000	1 320 000	1 000	1 200	20,5	27,6	23,1	2,0	173	189	257	231 32
850 000	1 430 000	900	1 200	22,4	30,1	25,1	2,0	182	197	268	231 34
1 020 000	1 730 000	900	1 200	28,4	37,9	31,7	2,5	194	209	286	231 36
1 140 000	2 000 000	800	1 000	35,5	45,2	39,3	2,5	204	223	306	231 38
1 270 000	2 160 000	800	1 000	43,7	54,4	47,8	2,5	214	231	326	231 40
1 560 000	2 750 000	700	900	54,8	67,8	63,5	3,0	237	253	353	231 44
1 800 000	3 150 000	630	800	67,6	82,9	77,6	3,0	257	276	383	231 48
2 160 000	3 900 000	560	700	93,6	113	107	3,0	277	302	423	231 52

222 LIGHT SERIES

METRIC SIZES

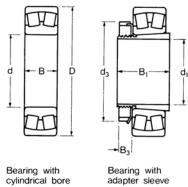



RKB designation	าร			Dir	nensi	ons								
basic bearing with	adapter sleeve		withdrawal sleeve	mil	limet	res								
cylindrical bore*	metric bore	inch bore	metric bore	d	d ₁	d ₂	D	В	d ₃	d4	В1	B ₂	В3	В4
222 05 222 06 222 07 222 08	H 305 H 306 H 307 H 308	H 305- ³ / ₄ H 306-1 H 308-1 ¹ / ₄	AH 308	25 30 35 40	20 25 30 35	35	52 62 72 80	18 20 23 23	38 45 52 58	45	29 31 35 36	29	8 8 9 10	6
222 09 222 10 222 11 222 12	H 309 H 310 H 311 H 312	H 309-1½ H 310-1¾ H 311-2 H 312-2⅓	AH 309 AHX 310 AHX 311 AHX 312	45 50 55 60	40 45 50 55	40 45 50 55	85 90 100 110	23 23 25 28	65 70 75 80	50 55 60 65	39 42 45 47	31 35 37 40	11 12 12 13	6 7 7 8
222 13 222 14 222 15 222 16	H 313 H 314 H 315 H 316	H 313-2½ H 315-2½ H 316-2¾	AH 313 AH 314 AH 315 AH 316	65 70 75 80	60 60 65 70	60 65 70 75	120 125 130 140	31 31 31 33	85 92 98 105	75 80 85 90	50 52 55 59	42 43 45 48	14 14 15 17	8 8 8
222 17 222 18 222 19 222 20	H 317 H 318 H 319 H 320	H 317-3 H 318-3\frac{1}{4} H 320-3\frac{1}{2}	AHX 317 AHX 318 AHX 319 AHX 320	85 90 95 100	75 80 85 90	80 85 90 95	150 160 170 180	36 40 43 46	110 120 125 130	95 100 105 110	63 65 68 71	52 53 57 59	18 18 19 20	9 9 10 10
222 22 222 24 222 26 222 28	H 322 H3124 H3126 H3128	H 322-4 H3124-4 ¹ / ₂ H3126-4 ¹ / ₂ H3128-5	AHX3122 AHX3124 AHX3126 AHX3128	110 120 130 140	100 110 115 125	105 115 125 135	200 215 230 250	53 58 64 68	145 155 165 180	120 130 140 150	77 88 92 97	68 75 78 83	21 22 23 24	11 12 12 14
222 30 222 32 222 34 222 36	H3130 H3132 H3134 H3136	H3130-5½ H3132-5½ H3134-6	AHX3130 AH 3132 AH 3134 AH 2236	150 160 170 180	135 140 150 160	145 150 160 170	270 290 310 320	73 80 86 86	195 210 220 230	165 180 190 200	111 119 122 131	96 103 104 105	26 28 29 30	15 16 16 17
222 38 222 40 222 44 222 48	H3138 H3140 H3144X H3148X		AH 2238 AH 2240 AH 2244 AH 2248	190 200 220 240	170 180 200 220	180 190 200 220	340 360 400 440	92 98 108 120	240 250 280 300	210 220 240 260	141 150 161 172	112 118 130 144	31 32 35 37	18 19 20 21

^{*}For bearings with 1:12 tapered bore add suffix 'K', e.g. 222 O5K.

If bearings are required with a radial groove and three lubrication holes add suffix 'W33' e.g. 222 36 W33.

When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 222 09K + H309.

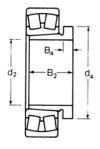


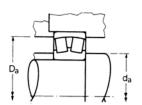
Bearing with withdrawal sleeve

RKB load inewtons	ratings†	Normal speeds rev/min	limiting	Weights			Shaft millim		ousing	g dim	ensions	RKB designation
dynamic C _r	static C _{or}	grease	oil	basic bearing	with adapter sleeve	with withdrawal sleeve	max fillet radius		l _a max		D _a max	(basic bearing)
33 500	35 500	6 800	8 900	0,182	0,265	0,626	1,0	31	34	45	46	222 05
45 000	48 000	5 700	7 400	0,290	0,409		1,0	36	40	54	56	222 06
60 000	66 000	4 900	6 400	0,431	0,572		1,0	42	47	63	65	222 07
70 000	76 000	4 300	5 700	0,549	0,726		1,0	47	53	71	73	222 08
75 000	83 000	4 000	5 200	0,608	0,844	0,703	1,0	52	58	76	78	222 09
79 000	88 000	3 700	4 900	0,649	0,939	0,771	1,0	57	62	81	83	222 10
93 000	104 000	3 400	4 400	0,880	1,21	1,02	1,5	64	69	90	91	222 11
117 000	131 000	3 100	4 000	1,21	1,58	1,38	1,5	69	75	97	101	222 12
141 000	161 000	2 800	3 700	1,59	2,02	1 81	1,5	74	82	108	111	222 13
147 000	173 000	2 700	3 500	1,67	2,35	1,91	1,5	79	87	113	116	222 14
153 000	185 000	2 500	3 300	1,76	2,55	2,03	1,5	84	92	118	121	222 15
175 000	212 000	2 400	3 100	2,16	3,14	2,48	2,0	91	99	127	129	222 16
204 000	250 000	2 200	2 900	2,75	3,87	3,12	2,0	96	105	135	139	222 17
255 000	325 000	2 100	2 700	3,55	4,85	3,94	2,0	101	112	144	149	222 18
275 000	360 000	2 000	2 600	4,31	5,76	4,76	2,0	108	120	153	157	222 19
305 000	400 000	1 900	2 400	5,17	6,76	5,62	2,0	113	127	162	167	222 20
390 000	520 000	1 700	2 200	7,40	9,43	7,98	2,0	123	139	179	187	222 22
460 000	630 000	1 600	2 000	9,30	11,7	10,1	2,0	133	151	193	202	222 24
550 000	770 000	1 400	1 900	11,7	15,2	12,6	2,5	144	162	206	216	222 26
590 000	810 000	1 300	1 700	15,0	19,0	16,0	2,5	154	176	225	236	222 28
690 000	980 000	1 200	1 600	18,5	23,6	19,9	2,5	164	192	242	256	222 30
680 000	1 010 000	1 200	1 500	23,4	30,6	26,1	2,5	174	204	260	276	222 32
780 000	1 180 000	1 100	1 400	29,0	36,8	31,8	3,0	188	217	277	292	222 34
800 000	1 230 000	1 000	1 400	30,5	39,4	34,1	3,0	198	228	287	302	222 36
940 000 1 120 000 1 360 000 1 860 000	1 450 000 1 740 000 2 150 000 2 850 000	1 000 900 800 750	1 300 1 200 1 100 1 000	37,4 45,0 63,1	47,6 56,2 76,2 101	41,5 49,4 72,1 95,3	3,0 3,0 3,0 3,0	208 218 238 258	240 253 285 310	306 323 358 394	322 342 382 422	222 38 222 40 222 44 222 48

232 LIGHT WIDE SERIES

METRIC SIZES

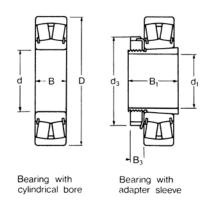



RKB designat	ions			Dir	mensi	ons								
basic bearing with	adapter sleeve		withdrawal sleeve	mi	llimet	res								
cylindrical bore*	metric bore	inch bore	metric bore	d	d ₁	d ₂	D	В	d ₃	d4	В1	B ₂	В3	В4
232 18 232 20 232 22 232 24	H2318 H2320 H2322 H2324	H2318-3½ H2320-3½ H2322-4 H2324-4¼	AHX3218 AHX3220 AHX3222 AHX3224	90 100 110 120	80 90 100 110	85 95 105 115	160 180 200 215	52,4 60,3 69,8 76	120 130 145 155	100 110 125 135	86 97 105 112	63 73 82 90	18 20 21 22	10 11 11 13
232 26 232 28 232 30 232 32	H2326 H2328 H2330 H2332	H2326-4½ H2328-5 H2330-5¼ H2332-5½	AHX3226 AHX3228 AHX3230 AH 3232	130 140 150 160	115 125 135 140	125 135 145 150	230 250 270 290	80 88 96 104	165 180 195 210	145 155 165 180	121 131 139 147	98 104 114 124	23 24 26 28	15 15 17 20
232 34 232 36 232 38 232 40	H2334 H2336 H2338 H2340	H2334–6	AH 3234 AH 3236 AH 3238 AH 3240	170 180 190 200	150 160 170 180	160 170 180 190	310 320 340 360	110 112 120 128	220 230 240 250	190 200 210 220	154 161 169 176	134 140 145 153	29 30 31 32	24 25 25 24
232 44	H2344X		AH 2344	220	200	200	400	144	280	240	186	181	35	30

^{*}For bearings with 1:12 tapered bore add suffix 'K', e.g. 232 18K.

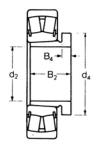
If bearings are required with a radial groove and three lubrication holes add suffix 'W33' e.g. 232 38 W33.

When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 232 24K + H2324.



Bearing with withdrawal sleeve

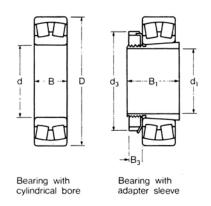
	RKB load	ratings†		limiting	Weight	s		Shaft a	nd ho	using	dimer	sions	RKB
	newtons		speeds rev/min	1	kg appr	ox		millime	tres				designation
	dynamic	static	grease	oil	basic	with	with withdrawal	max fillet) _a	(basic
	Cr	Cor			bearing	adapter sleeve	sleeve	radius	min	i _a max			bearing)
	320 000	470 000	1 800	2 200	4,68	6,23	5,12	2,0	101	107	140	149	232 18
	405 000	610 000	1 600	2 000	6,85	8,80	7,44	2,0	113	119	157	167	232 20
	490 000	740 000	1 500	1 900	9,89	12,4	10,7	2,0	123	132	174	187	232 22
	600 000	940 000	1 400	1 800	12,2	15,1	13,2	2,0	133	142	186	202	232 24
	590 000	940 000	1 200	1 600	14,5	18,7	15,7	2,5	144	152	201	216	232 26
	780 000	1 270 000	1 200	1 600	19,0	24,1	20,3	2,5	154	163	218	236	232 28
	800 000	1 280 000	1 100	1 400	24,5	30,8	26,0	2,5	164	175	235	256	232 30
1	060 000	1 700 000	900	1 200	31,0	39,2	34,2	2,5	174	190	251	276	232 32
1	200 000	1 930 000	800	1 000	37,5	46,6	41,2	3,0	187	202	269	293	232 34
	290 000	2 080 000	800	1 000	39,8	50,0	44,0	3,0	197	209	279	303	232 36
1	500 000	2 500 000	800	1 000	47,4	58,6	51,9	3,0	207	222	295	323	232 38
1	600 000	2 650 000	700	900	58,1	70,4	63,2	3,0	217	237	311	343	232 40
•	1 850 000	3 100 000	700	900	81,6	96,2	93,0	3,0	238	263	346	382	232 44


213 MEDIUM SERIES

METRIC SIZES

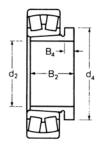
RKB designat	ions			Din	ensio	ns									
basic bearing with	adapter sleeve		withdrawal sleeve	mill	imetr	es									
cylindrical bore*	metric bore	inch bore	metric bore	d	d ₁	d ₂	D	В	d ₃	d4	B ₁	B ₂	В3	В4	
213 05				25			62	17							
213 06 213 07				30 35			72 80	19 21							
213 08	H308	H308-14	AH 308	40	35	35	90	23	58	45	36	29	10	6	
213 09	H309	H309-13	AH 309	45	40	40	100	25	65	50	39	31	11	6	
213 10	H310	H310-13	AHX310	50	45	45	110	27	70	55	42	35	12	7	
213 11	H311	H311-17	AHX311	55	50	50	120	29	75	60	45	37	12	7	
213 12	H312	H312-21	AHX312	60	55	55	130	31	80	65	47	40	13	8	
213 13	H313	H313-21	AH 313	65	60	60	140	33	85	75	50	42	14	8	
213 14	H314	-	AH 314	70	60	65	150	35	92	80	52	43	14	8	
213 15	H315	H315-2½	AH 315	75	65	70	160	37	98	85	55	45	15	8	
213 16	H316	H316–2 ³ / ₄	AH 316	80	70	75	170	39	105	90	59	48	17	8	
213 17	H317	H317-3	AHX317	85	75	80	180	41	110	95	63	52	18	9	
213 18	H318	H318-34	AHX318	90	80	85	190	43	120	100	65	53	18	9	

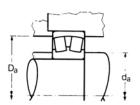
^{*} For bearings with 1: 12 tapered bore add suffix 'K', e.g. 21308K. If bearings are required with a radial groove and three lubrification holes add suffix "W33' e.g. 21312 W33. When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 213 13K + H313.


Bearing with withdrawal sleeve

RKB load	ratings†	Normal speeds	limiting	Weights	3		Shaft a	nd ho	using	dimen	sions	RKB
newtons		rev/min	ı	kg appr	рх		millime	tres				designation
dynamic	static	grease	oil	basic	with	with	max fillet					/haaia
Cr	Cor			bearing	adapter sleeve	withdrawal sleeve	radius		d _a max		max	(basic bearing)
43 000	41 000	5 200	6 700	0,250			1,0	32	33	53	55	213 05
56 000	55 000	4 300	5 600	0,380			1,0	37	38	61	65	213 06
69 000	71 000	3 800	5 000	0,508			1,5	44	45	68	71	213 07
84 000	90 000	3 400	4 400	0,712	0,889	0,789	1,5	49	52	77	81	213 08
102 000	111 000	3 000	4 000	0,948	1,18	1,04	1,5	54	58	86	91	213 09
122 000	140 000	2 800	3 600	1,21	1,49	1,33	2,0	61	65	94	99	213 10
147 000	171 000	2 500	3 300	1,58	1,91	1,72	2,0	66	70	104	109	213 11
164 000	193 000	2 300	3 000	1,96	2,32	2,12	2,0	73	77	112	117	21312
191 000	223 000	2 100	2 800	2,45	2,87	2,66	2,0	78	82	122	127	21313
210 000	248 000	2 000	2 600	2,99	3,67	3,23	2,0	83	88	129	137	21314
238 000	285 000	1 900	2 400	3,56	4,34	3,82	2,0	88	93	138	147	213 15
260 000	310 000	1 800	2 300	4,18	5,17	4,49	2,0	93	100	147	157	21316
295 000	360 000	1 700	2 200	4,99	6,08	5,35	2,5	99	106	156	166	213 17
315 000	395 000	1 600	2 000	5,81	7,08	6,17	2,5	104	113	165	176	213 18

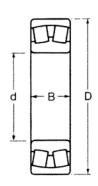
223 MEDIUM WIDE SERIES


METRIC SIZES


ISO DIMENSION SERIES 23

RKB designation	ons			Dir	nensi	ons								
basic bearing with	adapter sleeve		withdrawal sleeve	mil	limet	res								
cylindrical bore*	metric bore	inch bore	metric bore	d	d ₁	d ₂	D	В	d ₃	d4	В1	B ₂	В3	В4
223 08 223 09 223 10 223 11	H2308 H2309 H2310 H2311	H2308-11/2 H2309-11/2 H2310-11/4 H2311-2	AH 2308 AH 2309 AHX2310 AHX2311	40 45 50 55	35 40 45 50	35 40 45 50	90 100 110 120	33 36 40 43	58 65 70 75	45 50 55 60	46 50 55 59	40 44 50 54	10 11 12 12	7 7 9 10
223 12 223 13 223 14 223 15	H2312 H2313 H2314 H2315	H2313-21/4 H2315-21/2	AHX2312 AH 2313 AHX2314 AHX2315	60 65 70 75	55 60 60 65	55 60 65 70	130 140 150 160	46 48 51 55	80 85 92 98	65 75 80 85	62 65 68 73	58 61 64 68	13 14 14 15	11 12 12 12
223 16 223 17 223 18 223 19	H2316 H2317 H2318 H2319	H2316-23 H2317-3 H2318-31	AHX2316 AHX2317 AHX2318 AHX2319	80 85 90 95	70 75 80 85	75 80 85 90	170 180 190 200	58 60 64 67	105 110 120 125	90 95 100 105	78 82 86 90	71 74 79 85	17 18 18 19	12 13 14 16
223 20 223 22 223 24 223 26	H2320 H2322 H2324 H2326	H2320-3½ H2322-4 H2324-4¼ H2326-4½	AHX2320 AHX2322 AHX2324 AHX2326	100 110 120 130	90 100 110 115	95 105 115 125	215 240 260 280	73 80 86 93	130 145 155 165	110 125 135 145	97 105 112 121	90 98 105 115	20 21 22 23	16 16 17 19
223 28 223 30 223 32 223 34	H2328 H2330 H2332 H2334	H2328-5 H2330-5 ¹ / ₄ H2332-5 ¹ / ₂ H2334-6	AHX2328 AHX2330 AH 2332 AH 2334	140 150 160 170	125 135 140 150	135 145 150 160	300 320 340 360	102 108 114 120	180 195 210 220	155 165 180 190	131 139 147 154	125 135 140 146	24 26 28 29	20 24 24 24

^{*}For bearings with 1:12 tapered bore add suffix 'K', e.g. 223 16K. If bearings are required with a radial groove and three lubrication holes add suffix 'W33', e.g. 223 28 W33. When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 223 26K + AHX2326.

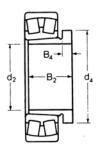

Bearing with withdrawal sleeve

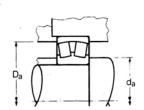
RKB load	l ratings†	Normal speeds	limiting	Weight	s		Shaft a	and ho	ousing	dime	nsions	RKB
newtons		rev/min		kg appr	ox		millime	etres				designation
dynamic C _r	static C _{or}	grease	oil	basic bearing	with adapter sleeve	with withdrawal sleeve	max fillet radius		d _a max		D _a max	(basic bearing)
115 000	129 000	3 900	5 000	0,993	1,20	1,10	1,5	49	51	76	81	223 08
137 000	163 000	3 400	4 500	1,35	1,60	1,48	1,5	54	59	84	91	223 09
168 000	202 000	3 100	4 100	1,81	2,13	1,98	2,0	61	65	93	99	223 10
198 000	240 000	2 900	3 700	2,33	2,70	2,53	2,0	66	71	102	109	223 11
230 000	280 000	2 600	3 400	2,91	3,32	3,14	2,0	73	77	111	117	223 12
247 000	300 000	2 400	3 200	3,48	3,96	3,80	2,0	78	83	120	127	223 13
280 000	325 000	2 300	3 000	4,20	4,99	4,58	2,0	83	87	130	137	223 14
325 000	385 000	2 100	2 800	5,22	6,17	5,62	2,0	88	92	139	147	223 15
370 000	460 000	2 000	2 600	6,17	7,30	6,62	2,0	93	100	147	157	223 16
395 000	510 000	1 900	2 500	7,12	8,44	7,67	2,5	99	108	154	166	223 17
435 000	550 000	1 800	2 300	8,48	9,98	9,07	2,5	104	113	165	176	223 18
415 000	510 000	1 700	2 200	9,93	11,7	10,6	2,5	109	119	174	186	223 19
465 000	570 000	1 600	2 100	12,5	14,5	13,3	2,5	114	126	186	201	223 20
770 000	1 030 000	1 400	1 900	18,1	20,4	19,1	2,5	124	141	207	226	223 22
790 000	1 020 000	1 300	1 700	22,9	25,6	24,0	2,5	134	150	226	246	223 24
910 000	1 200 000	1 200	1 600	28,6	32,6	30,0	3,0	148	165	242	262	223 26
1 070 000	1 440 000	1 100	1 500	36,2	41,0	37,2	3,0	158	177	260	282	223 28
1 170 000	1 600 000	1 100	1 400	43,6	49,4	45,4	3,0	168	189	277	302	223 30
1 200 000	1 660 000	1 000	1 300	51,7	59,9	55,3	3,0	178	205	293	322	223 32
1 310 000	1 840 000	950	1 200	62,1	70,8	66,2	3,0	188	217	310	342	223 34

240 SERIES

METRIC SIZES

ISO DIMENSION SERIES 40




RKB designatio	ns		Dim	ension	s					RKB load newtons	ratings†	Norma	al limiting s
basic bearing with cylindrical	with taper	withdrawal sleeve metric	mill	imetre	S							rev/m	in
bore	bore	bore	d	d ₂	D	В	d_4	B ₂	В ₄	dynamic C _r	static Co _r	grease	e oil
24024	-K	AH 24024	120	115	180	60	M 125X2	73	82	374 000	670 000	1 600	2 000
24026	-K	AH 24026	130	125	200	69	M 135X2	83	93	477 000	815 000	1 500	1 900
24028	-K	AH 24028	140	135	210	69	M 145X2	83	93	495 000	900 000	1 400	1 800
24030	-K	AH 24030	150	145	225	75	M 155X3	90	101	564 000	1 040 000	1 300	1 700
24032	-K	AH 24032	160	150	240	80	M 170X3	95	106	656 000	1 200 000	1 100	1 500
24034	-K	AH 24034	170	160	260	90	M 180X3	106	117	799 000	1 460 000	1 000	1 400
24036	-K	AH 24036	180	170	280	100	M 190X3	116	127	937 000	1 730 000	950	1 300
24038	-K	AH 24038	190	180	290	100	M 200X3	118	131	978 000	1 800 000	950	1 300
24040	-K	AH 24040	200	190	310	109	Tr 210X4	127	140	1 130 000	2 120 000	900	1 200
24044	-K	AOH 24044	220	200	340	118	Tr 230X4	138	152	1 360 000	2 600 000	850	1 100
24048	-K	AOH 24048	240	220	360	118	Tr 250X4	138	153	1 380 000	2 700 000	800	1 000
24052	-K	AOH 24052	260	240	400	140	Tr 270X4	162	178	1 760 000	3 450 000	700	900
24056	-K	AOH 24056	280	260	420	140	Tr 290X4	162	179	1 780 000	3 800 000	670	850
24060	-K	AOH 24060	300	280	460	160	Tr 310X5	184	202	2 350 000	4 750 000	600	750
24064	-K	AOH 24064	320	300	480	160	Tr 330X5	184	202	2 480 000	5 100 000	560	700
24068	-K	AOH 24068	340	320	520	180	Tr 360X5	206	225	2 990 000	6 200 000	530	670
24072	-K	AOH 24072	360	340	540	180	Tr 380X5	206	226	3 110 000	6 550 000	500	630
24076	-K	AOH 24076	380	360	560	200	Tr 400X5	208	228	3 160 000	6 800 000	480	600
24080	-K	AOH 24080	400	380	600	200	Tr 420X5	228	248	3 620 000	7 800 000	450	750
24084	-K	AOH 24084	420	400	620	200	Tr 440X5	230	252	3 740 000	8 150 000	380	480
24088	-K	AOH 24088	440	420	650	212	Tr 460X5	242	264	4 080 000	8 800 000	360	450
24092	-K			460		680		218		4 370 000	9 500 000	340	430
24096	-K			480		700		218		4 490 000	10 000 000	340	430
240/500	-K			500		720		218		4 600 000	10 400 000	320	400
240/530	-K			530		780		250		5 640 000	12 700 000	280	360
240/560	-K			560		820		258		6 210 000	14 000 000	260	340
240/600	-K			600		870		272		6 730 000	15 600 000	240	320
240/630	-K			630		920		290		7 530 000	17 300 000	220	300
240/670	-K			670		980		308		8 450 000	20 000 000	200	280
240/710	-K			710		1 030		315		8 970 000	22 000 000	190	260
240/750	-K			750		1 090		335		9 950 000	24 000 000	180	240
240/800	-K			800		1 150		345		10 900 000	27 500 000	170	220
240/850	-K			850		1 220		365		12 000 000	30 000 000	160	200
240/900	-K			900		1 280		375		12 900 000	32 500 000	150	190
240/950	-K			950		1 360		412		14 800 000	39 000 000	130	170
240/1000	-K			1 000		1 420		412		15 400 000	40 500 000	120	160
240/1060	-K			1 060		1 500		438		17 300 000	45 500 000	110	120

For bearings with 1:30 tapered bore add suffix 'K', 30' e.g. 24030 K30.

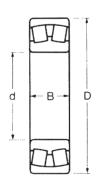
If bearings are required with a radial groove and three lubrification holes add suffix "W33' e.g. 24056 W33.

When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 24052 K30 + AOH 24052.

Weights

Shaft and housing dimensions

J				
Kg	approx	millimet	res	
basic bearing	withdrawal sleeve	max fillet radius	d _a min	D _a max
5,30	0,70	2 2 2 2	130	170
7,85	0,88	2	140	190
8,35	0,95	2	150	200
10,5	1,05	2	162	213
12,5	2,30	2 2 2 2	172	228
17,0	2,70	2	182	248
22,5	3,20	2	192	268
23,5	3,55	2	202	278
30,0	4,00	2	212	298
39,0	8,20	2 5	326	234
39,0	0,20	2 2,5 2,5	254	346
42,0 63,5	8,05 10,5	3	278	382
03,5	10,5	3		
67,5	11,5	3	298	402
95,5	14,0	3	318	442
98,0	15,0	3 3 4	338	462
135	18,0	4	362	498
140	20,0	4	382	518
145	23,5	4 4	402	538
200	23,5 27,0	4	402	538 578
205	29,0	4	442	578 598
	29,0	4	442	536
240	32,0	5	468	622
275				
285				
295				
410				
465				
540				
655				
790				
895				
1 065 1 200				
1 200				
1 410				
1 410 1 570				
1 990				
2 140				
2 515				

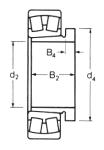

RKB 105

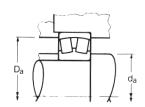
Double row spherical roller bearings

241 SERIES

METRIC SIZES

ISO DIMENSION SERIES 41




RKB designa	ations		Dime	ensior	ns				RKE	tons	load ratings†	Norma	l limitings
basic bearing with	with	withdrawal sleeve	milli	metre	es				iiew	tons	rev/min		
cylindrical bore	taper bore	metric bore	d	d ₂	D	В	d ₄	B ₂	B ₄	dynamic C _r	static C _{or}	grease	oil
24122 24124 24126 24128	-K -K -K -K	AH 24122 AH 24124 AH 24126 AH 24128	110 120 130 140	105 115 125 135	180 200 210 225	69 80 80 85	M 115X2 M 130X2 M 140X2 M 150X2	82 93 94 99	91 102 104 109	460 000 575 000 587 000 673 000	750 000 950 000 1 000 000 1 160 000	1 000 900 900 850	1 400 1 200 1 200 1 100
24130 24132 24134 24136	-K -K -K -K	AH 24130 AH 24132 AH 24134 AH 24136	150 160 170 180	145 150 160 170	250 270 280 300	100 109 109 118	M 160X3 M 170X3 M 180X3 M 190X3	115 124 125 134	126 135 136 145	897 000 1 040 000 1 070 000 1 220 000	1 530 000 1 760 000 1 860 000 2 160 000	800 700 670 630	1 000 900 850 800
24138 24140 24144 24148	-K -K -K	AH 24138 AH 24140 AOH 24144 AOH 24148	190 200 220 240	180 190 200 220	320 340 370 400	128 140 150 160	M 200X3 Tr 210X4 Tr 230X4 Tr 260X4	146 158 170 180	159 171 184 195	1 400 000 1 580 000 1 840 000 2 100 000	2 500 000 2 800 000 3 350 000 3 900 000	600 560 500 480	750 700 630 600
24152 24156 24160 24164	-K -K -K	AOH 24152 AOH 24156 AOH 24160 AOH 24164	260 280 300 320	240 260 280 300	440 460 500 540	180 180 200 218	Tr 280X4 Tr 300X4 Tr 320X5 Tr 340X5	202 202 224 242	218 219 242 260	2 620 000 2 670 000 3 280 000 3 740 000	4 800 000 5 100 000 6 300 000 7 100 000	430 400 360 340	530 500 450 430
24168 24172 24176 24180	-K -K -K	AOH 24168 AOH 24172 AOH 24176 AOH 24180	340 360 380 400	320 340 360 380	580 600 620 650	243 243 243 250	Tr 360X5 Tr 380X5 Tr 400X5 Tr 420X5	269 269 271 278	288 289 291 298	4 660 000 4 490 000 4 600 000 4 890 000	8 650 000 8 650 000 9 150 000 9 800 000	320 300 190 180	400 380 260 240
24184 24188 24192 24196	-K -K -K	AOH 24184 AOH 24188 AOH 24192 AOH 24196	420 440	400 420 440 460	700 720 760 790	280 280 300 308	Tr 440X5 Tr 460X5 Tr 480X5 Tr 500X5	310 310 332 340	332 332 355 363	5 750 000 5 980 000 7 250 000 7 250 000	11 400 000 12 200 000 14 600 000 15 000 000	170 170 160 150	220 220 200 190
241/500 241/530 241/560 241/600	-K -K -K -K	AOH 241/500 AOH 241/530 AOH 241/560 AOH 241/600		480 500 530 560	830 870 920 980	325 335 355 375	Tr 530X6 Tr 550X6 Tr 580X6 Tr 630X6	360 370 393 413	383 394 417 439	8 630 000 9 200 000 10 500 000 10 700 000	17 000 000 19 000 000 21 600 000 22 800 000	140 130 120 110	180 170 160 150
241/630	-K	AOH 241/630		600	1 030	400	Tr 650X6	440	466	12 700 000	27 000 000	100	140

For bearings with 1:30 tapered bore add suffix 'K', 30' e.g. 24138 K30.

If bearings are required with a radial groove and three lubrification holes add suffix "W33' e.g. 24160 W33.

When ordering a bearing with an adapter or withdrawal sleeve, add the designation of the latter component to that of the bearing with tapered bore, e.g. 24136 K30 + AH 24136.

Weighte								
	4	h	~	:	_	W	14	

1 380

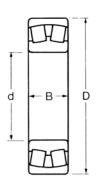
130

6

666

994

Shaft and housing dimensions


kg	approx	millime	tres					
basic bearing	withdrawal sleeve	max fillet radius	d _a min	D _a max				
6.75 10.0 10.5 12.5	0.71 1.00 1.05 1.30	2 2 2 2	120 130 140 152	170 190 200 213				
19.5 25.0 26.0 32.5	1.55 3.05 3.25 3.75	2 2 2 2.5	162 172 182 194	238 258 268 286				
41.0 51.0 64.0 79.0	4.45 5.05 10.0 11.5	2.5 2.5 3 3	204 214 238 258	306 326 352 382				
110 115 155 205	14.0 15.0 18.5 20.5	3 4 4 4	278 302 322 342	422 438 478 518				
265 265 295 335	25.5 26.0 31.0 35.0	4 4 4 5	362 382 402 428	558 578 598 622				
440 455 550 595	39.0 42.5 50.0 51.5	5 5 6 6	448 468 496 516	672 692 724 754				
735 820 970 1 180	57.0 86.0 97.0 120	6 6 6	536 566 596 636	794 834 884 944				

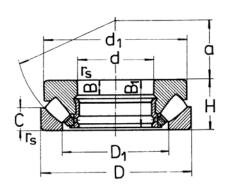
Double row spherical roller bearings

239 SERIES

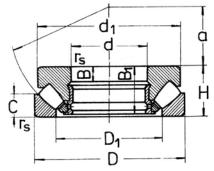
METRIC SIZES

ISO DIMENSION SERIES 39

basic bearing with	vith with ylindrical taper	millin	nsions netres		RKB load	ratings†	Normal speeds rev/mir	limiting 1	Weight	Shaft a		ing dimensions
bore		d	D	В	dynamic C _r	static C _{or}	grease	oil	Kg approx	da min	Da max	ra max
239 36	-K	180	250	52	431 000	830 000	1 700	2 200	8.20	190	240	2
239 38	-K	190	260	52	414 000	800 000	1 700	2 200	8.40	200	250	2
239 40	-K	200	280	60	546 000	1 040 000	1 600	2 000	11.5	212	268	2
239 44	-K	220	300	60	546 000	1 080 000	1 500	1 900	13.0	232	288	2
239 48	-K	240	320	60	564 000	1 160 000	1 300	1 700	14.0	252	308	2
239 52	-K	260	360	75	880 000	1 800 000	1 100	1 500	24.0	272	348	2
239 56	-K	280	380	75	845 000	1 760 000	1 000	1 400	26.0	292	368	2
239 60	-K	300	420	90	1 200 000	2 500 000	950	1 300	40.5	314	406	2.5
239 64	-K	320	440	90	1 240 000	2 700 000	900	1 200	42.0	334	426	2.5
239 68	-K	340	460	90	1 270 000	2 800 000	900	1 200	45.5	354	446	2.5
239 72	-K	360	480	90	1 290 000	2 900 000	850	1 100	46.5	374	466	3
239 76	-K	380	520	106	1 730 000	3 800 000	800	1 000	69.0	398	502	3
239 80	-K	400	540	106	1 730 000	3 900 000	750	950	71.0	418	522	3
239 84	-K	420	560	106	1 760 000	4 150 000	700	900	74.5	438	542	3
239 88	-K	440	600	118	2 100 000	4 900 000	670	850	99.5	458	582	3
239 92	-K	460	620	118	2 190 000	5 000 000	430	530	105	478	602	3
239 96	-K	480	650	128	2 530 000	5 700 000	400	500	125	502	628	4
239 /500	-K	500	670	128	2 530 000	6 000 000	400	500	130	522	648	4
239 /530	-K	530	710	136	2 820 000	6 700 000	360	450	155	552	688	4
239 /560	-K	560	750	140	3 050 000	7 200 000	340	430	175	582	778	4
239 /600	-K	600	800	150	3 450 000	8 300 000	320	400	220	622	778	4
239 /630	-K	630	850	165	3 970 000	9 800 000	280	360	280	658	822	5
239 /670	-K	670	900	170	4 370 000	10 800 000	260	340	315	698	872	5
239 /710	-K	710	950	180	4 770 000	12 000 000	240	320	365	738	922	5
239 /750	-K	750	1 000	185	5 180 000	13 200 000	220	300	420	778	972	5
239 /800	-K	800	1 060	195	5 640 000	14 300 000	200	280	470	828	1 032	5
239 /850	-K	850	1 120	200	5 980 000	15 600 000	190	260	560	878	1 092	5
239 /900	-K	900	1 180	206	6 440 000	17 000 000	180	240	605	928	1 152	5
239 /950	-K	950	1 250	224	7 250 000	19 600 000	170	220	755	986	1 214	6
239 /1060	-K	1 060	1 400	250	9 550 000	26 000 000	140	180	1 100	1 096	1 364	6


^{*} For bearings with 1 : 12 tapered bore add suffix 'K', e.g. 23940 K. If bearings are required with a radial groove and three lubrification holes add suffix "W33' e.g. 23948 W33.

292 SERIES


METRIC SIZES

ISO DIMENSION

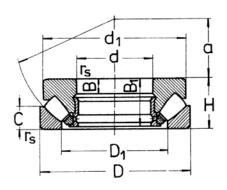
RKB designation		ension: imetres									RKB load	l ratings†	Normal limiting speeds	Weight
													rev/min	Kg approx
	d	D	н	d ₁	D_1	В	B ₁	С	rs/min	а	dynamic C _r	static C _{or}	oil	
29230	150	215	39	208	177	11	37	20	1.5	80	395 000	1 570 000	1 800	4.55
29232	160	225	39	220	188	11	37	20	1.5	87	410 000	1 680 000	1 700	4.80
29234	170	240	42	235	201	13	40	22	1.5	93	470 000	1 900 000	1 600	5.95
29236	180	250	42	245	211	14	40	21	1.5	97	485 000	2 020 000	1 600	6.25
29238	190	270	48	262	226	14	45	25.5	2	103	500 000	2 200 000	1 400	8.7
29240	200	280	48	270	236	15	45	24	2	108	610 000	2 620 000	1 400	8.90
29244	220	300	48	292	254	15	45	24	2	117	630 000	2 760 000	1 300	10.0
29248	240	340	60	330	283	19	57	30	2.1	130	920 000	3 970 000	1 100	16.5
29252	260	360	60	350	302	19	57	30	2.1	139	960 000	4 355 000	1 100	18.5
29256	280	380	60	370	323	19	57	30	2.1	150	975 000	4 465 000	1 000	19.5
29260	300	420	73	405	353	21	69	38	3	162	1 230 000	5 500 000	900	30.5
29264	320	440	73	430	372	21	69	38	3	172	1 325 000	6 230 000	850	34.0
29268	340	460	73	445	395	21	69	37	3	183	1 330 000	6 300 000	850	33.5
29272	360	500	85	485	423	25	81	44	4	194	1 710 000	7 765 000	750	51.0
29276	380	520	85	505	441	27	81	42	4	202	1 820 000	8 800 000	700	53.0
29280	400	540	85	526	460	27	81	42	4	212	1 900 000	9 570 000	700	57.0
29284	420	580	95	564	489	30	91	46	4	225	2 290 000	11 200 000	630	75.5
29288	440	600	95	585	508	30	91	46	5	235	2 380 000	11 900 000	630	78.0
29292	460	620	95	605	530	30	91	46	5	245	2 380 000	12 100 000	600	81.0
29296	480	650	103	635	556	33	99	53	5	259	2 700 000	13 500 000	560	98.0
292/500	500	670	103	654	574	33	99	55	5	268	2 755 000	14 260 000	560	105
292/530	530	710	109	692	610	35	105	57	5	288	3 010 000	15 900 000	530	125
292/560	560	750	115	732	644	37	111	61	5	302	3 440 000	18 400 000	480	140
292/600	600	800	122	780	688	39	117	60	5	321	3 570 000	18 600 000	450	170
292/630	630	850	132	830	723	42	127	67	6	338	4 620 000	23 600 000	400	210
292/670	670	900	140	880	773	45	135	73	6	361	4 830 000	26 200 000	380	255
292/710	710	950	145	930	815	46	140	73	6	380	6 000 000	29 300 000	340	290
292/750	750	1 000	150	977	858	48	144	74	6	409	5 900 000	31 000 000	340	325
292/800	800	1 060	155	1035	911	52	149	77	7.5	434	6 390 000	35 335 000	320	388

Because of the internal design of this bearing model, the lubrication with oil have tobe preferred. Grease lube could be considered only when applied loads and speeds are low and proper relube internal determined.

293 SERIES

METRIC SIZES

ISO DIMENSION

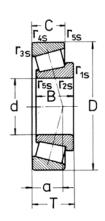

RKB designation		ension									RKB load r speeds rev/min	atings†	Normal limiting	Weight Kg approx
	d	D	н	d ₁	D ₁	В	B ₁	С	rs/mi	n. a	dynamic C _r	static C _{or}	oil	
29330	150	250	60	240	190	20	57	28	2.1	87	800 000	2 850 000	1 400	11.5
29332	160	270	67	260	203	23	64	33	3	92	910 000	3 470 000	1 200	16.0
29334	170	280	67	270	215	23	64	30.5	3	96	980 000	3 550 000	1 200	16.5
29336	180	300	73	290	227	25	69	35.5	3	103	1 150 000	4 300 000	1 100	20.5
29338	190	320	78	308	243	27	74	36	4	110	1 305 000	4 820 000	1 000	25.5
29340	200	340	85	325	257	29	81	40	4	116	1 500 000	5 605 000	950	32.0
29344	220	360	85	345	273	29	81	41	4	125	1 540 000	6 190 000	950	34.5
29348	240	380	85	365	295	29	81	40.5	4	135	1 580 000	6 420 000	900	36.5
29352	260	420	95	405	324	32	91	46	5	148	1 995 000	8 175 000	800	51.0
29356	280	440	95	423	343	32	91	45.5	5	158	2 070 000	8 705 000	800	54.0
29360	300	480	109	460	372	37	105	51	5	168	2 580 000	10 510 000	700	76.0
29364	320	500	109	482	391	37	105	53	5	180	2 555 000	10 770 000	670	81.0
29368	340	540	122	520	428	41	117	59	5	192	3 125 000	12 430 000	630	106
29372	360	560	122	540	448	41	117	59	5	202	3 150 000	12 800 000	600	110
29376	380	600	132	580	477	44	127	63	6	216	3 805 000	15 475 000	530	140
29380	400	620	132	596	494	44	127	64	6	225	3 805 000	16 140 000	530	146
29384 29388 29392 29396	420 440 460 480	650 680 710 730	140 145 150 150	626 655 685 705	520 540 567 591	48 49 51 51	135 140 144 144	68 70.5 72 73.5	6 6 6	235 249 257 270	4 260 000 4 360 000 4 910 000 4 950 000	17 700 000 19 300 000 21 000 000 21 700 000	500 480 450 450	170 180 215 220
293/500	500	750	150	725	611	51	144	74	6	280	5 100 000	22 600 000	430	235
293/530	530	800	160	772	648	54	154	76	7.5	295	5 950 000	26 200 000	400	270
293/560	560	850	175	822	690	60	168	85	7.5	310	6 500 000	28 800 000	380	320
293/600	600	900	180	870	731	61	173	87	7.5	335	7 200 000	33 300 000	340	400
293/630	630	950	190	918	761	68	183	92	9.5	359	8 200 000	38 000 000	320	485
293/670	670	1 000	200	968	813	68	193	96	9.5	372	8 350 000	38 800 000	300	545
293/710	710	1 060	212	1 028	855	72	204	103	9.5	405	9 650 000	45 500 000	280	660
293/750	750	1 120	224	1 086	910	76	216	109	9.5	415	10 600 000	49 900 000	260	770
293/800	800	1 180	230	1 146	965	78	222	111	9.5	440	11 300 000	54 400 000	240	865

Because of the internal design of this bearing model, the lubrication with oil have tobe preferred. Grease lube could be considered only when applied loads and speeds are low and proper relube internal determined.

294 SERIES

METRIC SIZES

ISO DIMENSION


RKB	Dim	ension	s								RKB load	ratings†	Normal limiting	Weight
designation	s milli	imetres	•										speeds rev/min	Kg approx
	d	D	н	d ₁	D ₁	В	B ₁	С	rs/min	а	dynamic C _r	static C _{or}	oil	ng approx
29430	150	300	90	285	207	32	86	43.4	4	92	1 510 000	5 085 000	1 100	30.0
29432	160	320	95	300	223	34	91	45.5	5	99	1 655 000	5 650 000	1 000	35.0
29434	170	340	103	324	236	37	99	50	5	104	1 880 000	6 550 000	950	45.8
28436	180	360	109	342	250	39	105	53	5	110	2 135 000	7 435 000	900	52.0
29438	190	380	115	360	264	41	111	55.5	5	117	2 345 000	8 220 000	850	61.0
29440	200	400	122	380	277	43	117	59.4	5	122	2 580 000	9 160 000	800	72.0
29444	220	420	122	400	300	43	117	58.5	6	132	2 660 000	9 630 000	750	76.5
29448	240	440	122	420	322	43	117	59	6	142	2 720 000	10 040 000	700	81.5
29452	260	480	132	460	346	48	127	63	6	154	3 210 000	12 125 000	670	106
29456	280	520	145	495	372	52	140	70	6	166	3 810 000	14 675 000	630	137
29460	300	540	145	515	392	52	140	70.5	6	175	3 930 000	15 580 000	600	145
29464	320	580	155	555	422	55	149	74.5	7.5	191	4 450 000	17 246 000	560	178
29468	340	620	170	590	445	61	164	84	7.5	201	5 160 000	20 390 000	500	226
29472	360	640	170	610	474	61	164	82	7.5	210	5 205 000	20 202 000	500	234
29476	380	670	175	640	494	63	168	85	7.5	222	5 695 000	23 120 000	480	263
29480	400	710	185	680	525	67	178	89.5	7.5	234	6 450 000	26 000 000	450	310
29484	420	730	185	700	545	67	178	90.5	7.5	244	6 600 000	27 000 000	430	325
29488	440	780	206	745	577	74	199	100	9.5	257	7 805 000	31 530 000	380	420
29492	460	800	206	765	596	74	199	101.5	9.5	268	7 850 000	32 800 000	380	425
29496	480	850	224	810	625	81	216	108	9.5	280	9 455 000	38 865 000	340	542
294/500	500	870	224	830	648	81	216	110	9.5	290	9 200 000	39 200 000	340	560
294/530	530	920	236	880	686	86	228	116	9.5	308	10 300 000	43 100 000	320	650
294/560	560	980	250	940	727	82	242	122	12	328	11 800 000	50 000 000	300	810
294/600	600	1 030	258	990	769	92	249	128	12	349	12 940 000	55 555 000	280	900
294/630	630	1 090	280	1 040	815	100	270	137	12	365	14 100 000	60 800 000	260	1 100
294/670	670	1 150	290	1 105	864	106	280	141	15	387	15 100 000	66 700 000	240	1 260
294/710	710	1 220	308	1 165	917	112	298	149	15	415	17 200 000	75 000 000	220	1 500
294/750	750	1 280	315	1 220	964	116	305	153	15	436	18 300 000	83 300 000	200	1 650
294/800	800	1 360	335	1 300	1 034	120	324	165	15	462	19 800 000	91 100 000	190	2 025

Because of the internal design of this bearing model, the lubrication with oil have tobe preferred. Grease lube could be considered only when applied loads and speeds are low and proper relube internal determined.

320 SERIES

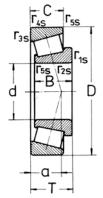
METRIC SIZES

RKB designation	ons	ISO series									RKB load	d ratir	ngs†			Norma limitin	g	Weight
			milli	imetr	es						newtons			newtons		speeds	5	
		d	D	В	С	т	r1s,r2s min	s r3s,r4s min	r5 min	а	dynamic C _r	е	Υ	static C _{or}	Y0	grease	oil	Kg approx
32004XA 3 32005XA 4 32006XA 4 32007XA 4	4CC 4CC	20 25 30 35	42 47 55 62	15 15 17 18		15 17	0.6 0.6 1	0.6 0.6 1	0.3 0.3 0.3 0.3	10 11 13 15	26 000 26 000 34 000 35 900	0.43 0.43	1.4	28 500 33 500 45 500 52 400	0.9 0.8 0.8 0.7	8 500 8 000 6 700 6 000	12 000 11 000 9 000 8 000	0.097 0.113 0.017 0.220
32008XA 3 32009XA 3 32010XA 3 32011XA 3	3CC 3CC	40 45 50 55	68 75 80 90	20	14.5 15.5 15.5 17.5	19 20 20 23	1	1 1 1 1.5	0.3 0.3 0.3 0.6	15 16 18 20	48 800 57 000 58 500 77 000	0.4 0.43	1.6 1.5 1.4 1.5	65 600 82 200 88 500 117 000	0.9 0.8 0.8 0.8	5 300 4 800 4 500 4 000	7 000 6 300 6 000 5 300	0.270 0.330 0.360 0.540
32012XA 4 32013XA 4 32014XA 4 32015XA 4	4CC 4CC	65 65 70 75	95 100 110 115	23 23 25 25	17.5 17.5 19 19	23 25	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	21 22 23 25	78 500 80 600 95 600 97 300	0.46 0.43	1.3 1.4	119 000 123 000 143 000 149 000	0.8 0.7 0.8 0.7	3 800 3 400 3 200 3 000	5 000 4 500 4 300 4 000	0.580 0.620 0.830 0.880
32016XA 3 32017XA 4 32018XA 3 32019XA 4	4CC 3CC	80 85 90 95	125 130 140 145		22 22 24 24		1.5 1.5 2 2	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	27 28 30 31	130 000 136 000 159 000 163 000	0.43	1.4 1.4	198 000 213 000 246 000 257 000	0.8 0.8 0.8	2 600 2 400 2 200 2 200	3 600 3 400 3 200 3 200	1.24 1.30 1.70 1.80
32020XA 4 32021XA 4 32022XA 4 32024XA 4	4DC 4DC	100 105 110 120	150 160 170 180	32 35 38 38	24 26 29 29	38	2 2.5 2.5 2.5	1.5 2 2 2	0.6 0.6 0.6 0.6	32 34 36 39	204 000	0.44 0.43	1.4 1.4	277 000 334 000 382 000 397 000	0.7 0.8 0.8 0.7	2 000 1 900 1 800 1 700	3 000 2 800 2 600 2 400	1.85 2.42 3.06 3.25
32026XA 4 32028XA 4 32030XA 4 32032XA 4	4DC 4EC	130 140 150 160	200 210 225 240	45 45 48 51	34 34 36 38		2.5 2.5 3 3	2 2 2.5 2.5	0.6 0.6 1	42 46 49 52	315 000 312 000 355 000 402 000	0.43 0.46 0.46 0.46	1.3 1.3	620 000	0.8 0.7 0.7 0.7	1 600 1 600 1 500 1 300	2 200 2 200 2 000 1 800	4.93 5.23 6.35 7.75
32034XA 32036XA 32038XA 32040XA	3FD 4FD	170 180 190 200	260 280 290 310	57 64 64 70		64	3 3 3 3	2.5 2.5 2.5 2.5	1 1 1	56 59 62 66	480 000 599 000 609 000 716 000	0.44	1.4 1.4	865 000 1 037 000 1 077 000 1 356 000	0.8 0.8 0.8	1 200 1 100 1 000 950	1 700 1 600 1 500 1 400	10.5 14.5 15.0 19.5
32044XA 4 32048XA 4 32052XA 4 32056XA 4	4FD 4FC	220 240 260 280	340 360 400 420	76 76 87 87		76 87	4 4 5 5	3 3 4 4	1 1 1.5 1.5	72 78 84 89	850 000 870 000 1 153 000 1 150 000	0.46 0.43	1.3 1.4	1 537 000 1 690 000 2 141 000 2 250 000	0.8 0.7 0.8 0.7	900 850 800 750	1 300 1 200 1 100 1 000	25.5 27.5 40.0 40.5
32064X	4GD	320	480	100	74	100	5	4	1.5	103	1 535 000	0.46	1.3	2 935 000	0.7	630	850	63.0

Γ₄₅ Γ₅₅ Γ₅₅ Γ₁₅ Γ₁₅

302 SERIES

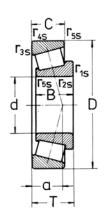
METRIC SIZES


RKB designa	tions	ISO series		ensio imet		-	•Т-	4			RKB load	d ratir	ngs†	newtons		Norma limitin speeds	g	Weight
		d	D	В	С	т	r1s,r	2sr3s,r4s min	r5 min	а	dynamic C _r	е	Υ	static C _{or}	Y0	grease	oil	Kg approx
30203A 30204A 30205A 30206A	2DB 2DB 3CC 3DB	17 20 25 30	40 47 52 62	12 14 15 16	11 12 13 14	13.25 15.25 16.25 17.25	1 1 1	1 1 1 1	0.3 0.3 0.3 0.3	10 11 12 14	18 300 25 800 30 100 40 500	0.35 0.35 0.37 0.37	1.7	19 000 26 400 39 200 45 100	0.9 0.9 0.9 0.9	9 000 8 000 7 500 6 300	13 000 11 000 10 000 8 500	0.120 0.150
30207A 30208A 30209A 30210A	3DB 3DB 3DB 3DB	35 40 45 50	72 80 85 90	17 18 19 20	15 16 16 17	18.25 19.75 20.75 21.75	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	15 16 18 19	50 500 57 900 60 100 69 700	0.37 0.37 0.4 0.43	1.6 1.6 1.5 1.4	54 700 62 400 67 100 81 300	0.9 0.9 0.8 0.8	5 300 4 800 4 500 4 300	6 000	0.420
30211A 30212A 30213A 30214A	3DB 3EB 3EB 3EB	55 60 65 70	100 110 120 125	21 22 23 24	18 19 20 21	22.75 23.75 24.75 26.25	2 2 2 2	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	20 22 23 25	83 000 91 600 111 000 119 000	0.4 0.4 0.4 0.43	1.5 1.5 1.5 1.4	95 200 105 000 129 000 143 000	0.8 0.8 0.8	3 800 3 400 3 000 3 000	5 000 4 500 4 000 4 000	1.10
30215A 30216A 30217A 30218A	4DB 3EB 3EB 3FB	75 80 85 90	130 140 150 160	25 26 28 30	22 22 24 26	27.25 28.25 30.5 32.5	2 2.5 2.5 2.5	1.5 2 2 2	0.6 0.6 0.6 0.6	27 28 30 31	134 000 145 000 167 000 190 000	0.43 0.43 0.43 0.43	1.4 1.4 1.4 1.4	166 000 177 000 206 000 238 000	0.8 0.8 0.8	2 800 2 400 2 200 2 200	2 800 3 400 3 200 3 000	1.59 2.00
30219A 30220A 30221A 30222A	2FB 3FB 3FB 3FB	95 100 105 110	170 180 190 200	32 34 36 38	27 29 30 32	34.5 37 39 41	3 3 3	2.5 2.5 2.5 2.5	1 1 1	33 35 37 39	210 000 238 000 270 000 304 000	0.43 0.43 0.43 0.43		264 000 303 000 350 000 396 000		1 900 1 900 1 800 1 700	2 800 2 800 2 600 2 400	3.54 4.26
30224A 30226A 30228A 30230A	4FB 4FB 4FB 4GB	120 130 140 150	215 230 250 270	40 40 42 45	34 34 36 38	43.5 43.75 45.75 49	3 4 4 4	2.5 3 3 3	1 1 1	43 45 47 50	340 000 367 000 396 000 457 000	0.43 0.43 0.43 0.43	1.4 1.4	459 000 485 000 527 000 618 000	0.8	1 600 1 500 1 400 1 300	2 200 2 000 1 900 1 800	7.60 8.50
30232A 30234A 30236A 30260	4GB 4GB 4GB 4GB	170 180	290 310 320 540	48 52 52 85	40 43 43 71	52 57 57 96	4 5 5 6	3 4 4 5	1 1.5 1.5 1.5	54 58 61 103	520 000 610 000 584 000 1 350 000	0.43 0.43 0.46 0.43	1.4 1.4 1.3 1.4	710 000 844 000 825 000 1 900 000	0.8 0.8 0.7 0.8	1 100 1 000 1 000 600	1 600 1 500 1 500 800	19.0

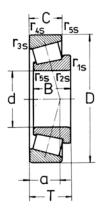
303 SERIES

METRIC SIZES

RKB designat	ions	ISO series	Dim	ensio	ne						RKB load	d ratir	ıgs†			Norma limitin		Weight
acoignat		301103		metr							newtons			newtons	;	speeds	_	Worging
		d	D	В	С	т	r1s,r2 min	sr3s,r4s min	r5 min	а	dynamic C _r	е	Y	static C _{or}	Υ0	grease	oil	Kg approx
30302A 30303A 30304A 30305A	2FB 2FB 2FB 2FB	15 17 20 25	42 47 52 62	13 14 15 17	11 12 13 15	14.25 15.25 16.25 18.25	1 1 1.5 1.5	1 1 1.5 1.5	0.3 0.3 0.6 0.6	9 10 11 13	21 500 26 000 32 000 43 000	0.28 0.28 0.3 0.3	2.1 2.1 2 2	19 800 24 500 32 000 43 000	1.1 1.1 1.1 1.1	9 000 8 500 8 000 6 700	13 000 12 000 11 000 9 000	0.130 0.170
30306A 30307A 30308A 30309A	2FB 2FB 2FB 2FB	30 35 40 45	72 80 90 100	19 21 23 25	16 18 20 22	20.75 22.75 25.25 27.25	1.5 2 2 2	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	15 16 19 21	52 900 71 200 83 900 106 000	0.31 0.31 0.35 0.35	1.9 1.9 1.7 1.7	51 800 72 500 91 300 118 000	1.1 1.1 0.9 0.9	5 600 5 000 4 500 4 000	7 500 6 700 6 000 5 300	0.520 0.700
30310A 30311A 30312A 30313A	2FB 2FB 2FB 2GB	50 55 60 65	110 120 130 140	27 29 31 33	23 25 26 28	29.25 31.5 33.5 36	2.5 2.5 3 3	2 2 2.5 2.5	0.6 0.6 1	23 24 26 28	120 000 146 000 164 000 191 000		1.7 1.7 1.7 1.7	133 000 166 000 187 000 220 000	0.9 0.9 0.9 0.9	3 600 3 200 3 000 2 600	4 800 4 300 4 000 3 600	1.53 1.90
30314A 30315A 30316A 30317A	2GB 2GB 2GB 2GB	70 75 80 85	150 160 170 180	35 37 39 41	30 31 33 34	38 40 42.5 44.5	3 3 4	2.5 2.5 2.5 3	1 1 1 1	29 31 33 35	224 000 246 000 277 000 298 000	0.35 0.35 0.35 0.35	1.7 1.7 1.7 1.7	264 000 289 000 329 000 354 000	0.9 0.9 0.9 0.9	2 400 2 600 2 000 1 900	3 400 3 600 3 000 2 800	3.40 4.00
30318A 30319A 30320A 30322A	2GB 2GB 2GB 2GB	90 95 100 110	190 200 215 240	43 45 47 50	36 38 39 42	46.5 49.5 51.5 54.5	4 4 4	3 3 3 3	1 1 1 1	36 39 40 43	328 000 350 000 404 000 479 000	0.35 0.35 0.35 0.35	1.7 1.7 1.7 1.7	394 000 449 000 492 000 588 000	0.9 0.9 0.9 0.9	1 700 1 800 1 700 1 600	2 400 2 600 2 400 2 200	6.70 7.90
30324A 30326A	2GB 2GB	120 130	260 280	55 58	46 49	59.5 63.75	4 5	3 4	1 1.5	47 51	568 000 640 000	0.35 0.35		712 000 820 000	0.8 0.9	1 500 1 300	2 000 1 800	


313 SERIES

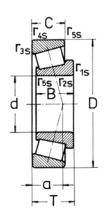
METRIC SIZES


ISO series	s dim	ensid	nns						Load ratin	ngst						Weight
001101									newtons			newtons			•	
d	D	В	С	т	r1s,r2s min	r3s,r4 min			dynamic C _r	е	Υ	static C _{or}	Y0	grease	oil	Kg approx
25 30 35 40	62 72 80 90	17 19 21 23	13 14 15 17	18.25 20.75 22.75 25.25	1.5 1.5 2 2	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	20 22 25 28	39 000 46 500 58 100 74 600	0.83 0.83 0.83 0.83	0.7 0.7 0.7 0.7	41 000 49 500 64 000 60 800	0.4 0.4 0.4 0.4	5 600 5 000 4 500 4 000	7 500 6 700 6 000 5 300	0.255 0.390 0.520 0.685
45 50 55 60	100 110 120 130	25 27 29 31	18 19 21 22	27.25 29.25 31.5 33.5	2 2.5 2.5 3	1.5 2 2 2.5	0.6 0.6 0.6 1	31 34 37 39	88 900 102 000 118 000 140 000	0.83 0.83 0.83 0.83			0.4 0.4 0.4 0.4	3 400 3 200 2 800 2 600	4 500 4 300 3 800 3 600	0.915 1.16 1.49 1.83
65 70 75 80	140 150 160 170	33 35 37 39	23 25 26 27	36 38 40 42.5	3 3 3 3	2.5 2.5 2.5 2.5	1 1 1	42 45 48 52	164 000 185 000 213 000 222 000	0.83 0.83 0.83 0.83	0.7 0.7	215 000 251 000	0.4 0.4 0.4 0.4	2 200 2 000 1 900 1 900	3 200 3 000 2 800 2 800	2.25 2.82 3.50 4.07
85 90 95 130	180 190 200 280 300	41 43 45 66	28 30 32 44	44.5 46.5 49.5 72	4 4 4 5	3 3 4 4	1 1 1 1.5	55 57 60 87	245 000 270 000 300 000 597 000 714 000	0.83 0.83 0.83 0.83	0.7 0.7 0.7	330 000 365 000 761 000	0.4 0.4 0.4 0.4	1 800 1 700 1 700 1 200	2 600 2 400 2 400 1 700	5.08 5.92 6.95 18.6
	series d 25 30 35 40 45 50 60 65 70 75 80 85 90 95 130	series dim mill d D 25 62 30 72 35 80 40 90 45 100 55 120 60 130 65 140 70 150 75 160 80 170 85 180 90 190 95 200 130 280	series dimension millimet d D B 25 62 17 30 72 19 35 80 21 40 90 23 45 100 25 50 110 27 55 120 29 60 130 31 65 140 33 70 150 35 75 160 37 80 170 39 85 180 41 90 190 43 95 200 45 130 280 66	series dimensions millimetres d D B C 25 62 17 13 30 72 19 14 35 80 21 15 40 90 23 17 45 100 25 18 50 110 27 19 55 120 29 21 60 130 31 22 65 140 33 23 70 150 35 25 75 160 37 26 80 170 39 27 85 180 41 28 90 190 43 30 95 200 45 32 130 280 66 44	series dimensions millimetres d D B C T 25 62 17 13 18.25 30 72 19 14 20.75 35 80 21 15 22.75 40 90 23 17 25.25 45 100 25 18 27.25 50 110 27 19 29.25 55 120 29 21 31.5 60 130 31 22 33.5 65 140 33 23 36 70 150 35 25 38 75 160 37 26 40 80 170 39 27 42.5 85 180 41 28 44.5 90 190 43 30 46.5 95 200 45 32 49.5 130 </th <th>series dimensions millimetres d D B C T r1s,r2s min 25 62 17 13 18.25 1.5 30 72 19 14 20.75 1.5 35 80 21 15 22.75 2 40 90 23 17 25.25 2 45 100 25 18 27.25 2 50 110 27 19 29.25 2.5 55 120 29 21 31.5 2.5 60 130 31 22 33.5 3 65 140 33 23 36 3 75 160 37 26 40 3 80 170 39 27 42.5 3 85 180 41 28 44.5 4 90 190 43 30 46.5 4</th> <th>series dimensions millimetres d D B C T r1s,r2s min r3s,r4 min 25 62 17 13 18.25 1.5 1.5 30 72 19 14 20.75 1.5 1.5 35 80 21 15 22.75 2 1.5 40 90 23 17 25.25 2 1.5 45 100 25 18 27.25 2 1.5 50 110 27 19 29.25 2.5 2 55 120 29 21 31.5 2.5 2 60 130 31 22 33.5 3 2.5 65 140 33 23 36 3 2.5 75 160 37 26 40 3 2.5 80 170 39 27 42.5 3 2.5</th> <th>series dimensions millimetres d D B C T r1s,r2s min r3s,r4 min sr5 min 25 62 17 13 18.25 1.5 1.5 0.6 30 72 19 14 20.75 1.5 1.5 0.6 35 80 21 15 22.75 2 1.5 0.6 40 90 23 17 25.25 2 1.5 0.6 45 100 25 18 27.25 2 1.5 0.6 50 110 27 19 29.25 2.5 2 0.6 55 120 29 21 31.5 2.5 2 0.6 60 130 31 22 33.5 3 2.5 1 65 140 33 23 36 3 2.5 1 70 150 35 25 38 3</th> <th>series dimensions millimetres d D B C T r1s,r2s min r3s,r4 min sr5 min a min 25 62 17 13 18.25 1.5 1.5 0.6 20 30 72 19 14 20.75 1.5 1.5 0.6 22 35 80 21 15 22.75 2 1.5 0.6 25 40 90 23 17 25.25 2 1.5 0.6 28 45 100 25 18 27.25 2 1.5 0.6 28 45 100 27 19 29.25 2.5 2 0.6 34 55 120 29 21 31.5 2.5 2 0.6 37 60 130 31 22 33.5 3 2.5 1 42 70 150 35 25 38 <</th> <th>series dimensions millimetres r1s,r2s r3s,r4 sr5 a dynamic Cr 25 62 17 13 18.25 1.5 1.5 0.6 20 39 000 30 72 19 14 20.75 1.5 1.5 0.6 22 46 500 35 80 21 15 22.75 2 1.5 0.6 25 58 100 40 90 23 17 25.25 2 1.5 0.6 25 58 100 45 100 25 18 27.25 2 1.5 0.6 28 74 600 50 110 27 19 29.25 2.5 2 0.6 31 88 900 50 110 27 19 29.25 2.5 2 0.6 34 102 000 55 120 29 21 31.5 2.5 2 0.6 37</th> <th>series millimetres r1s,r2s r3s,r4 sr5 a dynamic dynamic Cr 25 62 17 13 18.25 1.5 1.5 0.6 20 39 000 0.83 30 72 19 14 20.75 1.5 1.5 0.6 22 46 500 0.83 35 80 21 15 22.75 2 1.5 0.6 25 58 100 0.83 40 90 23 17 25.25 2 1.5 0.6 25 58 100 0.83 45 100 25 18 27.25 2 1.5 0.6 28 74 600 0.83 50 110 27 19 29.25 2.5 2 0.6 34 102 000 0.83 55 120 29 21 31.5 2.5 2 0.6 37 118 000 0.83 65</th> <th>series dimensions millimetres rays,r2s pr3s,r4 principle sr5 principle newtons d D B C T r1s,r2s principle r3s,r4 principle sr5 principle a dynamic Cr Cr Y 25 62 17 13 18.25 1.5 1.5 0.6 20 39 000 0.83 0.7 30 72 19 14 20.75 1.5 1.5 0.6 22 46 500 0.83 0.7 35 80 21 15 22.75 2 1.5 0.6 25 58 100 0.83 0.7 40 90 23 17 25.25 2 1.5 0.6 28 74 600 0.83 0.7 45 100 25 18 27.25 2 1.5 0.6 31 88 900 0.83 0.7 50 110 27 19 29.25 2.5 2 0.6</th> <th> Series Millimetres Series Serie</th> <th> Series Millimetres Series Serie</th> <th> Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series S</th> <th> Series </th>	series dimensions millimetres d D B C T r1s,r2s min 25 62 17 13 18.25 1.5 30 72 19 14 20.75 1.5 35 80 21 15 22.75 2 40 90 23 17 25.25 2 45 100 25 18 27.25 2 50 110 27 19 29.25 2.5 55 120 29 21 31.5 2.5 60 130 31 22 33.5 3 65 140 33 23 36 3 75 160 37 26 40 3 80 170 39 27 42.5 3 85 180 41 28 44.5 4 90 190 43 30 46.5 4	series dimensions millimetres d D B C T r1s,r2s min r3s,r4 min 25 62 17 13 18.25 1.5 1.5 30 72 19 14 20.75 1.5 1.5 35 80 21 15 22.75 2 1.5 40 90 23 17 25.25 2 1.5 45 100 25 18 27.25 2 1.5 50 110 27 19 29.25 2.5 2 55 120 29 21 31.5 2.5 2 60 130 31 22 33.5 3 2.5 65 140 33 23 36 3 2.5 75 160 37 26 40 3 2.5 80 170 39 27 42.5 3 2.5	series dimensions millimetres d D B C T r1s,r2s min r3s,r4 min sr5 min 25 62 17 13 18.25 1.5 1.5 0.6 30 72 19 14 20.75 1.5 1.5 0.6 35 80 21 15 22.75 2 1.5 0.6 40 90 23 17 25.25 2 1.5 0.6 45 100 25 18 27.25 2 1.5 0.6 50 110 27 19 29.25 2.5 2 0.6 55 120 29 21 31.5 2.5 2 0.6 60 130 31 22 33.5 3 2.5 1 65 140 33 23 36 3 2.5 1 70 150 35 25 38 3	series dimensions millimetres d D B C T r1s,r2s min r3s,r4 min sr5 min a min 25 62 17 13 18.25 1.5 1.5 0.6 20 30 72 19 14 20.75 1.5 1.5 0.6 22 35 80 21 15 22.75 2 1.5 0.6 25 40 90 23 17 25.25 2 1.5 0.6 28 45 100 25 18 27.25 2 1.5 0.6 28 45 100 27 19 29.25 2.5 2 0.6 34 55 120 29 21 31.5 2.5 2 0.6 37 60 130 31 22 33.5 3 2.5 1 42 70 150 35 25 38 <	series dimensions millimetres r1s,r2s r3s,r4 sr5 a dynamic Cr 25 62 17 13 18.25 1.5 1.5 0.6 20 39 000 30 72 19 14 20.75 1.5 1.5 0.6 22 46 500 35 80 21 15 22.75 2 1.5 0.6 25 58 100 40 90 23 17 25.25 2 1.5 0.6 25 58 100 45 100 25 18 27.25 2 1.5 0.6 28 74 600 50 110 27 19 29.25 2.5 2 0.6 31 88 900 50 110 27 19 29.25 2.5 2 0.6 34 102 000 55 120 29 21 31.5 2.5 2 0.6 37	series millimetres r1s,r2s r3s,r4 sr5 a dynamic dynamic Cr 25 62 17 13 18.25 1.5 1.5 0.6 20 39 000 0.83 30 72 19 14 20.75 1.5 1.5 0.6 22 46 500 0.83 35 80 21 15 22.75 2 1.5 0.6 25 58 100 0.83 40 90 23 17 25.25 2 1.5 0.6 25 58 100 0.83 45 100 25 18 27.25 2 1.5 0.6 28 74 600 0.83 50 110 27 19 29.25 2.5 2 0.6 34 102 000 0.83 55 120 29 21 31.5 2.5 2 0.6 37 118 000 0.83 65	series dimensions millimetres rays,r2s pr3s,r4 principle sr5 principle newtons d D B C T r1s,r2s principle r3s,r4 principle sr5 principle a dynamic Cr Cr Y 25 62 17 13 18.25 1.5 1.5 0.6 20 39 000 0.83 0.7 30 72 19 14 20.75 1.5 1.5 0.6 22 46 500 0.83 0.7 35 80 21 15 22.75 2 1.5 0.6 25 58 100 0.83 0.7 40 90 23 17 25.25 2 1.5 0.6 28 74 600 0.83 0.7 45 100 25 18 27.25 2 1.5 0.6 31 88 900 0.83 0.7 50 110 27 19 29.25 2.5 2 0.6	Series Millimetres Series Serie	Series Millimetres Series Serie	Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series S	Series

322 SERIES

METRIC SIZES

RKB designa	esignations series Dimensi										RKB load	rating	gst			Normal		Weight
					imet						newtons			newtons		speeds		
		d	D	В	С	т	r1s,r2 min	sr3s,r4 min	lsr5 min		dynamic C _r	е	Υ	static C _{or}	Y0	grease	oil	Kg approx
32205A 32206A 32207A 32208A	2CD 3DC 3DC 3DC	25 30 35 40	52 62 72 80	18 20 23 23	15 17 19 19	19.25 21.25 24.25 24.75	1 1 1.5 1.5	1 1 1.5 1.5	0.3 0.3 0.6 0.6	16 15 17 19	31 000 49 000 66 200 66 200	0.33 0.37 0.37 0.37	1.8 1.6 1.6 1.6	37 000 61 000 77 500 79 500	1 0.9 0.9 0.9	7 500 6 300 5 300 4 800	10 000 8 500 7 000 6 300	0.182 0.280 0.420 0.510
32209A 32210A 32211A 32212A	3DC 3DC 3DC 3EC	45 50 55 60		23 23 25 28	20 19 21 24	24.75 24.75 26.75 29.75	1.5 1.5 2 2	1.5 1.5 1.5 1.5	0.6 0.6 0.6 0.6	20 21 22 24	76 500 79 100 96 200 122 000	0.4 0.43 0.4 0.4	1.5 1.4 1.5 1.5	91 600 95 800 115 000 152 000	0.8 0.8 0.8 0.8	4 500 4 300 3 800 3 400	6 000 5 600 5 000 4 500	0.560 0.600 0.820 1.10
32213A 32214A 32215A 32216A	3EC 3EC 4DC 3EC		125 130	31 31 31 33	27 27 27 28	32.75 33.25 33.25 35.25	2 2 2 2.5	1.5 1.5 1.5 2	0.6 0.6 0.6 0.6	27 28 29 30	149 000 157 000 157 000 180 000	0.4 0.43 0.43 0.43	1.5 1.4 1.4 1.4	189 000 204 000 205 000 232 000	0.8 0.8 0.8 0.8	3 000 2 800 2 600 2 400	4 000 3 800 3 600 3 400	1.48 1.56 2.62 2.00
32217A 32218A 32219A 32220A	3EC 3FC 3FC 3FC	85 90 95 100	160 170	36 40 43 46	30 34 37 39	38.5 42.5 45.5 49	2.5 2.5 3 3	2 2 2.5 2.5	0.6 0.6 1 1	33 36 39 41	213 000 251 000 281 000 320 000	0.43 0.43 0.43 0.43	1.4 1.4 1.4 1.4	283 000 340 000 390 000 444 000	0.8 0.8 0.8	2 200 2 000 1 900 1 800	3 200 3 000 2 800 2 600	2.50 3.30 4.00 4.76
32221A 32222A 32224A 32226A	3FC 3FC 4FD 4FD	105 110 120 130	190 200 215 230	50 53 58 64	43 46 50 54	53 56 61.5 67.75	3 3 4	2.5 2.5 2.5 3	1 1 1	44 46 51 56	358 000 406 000 446 000 551 000	0.43 0.43 0.43 0.43	1.4 1.4 1.4 1.4	510 000 580 000 653 000 836 000	0.8 0.8 0.8	1 800 1 700 1 600 1 500	2 600 2 400 2 200 2 000	5.90 6.90 8.59 10.7
32228A 32230A 32232A 32234A	4FD 4GD 4GD 4GD	160	290	68 73 80 86	58 60 67 71	71.75 77 84 91	4 4 4 5	3 3 4	1 1 1 1.5	60 64 70 75	602 000 705 000 840 000 889 000	0.43 0.43 0.43 0.43	1.4 1.4 1.4 1.4	907 000 1 080 000 1 400 000 1 377 000	0.8 0.8 0.8	1 400 1 200 1 100 1 000	1 900 1 700 1 600 1 500	13.9 17.9 25.5 29.3
32236A 32238A 32240A 32248	4GD 4GD 3GD	190	320 340 360 440	86 92 98 120	71 75 82 100	91 97 104 127	5 5 5 5	4 4 4 4	1.5 1.5 1.5 1.5	78 81 83 105	974 000 1 080 000 1 220 000 1 750 000	0.46 0.43 0.4 0.43	1.3 1.4 1.5 1.4	1 571 000 1 860 000 2 020 000 2 869 000	0.7 0.8 0.8 0.8	950 900 900 750	1 400 1 300 1 300 1 000	27.4 39.5 33.0 81.0


323 SERIES

METRIC SIZES

RKB designa	tions	ISO seri				sions etres					RKB lo		ingst	newtons		Norma limitin speeds	g	Weight
		d	D	В	С	т	r1s,r2s min	r3s,r4s min	s r5 min	a	dynamic C _r	e e	Υ	static C _{or}	Υ0	grease	e oil	Kg approx
32303A 32304A 32305A 32306A	2FD 2FD 2FD 2FD	17 20 25 30	47 52 62 72	21 24	16 18 20 23	20.25 22.25 25.25 28.75	1 1.5 1.5 1.5	1 1.5 1.5 1.5	0.3 0.6 0.6 0.6	12 14 15 18	34 000 42 500 58 300 75 800	0.28 0.3 0.3 0.31	2.1 2 2 1.9	35 500 47 000 60 300 82 700	1.1 1.1 1.1 1.1	8 000 7 500 6 000 5 300	11 000 10 000 8 000 7 000	0.170 0.221 0.360 0.550
32307A 32308A 32309A 32310A	2FD 2FD 2FD 2FD	35 40 45 50	90 100		25 27 30 33	32.75 35.25 38.25 42.25	2 2 2 2.5	1.5 1.5 1.5 2	0.6 0.6 0.6 0.6	20 23 25 27	95 300 105 000 133 000 160 000	0.31 0.35 0.35 0.35	1.9 1.7 1.7 1.7	106 000 122 000 159 000 194 000	.1 0.9 0.9 0.9	4 800 4 000 3 600 3 200	6 300 5 300 4 800 4 300	0.730 0.993 1.25 1.83
32311A 32312A 32313A 32314A	2FD 2FD 2GD 2GD	60 65	120 130 140 150	46 48	35 37 39 42	45.5 48.5 51 54	2.5 3 3 3	2 2.5 2.5 2.5	0.6 1 1 1	29 31 33 36	191 000 229 000 256 000 297 000	0.35 0.35 0.35 0.35	1.7 1.7 1.7 1.7	235 000 288 000 322 000 381 000	0.9 0.9 0.9 0.9	3 000 2 600 2 400 2 200	4 000 3 600 3 400 3 200	2.21 2.80 3.49 4.10
32315A 32316A 32317A 32318A	2GD 2GD 2GD 2GD	80 85	160 170 180 190	58 60	45 48 49 53	58 61.5 63.5 67.5	3 3 4 4	2.5 2.5 3 3	1 1 1	38 41 42 44	350 000 383 000 400 000 461 000	0.35 0.35 0.35 0.35	1.7 1.7 1.7 1.7	460 000 503 000 555 000 612 000	0.9 0.9 0.9 0.9	2 000 1 900 1 800 1 700	3 000 2 800 2 600 2 400	5.00 5.90 6.85 8.21
32319A 32320A 32321A 32322A	2GD 2GD 2GD 2GD	100 105		73 77	55 60 63 65	71.5 77.5 81.5 84.5	4 4 4 4	3 3 3 3	1 1 1	47 53 53 55	500 000 578 000 405 000 699 000	0.35 0.35 0.35 0.35	1.7 1.7 1.7 1.7	670 000 780 000 815 000 956 000	0.9 0.9 0.9 0.9	1 700 1 600 1 500 1 400	2 400 2 200 2 000 1 900	11.0 14.0 14.5 16.4
32324A 32326A	2GD	120 130			69 78	90.5 98.75	4 5	3 4	1 1.5	60 66	799 000 947 000	0.35 0.35	1.7 1.7	1 104 000 1 333 000	0.9 0.9	1 300 1 100	1 800 1 600	24.5 27.6

329 SERIES

METRIC SIZES

RKB ISO designations series Dimensions											RKB load	rating	js†			Normal limiting	Weight	
millimetres											newtons			newtons		speeds		
		d	D	В	С	т	r1s,r2s min	r3s,r4s min	r5 min	а	dynamic C _r	е	Υ	static C _{or}	Υ0	grease	oil	Kg approx
32934A 32936A 32938A 32940A	3DC 4DC 4DC 3EC	180 190	230 250 260 280	38 45 45 51	30 34 34 39	38 45 45 51	2.5 2.5 2.5 3	2 2 2 2.5	0.6 0.6 0.6 1	42 53 55 53	280 000 350 000 358 000 474 000	0.37 0.48 0.48 0.4	1.6 1.3 1.3 1.5	572 000 727 000 772 000 950 000	0.9 0.7 0.7 0.8	1 400 1 200 1 100 1 000	1 900 1 700 1 600 1 500	4.50 6.65 7.00 9.50
32944M 32960 32972	3EC 3FD 4FD		300 420 480	51 76 76	39 57 57	51 76 76	3 4 4	2.5 3 3	1 1 1	58 65 77	407 000 1 006 000 1 130 000	0.43 0.29 0.31	1.4 2.1 1.9	827 000 1 973 000 2 411 000	0.8 1.1 1.1	950 700 600	1 400 950 800	11.2 31.5 40.5

APPENDIX

Dunensional Divisions (mm)	Inci	9	10	14	18	24	5	30	4	20	65	80	100	120	140	160	180	200	225	250	280	315	355	400	450	500
Dime Divisi (n	Over	က	9	10	14	18	2	24	90	40	20	9	80	100	120	140	160	180	200	225	250	280	315	355	400	AEO
	r7	+ 27 + 15	+ 34		+ 23		+ + 49		+ 59		+ 71 + 41		+ 86 + 51	+ 89 + 54	$^{+103}$	+ 105 + 65	$^{+108}_{+68}$	+ 123 + 77	$^{+126}_{+80}$	$^{+130}$	$^{+146}_{+94}$	+ 150	$^{+165}_{+108}$	$^{+171}_{+114}$	$^{+189}_{+126}$	+195
-	J.	23	28	34	23		41	3	20	34	60	62	73	24	88	90	83 68	106	109 80	+113 +		+ 130 +	+144		+166 +	
		20 + 12 +			18 +		335 + +		42 +		++	32 +	+ +	37 +	++	68 43 +	++	++	79 + 50 +	++	++			+ +		
d	9d	++	++	+	+		++		+	+	+	+	+	+		++			++		+	+	+	+		89 + 8
	p2	3 +17 3 +12) +21) +15	+	+ 18		+ 31	-	3 +37	+	+	+35	+	3 +37		+61			1 + 50			+	+	+ 62	+	89+ (
п	9u	+ 16	+ 19		+12		+28		+33	+	+	+20		+23		+52+27			+60			+	+	+37	+	+40
	n5	+13	$^{+16}_{+10}$		+12		+24		+28	+	+	+20		+		+45 +27			+51 +31			+	+	+37	+	+40
E	9m	+12 + 4	$^{+15}_{+6}$	+	+7		+21	-	+25	+	+30	+11	+	+13		$^{+40}_{+15}$			$^{+46}_{+17}$		+52	+20		+21	+63	+23
-	m5	++	$^{+12}_{+6}$	+15	+ 7		+17	-	+20	+	+24	+ 11	+28	+13		$^{+33}_{+15}$			+37 +17		+43	+20	+46	+21	+50	+23
1.0	k6	++	$^{+10}$	+12	+		+15		+18	+ 5	+21	+ 2	+25	+		+28			+33		+36	+	+40	+	+45	+ 2
¥	k5	++	+ + 1		+		+11		+13	+ 5	+15	+ 5	+18	+ 3		+21 +3			+:24 + 4		+27	+	+29	+ 4	+32	+ 5
	j6	+ 6	+ 2		·		+ 19		+11	ا ت	+15	1 -	+13	6		+14			$^{+16}_{-13}$		+16	-16	+18	-18	+20	-20
·	j2	+ I	+ 4		۰ ا		+ 1		9 +		9	- 1		6		$^{+}_{-11}^{7}$			$^{+}_{-13}$		4 7	16		-18	7	
	js6	4	4.5		5.5		6.5		œ			6.5		=		5			2		91					07
js		+1	+1		+1		5 +		+			ن. +۱	. 1	H		±12.			±14.		+	H		8T H C	-	H ۵
	js5	+ 2.	+1		+1		+1		+	5	,	+I	t			6 +1			± 10		=		5	± 12.	5	H 13.
	h10	- 48	- 580	0	- 70		0 84	,	0	-100	0	-120	0	-140		-160			-185		0	÷210	0	-230		-250
	64	30	36	0	43		250		0	62	0	74	0	82		100			115 -		0		0	140 -	0	155
		0 18 –	22 –	0	27 –		ا 33 0		0	33 6	0	46 –	0	54 –		63 –			72 -		0			- 68		- 26
ч	7 h8	0 - 21	0 15		18		21 –			I		30	0	I		0 40 -			0 46 – `		0	1		27 –8		63 – 6
	h 7	0 80	0 6] - -		13 - 5			1		19 – 3	0	I		0 254			29 -4		0	I		36 – 5		40 6
	5 h6	0 2	- 9 0				06		0	1		13 –1	0	I		0 18 -2			20 -2		0	I		25 -3	0	ı
	h5	4.2	5 4	9	17 –		7 20 –		6	1		291	12	I		14 39 –1			15 44 -2		17	I	18	.1	20	I
20	98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{5}{1} - \frac{5}{14}$	I	14 -1		$\frac{7}{16} - \frac{-}{2}$		6	1	I	23 -2	1	1		1 1			1 1		1	1	- 1	1	- 1	ı
	85	1 1	1 1	1	!				1	1	I	I	6 -12	1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 -15 9 -35		6 -17	1	I			ı
J	9J	$\frac{-}{18}$	$-\frac{13}{22}$	- 1	- 27		- 1		- 25	I	1	- 49	- 36	1		- 43 - 68			- 50 - 79		- 56	1	- 1		- 9	-108
	f5	$-10 \\ -15$	$^{-13}_{-19}$	-16	-24		$-20 \\ -29$	i	-25	-36		-43	-36	-51		$^{-43}_{-61}$			$-50 \\ -70$		-56	-79	- 62		- 68	-95
e	9 e	$-\frac{20}{28}$	- 25 - 34		- 43		- 40 - 53	3	- 50			- 79	- 72			$^{-\ 85}_{-110}$			$^{-100}_{-129}$		-110	-142	-125	-161	-135	-175
ъ	9p	88	40	20	61	į	38	:	8	8	100	119	120	142		145 170			170 199		190	222	210	246	230	270
		70 – 190 –	80 – 230 –		275 -		110 320 –		120 370 –	130 380	I	150 - 450	1	1	200	1 1	230 630	240 700	1 1	280 740	- 1	330 – 850	-	400 970	1	480 -
o	c12	1 1	1 1	1	1				1 1	1.1	1.1	1 1	1.1	1 1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	Γ	1 1	1.1	1 1	I
ď	a13	-270 -450	- 280 - 500		- 560		- 300 - 630		- 310 - 700	$\frac{-320}{710}$	- 340 - 800	- 360 - 820	- 380 - 920	-410 -950	-460 - 1090	$^{-}$ 520 $^{-}$ 1150	$-580 \\ -1210$	$^{-660}_{-1380}$	$^{-}$ 740 $^{-}$ 1460	-820 - 1540	$^{-}_{-1730}$	-1050 - 1860	$^{-1200}_{-2090}$	$-1350 \\ -2240$	-1500 -2470	-1650
la	Incl.	9	10	14	. 81	24		က	40	20	92	8	100	120	140	160	180	500	_ 525	520	780	315	355	400	420	200
Dimensional Divisions (mm)		3	9	0																						
مَّمَّ	over	. ,	_	10	14	18		24	8	40	20	65	8	100	120	140	160	180	200	225	250	280	315	355	400	450

	Dinensional Divisions (mm)	Incl.	9	10	14	18	24	30	40	20	65	80	100	120	140	160	180	200	. 225	250	280	315	355	400	450	200
l mm	Divisi Divisi (T	Over	3	9	10	14	18	24	30	4	20	65	80	100	120	140	160	180	200	225	250	280	315	355	400	450
μm=0.001 mm		R7	$-\frac{11}{23}$	- 13 - 28		- 34	- 20		- 25		- 90	- 32 - 62	- 38 - 73	- 41 - 76	- 1 88 88	- 50	- 53 - 93	$^{-60}_{-106}$	$^{-}_{-109}$	$^{-67}_{-113}$	$^{-}74$	$^{-}_{-130}$	-87 - 144	$-\ \frac{93}{-150}$	$^{-103}_{-166}$	-109 -172
Unit µm	R	R6	- 12 - 20		20	- 31	- 24	37	- 29	45	35	- 37		47	- 56 - 81	838	- 61 - 86		- 71 -			- 89 -121				-119 - 159
5		P7	8 - 30			- 29	- 14		- 17		- 21		- 24			- 58			- 33			88		86 -	- 45	-108
	Д	P6	$^{-}_{-17}^{9}$	$^{-12}_{-21}$ $^{-}$	15	- 92	18 –	31	21 –	37	56	45 -	30	25		36 – 61 –			41 - 70 -		47		51	- 28	55	95 –
		N7 F	- 4 - -16 -	- 4 - -19 -		-23	- 2 -		× ,	33	6	- 68	-10 -			$^{-12}_{-52}$ $^{-}$			-14 -60 -			- 99-		-73 -	- 11	- 08
	z				- 6		11 –		ı	I	1	33	16 –			20 – 45 –			22 – 51 –			57 –		- 29	27 –	!
		9N 2	1 1		- 0	1	0	1	0 -12			I	0	I		40			0 - 94		I	52 –	ı	57 –		I
	M	3 M7	1 9 -1	I		15	4	1	4	ı	2	1	9	1		33 –4			8 37 –4		6	ŀ		46 – 5	10	1
		9W	1 1	5 - 0	1	I	- 9		- 1	I	-	1	1	1		1 1			1 1		1	I	1	1	1	1
	×	K7	+ 1	+ [1	+	ī	2 + 2			1	+ 10	1		+ 12			+13		+			-40	3 +18	
		K6	+ 7	+ 2	+ 2	1	+ 2	1	+		+	-15	+			$^{+}_{-21}$			+ 5		+ 5	1	+	-29	*	1
	_	J7	9 + -	+ 8	+10	∞ I	+12	6	+14			-12	+22	I		$^{+26}_{-14}$			$^{+30}_{-16}$		+36	I	+	-18	+43	
		J6	+	+ 1		1	*		+10	9	+13	9 –	+16	9 -		$^{+18}_{-7}$			$^{+22}_{-7}$		+25	_ 7	+29	_ 7	+33	I
	Js	Js7	9 +	± 7.5		H	410	H	+ 19 5	- 76.9		H	+17.5	2		±20			±23		76+	07		C. 87 H	+31	- 10.1
		9sf	+ 4	± 4.5	u	6.6 H		6.0 H	∝ +			H 9.5	=			±12.5			±14.5		717	01 -	9	87 H	+ 20	N 1
		H10	+ 48	86 o +	+ 70	0	+ 84	0	+100		+120	0	+140			+160			+185		+210			0	+250	
		Н9	00° +	+ 36	+ 43		+ 52		+ 62	0	+ 74		+ 87	0		$^{+100}_{0}$			+115		+130	0	+140	0	+155	0
		Н8	+18	22	27	0	33	0	39	0	+46	0	24	0		- 0 + 63			+72 -		+81			0	+ 67	
	H	H7	+12+0	+15 +	+18 +	0	+21 +		+ 25 +	0	+30	0	+ 32 +	0		+40			+46		+55		+57	0	+63	
		H6 1	80	+ 6 +		0	+13 +	0	+16 +	0	+19		+22 +	0		+25 +			+29 +		+32	0	+36		+40 +	0
		H5 I	+ 0	90	00	0	6	0	+11+		+13 +		+15 +			+ 18 + 0			0 20		23		25	0	27	
		G7 F	+16 +	+20 + + 5 +	-24 +	9	- 58	7	34	6	40	10	+ 47 +			+54 +			+61 + +15		+ 69+	-17	-75 +	+18	+83 +	-20
	G	95	+12 +	+14 + + 5 +	+17 +	+ 9	+ 02-	7	-25 +	6	+ 29 +	-10 +	+34			+39 +			+44 + +15 +		+ 46 +			+18 +	+ 09+	
					43 +		53 +	+	+	+	+ 9/		+ 06			+106 + + 43 +			+122 + + 50 +		+137 +			+ 62 +	+ 165 +	
		F8	22 10 +	++	+	+ 91	41 +	+	+ 05	+		+	+ 11			83 +1 43 +			96 +1 50 +							
Bore	ΙT	F7	++	+ 28 + 13		+	+		+			+	+ 7			++			++		+108	+	+11	+ 62	+131	
using		F6	+ + 18	+ 22 + 13		+ 16	+ 33		+ 41		+ 49	+ 30	+			+ 68 + 43			+ 79 + 50		88 +			+ 62	+ 108	89 +
is of h		E11	++	+115 + 25		+ 35	+170		+210		-250	09 +	+292			+ 335			+390		+430	+110	+485	+125	+535	
Dimensional Tolerances of housing	ជា	E10 1	88	83		+ 35 +	+124 +		+150 +		+180		+212 +			+245 + + 85 +			+285 +100		+320 +			+125 +	+385	
onal To	onal	Incl.	++	10	4	18	24	± È	6	+ S	65	+ 8	100	120	140	160	180	200	225 +	250	280	315	355	- 400	420	200
mensic	Dimensional Divisions (mm)	over In	က	9	10	14	18	24	93	9	20	65	80 1	100	120 1	140 1	160 1	180 2	200 2	225 2	250 2	280	315 3	355 4	400 4	450
٥	٥٥	•																		.,	.,	.,			_	

Conversion tables

Load and force conversion

When using the conversion tables below please refer to the centre columns in each table, i.e.

in the first table: 1 newton = 0.22481 lbf in the second table: 1 kg = 2.2046 lb.

Newtons to pounds force and pounds force to newtons

Kilogrammes to pounds and pounds to kilogrammes

kg		lb
0,4536	1	2,2046
0,9072	2	4,4092
1,3608	3	6,6139
1,8144	4	8,8185
2,2680	5	11,0231
2,7216	6	13,2277
3,1751	7	15,4324
3,6287	8	17,6370
4,0823	9	19,8416
4,5359	10	22,0462
4,9895	11	24,2508
5,4431	12	26,4555
5,8967	13	28,6601
6,3503	14	30,8647
6,8039	15	33,0693
7,2575	16	35,2740
7,7111	17	37,4786
8,1647	18	39,6832
8,6183	19	41,8878
9,0718	20	44,0925

Tolerance conversion

The table below gives a rounded conversion and should be used for reference only when converting metric tolerances to inch units

Tolerance conversion from 0,001 mm units to 0,0001 inch units

0,001 mm units	0	10	20	30	40	50	60	70	80	90
0	0	3,9	7,9	11,8	15,7	19,7	23,6	27,5	31,5	35,4
1	0,4	4,3	8,3	12,2	16,1	20,1	24,0	27,9	31,9	35,8
2	0,8	4,7	8,7	12,6	16,5	20,5	24,4	28,3	32,3	36,2
3	1,2	5,1	9,0	13,0	16,9	20,9	24,8	28,7	32,7	36,6
4	1,6	5,5	9,4	13,4	17,3	21,2	25,2	29,1	33,1	37,0
5	2,0	5,9	9,8	13,8	17,7	21,6	25,6	29,5	33,5	37,4
6	2,4	6,3	10,2	14,2	18,1	22,0	26,0	29,9	33,8	37,8
7	2,8	6,7	10,6	14,6	18,5	22,4	26,4	30,3	34,2	38,2
8	3,1	7,1	11,0	15,0	18,9	22,8	26,8	30,7	34,6	38,6
9	3,5	7,5	11,4	15,3	19,3	23,2	27,2	31,1	35,0	39,0

Metric/inch conversions

mm	0	10	20	30	40	50	60	70	80	90
0	inch	0,39370	0,78740	1,18110	1,57480	1,96850	2,36220	2,75590	3,14961	3,54331
1	0,03937	0,43307	0,82677	1,22047	1,61417	2,00787	2,40157	2,79528	3,18898	3,58268
2	0,07874	0,47244	0,86614	1,25984	1,65354	2,04724	2,44094	2,83464	3,22835	3,62205
3	0,11811	0,51181	0,90551	1,29921	1,69291	2,08661	2,48031	2,87402	3,26772	3,66142
4	0,15748	0,55118	0,94488	1,33858	1,73228	2,12598	2,51968	2,91338	3,30709	3,70079
5	0,19685	0,59055	0,98425	1,37795	1,77165	2,16535	2,55906	2,95276	3,34646	3,74016
6	0,23622	0,62992	1,02362	1,41732	1,81102	2,20472	2,59842	2,99212	3,38583	3,77953
7	0,27559	0,66929	1,06299	1,45669	1,85039	2,24409	2,63780	3,03150	3,42520	3,81890
8	0,31496	0,70866	1,10236	1,49606	1,88976	2,28346	2,67716	3,07087	3,46457	3,85827
9	0,35433	0,74803	1,14173	1,53543	1,92913	2,32283	2,71654	3,11024	3,50394	3,89764
mm-	0	100	200	300	400	500	600	700	800	900
0	inch	3,93701	7,87402	11,8110	15,7480	19,6850	23,6220	27,5590	31,4961	35,4331
5	0,19685	4,13386	8,07087	12,0079	15,9449	19,8819	23,8189	27,7559	31,6929	35,6299
10	0,39370	4,33071	8,26772	12,2047	16,1417	20,0787	24,0157	27,9528	31,8898	35,8268
15	0,59055	4,52756	8,46457	12,4016	16,3386	20,2756	24,2126	28,1496	32,0866	36,0236
20	0,78740	4,72441	8,66142	12,5984	16,5354	20,4724	24,4094	28,3464	32,2835	36,2205
25	0,98425	4,92126	8,85827	12,7953	16,7323	20,6693	24,6063	28,5433	32,4803	36,4173
30	1,18110	5,11811	9,05512	12,9921	16,9291	20,8661	24,8031	28,7402	32,6772	36,6142
35	1,37795	5,31496	9,25197	13,1890	17,1260	21,0630	25,0000	28,9370	32,8740	36,8110
40	1,57480	5,51181	9,44882	13,3858	17,3228	21,2598	25,1968	29,1338	33,0709	37,0079
45	1,77165	5,70866	9,64567	13,5827	17,5197	21,4567	25,3937	29,3307	33,2677	37,2047
50	1,96850	5,90551	9,84252	13,7795	17,7165	21,6535	25,5906	29,5276	33,4646	37,4016
55	2,16535	6,10236	10,0394	13,9764	17,9134	21,8504	25,7874	29,7244	33,6614	37,5984
60	2,36220	6,29921	10,2362	14,1732	18,1102	22,0472	25,9842	29,9212	33,8583	37,7953
65	2,55906	6,49606	10,4331	14,3701	18,3071	22,2441	26,1811	30,1181	34,0551	37,9921
70	2,75590	6,69291	10,6299	14,5669	18,5039	22,4409	26,3780	30,3150	34,2520	38,1890
75	2,95276	6·88976	10,8268	14,7638	18,7008	22,6378	26,5748	30,5118	34,4488	38,3858
80	3,14961	7·08661	11,0236	14,9606	18,8976	22,8346	26,7716	30,7087	34,6457	38,5827
85	3,34646	7·28346	11,2205	15,1575	19,0945	23,0315	26,9685	30,9055	34,8425	38,7795
90	3,54331	7·48031	11,4173	15,3543	19,2913	23,2283	27,1654	31,1024	35,0394	38,9764
95	3,74016	7·67716	11,6142	15,5512	19,4882	23,4252	27,3622	31,2992	35,2362	39,1732
	mm	inch		mm	inch			mm	inch	
	0,001 0,002 0,003	0,000039 0,000079 0,000118	_	0,01 0,02 0,03	0,000 0,000 0,001	079		0,1 0,2, 0,3	0,00394 0,00787 0,01181	
	0,004 0,005 0,006	0,000157 0,000197 0,000236		0,04 0,05 0,06	0,001 0,001 0,002	197		0,4 0,5 0,6	0,01575 0,01968 0,02362	
	0,007 0,008 0,009	0,000276 0,000315 0,000354		0,07 0,08 0,09	0,002 0,003 0,003	315		0,7 0,8 0,9	0,02756 0,03150 0,03543	

1 METRE = 39,37 INCHES

RKB Europe SA General Condition of Contract Edition November 2008

In this document RKB Europe SA is also referred to as "the Company"

Scope of Applicability

- These General Terms and Conditions apply to all contracts of sale of any type of good and or services, unless otherwise expressly agreed in writing with the Customer.

 Any General Terms and Conditions of the Customer shall apply only if and to the extent to which the Company has expressly consented thereto in writing. An express rejection of the Customer's general conditions is not required.

Contract Formation

- The Customer's order must be in writing and validly signed.

 A Customer's order shall always be subject to the Company's written confirmation ("acceptance" or "confirmation of order") and the contract shall be deemed to have been concluded only upon such written confirmation ("acceptance" or "confirmation of order") by the Company.

 A purchase shall also be considered concluded by delivering the ordered goods in case where no written confirmation ("acceptance" or "confirmation of order") was issued by the
- 2.3
- Company.

 Any price list, illustration, catalogue, brochure, circular, advertisement, and other descriptive document constitute no offer, but only an approximate guide and shall be binding on the Company only upon written confirmation ("acceptance" or "confirmation of order") stating a limited acceptance period. Where no acceptance period is specified for the time-limited offer, a 30 days period, starting with the first notice (i.e. "information delivery"), will apply. Where the Company places a time-limited offer, the duly signed Customer's acceptance must reach the Company within the mentioned time-limit in order to be binding for the Company. Any time-limited offer for prompt delivery is subject to prior sales ("first come, first served"). Where special materials are ordered, the Company reserves the right to ship and charge 10% more or less than the quantity ordered. The Company shall call Customer attention on the
- 2.5 difference between the quantity ordered and the quantity to be delivered by the Company, without any interference on contract formation between the parties and for the quantity unitaterally accepted by the Company. Unless otherwise agreed in writing the Company does not accept any restriction of its right to manufacture, sell or offer to any other Customers, goods which may be manufactured specially for a specific Customer or Customers or goods of like pattern.

 The Company reserves right to cancel any uncompleted order, or to suspend delivery, should any of the Customer's commitments to the Company not be met.
- 2.6

No subsequent agreement, understanding alterations or amendments of a contract in any way altering these terms and conditions shall be binding upon the Company unless made in writing and validly signed by an authorized officer of all parties.

- For Customers with registered offices in the Swiss Confederation and Customers with registered offices outside the European Union, Company's prices include, except for Value Added Tax (VAT), such other taxes and duties payable in the Swiss Confederation. Duties payable outside the Swiss Confederation are for the Customer's account.

 For Customers with registered offices within the European Union, Company's prices include, except for Value Added Tax (VAT), such other taxes and duties payable in the European Union 41
- 4.2
- trices include normal packing for both domestic and export markets. Unless otherwise expressly agreed upon in writing, the contract price does not include performances such as, however not limited to, installation, start up, training of Customer's operation and maintenance employees or engineers.

 Shipping costs are for the buyer's account (see below: EXW clause 6.2). 4.3
- The Company may make appropriate price increases after contract formation if raw material suppliers have raised their prices significantly between contract formation and delivery date.

- Payment

 Unless otherwise agreed, payment shall be net cash and made within 30 days from the date of shipment delivery. Any payments must be made in full without any deduction. Whatever the

 Unless otherwise agreed, payment shall be net cash and made within 30 days from the date of shipment delivery. Any payments must be made in full without any deduction. Whatever the

 Unless otherwise agreed, payment shall be net cash and made within 30 days from the date of shipment delivery. Any payments must be made in full without any deduction. Whatever the

 Unless otherwise agreed, payment shall be net cash and made within 30 days from the date of shipment delivery. Any payments must be made in full without any deduction. Whatever the 5.1
- means of payment used, payment shall not be deemed to have been effected before the Company's account has been fully and irrevocably credited.

 If the Customer fails to pay by the stipulated date, the Company shall be entitled to interest from the day on which payment was due. The rate of interest shall be 8% above the rate of the
 main refinancing facility on the European Central Bank in force on the due date of payment. After having notified the Customer in writing, the Company may also suspend its contract
 performance (i.e. future deliveries and/or warranties) until the Company's account has been fully and irrevocably credited. 5.2
- performance (i.e. ruture generies and/or warranness unin the company is account that seem only and a second that the contract by notice in writing to the Customer and to claim compensation 5.3 if the contained has included in a single of the contained of the loss if the single of the loss if the contained in the cont 5.4
 - only after receipt of full and unconditional payment.

The INCOTERMS (see: www.incoterms.com) in their respectively valid version shall apply for interpreting standard trade terms. Unless agreed upon differently in writing, deliveries

- to Customers with registered offices within the territory of the Swiss Confederation or a non European Union country ("third country") will be made ex works (EXW) Balerna (Via Primo Agosto, CH-6828 Balerna Switzerland) 6.2.1
- 6.2.2
- Agosto, CH-6828 Balerna Switzerland)
 to Customers with registered offices within the territory of the European Union will be made ex works (EXW) Milano (Via Ernesto Teodoro Moneta 41,1-20161 Milano Italy)
 Unless agreed upon differently in writing, "delivery period" is 10 months and shall run from the date of contract formation.
 Unless otherwise expressly agreed upon in writing, delivery dates stated by the Company or delivery dates in the end of a "delivery period" are approximate and shall not be deemed "fixed" under article 102 para. 2 of the Swiss Code of Obligations. In case of non-delivery at delivery date (stated by the Company or in the end of a "delivery period"), the Customer must exhort the Company and set a reasonable lime limit ("grace period") to the Company article 107 para. 1 of the Swiss Code of Obligations).
 Compensation for damages in accordance with article 97 para. 1 ("non-delivery") of the Swiss Code of Obligations, is excluded in case of slight negligence by the Company or its employees or any auxiliary person (article 100 para. 1 Swiss Code of Obligations). Analogically, compensation for damages in accordance with article 107 para. 2 ("late delivery") of the Swiss Code of Obligations, is also excluded in case of slight negligence by the Company or its employees or any auxiliary person.
 The presumption of article 190 of the Swiss Code of Obligations shall not apply.

 The Company shall have the right to part deliveries, unless the Customer suffers unreasonable or inequitable harm thereby. 6.4
- 6.5

7.1

- The Company warrants that at the time of delivery the goods sold hereunder shall be free from defects in material and workmanship. The Customer is obliged to promptly examine the goods upon delivery and shall notify in writing defects without undue delay to the Company. The notification must detail the goods and the defects. If the Customer fails to comply with these obligations, the goods shall be deemed to have been accepted as fauitless. The Company reserves the right to reject all claims for shortage made without undue delay and in any
- tness obligations, the goods shall be deemed to have been accepted as faulitiess. The Company reserves the right to reject all claims for shortage made without undue delay and in any event every claim reaching the Company later that fourteen days after shipment delivery.

 The same waiver of redhibitory action (annulment) or impairment ("actio quanti minoris"), in accordance to art. 205 para. 1 of the Swiss Code of Obligations, shall apply post-delivery.

 During a period of 12 months after the goods have been put into operation, but not exceeding 18 months after the passing of risks under clause 6.2 (or differing agreement), the Company warrants that the goods shall be free from defects in material and workmanship. During this time period the Company shall, at its own choice, replace or repair goods or issue credit for goods becoming "objectionable". If the daily use of the goods exceeds that which is agreed, this period shall be reduced proportionately.

 Notice of defects shall be given immediately and, under no circumstances, later than fourteen days after the expiry of the periods set forth under clause 7.2. If the Customer fails to notify the company is writing a few defects the supplied when the defect is used that the that it may accuse demands. 7.2
- Notice of defects shall be given inimediately and, under to circumstances, taler than touriser days after the expliny of the periods set form under clause 7.2. If the Coistomer shall be the Company in writing of a defect within the time limits set forth, he loses his right to have the defect remedied. Where the defect is such that it may cause damage, the Customer shall immediately inform the Company. The Customer shall bear the risk of damage resulting from his failure so to notify.

 Warranty applies, provided the allegedly "objectionable good" is returned for examination and our inspection demonstrates the good not to be free from defects in materials and workmanship (i.e. objectionable). Warranty doesn't apply if the Company's inspection demonstrates that the product was not properly mounted, lubricated or used. The allegedly "objectionable goods" may be returned at the expense of the Company only upon receipt by the Customer of definite shipping instructions from the Company.

 If the Customer submits a warranty claim and no defect is found for which the Company is liable, the Company shall be entitled to compensation for the costs it has incurred as a result of 7.4
- 7.5
- the nofice.

 Once the Company, based on its examination, decides in favour of warranty according to clause 7 it shall repair the defect at its own cost and without undue delay or proceed to the shipment of a good free from defects in material and workmanship. If, within a reasonable time, the Company fails to fulfil its warranty obligations, the Customer may by written notice exhort the Company and set a time limit (grace period) for completion of the warranty. If, within such final time period, the Company fails to fulfil its obligations, the Customer may proceed with a replacement of the "objectionable good" by a third party. Reimbursement by the Company for reasonable costs incurred shall be in full settlement of the Company's liabilities for the said defect and shall in no event exceed the contractual value of the good subject to warranty. In the event the Company determines that it is unable to remedy by repair or replacement of any "objectionable good", the Company's sole and exclusive remedy shall then be refund of the purchase price, or so much of the purchase price as has been paid by the Customer.

 When a defect in a part of the delivered product has been remedied, the Company shall be liable for defects in the repaired or replaced part under the same terms and conditions as those applicable to the original product for a period of 12 months. For the remaining parts of the product the period set forth under clause 7.3 shall be extended only by a period equal to the period during which the product has been out of operation as a result of the defect.

 The Customer shall at his own expense arrange for any dismantling and reassembly of equipment to the extent that this is necessary to remedy the defect. No dismantling or reassembly of the defective part is performed by the Company. The Company has fulfilled his obligations in respect of the defect when it delivers to the Customer a duly repaired or replaced part.

 Necessary transport of the product and or parts thereof from the Company to the Customer in c 7.6
- 7.7
- 7.8
- 7.9 Necessary industrials of the Company.

 Defective parts which have been replaced shall be property of the Company.
- - Specific qualities of the goods or fitness for particular purposes shall be deemed to have been warranted only if expressly stated in writing. In addition to what explicitly stated under clause 7.1-7.11, no warranty shall apply:

 To defects arising out of material provided, or out of a design furnished, by the Customer;

 To defects due to causes arising after the risk has passed under clause 6.2 (or differing agreement);
- 7.11 7.12
- 7.12.1 7.12.2
- To defective parts delivered by third parties, however the Company shall be obliged to assign to the Customer its corresponding claims against third parties;
 To faults or damage by abnormal use or arising in consequence of faulty maintenance, fault repair by the Customer, alterations carried out without the Company's written consent,
 negligence or improper handling or storage of the goods by the Customer or his agents;
 To consequences for any inexpert alterations or repairs carried out by unauthorised persons; 7.12.4

7.12.3

- 7.12.6 7.12.7 7.12.8
- For the sale of used goods;
 To goods not in the plant of the original Customer;
 If and as long as the Customer fails to comply with his obligations under the contract, unless his failure to comply is negligible or the Customer is legally entitled to refuse performance. 7.13
 - The remedies under clause 7 shall be Customer's exclusive remedies for breach of this warranty or other claims for defects in goods. The Company makes no warranties, either express or implied (including, without limitation, warranties of merchantability or fitness for a particular purpose), other than those above set forth. The full purpose of this exclusive remedy shall be to provide the Customer with repair and replacement of defective goods in the manner provided for. This exclusive remedy shall not be deemed to have failed of its essential purpose so long as the Company is willing and able to repair and replace defective goods in the described manner.

- Consequential damages and losses
 Company's responsibility for any claims, damages, losses or liabilities arising out of or related to its performance of this contract or the goods covered hereunder, including but not limited
- to, any repair or replacement of goods under the warranty shall not exceed the sales price of the particular individual product which is the source of buyer's claim.

 In no event shall the Company be liable for any special, indirect, consequential, or punitive damages of any character, including but not limited to, loss of use of productive facilities or equipment, loss of profits, loss of prof 8.2
- Confederation in case where a foreign "strict liability" ("responsabilità causale", "Kausalhaftung") of the same nature is less stringent.

- 9.1
- 9.2

10.1 10.2

- "Force majeure"
 Either party shall be entitled to suspend performance of his obligations to the extent that such performance is impeded or made unreasonably onerous by any of the following circumstances: industrial disputes and any other circumstance beyond the control of the parties such as fire, war, extensive military mobilization, insurrection, requisition, seizure, embargo, restrictions in the use of power and defects or delays in deliveries by sub-contractors caused by any such circumstances.

 A circumstance referred to in this clause, whether occurring prior to, or after the formation of the contract, shall give a right to suspension or delivery extension only if its effect on the performance of the contract could not be foreseen at the time of the formation of the contract.

 The party claiming to be affected by "force majeure" shall notify the other party in writing without delay on the intervention and on the cessation of such circumstance.

 If either party suffers unreasonable or inequitable harm by a delay due to "force majeure", the respective party shall have the right to rescind the contract after giving notice in writing.

 Retention of Proprietary Rights

 The goods delivered, including technical documents, shall remain property of the Company until the Company's claims against the Customer have been satisfied in full.

 The Customer must notify the Company without delay of any attachment or other violation of the ownership of the Company by third parties.

 If and to the extent the Company has claims against the Customer arising from transactions or dealings of any nature with the same Customer other than those referred to at the above clause 10.1, all goods supplied to the Customer shall remain property of the Company until all Company's claims against the Customer from all such transactions or dealings have been satisfied in full. If the value of the security provided exceeds the claims to be secured by more than twenty percentage points the Company's ownership rights after notice has been given 10.3
- If the Customer fails to make any payment when due, he shall be obliged to return the goods that are subject to the Company's ownership rights after notice has been given by the 10.4
- Company, without affecting other rights. The Customer shall, in such event, be obliged to ferum me goods in an are studied to recompany at his own risk and expense. The Customer shall be obligated to insure the goods delivered at his own expenses as long as they remain property of the Company.

 If the goods with respect to which title has been retained become part of a new item by way of connection or is built-in and if such item is owned by the Customer, it is hereby agreed that the Customer transfers co-ownership to the new item to the Company and acts as bailee without compensation for such item. The Company's co-ownership share shall be determined by the relationship of the value of the goods with respect to which title was retained. If the goods with respect to which title was retained. If the goods with respect to which title was retained. If the goods with respect to which title was retained are sold together with other goods that are not 10.5 Customers resulting from the sale of the goods with respect to which title was retained. It the goods with respect to which title was retained are sold together with other goods with respect to which title was retained. It he goods with respect to which title was retained. If an item with respect to which title was retained. If an item with respect to which title was retained is only partially owned by us and is sold, the part of the claim resulting from the sale that is assigned to the Company will be equal to the company's percentage of ownership in the goods with respect to which title was retained. The Company grants authority to the Customer to collect any claims resulting from the further sale of the retained goods. If requested, all Customer must deliver to the Company all information and documents required to enforce the Company's rights. If the law of the country where the goods are situated after delivery does not permit to the Company to retain the property of the goods, the Company shall be entitled to rights as closely
- 10.6 related to the Company's rights stated above, as the law permits. The Customer shall give to the Company every assistance in taking any measure required to protect Company's rights of property or such other rights as aforesaid.

 The retention of title under clause 10.1-10.6 shall not affect the passing of risk under clause 6.2 (INCOTERMS).

 Intellectual Property Rights

 The Company shall not be liable if the manufacturing of the goods supplied is based on specifications or drawings provided by the Customer or if the application of the goods infringes
- 10.7

- 11.1 third party rights.
- The Customer agrees to indemnify and hold the Company harmless for any loss, cost, liability or expense resulting from infringement, or claimed infringement, of Intellectual Property Rights in connection with goods manufactured by the Company in accordance with Customer's specifications..

 Regulation (EC) No. 1334/2000 11.2

- Regulation (EC) No. 1334/2000 sets up a Community regime for the control of exports of dual-use items and technology, "Dual-use" items are goods, including software and technology, 12.1 which can be used for both civil and military purposes.
- According to the regulation CE 1334/2000, the Company declares that all the products it handles as per business scope are generic mechanical components and therefore intended for civil purposes only."

 The Customer agrees to indemnify and hold the Company harmless for any loss, cost, liability or expense resulting from infringement, or claimed infringement, of Regulation (EC) No. 12.2
- 12.3

Confidentiality

- 13.1 The Customer shall keep strictest secrecy about and may not disclose the contents of technical documents or any know-how to any third party. The Customer may not use such technical data or know-how for any purpose other than those envisaged by the contract.
 - This confidentiality obligation shall remain in force also after the expiration of the sale contract.

13.2

Even if an individual provision herein is or becomes invalid the remaining provisions of the contract or of the General Conditions shall remain valid. This also applies to issues the parties 14.1 intended but failed to address.

15 Drawinas and other documents

The Company reserves all property rights and copyrights for cost estimates, drawings and other documents provided to the Customer. Those documents may not be utilised for purposes other than those specified by the Company or otherwise disclosed to third parties.

Applicable Law and Jurisdiction 15.1

- 16 16.1 . The validity, construction and interpretation of all documents relating to this sale, and the rights and duties of the parties thereto shall be governed by the laws of the Swiss Confederation.
- 162
- The validity, construction and interpretation of all documents relating to this sale, and the rights and duties of the parties thereto shall be governed by the laws of the Swiss Confederation, excluding the provisions of the United Nations Convention on Contracts for the International Sale of Goods dated 11 April 1980 (CISG).

 For all disputes arising out of or in connection with the contractual relationship between the Company and its contractual counterpart (the Customer), where the amount in controversy, excluding court fees and legal expenses, is below CHF 200'000.—, the competent jurisdiction shall be lugano (Switzerland).

 Where the amount in controversy, excluding court fees and legal expenses, is beyond CHF 200'000.—, all disputes arising out of or in connection with the contractual relationship between the Company and its contractual counterpart (the Customer), shall be finally settled in arbitration under the Rules of Arbitration of the International Chamber of Commerce (ICC), by three arbitrators appointed in accordance with the said Rules. The place of arbitration shall be Zurich (Switzerland). The language of the arbitration shall be English. Any Party shall have the right to have recourse to and shall be bound by the pre-arbitral referee procedure of the International Chamber of Commerce (ICC) in accordance with its Rules for a Pre-Arbitral Referee Procedure. Neither party shall be prevented from having recourse to a court of competent jurisdiction for the purpose of seeking urgent conservatory or interim measures, being specified that the arbitral tribunal shall also have the power to order such measures.

 Any dispute arising out of or in connection with the interpretation of clause 16.3 shall be finally settled in arbitration under the Rules of Arbitration of the International Chamber of Commerce (ICC), by three arbitrators appointed in accordance with the said Rules. The place of arbitration shall be Zurich (Switzerland). The arbitral tribunal shall resolve about its competency, according to th
- 16.4

RKB Europe SA Limited Warranty Edition December 2007

Limited Warranty and Limitation of Liability: RKB Europe SA, for itself and its related companies and subsidiaries (hereinafter described collectively as "RKB"), warrants that all RKB products sold will be free of defects in materials and workmanship for a period of twelve (12) months from date of delivery. The foregoing twelve (12) month warranty shall not be extended or changed by RKB furnishing any replacements, additions, attachments, accessories or repairs to the product subsequent to the date of delivery or acceptance. The foregoing warranty is the sole and exclusive warranty of RKB

Disclaimer of other warranties: other than the foregoing warranty, there are no express or implied warranties or any affirmations of fact or promises by RKB with respect to the product. RKB disclaims any warranties, express, implied or statutory, not specifically set forth above. Without limiting the generality of the foregoing, RKB expressly disclaims any implied warranties of merchantability, fitness for any particular purpose, infringement or any representations of fact or quality not expressly set forth herein.

Limitation of liability and remedies: RKB's sole responsibility and liability incurred as a result of the sale and/or use of the product, and the purchaser's exclusive remedy against RKB under any warranty shall be limited to the repair or replacement, at RKB's option, of product components not conforming to the warranty. The total liability of RKB shall in no event exceed the amount actually paid to RKB by purchaser with respect to the product. This limitation of remedy is intended by the products are remedy is claimed to have failed of its essential purpose. Purchaser's full and complete performance of all obligations of purchaser recited in this agreement is a condition precedent to RKB's warranty obligations and liabilities herein.

Purchaser's damages and limitations: in no event shall RKB be liable to purchaser, its assigns or agents, for economic loss, incidental or consequential damages, in contract or in tort, including but not limited to, any damages for lost profits, down-time, lost production, failure to meet purchaser's sales contracts, or defects in purchaser's materials or workmanship arising directly or indirectly from the use of the product.

The Alternative Power